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Les visites font toujours plaisir, si ce n’est en arrivant, du moins en partant.
— Jean de La Bruyère

1 Introduction

1.1 What is a visitor?

A visitor class for a data structure is a class whose methods implement a traversal of this data structure.
By default, the visitor methods do not have interesting behavior: they just cause control to go down
into the data structure and come back up, without performing any actual computation. Nevertheless,
by defining subclasses where one method or a few methods are overridden, nontrivial behavior can be
obtained. Therefore, visitors allow many operations on this data structure to be defined with little effort.

Visitor classes come in several varieties. An iter visitor traverses a data structure and returns no
result. It can nevertheless have side effects, including updating a piece of mutable state, raising an
exception, and performing input/output. A map visitor traverses a data structure and returns another data
structure: typically, a copy of its argument that has been transformed in some way. An endo visitor is
a variant of a map visitor that preserves physical sharing when possible. A reduce visitor traverses a
data structure and returns a value that somehow summarizes it: computing the size of a data structure is
a typical example. A mapreduce visitor performs the tasks of a map visitor and a reduce visitor at the
same time, possibly allowing symbiosis between them. All of these can be viewed as special cases of the
fold visitor, which performs a bottom-up computation over a data structure. The class fold is equipped
with virtual methods that can be overridden (in a subclass) so as to specify what computation is desired.

Visitors also come in several arities. The visitors mentioned above have arity one: they traverse
one data structure. However, it is sometimes necessary to simultaneously traverse two data structures of
identical shape. For this purpose, there are visitors of arity two: here, they are known as iter2, map2,
reduce2, mapreduce2, and fold2 visitors.

1.2 What does this package offer?

Visitors have extremely regular structure. As a result, whereas implementing them by hand is boring and
error-prone, generating them automatically is often possible. The visitors package extends the syntax
of OCaml1 so as to make it easy for the programmer to request the automatic generation of visitor classes.
Visitor classes for many forms of user-defined data types can be generated and, if necessary, combined
(via multiple inheritance) with hand-written visitor classes, making the framework quite powerful.

2 Walkthrough

2.1 Setup

In order to install the visitors package, an opam user should issue the following commands:

opam update
opam install visitors

To use the package, an ocamlbuild user should add the following line in her project’s _tags file:

true: package ( visitors .ppx), package ( visitors . runtime )

Finally, a user of Merlin should add the following lines in her project’s .merlin file:

PKG visitors .ppx
PKG visitors . runtime

1Technically, visitors is a plugin for ppx_deriving, which itself is a preprocessor extension for the OCaml compiler.
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type expr =
| EConst of int
| EAdd of expr * expr
[ @@deriving visitors { variety = "iter" }]

class virtual [’self] iter = object (self : ’self)
inherit [_] VisitorsRuntime .iter
method visit_EConst env c0 =

let r0 = self# visit_int env c0 in
()

method visit_EAdd env c0 c1 =
let r0 = self# visit_expr env c0 in
let r1 = self# visit_expr env c1 in
()

method visit_expr env this =
match this with
| EConst c0 ->

self# visit_EConst env c0
| EAdd (c0 , c1) ->

self# visit_EAdd env c0 c1
end

Figure 1: A visitor of the iter variety

To use the visitors package in OCaml’s interactive “toplevel” environment, launch ocaml and type
the following commands:

#use " topfind ";;
# require " visitors .ppx";;
# require " visitors . runtime ";;

2.2 Defining an iter visitor

Suppose we need to manipulate arithmetic expressions built out of integer literals and binary additions.
The abstract syntax of these expressions can be described by an algebraic data type expr, shown in the
first part of Figure 1. By annotating this type definition with [@@deriving visitors { ... }], we
request the automated generation of a visitor for expressions. The annotation [@@deriving visitors
{ ... }] must carry at least one parameter, variety, which indicates what variety of visitor is desired.

The code of the visitor class, which is automatically generated and in normal use remains invisible,
is shown in the second part of Figure 1. The name of this class is by default the value of the variety
parameter. It can be changed, if desired, by explicitly supplying a name parameter.

A visitor takes the form of an OCaml class, whose methods are named after the types and data
constructors that appear in the type definition. In Figure 1, for instance, the method visit_expr is
named after the type expr, while the methods visit_EConst and visit_EAdd are named after the data
constructors EConst and EAdd.

Different varieties of visitors differ in the computation that is performed “on the way up”, after the
recursive calls have finished, therefore differ in the return types of the visitor methods. iter is the
simplest variety. An iter visitor performs no computation on the way up, so its methods have return
type unit.

In an iter visitor, the generated visitor methods do nothing. In Figure 1, for instance, the method
visit_expr inspects its argument this and recursively invokes either visit_EConst or visit_EAdd,
as appropriate. The method visit_EConst does nothing.2 The method visit_EAdd performs two

2More precisely, it calls the method visit_int, which is inherited from the class VisitorsRuntime.iter, and does
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This follows
Figure 1.

let count (e : expr) : int =
let v = object

val mutable count = 0
method count = count
inherit [_] iter as super
method ! visit_EAdd env e0 e1 =

count <- count + 1;
super# visit_EAdd env e0 e1

end in
v# visit_expr () e;
v#count

Figure 2: Counting the number of addition nodes in an expression

recursive calls to visit_expr, which does nothing, so visit_EAdd itself does nothing.
Every method is parameterized with an environment env, which is carried down into every recursive

call and is otherwise unused. The type of this environment is undetermined: it is up to the (user-defined)
subclasses of the visitor class to decide what the type of env should be and (possibly) where and how
this environment should be enriched.

The fields of a data constructor or record are traversed left to right, in the order they are declared.
In a list-like data structure, the field that holds a pointer to the list tail should be declared last, so as to
ensure that the traversal requires constant stack space.

2.3 Using an iter visitor

Naturally, traversing a data structure without actually computing anything is not a very sensible thing
to do. Things become interesting when at least one visitor method is overridden so as to give rise to
nontrivial behavior. Suppose, for instance, that we wish to count the number of addition nodes in an
expression. This can be done as shown in Figure 2. We create an object v that is both a counter (that is,
an object equipped with a mutable field count) and a visitor, and we override its method visit_EAdd
so that the counter is incremented every time this method is invoked. There remains to run the visitor, by
invoking its visit_expr method, and to return the final value of the counter. The environment, in this
example, is unused; we let it have type unit.

This may seem a rather complicated way of counting the addition nodes in an expression. Of course,
one could give a direct recursive definition of the function count, in a few lines of code, without using a
visitor at all. The point of employing a visitor, as done in Figures 1 and 2, is that no changes to the code
are required when the type of expressions is extended with new cases.

2.4 What is the type of a visitor?

In this document, most of the time, we prefer to show the code of a visitor class and omit its type. There
are two reasons for this. First, this type is often verbose, as the class has many methods, and complex,
as several type variables are often involved. Second, although we can explain the type of a generated
visitor on a case-by-case basis, we cannot in the general case predict the type of a generated visitor.
The reason is, the type of a generated visitor depends upon the types of the classes that are inherited via
the ancestors parameter (§5.1). Because a ppx syntax extension transforms untyped syntax trees to
untyped syntax trees, the visitors syntax extension does not have access to this information.

For this reason, the visitors syntax extension cannot generate any type declarations. Thus, the
annotation [@@deriving visitors { ... }] can be used only in an %.ml file, not in an %.mli file.

nothing. This call to visit_int can be avoided, if desired, by using (int[@opaque]) instead of int; see §5.5.
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class virtual [’self] iter : object (’self)
constraint ’self =

< visit_EAdd : ’env -> expr -> expr -> unit;
visit_EConst : ’env -> int -> unit;
visit_expr : ’env -> expr -> unit;
.. >

method visit_EAdd : ’env -> expr -> expr -> unit
method visit_EConst : ’env -> int -> unit
method visit_expr : ’env -> expr -> unit
(* These methods are inherited from [ VisitorsRuntime .iter ]: *)
method private visit_array :

’env ’a. (’env -> ’a -> unit) -> ’env -> ’a array -> unit
method private visit_bool : ’env. ’env -> bool -> unit
method private visit_bytes : ’env. ’env -> bytes -> unit
(* ... and many more ... *)

end

Figure 3: An inferred type for the iter visitor of Figure 1

class virtual [’self] iter : object (’self)
method visit_EAdd : ’monomorphic . ’env -> expr -> expr -> unit
method visit_EConst : ’monomorphic . ’env -> int -> unit
method visit_expr : ’monomorphic . ’env -> expr -> unit

end

Figure 4: A simplified type for the iter visitor of Figure 1

When it is used in an %.ml file, the corresponding %.mli file should either be omitted altogether or be
written by hand.

Nevertheless, the type of the generated code can be inspected, if desired, by requesting the OCaml
compiler to infer and display it. For this purpose, one can use a command of the following form:

ocamlbuild -use-ocamlfind <other-flags> %.inferred.mli

Figure 3 shows the type that is inferred via such a command for the iter visitor of Figure 1. This
type is rather verbose, for two reasons. First, an explicit type equation, introduced by the constraint
keyword, relates the type parameter ’self with an OCaml object type that lists the public methods with
their types. Second, the class iter has many more methods than one might think. This is because it
inherits a large number of private methods from the class VisitorsRuntime.iter. In the present case,
all of these methods except visit_int are in fact unused.

Fortunately, this complicated type can be manually simplified. This is done in Figure 4. Two main
simplifications have been performed. First, we have omitted all private methods. Indeed, the most
important property of private methods in OCaml is precisely the fact that it is permitted to hide their
existence. Second, we have omitted the type constraint that bears on the type variable ’self, as it
is in fact redundant: it is implicit in OCaml that the type of “self” must be an object type that lists
the public methods. The bizarre-looking “’monomorphic.” annotations indicate that the methods have
monomorphic types. (This notational trick is explained in §4.3.) This means that the type variable ’env
is not quantified at the level of each method3, but at the level of the class. This means that the three
methods must agree on the type of the environment, and that this type is presently undetermined, but can
be determined in a subclass.

The class type shown in Figure 4 cannot be further simplified. The methods visit_EConst and
visit_EAdd cannot be hidden, as they are public. That said, if one wished to hide them, one could add

3That would be undesirable, as it would force each method to treat the environment as an argument of unknown type!
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type expr =
| EConst of int
| EAdd of expr * expr
[ @@deriving visitors { variety = "map" }]

class virtual [’self] map = object (self : ’self)
inherit [_] VisitorsRuntime .map
method visit_EConst env c0 =

let r0 = self# visit_int env c0 in
EConst r0

method visit_EAdd env c0 c1 =
let r0 = self# visit_expr env c0 in
let r1 = self# visit_expr env c1 in
EAdd (r0 , r1)

method visit_expr env this =
match this with
| EConst c0 ->

self# visit_EConst env c0
| EAdd (c0 , c1) ->

self# visit_EAdd env c0 c1
end

Figure 5: A visitor of the map variety

the parameter public = ["visit_expr"] to the annotation [@@deriving visitors { ... }] in
Figure 1. These two methods would then be declared private in the generated code, so it would be
permitted to hide their existence.

Although we have claimed earlier that one cannot in the general case predict the type of a generated
visitor method, or even predict whether a generated method will be well-typed, it is possible to define a
convention which in many cases can be adhered to. This convention is presented later on (§2.12.2, §2.13,
Figure 22).

2.5 map visitors

An iter visitor returns no result. Although, as illustrated previously (§2.3), it can use private mutable
state to accumulate information, there are applications for which such a visitor is not suitable. One class
of such applications is tree transformations. To transform an expression into an expression, one should
use a visitor of another variety, namely map.

A map visitor is shown in Figure 5. In comparison with the iter visitor of Figure 1, the gener-
ated code is identical, except that, instead of returning the unit value (), the method visit_EConst
reconstructs an EConst expression, while the method visit_EAdd reconstructs an EAdd expression.

A map visitor behaves (by default) as an identity function: it constructs a copy of the data structure
that it visits. If the data structure is immutable, this is rather pointless: in order to obtain nontrivial
behavior, at least one method should be overridden. If the data structure is mutable, though, even the
default behavior is potentially of interest: it constructs a deep copy of its argument.

2.6 endo visitors

endo visitors are a slight variation of map visitors. Whereas a map visitor systematically allocates a copy
of the memory block that it receives as an argument, an endo visitor (Figure 6) first tests if the newly
allocated block would have exactly the same contents as the original block, and if so, re-uses the original
block instead. This trick allows saving memory: for instance, when a performing a substitution operation
on a term, the subterms that are unaffected by the substitution are not copied.
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One potential disadvantage of endo visitors, in comparison with map visitors, is that these runtime
tests have a runtime cost. A more serious disadvantage is that endo visitors have less general types: in an
endo visitor, the argument type and return type of every method must coincide, whence the name “endo”.
(An endomorphism is a function of a set into itself.) map visitors are not subject to this restriction: for
an illustration, see §3.2 and Figure 28.

In principle, endo visitors should be created only for immutable data structures. Although the tool
can produce an endo visitor for a mutable data structure, this is discouraged, as it may lead to unexpected
behavior.

2.7 reduce visitors

Whereas an iter visitor returns no result and a map visitor returns a data structure, a reduce visitor
returns a “summary” of a data structure, so to speak. The summary of a term is computed by combining
the summaries of its subterms. This requires summaries to inhabit a monoid, that is, a type equipped
with a binary operation plus and its neutral element zero.

Figure 7 shows a reduce visitor for arithmetic expressions. In visit_EAdd, the summaries pro-
duced by the two recursive calls are combined using a call to self#plus. In visit_EConst, there are
no recursive calls, so there is nothing to combine: the result is self#zero.

The virtual methods zero and plus are declared in the class VisitorsRuntime.reduce, which is
automatically inherited. The type of the monoid elements, at this point, is undetermined: it is up to the
(user-defined) subclasses of the class reduce to decide what this type should be and what the monoid
operations should be.

As an example application, Figure 8 shows how to compute the size of an expression using a reduce
visitor. We inherit the class reduce. We also inherit the class VisitorsRuntime.addition_monoid,
which defines the methods zero and plus as the integer 0 and integer addition, respectively. There
remains to override the method visit_expr so as to indicate that every node contributes 1 to the size of
an expression.

Incidentally, this code is written in such a manner that a single visitor object is created initially and
serves in every call to the function size. This style can be used when the visitor object is immutable
and when the function that one wishes to define is monomorphic. When it cannot be used, one begins
with let size (e : expr) : int = ... and ends with v # visit_expr () e. That style causes
a new visitor object to be created every time size is called.

The size of an expression can also be computed using an iter visitor equipped with mutable state,
in the style of Figure 2. It is mostly a matter of style whether such a computation should be performed
using iter or reduce.

An iter visitor is in fact a special case of a reduce visitor, instantiated with the unit monoid.
Thus, in principle, one could forget iter and always work with reduce. Nevertheless, it is preferable
to work with iter when it is applicable, for reasons of clarity and efficiency.

2.8 mapreduce visitors

A mapreduce visitor performs the tasks of a map visitor and a reduce visitor at once. An example
appears in Figure 9. Every visitor method returns a pair of a transformed term and a summary. In other
words, it returns a pair of the results that would be returned by a map visitor method and by a reduce
visitor method.

Like a reduce visitor, a mapreduce visitor performs a bottom-up computation. Like a map visitor,
it constructs a new tree. By default, these two tasks are independent of one another. However, by
overriding one or more methods, it is easy to establish a connection between them: typically, one wishes
to exploit the information that was computed about a subtree in the construction of the corresponding new
subtree. As an example, Figure 10 shows how to transform an arithmetic expression into an arithmetic
expression where every subexpression is annotated with its size. (This example uses a parameterized
type of decorated expressions, which is explained in §2.12.1. We suggest reading the explanations there
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type expr =
| EConst of int
| EAdd of expr * expr
[ @@deriving visitors { variety = "endo" }]

class virtual [’self] endo = object (self : ’self)
inherit [_] VisitorsRuntime .endo
method visit_EConst env this c0 =

let r0 = self# visit_int env c0 in
if c0 == r0 then this else EConst r0

method visit_EAdd env this c0 c1 =
let r0 = self# visit_expr env c0 in
let r1 = self# visit_expr env c1 in
if (c0 == r0) && (c1 == r1) then this else EAdd (r0 , r1)

method visit_expr env this =
match this with
| EConst c0 as this ->

self# visit_EConst env this c0
| EAdd (c0 , c1) as this ->

self# visit_EAdd env this c0 c1
end

Figure 6: A visitor of the endo variety

type expr =
| EConst of (int[ @opaque ])
| EAdd of expr * expr
[ @@deriving visitors { variety = " reduce " }]

class virtual [’self] reduce = object (self : ’self)
inherit [_] VisitorsRuntime . reduce
method visit_EConst env c0 =

let s0 = (fun this -> self#zero) c0 in
s0

method visit_EAdd env c0 c1 =
let s0 = self# visit_expr env c0 in
let s1 = self# visit_expr env c1 in
self#plus s0 s1

method visit_expr env this =
match this with
| EConst c0 ->

self# visit_EConst env c0
| EAdd (c0 , c1) ->

self# visit_EAdd env c0 c1
end

Figure 7: A visitor of the reduce variety
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This follows
Figure 7.

let size : expr -> int =
let v = object

inherit [_] reduce as super
inherit [_] VisitorsRuntime . addition_monoid
method ! visit_expr env e =

1 + super # visit_expr env e
end in
v # visit_expr ()

Figure 8: Computing the size of an expression using a reduce visitor

first.) The transformation is carried out in one pass and in linear time. As in Figure 8, we use the
addition monoid to compute integer sizes. This time, however, the visitor methods return not just a
size, but a pair of a new expression and a size. The method visit_expr is overridden so as to store
the size of the subexpression, size, in the info field of the new expression. Because the overridden
method visit_expr does not call visit_’info, the latter method is never called: we provide a dummy
definition of it.

Other example applications of mapreduce visitors include:
• decorating every subterm of a λ-term with the set of its free variables;
• decorating every internal node of abstract syntax tree with a region in the source code (assuming

that every leaf carries such a region already).

2.9 fold visitors

The varities of visitors presented up to this point differ in the computation that they perform on the way
up, after the recursive calls. As we have seen, iter visitors perform no computation at all; map and
endo visitors reconstruct a term; reduce visitors perform a series of monoid operations. Each variety
follows a baked-in pattern, which has been programmed ahead of time, and cannot be changed. What if
a different form of computation, which has not been envisioned by the author of the visitors syntax
extension, is needed?

This is where fold visitors come in. A fold visitor declares virtual methods that are called on the
way up and can be overridden by the user (in a subclass) so as to implement the desired computation.
Figure 11 shows a fold visitor. Two virtual methods, build_EConst and build_EAdd, are declared.
They are invoked by visit_EConst and visit_EAdd, respectively.

In a fold visitor, the return type of the visitor methods is not fixed ahead of time. It is up to the
(user-defined) subclasses of the visitor class to decide what this type should be.

As an example application, Figure 12 shows how a fold visitor can be used to convert the visited
data structure to an entirely different format. In this example, the type person is a record type, whose
fields are firstname and surname. The type crowd is isomorphic to a list of persons, but, for some
reason, it is declared as an algebraic data type equipped with its own data constructors, Nobody and
Someone. Suppose we wish to convert a crowd to a list of pairs of strings. We can do so by creat-
ing a visitor object that inherits the class fold and provides concrete implementations of the methods
build_person, build_Nobody, and build_Someone. Our implementation of build_person simply
allocates a pair, while our implementations of build_Nobody and build_Someone respectively build an
empty list and a nonempty list. Thus, the return type of the methods build_person and visit_person
is string * string, while the return type of the methods build_Nobody, build_Someone, and
visit_crowd is (string * string) list. In a fold visitor, not all methods need have the same
return type!

If we had chosen to return f ^ s instead of (f, s) in build_person, then a crowd would be
converted to a string list. A fold visitor offers great flexibility.

All previous varieties of visitors are special cases of fold visitors. The specialized varieties of
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type ’info expr_node =
| EConst of int
| EAdd of ’info expr * ’info expr

and ’info expr =
{ info: ’info; node: ’info expr_node }

[ @@deriving visitors { variety = " mapreduce " }]

class virtual [’self] mapreduce = object (self : ’self)
inherit [_] VisitorsRuntime . mapreduce
method virtual visit_ ’info : _
method visit_EConst env c0 =

let (r0 , s0) = self# visit_int env c0 in
(( EConst r0), s0)

method visit_EAdd env c0 c1 =
let (r0 , s0) = self# visit_expr env c0 in
let (r1 , s1) = self# visit_expr env c1 in
(( EAdd (r0 , r1)), (self#plus s0 s1))

method visit_expr_node env this =
match this with
| EConst c0 ->

self# visit_EConst env c0
| EAdd (c0 , c1) ->

self# visit_EAdd env c0 c1
method visit_expr env this =

let (r0 , s0) = self#visit_ ’info env this.info in
let (r1 , s1) = self# visit_expr_node env this.node in
({ info = r0; node = r1 }, (self#plus s0 s1))

end

Figure 9: A visitor of the mapreduce variety

This follows
Figure 9.

let annotate (e : _ expr) : int expr =
let v = object

inherit [_] mapreduce as super
inherit [_] VisitorsRuntime . addition_monoid
method ! visit_expr env { info = _; node } =

let node , size = super# visit_expr_node env node in
let size = size + 1 in
{ info = size; node }, size

method visit_ ’info _env _info =
assert false (* never called *)

end in
let e, _ = v # visit_expr () e in
e

Figure 10: Decorating every subexpression with its size
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type expr =
| EConst of (int[ @opaque ])
| EAdd of expr * expr
[ @@deriving visitors { variety = "fold" }]

class virtual [’self] fold = object (self : ’self)
inherit [_] VisitorsRuntime .fold
method virtual build_EAdd : _
method virtual build_EConst : _
method visit_EConst env c0 =

let r0 = (fun this -> this) c0 in
self# build_EConst env r0

method visit_EAdd env c0 c1 =
let r0 = self# visit_expr env c0 in
let r1 = self# visit_expr env c1 in
self# build_EAdd env r0 r1

method visit_expr env this =
match this with
| EConst c0 ->

self# visit_EConst env c0
| EAdd (c0 , c1) ->

self# visit_EAdd env c0 c1
end

Figure 11: A visitor of the fold variety

type person = {
firstname : string [ @opaque ];
surname : string [ @opaque ]

}

and crowd =
| Nobody
| Someone of person * crowd

[ @@deriving visitors { variety = "fold" }]

let convert : crowd -> ( string * string ) list =
let v = object

inherit [_] fold
method build_person () f s = (f, s)
method build_Nobody () = []
method build_Someone () p c = p :: c

end
in v # visit_crowd ()

Figure 12: Converting towards unrelated types using a fold visitor
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visitors are more convenient to use, when they can be used, because they do not require the user to
provide build_ methods. Yet, fold visitors are in principle more versatile.4

2.10 Visitors of arity two

The visitors introduced so far traverse one tree at a time. There are situations where one wishes to
simultaneously traverse two trees, which one expects have the same structure. For this purpose, one can
use a visitor of arity 2. Every variety except endo is available at arity 2.

As an illustration, Figure 13 shows an iter2 visitor. There, the method visit_expr expects an en-
vironment and two expressions. These expressions must have identical structure: indeed, if visit_expr
finds that they exhibit different tags at the root, say EConst versus EAdd, then it invokes the method
fail_expr, whose default implementation calls the function VisitorsRuntime.fail. This function
throws the exception VisitorsRuntime.StructuralMismatch.

In Figure 13, we have added the optional parameter concrete = true to indicate that the generated
class should not be virtual. (By default, every generated class is declared virtual.) We do this because,
in the illustration that follows, we wish to instantiate this class.

As an illustration, in Figure 14, we use an iter2 visitor to write a function that tests whether two
expressions are syntactically equal. This is just a matter of performing a synchronous traversal of the
two expressions and detecting a StructuralMismatch exception: if this exception is raised, one must
return false, otherwise one must return true. We rely on the fact that the method visit_int, which
is inherited from the class VisitorsRuntime.iter2, fails when its two integer arguments are unequal.

The convenience functions VisitorsRuntime.wrap and VisitorsRuntime.wrap2 run a user-
supplied function (of arity 1 or 2, respectively) within an exception handler and return a Boolean result,
which is true if no exception was raised. Here, we run the function new iter2 # visit_expr (),
whose type is expr -> expr -> unit, in the scope of such a handler.

Naturally, to test whether two expressions are syntactically equal, one could also use the primitive
equality operator =. Alternatively, one could exploit ppx_deriving and annotate the type definition
with [@@deriving eq]. Visitors offer greater flexibility: for instance, if our arithmetic expressions
contained variables and binders, we could easily define an operation that tests whether two expressions
are α-equivalent.

As a second illustration, in Figure 15, we use an iter2 visitor to write a lexicographic ordering
function for expressions. Again, this involves a synchronous traversal of the two expressions. When a
mismatch is detected, however, one must not raise a StructuralMismatch exception: instead, one must
raise an exception that carries one bit of information, namely, which of the two expressions is strictly
“smaller” in the ordering. The exception Different is introduced for this purpose; it carries an integer
return code, which by convention is either -1 or +1. Two visitor methods must be overridden, namely
visit_int, which is in charge of detecting a mismatch between two integer constants, and fail_expr,
which is invoked when a mismatch between (the head constructors of) two expressions is detected. The
auxiliary function tag returns an integer code for the head constructor of an expression. It must be
hand-written. One could in principle write such a function once and for all by using the undocumented
operations in OCaml’s Obj module, but that is discouraged.

2.11 Visitors for a family of types

Visitors can be generated not just for one type definition, but for a family of type definitions. In Figure 16,
we propose a definition of arithmetic expressions that involves three algebraic data types, namely unop,
binop, and expr. We request the generation of two visitors, namely an iter visitor and a map visitor.
This causes the generation of just two classes, named iter and map, respectively. Each of these classes
has visitor methods for every type (namely visit_unop, visit_binop, visit_expr) and for every
data constructor (namely visit_UnaryMinus, visit_BinaryMinus, and so on).

4This would be true in an untyped setting, but is not quite true in OCaml, due to restrictions imposed by OCaml’s type
discipline (§4.5).
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type expr =
| EConst of int
| EAdd of expr * expr
[ @@deriving visitors { variety = "iter2"; concrete = true }]

class [’self] iter2 = object (self : ’self)
inherit [_] VisitorsRuntime .iter2
method visit_EConst env c0_0 c0_1 =

let r0 = self# visit_int env c0_0 c0_1 in
()

method visit_EAdd env c0_0 c0_1 c1_0 c1_1 =
let r0 = self# visit_expr env c0_0 c0_1 in
let r1 = self# visit_expr env c1_0 c1_1 in
()

method fail_expr env this_0 this_1 =
VisitorsRuntime .fail ()

method visit_expr env this_0 this_1 =
match (this_0 , this_1 ) with
| ( EConst c0_0 , EConst c0_1) ->

self# visit_EConst env c0_0 c0_1
| (EAdd (c0_0 , c1_0), EAdd (c0_1 , c1_1 )) ->

self# visit_EAdd env c0_0 c0_1 c1_0 c1_1
| (this_0 , this_1 ) ->

self# fail_expr env this_0 this_1
end

Figure 13: A visitor of the iter2 variety

This follows
Figure 13.

let equal : expr -> expr -> bool =
VisitorsRuntime .wrap2 (new iter2 # visit_expr ())

Figure 14: Determining whether two expressions are syntactically equal

This follows
Figure 13.

let tag : expr -> int = function
| EConst _ -> 0
| EAdd _ -> 1

exception Different of int

let compare (i1 : int) (i2 : int) : unit =
if i1 <> i2 then

raise ( Different (if i1 < i2 then -1 else 1))

class compare = object
inherit [_] iter2
method ! visit_int _ i1 i2 = compare i1 i2
method ! fail_expr () e1 e2 = compare (tag e1) (tag e2)

end

let compare (e1 : expr) (e2 : expr) : int =
try new compare # visit_expr () e1 e2; 0 with Different c -> c

Figure 15: Determining which way two expressions are ordered
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type unop =
| UnaryMinus

and binop =
| BinaryMinus
| BinaryAdd
| BinaryMul
| BinaryDiv

and expr =
| EConst of int
| EUnOp of unop * expr
| EBinOp of expr * binop * expr

[ @@deriving visitors { variety = "iter" },
visitors { variety = "map" }]

Figure 16: Visitors for a family of types

Note that, for the [@@deriving visitors { ... }] annotation to apply to the entire family, as
opposed to just the type expr, the types unop, binop, and expr in Figure 16 are declared simultaneously:
that is, their declarations are separated with the keyword and.

2.12 Visitors for parameterized types

Visitors can be generated for parameterized types, too. However, there are two ways in which this can
be done. Here is why.

To visit a data type where some type variable ’a occurs, one must know how to visit a value of
type ’a. There are two ways in which this information can be provided. One way is to assume that there
is a virtual visitor method visit_’a in charge of visiting a value of type ’a. Another way is to pass a
visitor function visit_’a as an argument to every visitor method.

These two approaches differ in their expressive power. The virtual-visitor-method approach implies
that the visitor methods must have monomorphic types: roughly speaking, the type variable ’a appears
free in the type of every visitor method. The visitor-function approach implies that the visitor methods
can have polymorphic types: roughly speaking, each method independently can be polymorphic in ’a.
For this reason, we refer to these two approaches as the monomorphic approach and the polymorphic
approach, respectively.

The monomorphic approach offers the advantage that the type of every method is inferred by OCaml.
Indeed, in this mode, the generated code need not contain any type annotations. This allows correct, most
general (monomorphic) types to be obtained even in the case where certain hand-written visitor methods
(provided via the ancestors parameter) have unconventional types.

The polymorphic approach offers the advantage that visitor methods can receive polymorphic types.
If the type container is parameterized with a type variable ’a, then the method visit_container
can be assigned a type that is universally quantified in ’a, of the following form:

method visit_container :
’env ’a .
(’env -> ’a -> ...) ->
’env -> ’a container -> ...

The types of the visit_list methods, shown later on (§2.13, Figure 22), follow this pattern. Because
visit_container is polymorphic, taking multiple instances of the type container, such as apple
container and orange container, and attempting to generate visitor methods for these types, poses
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no difficulty. This works even if the definition of ’a container mentions other instances of this type,
such as (’a * ’a) container. In other words, in the polymorphic approach, irregular algebraic data
types (§5.4) are supported.

One downside of the polymorphic approach is that, because polymorphic types cannot be inferred by
OCaml, the visitors syntax extension must generate polymorphic type annotations. Therefore, it must
be able to predict the type of every visitor method. This requires that any visitor methods inherited via
ancestors adhere to a certain convention (§2.12.2, §2.13, Figure 22).

In summary, both the monomorphic approach and the polymorphic approach are currently supported
(§2.12.1, §2.12.2). The parameter polymorphic allows choosing between them. As a rule of thumb, we
suggest setting polymorphic = true, as this produces visitors that compose better.

2.12.1 Monomorphic visitor methods for parameterized types

We begin with an example of the monomorphic mode. This mode can be explicitly requested by writing
polymorphic = false as part of the [@@deriving visitors { ... }] annotation. It is the default
mode.

In Figure 17, we define a variant of arithmetic expressions where every tree node is decorated with a
value of type ’info. We request the generation of a map visitor, whose code is shown in the second part
of Figure 17. The generated code has exactly the same structure as in the previous sections. The only
new feature is that the class map now has a virtual method, visit_’info. The general rule is, for each
type parameter, there is one virtual method, named after it.

The visitor methods are not declared polymorphic in a type variable ’info, or in two type variables
’info1 and ’info2, as one might perhaps expect. In fact, they must not be declared polymorphic:
indeed, the user who implements visit_’info in a subclass of map may wish to provide an implemen-
tation that expects and/or produces specific types of information.

As a result, a visitor object is monomorphic: its method visit_’info must have type info1 ->
info2 for certain specific types info1 and info2. Fortunately, because it is parameterized over ’self,5

the visitor class is polymorphic: two distinct visitor objects can have distinct types.
Although every automatically generated method is monomorphic, a visitor class can nevertheless

inherit polymorphic methods from a parent class, whose name is specified via the ancestors param-
eter (§5.1). For instance, the visit_list methods provided by the classes VisitorsRuntime.iter,
VisitorsRuntime.map, and so on, are polymorphic in the types of the list elements. (See §2.13 for
more information on the treatment of preexisting types.)

Figure 18 presents two example uses of the class map defined in Figure 17. In the first example,
we define a function strip, of type ’info expr -> unit expr, which strips off the decorations in
an arithmetic expression, replacing them with unit values. In the second example, we define a function
number, of type ’info expr -> int expr, which decorates each node in an arithmetic expression
with a unique integer number.6

2.12.2 Polymorphic visitor methods for parameterized types

We continue with an example of the polymorphic mode. This mode can be explicitly requested by
writing polymorphic = true as part of the [@@deriving visitors { ... }] annotation. It is
available for all varieties of visitors except fold and fold2. The reason why it seems difficult to come
up with a satisfactory polymorphic type for fold visitor methods is explained later on (§4.5).

In Figure 19, we again have arithmetic expressions where every tree node is decorated with a value
of type ’info. We again request a map visitor but, this time, we specify polymorphic = true. In
order to make the generated code shorter, we specify data = false (§5.1), which causes the methods
visit_EConst and visit_EAdd to disappear. (They are inlined at their call sites.)

5We explain in §4.2 why all visitor classes are parameterized over ’self.
6Because the info field appears before the node field in the definition of the type expr, and because fields are visited

left-to-right, we get a prefix numbering scheme. By exchanging these fields, we would get postfix numbering.
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type ’info expr_node =
| EConst of int
| EAdd of ’info expr * ’info expr

and ’info expr =
{ info: ’info; node: ’info expr_node }

[ @@deriving visitors { variety = "map" }]

class virtual [’self] map = object (self : ’self)
inherit [_] VisitorsRuntime .map
method virtual visit_ ’info : _
method visit_EConst env c0 =

let r0 = self# visit_int env c0 in
EConst r0

method visit_EAdd env c0 c1 =
let r0 = self# visit_expr env c0 in
let r1 = self# visit_expr env c1 in
EAdd (r0 , r1)

method visit_expr_node env this =
match this with
| EConst c0 ->

self# visit_EConst env c0
| EAdd (c0 , c1) ->

self# visit_EAdd env c0 c1
method visit_expr env this =

let r0 = self#visit_ ’info env this.info in
let r1 = self# visit_expr_node env this.node in
{ info = r0; node = r1 }

end

Figure 17: A “monomorphic-method” visitor for a parameterized type of decorated expressions

This follows
Figure 17.

let strip (e : _ expr) : unit expr =
let v = object

inherit [_] map
method visit_ ’info _env _info = ()

end in
v # visit_expr () e

let number (e : _ expr) : int expr =
let v = object

inherit [_] map
val mutable count = 0
method visit_ ’info _env _info =

let c = count in count <- c + 1; c
end in
v # visit_expr () e

Figure 18: Working with different types of decorations
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type ’info expr_node =
| EConst of int
| EAdd of ’info expr * ’info expr

and ’info expr =
{ info: ’info; node: ’info expr_node }

[ @@deriving visitors { variety = "map"; polymorphic = true;
concrete = true; data = false }]

class [’self] map = object (self : ’self)
inherit [_] VisitorsRuntime .map
method visit_expr_node :

’env ’info_0 ’info_1 .
(’env -> ’info_0 -> ’info_1 ) ->
’env -> ’info_0 expr_node -> ’info_1 expr_node =
fun visit_ ’info env this ->

match this with
| EConst c0 ->

let r0 = self# visit_int env c0 in
EConst r0

| EAdd (c0 , c1) ->
let r0 = self# visit_expr visit_ ’info env c0 in
let r1 = self# visit_expr visit_ ’info env c1 in
EAdd (r0 , r1)

method visit_expr :
’env ’info_0 ’info_1 .
(’env -> ’info_0 -> ’info_1 ) ->
’env -> ’info_0 expr -> ’info_1 expr =
fun visit_ ’info env this ->

let r0 = visit_ ’info env this.info in
let r1 = self# visit_expr_node visit_ ’info env this.node in
{ info = r0; node = r1 }

end

Figure 19: A “polymorphic-method” visitor for a parameterized type of decorated expressions

This follows
Figure 19.

let v = new map

let strip : _ expr -> unit expr =
let visit_ ’info _env _info = () in
fun e ->

v # visit_expr visit_ ’info () e

let number : _ expr -> int expr =
let visit_ ’info count _info =

let c = !count in count := c + 1; c in
fun e ->

let count = ref 0 in
v # visit_expr visit_ ’info count e

Figure 20: Working with different types of decorations
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type expr =
| EConst of int
| EAdd of expr list
[ @@deriving visitors { variety = "iter" }]

class virtual [’self] iter = object (self : ’self)
inherit [_] VisitorsRuntime .iter
method visit_EConst env c0 =

let r0 = self# visit_int env c0 in
()

method visit_EAdd env c0 =
let r0 = self# visit_list self# visit_expr env c0 in
()

method visit_expr env this =
match this with
| EConst c0 ->

self# visit_EConst env c0
| EAdd c0 ->

self# visit_EAdd env c0
end

Figure 21: Using preexisting (parameterized) types, such as int and list

The generated code is the same as in the previous section, except that visit_’info is not a method
any more. Instead, it is a function, which is passed as an argument to every visitor method.

The class map does not have any virtual methods. It can thus be declared as concrete class: to this
end, we specify concrete = true (§5.1). Without this indication, it would be declared virtual.

Because visit_’info is an argument of every visitor method, every visitor method can be declared
polymorphic in the type variables ’env, ’info_0 and ’info_1, where the function visit_’info has
type ’env -> ’info_0 -> ’info_1. The fact that we would like every method to have a polymorphic
type cannot be inferred by OCaml. For this reason, the generated code contains explicit polymorphic type
annotations.

Figure 20 presents two example uses of the class map defined in Figure 19. As in Figure 18, we
define two functions strip and number. A striking feature of this code is that a single visitor object v
is now allocated, once and for all, and is used in every subsequent call to strip and number. The two
visit_’info functions are also defined once and for all.7

In the definition of number, we choose to store the current count in a reference, count, and to
let count play the role of the “environment”. Thus, we initially pass count to visit_expr, and
visit_’info receives count as its “environment” argument.

The polymorphic type annotations that are automatically generated (Figure 19) follow a certain fixed
convention. If the user throws in hand-written visitor methods via the ancestors parameter, then those
hand-written methods must adhere to the same convention (or the generated code would be ill-typed).
This convention is illustrated in the next section (§2.13) with the example of the visit_list methods.

A type variable is not allowed to occur under an [@opaque] annotation (§5.5). Indeed, annotating a
type variable ’a with [@opaque] would cause special-purpose visit code to be generated, whose type is
not as polymorphic as required by the above convention.

2.13 Dealing with references to preexisting types

A type definition can contain references to the types that are being defined, also known as local types.
For instance, in Figure 1, the definition of EAdd contains two references to a local type, namely expr.

7Although we have nested these functions inside the definitions of strip and number, they are closed, so they could be
hoisted out to the top level, if desired.
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class [’self] iter : object (’self)
method private visit_list : ’env ’a .

(’env -> ’a -> unit) -> ’env -> ’a list -> unit
end
class [’self] map : object (’self)

method private visit_list : ’env ’a ’b .
(’env -> ’a -> ’b) -> ’env -> ’a list -> ’b list

end
class [’self] endo : object (’self)

method private visit_list : ’env ’a .
(’env -> ’a -> ’a) -> ’env -> ’a list -> ’a list

end
class virtual [’self] reduce : object (’self)

inherit [’s] monoid
method private visit_list : ’env ’a .

(’env -> ’a -> ’s) -> ’env -> ’a list -> ’s
end
class virtual [’self] mapreduce : object (’self)

inherit [’s] monoid
method private visit_list : ’env ’a ’b .

(’env -> ’a -> ’b * ’s) -> ’env -> ’a list -> ’b list * ’s
end
class [’self] iter2 : object (’self)

method private visit_list : ’env ’a ’b .
(’env -> ’a -> ’b -> unit) -> ’env -> ’a list -> ’b list -> unit

end
class [’self] map2 : object (’self)

method private visit_list : ’env ’a ’b ’c .
(’env -> ’a -> ’b -> ’c) -> ’env -> ’a list -> ’b list -> ’c list

end
class virtual [’self] reduce2 : object (’self)

inherit [’s] monoid
method private visit_list : ’env ’a ’b .

(’env -> ’a -> ’b -> ’s) -> ’env -> ’a list -> ’b list -> ’s
end
class virtual [’self] mapreduce2 : object (’self)

inherit [’s] monoid
method private visit_list : ’env ’a ’b ’c .

(’env -> ’a -> ’b -> ’c * ’s) ->
’env -> ’a list -> ’b list -> ’c list * ’s

end

Figure 22: Conventional types of polymorphic visitor methods

20



A type definition can also contain references to preexisting types, also known as nonlocal types. For
instance, in Figure 1, the definition of EConst contains a reference to a nonlocal type, namely int, which
happens to be one of OCaml’s primitive types. In Figure 21, the definition of EAdd contains a reference to
a parameterized nonlocal type, namely list, which happens to be defined in OCaml’s standard library.

The treatment of local types has been illustrated in the previous sections. In short, for every local
type, a visitor method is called, and is defined: for instance, for the local type expr, we define the
(concrete) method visit_expr.

The treatment of nonlocal types is the same, except the visitor method is not defined, nor declared.
That is, it is called, but is neither defined (as a concrete method) or declared (as a virtual method).
Therefore, its definition must be provided by an ancestor class.

For most of OCaml primitive or built-in types, support is provided by the module VisitorsRuntime.
This module contains several classes named iter, map, and so on; each of them supplies methods
named visit_int, visit_list, and so on.8 As is evident in Figures 1, 5, and so on, the generated
visitor automatically inherits from the appropriate class in VisitorsRuntime, so it receives default
implementations of the methods visit_int, visit_list, and so on.

The visitor methods for parameterized data types (array, Lazy.t, list, option, ref, result)
are polymorphic, so it is not a problem if both lists of apples and lists of oranges need to be traversed.
The types of these methods follow a strict convention, illustrated in Figure 22 with the example of
visit_list.

The visit_list methods in the classes VisitorsRuntime.iter, VisitorsRuntime.map, and
so on, have been hand-written, but could equally well have been generated, with polymorphic = true:
their types would be the same. This illustrates the fact that, with polymorphic = true, visitors are
compositional. That is, if the definition of the type ’b bar refers to the type ’a foo, then one can
separately generate a visitor class for ’a foo and generate a visitor class for ’b bar, which inherits
the previous class.

At a primitive type, it is advisable to carefully consider what behavior is desired. On the one hand,
perhaps the inherited method visit_int need not be invoked in the first place; this behavior can be
obtained by using (int[@opaque]) instead of int. (See §5.5 for details.) This is done, for instance,
in Figure 7, where one can check that no call to visit_int is generated. On the other hand, when
one decides to use an inherited method, one should make sure that one understands its behavior. The
methods visit_array and visit_ref in the class VisitorsRuntime.map, for instance, perform a
copy of a mutable memory block: one should be aware that such a copy is taking place. If this behavior
is undesirable, it can be overridden.

It is possible to inherit as many classes as one wishes, beyond those defined in VisitorsRuntime.
This is done via the ancestors parameter (§5.1). It is also possible to not inherit any methods from
VisitorsRuntime. This is done via the nude parameter (§5.1).

2.14 Generating visitors for preexisting types

Because the [@@deriving visitors { ... }] annotation must be attached to the type definition, it
may seem as if it is impossible to generate a visitor for a type whose definition is out of reach. Suppose,
for instance, that the type expr of arithmetic expressions is defined in a module Expr, which, for some
reason, we cannot modify. Can we generate a visitor for this type?

Fortunately, the answer is positive. The basic trick, documented in the ppx_deriving README,
consists in defining a new type expr of arithmetic expressions and to explicitly declare that it is equal to
the preexisting type Expr.expr, as follows.

8As an exception to this rule, the classes VisitorsRuntime.fold and VisitorsRuntime.fold2 do not supply any
methods, because we do not wish to prematurely fix the types of the visitor methods. Please consult VisitorsRuntime.ml to
check which methods exist and what they do.
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type expr = Expr.expr =
| EConst of int
| EAdd of expr * expr
[ @@deriving visitors { variety = "iter" }]

As can be seen above, the new definition of expr can be annotated with [@@deriving visitors
{ ... }], yielding a visitor for the new type expr, which by definition, is equal to the preexisting type
Expr.expr. Thus, this visitor class be used to traverse expressions of type Expr.expr.

This approach works, but requires repeating the definition of the type expr. This duplication can be
eliminated thanks to the ppx_import syntax extension, as follows:

type expr =
[% import : Expr.expr]
[ @@deriving visitors { variety = "iter" }]

This expands to the code shown previously. (To use this syntax extension, assuming you are using
ocamlbuild and ocamlfind, just add the line true: package(ppx_import) to your _tags file.)
As icing on the cake, ppx_import allows decorating the type definition, on the fly, with new attributes.
In the following examples, we replace all occurrences of int with int[@opaque] (§5.5), so as to ensure
that the generated visitor does not invoke the method visit_int:

type expr =
[% import : Expr.expr [@with int := int[ @opaque ]]]
[ @@deriving visitors { variety = "iter" }]

3 Advanced examples

3.1 Visitors for open and closed data types

The algebraic data types of arithmetic expressions shown in the previous section (§1) are closed. That
is, the type expr is recursive: an expression of type expr has subexpressions of type expr.

It is often desirable, for greater flexibility, to first define an open type of arithmetic expressions. Such
a type, say oexpr, is parameterized over a type variable ’expr. It is not recursive: an expression of type
’expr oexpr has subexpressions of type ’expr. It is shown in Figure 23. Naturally, we may request
the generation of visitors for the type oexpr. In Figure 23, we generate a class of map visitors, which we
name omap. (This is an example of using an explicit name parameter.) As explained earlier (§2.12.1),
because the type oexpr is parameterized over the type variable ’expr, the visitor class has a virtual
method, visit_’expr. In this example, we use the monomorphic mode (§2.12.1), but could just as well
use the polymorphic mode (§2.12.2): this is left as an exercise for the reader.

A closed (recursive) type of expressions, expr, can then be defined in terms of expr. This is done
in Figure 24. In type-theoretical terms, one would like to define expr as the fixed point of the functor
oexpr [3]. That is, roughly speaking, one would like to define type expr = expr oexpr. This is not
accepted by OCaml, though;9 we work around this limitation by making expr an algebraic data type
whose single data constructor is named E.10

9It would be accepted by OCaml with the command line switch -rectypes, which instructs the typechecker to tolerate
equirecursive types. However, this is not a good idea, as it causes the typechecker to suddenly accept many meaningless
programs and infer bizarre types for them.

10We mark this algebraic data type [@@unboxed], which (as of OCaml 4.04) guarantees that there is no runtime cost asso-
ciated with the data constructor E. Although expr and expr oexpr are considered distinct types by the OCaml typechecker,
they have the same runtime representation.
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type ’expr oexpr =
| EConst of int
| EAdd of ’expr * ’expr
[ @@deriving visitors { name = "omap"; variety = "map" }]

class virtual [’self] omap = object (self : ’self)
inherit [_] VisitorsRuntime .map
method virtual visit_ ’expr : _
method visit_EConst env c0 =

let r0 = self# visit_int env c0 in
EConst r0

method visit_EAdd env c0 c1 =
let r0 = self#visit_ ’expr env c0 in
let r1 = self#visit_ ’expr env c1 in
EAdd (r0 , r1)

method visit_oexpr env this =
match this with
| EConst c0 ->

self# visit_EConst env c0
| EAdd (c0 , c1) ->

self# visit_EAdd env c0 c1
end

Figure 23: An open type of arithmetic expressions

This follows
Figure 23.

type expr =
E of expr oexpr [ @@unboxed ]

class [’self] map = object (self : ’self)
inherit [_] omap
method visit_ ’expr env (E e) =

E (self# visit_oexpr env e)
end

Figure 24: A closed type of arithmetic expressions

This follows
Figure 23.

open Hashcons

type hexpr =
H of hexpr oexpr hash_consed [ @@unboxed ]

let table =
create 128

let h (e : hexpr oexpr) : hexpr =
H ( hashcons table e)

class [’self] hmap = object (self : ’self)
inherit [_] omap
method visit_ ’expr env (H { node = e; _ }) =

h (self# visit_oexpr env e)
end

Figure 25: A closed type of hash-consed arithmetic expressions
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Let us now construct a visitor class for the type expr. It is easy to do so, by hand, in a few lines
of code.We define a class map, a subclass of omap, and provide a concrete implementation of the vir-
tual method visit_’expr. In the definition of the type expr, the type variable ’expr is instantiated
with expr, so the method visit_’expr expects an argument of type expr and must return a result
of type expr. We deconstruct the argument using the pattern E e. Therefore, the variable e has type
expr oexpr and is a suitable argument to the method visit_oexpr. After this call, we perform the
same step in reverse: the result of the call has type expr oexpr, so we wrap it in an application of the
data constructor E and obtain a result of type expr.

The visitor class map can now be used to implement transformations of arithmetic expressions, that
is, functions of type expr -> expr. As an example, let us implement a transformation whose effect is
to double every integer constant in an arithmetic expression. This is done in Figure 26. As expected, it
suffices to construct a visitor object that inherits map and overrides the method visit_EConst.

3.2 Visitors for hash-consed abstract syntax trees

On top of the open data type oexpr of the previous section (§3.1), one can define not just the closed
data type expr of ordinary arithmetic expressions, but also other closed data types of expressions where
every node is annotated with information.

As an example, let us define a type hexpr of hash-consed (that is, maximally-shared) arithmetic
expressions. We use Filliâtre and Conchon’s library [2], which can be found in opam under the name
hashcons.

The definition of the type hexpr appears in Figure 25. It is analogous to the definition of the type
expr (Figure 24), with an added twist: instead of taking the fixed point of the functor _ oexpr, we
take the fixed point of the functor _ oexpr hash_consed. By looking up the definition of the type
hash_consed in hashcons.mli, one finds that this means that every node in an arithmetic expression
carries certain information (namely a unique tag and a hash) that are used to enforce maximal sharing.

Enforcing maximal sharing requires maintaining a mutable table where all arithmetic expressions
ever constructed are stored. (This is in fact a weak hash table.) We initialize such a table by calling the
function Hashcons.create. This table is then populated by the function h, a smart constructor. This
function takes a candidate expression of type hexpr oexpr and returns an expression of type hexpr,
which is either allocated anew or found in the table (should an identical expression already exist).

We can now construct a visitor class for the type hexpr. As in the previous section (§3.1), we do so
by hand in a few lines of code. The overall structure of this code is the same as in Figure 24. The only
difference is that the method visit_’expr must now traverse two levels of type structure, corresponding
to _ oexpr hash_consed. It deconstructs this structure by using the pattern H { node = e ; _ },11

and reconstructs it by applying the smart constructor h.
A function double can be defined for hash-consed arithmetic expressions in exactly the same manner

as we defined double for ordinary arithmetic expressions: compare Figure 26 and Figure 27.
The visitor class omap for open arithmetic expressions (Figure 23) can be exploited to define conver-

sions between different types of arithmetic expressions. This is illustrated in Figure 28. There, the func-
tion import converts an ordinary expression to a hash-consed expression, thereby imposing maximal
sharing. Conversely, the function export converts a hash-consed expression into an ordinary expression,
thereby abandoning all sharing (and possibly causing an exponential explosion). The implementation of
these functions is simple: it is just a matter of overriding visit_’expr so as to deconstruct one kind of
expression and reconstruct the other kind.

3.3 From visitors to iterators

It is possible to use a visitor to implement an iterator, that is, an object that traverses a container data
structure and produces its elements on demand. The story is told in a blog post [5].

11The node field is part of the record type hash_consed; see hashcons.mli.
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This follows
Figures 23
and 24.

let double : expr -> expr =
let v = object

inherit [_] map
method ! visit_EConst _env k =

EConst (2 * k)
end in
v # visit_ ’expr ()

Figure 26: A transformation of ordinary arithmetic expressions

This follows
Figures 23
and 25.

let double : hexpr -> hexpr =
let v = object

inherit [_] hmap
method ! visit_EConst _env k =

EConst (2 * k)
end in
v # visit_ ’expr ()

Figure 27: A transformation of hash-consed arithmetic expressions

This follows
Figures 23,
24, and 25.

let import : expr -> hexpr =
let v = object (self)

inherit [_] omap
method visit_ ’expr _env (E e) =

h (self# visit_oexpr _env e)
end in
v # visit_ ’expr ()

let export : hexpr -> expr =
let v = object (self)

inherit [_] omap
method visit_ ’expr _env (H { node = e; _ }) =

E (self# visit_oexpr _env e)
end in
v # visit_ ’expr ()

Figure 28: Conversions between ordinary and hash-consed arithmetic expressions
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4 Little-known aspects of OCaml objects

In this section, we document a few relatively little-known aspects of OCaml’s class and object system
that play an essential role in our visitors.

4.1 Type inference for concrete and virtual methods

It is well-known that OCaml can infer the type of a concrete method. In the following simple example,
it infers that the field x has type int and that (therefore) the methods get and set must have types int
and int -> unit, respectively:

class int_cell = object
val mutable x = 0
method get = x
method incr y = x <- x + y

end

It is perhaps lesser known that OCaml can also infer the type of a virtual method, based on the
manner in which this method is used. In the following variant of the previous example, it infers that the
method check must have type int -> int, as it receives an integer argument and produces a result that
is stored in the field x.

class virtual int_cell = object (self)
val mutable x = 0
method get = x
method incr y = x <- self#check (x + y)
method virtual check: _

end

The type annotation _ that appears in the declaration of the method check stands for an uncon-
strained type variable. It lets the OCaml typechecker infer a most general monomorphic type for this
method. A polymorphic type cannot be inferred. If we wished for the method check to have type
’a . ’a -> ’a, then we would have to explicitly annotate the declaration with this polymorphic type.

4.2 Virtues of self-parameterized classes

Popular belief holds that inferring a method’s type fails if “some type variables are unbound in this type”.
For instance, in the following variant of the previous example, OCaml infers that the method check has
type ’a -> int, where the type variable ’a is unconstrained:

class virtual int_cell = object (self)
val mutable x = 0
method get = x
method set y = x <- self#check y
method virtual check: _

end

At that point, it fails with a type error message:

Error: Some type variables are unbound in this type:
class virtual int_cell :

object
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val mutable x : int
method virtual check : ’a -> int
method get : int
method set : ’a -> unit

end
The method check has type ’a -> int where ’a is unbound

In this case, the OCaml manual says, “the class should be parametric”, and “the type parameters must
be [subject] somewhere in the class body to a type constraint”. In the above example, one might choose
to parameterize the class over a type variable ’a and to add a type annotation that requires ’a to be the
domain of the virtual method check:

class virtual [’a] int_cell = object (self)
val mutable x = 0
method get = x
method set y = x <- self#check y
method virtual check: ’a -> _

end

This eliminates the type error: this code is well-typed. One problem with this approach, though, is
that further changes to the code might require introducing further type parameters. Suppose for instance
that, instead of initializing the field x with the value 0, we wish to parameterize the class over an initial
value init. We modify the code as follows:

class virtual [’a] cell (init) = object (self)
val mutable x = init
method get = x
method set y = x <- self#check y
method virtual check: ’a -> _

end

Unfortunately, this modification makes the code ill-typed again:

Error: Some type variables are unbound in this type:
class virtual [’a] cell :

’b ->
object

val mutable x : ’b
method virtual check : ’a -> ’b
method get : ’b
method set : ’a -> unit

end
The method check has type ’a -> ’b where ’b is unbound

A natural reaction to this type error message might be to parameterize the class over both ’a and ’b,
as follows:

class virtual [’a, ’b] cell (init) = object (self)
val mutable x = init
method get = x
method set y = x <- self#check y
method virtual check: ’a -> ’b

end
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This eliminates the type error: this code is well-typed. However, it seems unfortunate that one cannot
depend on the typechecker to infer the types of all methods. Instead, it seems that one must introduce an
unpredictable number of type parameters, as well as an unpredictable amount of explicit type annotations,
for the code to be accepted.

Fortunately, there is a solution to this problem.
Let us first note that, in the above example, even though both the argument type and result type of

the method check are undetermined, it is not necessary to introduce two type parameters ’a and ’b.
Indeed, one type parameter suffices, provided this parameter determines both the argument type and
result type of check. To illustrate this, let us parameterize the class over a type variable ’check, and
provide a type annotation that equates ’check with the type of the method check:

class virtual [’check] cell (init) = object (self)
val mutable x = init
method get = x
method set y = x <- self#check y
method virtual check: ’check

end

This code is well-typed, too. Its inferred type is as follows:

class virtual [’check] cell :
’b ->
object

constraint ’check = ’a -> ’b (* a type equation *)
val mutable x : ’b
method virtual check : ’check
method get : ’b
method set : ’a -> unit

end

Because the typechecker infers and records the type equation ’check = ’a -> ’b, instantiating
the type variable ’check with a concrete type suffices to determine the values of both ’a and ’b. For
instance, if ’check is instantiated with float -> int, then ’a must be float and ’b must be int.
For this reason, there is no need to parameterize the class over ’a and ’b. Parameterizing it over ’check
suffices.

This remark alone does not quite solve our problem yet. It still seems as if, for a class definition to be
accepted, one must introduce an unpredictable number of type parameters, as well as an unpredictable
amount of explicit type annotations and/or type equations.

Fortunately, there is a general way out of this problem. In fact, one type parameter always suffices.
The trick is to constrain this type parameter to be the type of “self”. Indeed, in OCaml, the type of “self”
is an OCaml object type that lists the names and types of all (public) methods. Therefore, fixing the type
of “self” is enough to determine the type of every method.

We modify the example as follows. We parameterize the class over a single type variable, named
’self, which we constrain to be the type of “self”, via the type annotation self : ’self.

class virtual [’self] cell (init) = object (self : ’self)
val mutable x = init
method get = x
method set y = x <- self#check y
method virtual check: _

end
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Even though, this time, we have not given the type of the method check, this code is well-typed.
In a self-parameterized OCaml class, a monomorphic type can be inferred for every method, be it
concrete or virtual. In other words, in a self-parameterized class, the OCaml typechecker never complains
that “some type variables are unbound”.

In the visitors package, this remark solves several problems. First, we never need to wonder how
many type parameters a class should have, and what they should be: the answer is always one, namely
’self. Second, we never need to annotate a method with its type: every virtual method can be annotated
with the wildcard _. These properties are of utmost importance, as we cannot in general predict the types
of the generated methods.

Since self-parameterized classes seem so great, one may wonder whether, in everyday life, it would
be a good idea to parameterize every class over ’self in this manner. The answer is, it probably would
not. Such an approach leads to verbose class types, as the type of “self” contains a list of all (public)
methods. It also gives rise to recursive object types, of the form ’self c as ’self, where c is a class.

4.3 Simplifying the type of a self-parameterized class

We have used in §2.4 a few rules that allow an inferred class type to be manually simplified. In going
from Figure 3 to Figure 4, we have used the well-known property that private methods can be omitted in
a class type. We have also exploited the perhaps lesser-known fact that, in a self-parameterized class, the
constraint that bears on the type parameter ’self can be omitted, as it is implicit in OCaml that the type
of “self” must be an object type that lists the public methods.

There remains to explain the surprising use of the “’monomorphic.” prefix in Figure 4. On the face
of it, this is a universal quantification over a type variable, named ’monomorphic, which does not appear
in the type of the method. From a purely logical standpoint, such a universal quantification should be
superfluous. Yet, here, it is required, due to the following peculiarity of OCaml [6]:

In a class type, if the type of a method exhibits a free variable ’a, if this method type has
no explicit universal quantifiers, and if the type variable ’a does not appear in an explicit
type constraint, then, by convention, OCaml considers that the method type is universally
quantified in ’a.

We must work around this syntactic convention: in Figure 3, for instance, the method visit_expr has
monomorphic type ’env -> expr -> unit, where the type variable ’env is connected with ’self
via an implicit constraint and (like ’self) is quantified at the level of the class. This method does not
have polymorphic type ’env. ’env -> expr -> unit. The logically redundant quantification over
’monomorphic serves as a syntactic mark that we really intend the type variable ’env to appear free in
the method type.

4.4 Monomorphic methods, polymorphic classes

Even if a method is monomorphic, the class that contains this method can be polymorphic. In the
following example, the identity method is annotated with a monomorphic type, which implies that, if
o is an object of class c, then the method o#identity cannot be applied both to apples and to oranges.
However, the class c is polymorphic, which means that two distinct instances of this class can be used
(separately) with apples and with oranges.

class [’self] c = object (_ : ’self)
method identity (x : ’a) : ’a = x

end

let b : bool =
new c # identity true

let i : int =
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new c # identity 0

This (well-known) property of classes is exploited in the visitors package. Although (in monomorphic
mode, §2.12.1) every generated visitor method is monomorphic, the visitor classes are polymorphic, so
(distinct) visitor objects can be used at many different types.

4.5 Where the expressiveness of OCaml’s type system falls short

We have noted earlier (§2.9) that, among the varieties of visitors that we have presented, fold visitors
are in principle the most general. This raises the question: is it possible to define map and reduce as
subclasses of fold, equipped with appropriate build_ methods?

Doing so would be more economical: that is, it would significantly reduce the redundancy between
the classes map, reduce, and fold. When these classes are automatically generated, code duplication
is not so much of a problem. However, there are situations where (parts of) visitor classes must be
hand-written, and where duplication becomes painful.

Furthermore, defining map and reduce as subclasses of fold would give rise to new patterns of
customization. It would become possible to define a subclass of map or reduce and override just one
build_ method so as to obtain custom behavior.12

In an untyped setting, the question can be answered positively: map and reduce can be defined in
terms of fold. Unfortunately, in the setting of OCaml’s type system, the answer is negative: although
reduce can be defined in terms of fold, map cannot.

The situation is illustrated in Figure 29. As an example, we define visitor methods, by hand, for the
type ’a option.

The methods visit_option in the classes reduce and map are identical to those found in the classes
VisitorsRuntime.reduce and VisitorsRuntime.map. We note that the method visit_option in
the class reduce is polymorphic in ’a, whereas visit_option in the class map is polymorphic in ’a
and ’b.

There is some similarity between these methods, which is why we define a class fold, whose method
visit_option contains calls to the virtual methods build_None and build_Some. We assign to this
method the most general type that is expressible in OCaml’s type system. It is polymorphic in ’a. The
type variable ’r, which represents the result of the function f, and the type variable ’s, which represents
the result of the methods visit_option, build_None, and build_Some, cannot be universally quanti-
fied at the level of a method, since they appear in the types of several methods. They must be (implicitly)
quantified at the level of the class.

Is this definition of fold satisfactory? To test this, let us now attempt to propose new definitions
of reduce and map as subclasses of fold. We define two more classes, reduce_from_fold and
map_from_fold, which both inherit fold and provide suitable definitions of the methods build_None
and build_Some.

In reduce_from_fold, everything works fine. The type parameters ’r and ’s in fold are both
instantiated with ’z. As a result, the method visit_option in the class reduce_from_fold has type
’a. (’c -> ’a -> ’z) -> ’c -> ’a option -> ’z, just as in the class reduce.

In map_from_fold, a problem arises. The code is well-typed, but its type is less general than
desired. The OCaml typechecker infers that the type parameters ’r and ’s in fold must be respectively
instantiated with ’b and ’b option, where the type variable ’b must be quantified at the level of the
class. Therefore, the type of map_from_fold is as shown in Figure 30. This type is not polymorphic
in ’b, thus strictly less general than the type of the method visit_option in the class map (Figure 29).

What would it take to repair this problem? Apparently, the type of the method visit_option in the
class fold is not general enough. Whereas the type variables ’r and ’s currently have kind *, it seems
that they should have kind * -> *. The type of the class fold should be as follows:

12At present, this must be done by overriding a visit_ method, thereby causing more code duplication than necessary.
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(* Direct definitions of [map], [ reduce ], and [fold ]. *)
class virtual [’self] reduce = object (self: ’self)

method private visit_option : ’a .
(’env -> ’a -> ’z) -> ’env -> ’a option -> ’z

= fun f env ox ->
match ox with None -> self#zero | Some x -> f env x

method private virtual zero: ’z
end
class [’self] map = object (_ : ’self)

method private visit_option : ’a ’b .
(’env -> ’a -> ’b) -> ’env -> ’a option -> ’b option

= fun f env ox ->
match ox with None -> None | Some x -> Some (f env x)

end
class virtual [’self] fold = object (self : ’self)

method private visit_option : ’a .
(’env -> ’a -> ’r) -> ’env -> ’a option -> ’s

= fun f env ox ->
match ox with
| None -> self# build_None env
| Some x -> self# build_Some env (f env x)

method private virtual build_None : ’env -> ’s
method private virtual build_Some : ’env -> ’r -> ’s

end
(* A successful definition of [ reduce ] in terms of [fold ]. *)
class virtual [’self] reduce_from_fold = object (self : ’self)

inherit [_] fold
method private build_None _env = self#zero
method private build_Some _env z = z
method private virtual zero: ’z

end
(* An unsatisfactory definition of [map] in terms of [fold ]. *)
class [’self] map_from_fold = object (_ : ’self)

inherit [_] fold
method private build_None _env = None
method private build_Some _env x = Some x

end

Figure 29: An unsatisfactory definition of map as a subclass of fold

class [’self] map_from_fold : object (’self)
method private visit_option : ’a .

(’env -> ’a -> ’b) -> ’env -> ’a option -> ’b option
method private build_None : ’env -> ’b option
method private build_Some : ’env -> ’b -> ’b option

end

Figure 30: The type of the class map_from_fold (Figure 29)
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class [’self] fold : object (’self)
method private visit_option : ’a ’b .

(’env -> ’a -> ’r[’b]) -> ’env -> ’a option -> ’s[’b]
method private virtual build_None : ’b . ’env -> ’s[’b]
method private virtual build_Some : ’b . ’env -> ’r[’b] -> ’s[’b]

end

This is not valid OCaml: we write ’r[b] for the type-level application of ’r to ’b. The type of each
method is universally quantified in ’b, as desired. The type of visit_option seems to have the desired
generality. By instantiating both ’r and ’s with the type-level function fun ’b -> ’z, we obtain the
type of visit_option in the class reduce. By instantiating ’r and ’s with the type-level functions
fun ’b -> ’b and fun ’b -> ’b option, respectively, we obtain the type of visit_option in the
class map.

This suggests that higher kinds, type-level functions, and type-level β-reduction might be valuable
features, not just in functional programming languages, but also in an object-oriented programming
setting.

5 Reference

5.1 Parameters

The parameters that can be passed as part of the [@@deriving visitors { ... }] annotation, inside
the curly braces, are described in Figure 31.

5.2 How to examine the generated code

The generated code is conceptually inserted into the user’s source code just after the type definition that
is decorated with [@@deriving visitors { ... }].

It can be useful to inspect the generated code, so as to understand how it works, what are the ar-
guments and result of each method, and so on. This can be especially useful when the generated code
is ill-typed (which can happen, for instance, when arbitrary user code is inherited via the ancestors
parameter).

The file Makefile.preprocess offers a recipe that builds a file named %.processed.ml out of
the source file %.ml. This file contains just the generated code. The recipe relies on sed, perl, and
ocp-indent to extract and beautify the code. This file is installed with the visitors package; it
can be found at the computed path ‘ocamlfind query visitors‘/Makefile.preprocess. In a
Makefile, use the following directive:

include $(shell ocamlfind query visitors)/Makefile.preprocess

5.3 Structure of the generated code

The [@@deriving visitors { ... }] annotation applies to a type definition. A type definition may
define several types, and these types may be parameterized. A local type is one that is defined as part of
this type definition, whereas a nonlocal type is one that preexists (§2.13).

The generated code consists of a single class, whose name is <variety>, that is, the value of the
variety parameter (§5.1). This class has one type parameter, namely ’self, the type of “self”
(§4.2). It has no fields. It inherits from the class VisitorsRuntime.<variety> (unless the pa-
rameter nude is true, §5.1) and from the classes listed via the ancestors parameter (§5.1), in that
order. To find out which methods exist in the class VisitorsRuntime.<variety>, please consult
VisitorsRuntime.ml.

In the following, the index i ranges from 0 (included) to <arity> (excluded), where <arity> is the
arity of the generated visitor (thus, either 1 or 2).
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ancestors (list of strings) A list of classes that the generated class should inherit. This is
an optional parameter; its default value is the empty list. The class
VisitorsRuntime.<variety> is implicitly prepended to this list
unless nude is true. Every ancestor class must have exactly one
type parameter, which is typically (but not necessarily) the type of
“self”.

build_prefix (string) The prefix that is used in the name of the build methods in fold
and fold2 visitors (§2.9). This is an optional parameter, whose
default value is “build_”.

concrete (Boolean) If true, the generated class is declared concrete; otherwise, it is
declared virtual. This is an optional parameter; its default value is
false.

data (Boolean) If true, one visitor method is generated for every data constructor
(§5.3). If false, this method is not generated (it is inlined instead).
This is an optional parameter; its default value is true.

fail_prefix (string) The prefix that is used in the name of the failure methods in visitors
of arity two (§2.10). This is an optional parameter, whose default
value is “fail_”.

irregular (Boolean) If true, the regularity check (§5.4) is disabled; otherwise, it is
enabled. This is an optional parameter; its default value is false.

name (string) The name of the generated class. This is an optional parameter; its
default value is <variety>.

nude (Boolean) If true, the class VisitorsRuntime.<variety> is not implicitly
prepended to the list ancestors. This is an optional parameter; its
default value is false.

polymorphic (Boolean) If true, type variables are handled by virtual visitor methods,
and generated methods are monomorphic (§2.12.1); if false, type
variables are handled by visitor functions, and generated methods
are polymorphic (§2.12.2). This is an optional parameter, whose
default value is false.

public (list of strings) This is an optional parameter. If absent, then every method in the
generated class is declared public. If present, then every method
in the generated class is declared private, except those whose name
appears in the list: those are declared public.

variety (string) The variety of visitor that should be generated. The supported
varieties are iter (§2.2), map (§2.5) and endo (§2.6), reduce
(§2.7), mapreduce (§2.8), fold (§2.9), iter2, map2, reduce2,
mapreduce2, fold2 (§2.10).

visit_prefix (string) The prefix that is used in the name of visitor methods. This is an op-
tional parameter, whose default value is “visit_”. Be aware that,
if this prefix is changed, then the classes provided by the library
VisitorsRuntime become useless: in that case, one might wish
to also specify nude = true, so as to not inherit these classes.

Figure 31: Parameters of [@@deriving visitors { ... }]
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The following concrete methods are defined:

• for every local type ??? foo, a visitor method.

method name: visit_foo
arguments: visit_’a, . . . a visitor function for each type param. of foo

(only if polymorphic = true)
env an environment of type ’env
this_0, this_1, . . . for each i, a value of type ??? foo

invoked: on the way down
example: Figure 1

• for every data constructor Foo of a local sum type ??? foo, a visitor method.

method name: visit_Foo
arguments: visit_’a, . . . a visitor function for each type param. of foo

(only if polymorphic = true)
env an environment of type ’env
this a data structure of type ??? foo

(only in an endo visitor)
c0_0, c0_1, . . . for each i, the first component of a Foo value
c1_0, c1_1, . . . for each i, the next component of a Foo value
. . . . . . and so on

invoked: on the way down
example: Figure 1

If the parameter data is false, then this method is not generated (§5.1). It is inlined instead. The
behavior is the same, but cannot be overridden on a per-data-constructor basis.

• if the visitor has arity two (§2.10), for every local type foo, a failure method.

method name: fail_foo
arguments: env an environment of type ’env

this_0, this_1, . . . for each i, a value of type ??? foo
invoked: when two distinct data constructors Foo and Bar are found
example: Figure 13

The following virtual methods are declared:

• for every type parameter ’foo of a local type, a visitor method. (Only if polymorphic = true.)

method name: visit_’foo
arguments: env an environment of type ’env

this_0, this_1, . . . for each i, a value of type ’foo
invoked: on the way down
example: Figure 17

• if this is a reduce visitor (§2.7) or a mapreduce visitor (§2.8), the monoid methods.

method name: zero
arguments: none

result: a summary
example: Figure 7

method name: plus
arguments: two summaries

result: a summary
example: Figure 7
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• if this is a fold visitor (§2.9), for every local record type foo, a build method.

method name: build_foo
arguments: env an environment of type ’env

r_0 the result of the first recursive call
r_1 the result of the next recursive call

. . . and so on
invoked: on the way up
example: none in this document

• if this is a fold visitor (§2.9), for every data constructor Foo of a local sum type, a build method.

method name: build_Foo
arguments: env an environment of type ’env

r_0 the result of the first recursive call
r_1 the result of the next recursive call

. . . and so on
invoked: on the way up
example: Figure 11

The following methods are called, therefore are expected to exist. These methods are neither defined
nor declared: their definition or declaration must be inherited from a parent class. These methods can
have a polymorphic type.

• for every nonlocal type ??? foo, a visitor method.

method name: visit_foo
arguments: visit_0, . . . for each actual type parameter in ??? foo,

a visitor function for this type
env an environment of type ’env
this_0, this_1, . . . for each i, a value of type ??? foo

invoked: on the way down
example: Figure 21

All of the above methods are parameterized with an environment env, which is propagated in a top-
down manner, that is, into the recursive calls. The environment is not returned out of the recursive calls,
therefore not propagated bottom-up or left-to-right. The type of this environment is undetermined: it is a
type variable. There is no a priori constraint that the type of the environment should be the same in every
method: it is possible for unrelated visitor methods to expect environments of unrelated types.

The result types of the visitor methods, build methods, and failure methods depend on the parameter
variety (§5.1). In an iter visitor, every method has result type unit. In a map or endo visitor,
the visitor method associated with the type foo has result type ??? foo.13 In a reduce visitor, every
method has result type ’s, if ’s is the monoid, that is, if the methods zero and plus respectively have
type ’s and ’s -> ’s -> ’s. In a mapreduce visitor, the visitor method associated with the type foo
has result type ??? foo * ’s, if ’s is the monoid. In a fold visitor, it is up to the user to decide what
the result types of the visitor methods should be (subject to certain consistency constraints, naturally).
In particular, two visitor methods visit_foo and visit_bar can have distinct result types; this is
illustrated in Figure 12.

5.4 Supported forms of types

The following forms of type definitions are supported:

13The question marks ??? stand for the type parameters of foo, which can be a parameterized type. In a map visitor, the type
parameters that appear in the method’s argument type and in the method’s result type can differ. In an endo visitor, they must
be the same.
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• Definitions of type abbreviations (also known as type synonyms).

• Definitions of record types.
Mutable fields are supported.

• Definitions of sum types (also known as variant types and as algebraic data types).
Data constructors whose arguments form an “inline record” are supported.

Definitions of abstract types and of extensible sum types are not supported.
Definitions of parameterized types are supported. In monomorphic mode (§2.12.1), only regular

parameterized types are permitted, whereas in polymorphic mode (§2.12.2), arbitrary parameterized
types are permitted. A parameterized type is regular if, within its own definition, it is applied only
to its formal parameters. For instance, the well-known definition of lists is regular:

type ’a list =
| []
| (::) of ’a * ’a list

whereas the following definition of a random access list [4, §10.1.2] is not:

type ’a seq =
| Nil
| Zero of (’a * ’a) seq
| One of ’a * (’a * ’a) seq

Irregular data types are also known as “nonuniform” [4, §10.1] or “nested” data types [1].
Existential types and generalized algebraic data types (GADTs) are currently not supported.
In the right-hand side of a type definition, the following forms of types are supported:

• Type constructors, possibly applied to a number of types, such as foo and (’a * ’b) bar.

• Type variables, such as ’foo.

• Tuple types, such as int * expr.

The unsupported forms of types include anonymous type variables (_), function types (int -> unit),
object types (<get: int> and #point), recursive types (int -> ’a as ’a), polymorphic variant
types ([ ‘A| ‘B ]), universal types (’a. ’a -> ’a), and packaged module types ((module S)). If
these forms appear in a type definition, they must be marked @opaque (§5.5).

In theory, at each arity, the tuple type constructor could be viewed as a parameterized nonlocal
type constructor. At arity 2, for instance, the pair type ’a * ’b could be treated as a nonlocal type
(’a, ’b) tuple2. Then, to traverse a value of this type, one would invoke a method visit_tuple2,
which necessarily would be inherited from a parent class. That would be somewhat inconvenient, as
these (polymorphic) methods would have to be manually written, at each arity. Instead, special treatment
for tuple types is built-in. There are no visitor methods or build methods for tuples; instead, ad hoc code
is generated. This means that the behavior of a visitor at a tuple type is fixed: it cannot be overridden
in a subclass. The behavior of a fold visitor at a tuple type is to rebuild a tuple, just like a map visitor
would do.

5.5 Opaque components

One sometimes wishes for a component of a data structure not to be visited, either for efficiency reasons,
or because this component is of an unsupported type. This can be requested by annotating the type of
this component with the attribute [@opaque]. This is done, for instance, if Figure 7, where the integer
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argument of the data constructor EConst is marked opaque. (Note the parentheses, which are required.)
The effect of this annotation is that this component is not visited: in the method visit_EConst, instead
of a call to self#visit_int, we find a call to self#zero, as this is a reduce visitor.

Generating a visitor of arity two for a data structure with @opaque components requires some care.
The methods visit_int defined in the classes VisitorsRuntime.iter2, VisitorsRuntime.map2,
and so on, raise a StructuralMismatch exception when their two integer arguments differ. If int
is replaced with (int[@opaque]), then these methods are not invoked, so no exception is raised. It
is up to the user to decide which behavior is desired. Furthermore, it should be noted that map2 and
fold2 visitors follow an arbitrary convention at @opaque components: they return the first of their two
arguments. Again, it is up to the user to decide whether this behavior is appropriate.

In polymorphic mode (§2.12.2), a type variable must not occur under an [@opaque] annotation.
If desired, instead of [@opaque], one can use the more verbose forms [@visitors.opaque] and

[@deriving.visitors.opaque].

5.6 Alternate method names

The methods associated with the type foo are normally named after this type: this includes the visitor
method visit_foo, the build method build_foo, and the failure method fail_foo. This base name
can be altered via an attribute. If foo is a local type, then a [@@name] attribute must be attached to the
declaration of this type. If foo is a nonlocal type, then a [@name] attribute must be attached to every
reference to this type. For instance, in the following example, the visitor method associated with the type
cloud is named visit_nuage instead of visit_cloud:

type cloud =
| Point of (float[@name "real"]) * (float[@name "real"])
| Clouds of cloud list
[ @@name "nuage"]
[ @@deriving visitors { variety = "map"; ancestors = ["base"] }]

Furthermore, the visitor method associated with the type float (which is not generated, and should be
inherited from the class base) is assumed to be named visit_real instead of visit_float.

The methods associated with the data constructor Foo are normally named after it: this includes
the visitor method visit_Foo and the build method build_Foo. This base name can be altered via
a [@name] attribute, which must be attached to the data constructor. For instance, in the following
example, the visitor methods associated with the data constructors [] and :: are named visit_nil and
visit_cons:

type ’a mylist = ’a list =
| [] [@name "nil"]
| (::) of ’a * ’a mylist [@name "cons"]
[ @@deriving visitors { variety = "map" }]

If desired, instead of [@name], one can use [@visitors.name] or [@deriving.visitors.name].

5.7 Alternate construction code in map visitors

By default, a map visitor for an algebraic data type constructs a new data structure, by applying a data
constructor or by allocating a new record. Sometimes, though, it is illegal to do so: this is the case,
for instance, if the type has been declared private. In such a situation, an alternate constructor can be
provided via a [@build] attribute (which must be attached to a data constructor) or via a [@@build]
attribute (which must be attached to a record type declaration). Such an attribute carries an OCaml
expression, which should represent a constructor function.
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For instance, suppose that the module Point has the following signature:

type point = private { x: int; y: int }
val make: int -> int -> point

Suppose that, outside of this module, one wishes to generate a map visitor for the type Point.point.
One would like to do this in the style that was presented earlier (§2.14), but a naïve attempt fails: the
generated visitor is illegal, because allocating a record of type Point.point is forbidden. To circumvent
this problem, one should indicate, via a [@@build] attribute, that the constructor function Point.make
should be used:

type point = Point.point = private { x: int; y: int }
[ @@build Point.make]
[ @@deriving visitors { variety = "map" }]

The OCaml expression carried by a [@build] attribute can refer to the local variable self, which
represents the visitor object, and to the local variable env, which represents the environment received by
the visitor method.

[@build] attributes influence not only map visitors, but also endo and mapreduce visitors.
Instead of [@build], one can use [@visitors.build] or [@deriving.visitors.build].
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