
The theory of Mezzo

François Pottier

INRIA

IHP, April 2014

1 / 94

Acknowledgements

Jonathan Protzenko, Thibaut Balabonski,
Henri Chataing, Armaël Guéneau, Cyprien Mangin.

2 / 94

Outline

Introduction

The kernel

Extensions

Conclusion

3 / 94

Surface versus kernel

Concerning the syntax of types,

• Surface has the name introduction form x: t,
• which Kernel does not have;

Furthermore, the conventional reading of function types differs:

• Surface functions do not consume their arguments,
except for the parts marked with consumes;

• Kernel has the opposite convention,
which is standard in affine λ-calculi,
hence no consumes keyword.

4 / 94

From surface to kernel

Recall the type of the length function for mutable lists.

[a] mlist a -> int

In Surface syntax, this could also be written:

[a] (consumes xs : mlist a) ->
(int | xs @ mlist a)

or, by exploiting universal quantification and a singleton type:

[a, xs : value]
(=xs | consumes xs @ mlist a) ->

(int | xs @ mlist a)

Erasing consumes yields a Kernel type that means the same thing.

5 / 94

From surface to kernel

A Surface pair of a value and a function that consumes it:
(x: a, (| consumes x @ a) -> ())

In Surface syntax, this could also be written:
{x : value} ((=x | x @ a), (| consumes x @ a) -> ())

This uses existential quantification and a singleton type.

Erasing consumes yields a Kernel type that means the same thing.

6 / 94

Outline

Introduction

The kernel

The untyped calculus

Type-checking inert programs

Type-checking running programs; resources

The path to type soundness

Extensions

Conclusion

7 / 94

The kernel

The untyped calculus

8 / 94

Values and terms

A fairly unremarkable untyped λ-calculus.

κ ::= value | term | soup | . . . (Kinds)

v ::= x | λx.t (Values)
t ::= v | v t.. | spawn v v .. (Terms)

sp ::= thread (t) | sp ∥ sp (Soups)
E ::= v [] (Shallow evaluation contexts)
D ::= [] | E[D] (Deep evaluation contexts)

.

9 / 94

Values and terms

A fairly unremarkable untyped λ-calculus.

κ ::= value | term | soup | . . . (Kinds)

v ::= x | λx.t (Values)
t ::= v | v t.. | spawn v v .. (Terms)

sp ::= thread (t) | sp ∥ sp (Soups)
E ::= v [] (Shallow evaluation contexts)
D ::= [] | E[D] (Deep evaluation contexts)

..

a variant of A-normal form

9 / 94

Values and terms

A fairly unremarkable untyped λ-calculus.

κ ::= value | term | soup | . . . (Kinds)

v ::= x | λx.t (Values)
t ::= v | v t.. | spawn v v .. (Terms)

sp ::= thread (t) | sp ∥ sp (Soups)
E ::= v [] (Shallow evaluation contexts)
D ::= [] | E[D] (Deep evaluation contexts)

..

a primitive construct
for spawning a new thread

9 / 94

Operational semantics

initial configuration new configuration
s / (λx.t) v −→ s / [v/x]t

s / E[t] −→ s′ .. / E[t′]
if s / t −→ s′ / t′

s / thread (t) −→ s′ / thread (t′)
if s / t −→ s′ / t′

s / t1 ∥ t2 −→ s′ / t′1 ∥ t2
if s / t1 −→ s′ / t′1

s / t1 ∥ t2 −→ s′ / t1 ∥ t′2
if s / t2 −→ s′ / t′2

s / thread (D[spawn v1 v2]) −→ s / thread (D[()]) ∥ thread (v1 v2)

.

10 / 94

Operational semantics

initial configuration new configuration
s / (λx.t) v −→ s / [v/x]t

s / E[t] −→ s′ .. / E[t′]
if s / t −→ s′ / t′

s / thread (t) −→ s′ / thread (t′)
if s / t −→ s′ / t′

s / t1 ∥ t2 −→ s′ / t′1 ∥ t2
if s / t1 −→ s′ / t′1

s / t1 ∥ t2 −→ s′ / t1 ∥ t′2
if s / t2 −→ s′ / t′2

s / thread (D[spawn v1 v2]) −→ s / thread (D[()]) ∥ thread (v1 v2)

..

an abstract notion
of machine state

10 / 94

The kernel

Type-checking inert programs

11 / 94

Types and permissions

κ ::= . . . | type | perm (Kinds)

T,U ::= x | =v | T → T | (T | P) (Types)
∀x : κ.T | ∃x : κ.T

P,Q ::= x | v@T | empty | P ∗ P (Permissions)
∀x : κ.P | ∃x : κ.P
duplicable θ

θ ::= T | P

12 / 94

Technical note

In the Coq formalisation, only one syntactic category.

Well-kindedness serves to distinguish values, terms, types, etc.

• avoids a quadratic number of substitution functions!

• makes it easy to deal with dependency.

Binding encoded via de Bruijn indices. Re-usable library, dblib.

13 / 94

http://gallium.inria.fr/~fpottier/dblib/README

The type discipline

A traditional type system uses a list Γ of type assumptions:

Γ ⊢ t : T

Here, it is split into a list K of kind assumptions and a permission P:

K,P ⊢ t : T

This can be read like a Hoare triple: K ⊢ {..P} t {..T}.
.

14 / 94

The type discipline

A traditional type system uses a list Γ of type assumptions:

Γ ⊢ t : T

Here, it is split into a list K of kind assumptions and a permission P:

K,P ⊢ t : T

This can be read like a Hoare triple: K ⊢ {..P} t {..T}.
..

precondition

14 / 94

The type discipline

A traditional type system uses a list Γ of type assumptions:

Γ ⊢ t : T

Here, it is split into a list K of kind assumptions and a permission P:

K,P ⊢ t : T

This can be read like a Hoare triple: K ⊢ {..P} t {..T}.
..

postcondition

14 / 94

The type discipline

What is needed to type-check an inert program?

• one introduction rule for each type construct (5 of them);

• one rule for each term construct (2 of them);

• a few non-syntax-directed rules (Cut, ExistsElim, Sub);

• and a bunch of subsumption rules.

More is needed to check a running program; discussed later on.

15 / 94

Introduction rules (1/5)

A variable x has type =x in the absence of any assumption.

K;P ⊢ v : =v

16 / 94

Introduction rules (2/5)

The introduction rule for T | Q is also the frame rule.

K;P ⊢ t : T

K;P ∗ Q ⊢ t : T | Q

17 / 94

Introduction rules (3/5)

lambda separately extends K and P.

K, x : value.. ;P ∗ x@T.. ⊢ t : U

K; (duplicable P) ∗ P.. ⊢ λx.t : T → U

The duplicable facts that hold when the function is defined remain
valid when the function is invoked.

. .

18 / 94

Introduction rules (3/5)

lambda separately extends K and P.

K, x : value.. ;P ∗ x@T.. ⊢ t : U

K; (duplicable P) ∗ P.. ⊢ λx.t : T → U

The duplicable facts that hold when the function is defined remain
valid when the function is invoked.

..

a kind assumption

.

18 / 94

Introduction rules (3/5)

lambda separately extends K and P.

K, x : value.. ;P ∗ x@T.. ⊢ t : U

K; (duplicable P) ∗ P.. ⊢ λx.t : T → U

The duplicable facts that hold when the function is defined remain
valid when the function is invoked.

..

a part of the precondition

.

18 / 94

Introduction rules (3/5)

lambda separately extends K and P.

K, x : value.. ;P ∗ x@T.. ⊢ t : U

K; (duplicable P) ∗ P.. ⊢ λx.t : T → U

The duplicable facts that hold when the function is defined remain
valid when the function is invoked.

. .. this is a permission!

18 / 94

Introduction rules (4/5)

Universal quantifier introduction is restricted to harmless terms.

t is harmless
K, x : κ;P ⊢ t : T

K; ∀x : κ.P ⊢ t : ∀x : κ.T

They include values, memory allocation, but not lock allocation.

The well-known interaction between polymorphism and mutable
state is really between polymorphism and hidden state.

19 / 94

Introduction rules (5/5)

Existential quantifier introduction.

K;P ⊢ v : [U/x]T

K;P ⊢ v : ∃x : κ.T

20 / 94

Syntax-directed rules for terms (1/2)

Function application.

K;Q ⊢ t : T

K; (v@T → U) ∗ Q.. ⊢ v t : U

.

21 / 94

Syntax-directed rules for terms (1/2)

Function application.

K;Q ⊢ t : T

K; (v@T → U) ∗ Q.. ⊢ v t : U

..

an assumption about a value
expressed as part of the precondition

21 / 94

Syntax-directed rules for terms (2/2)

Spawning a thread is a like a function call,

K; (v1@T → U) ∗ (v2@T) ⊢ spawn v1 v2 : ⊤

but produces a unit result.

22 / 94

Non-syntax-directed rules (1/3)

Cut hides a part of the precondition, P1, that happens to be “true”.

K;P1 ∗ P2 ⊢ t : T
K ⊩ P1
..

K;P2 ⊢ t : T

.

23 / 94

Non-syntax-directed rules (1/3)

Cut hides a part of the precondition, P1, that happens to be “true”.

K;P1 ∗ P2 ⊢ t : T
K ⊩ P1
..

K;P2 ⊢ t : T

..
permission interpretation judgement
discussed later on

23 / 94

Non-syntax-directed rules (2/3)

Existential quantifier elimination.

K, x : κ;P ⊢ t : T

K; ∃x : κ.P ⊢ t : T

24 / 94

Non-syntax-directed rules (3/3)

Subsumption is Hoare's rule of consequence.

K ⊢ P1 ≤ P2 K;P2 ⊢ t : T1 K ⊢ T1 ≤ T2

K;P1 ⊢ t : T2

25 / 94

Permission subsumption

Many rules. (More than 50 in the full system.) Excerpt:

∀x : κ.P ≤ [U/x]P

(v@T) ∗ P ≡ v@T | P

v@T1 → T2 ≤ v@ (T1 | P) → (T2 | P)

(duplicable P) ∗ P ≤ P ∗ P

empty ≤ duplicable =v

empty ≤ duplicable (T → U)

empty ≤ duplicable (duplicable θ)

This axiomatization is neither minimal nor complete.

26 / 94

The kernel

Type-checking running programs; resources

27 / 94

Towards type soundness

We wish to prove that well-typed programs do not go wrong.

But that is true of all programs in this trivial calculus!

We must organize the proof so that it is robust in the face of
extensions: references, locks, adoption and abandon, etc.

28 / 94

Towards type soundness

We would like to prove that this affine type system keeps correct
track of ownership, in some sense.

But there are no resources in this trivial calculus!

We need an abstract notion of resource, to be later instantiated.

E.g., a resource could be a heap fragment that one owns.

29 / 94

Axiomatization of resources

We need some tools to reason abstractly about resources.

R resource
e.g., an instrumented heap fragment

maps every address to , N, X v, or D v
R1 ⋆ R2 conjunction

e.g., requires separation at mutable addresses
requires agreement at immutable addresses

R̂ duplicable core
e.g., throws away mutable addresses

keeps immutable addresses
R1 ◁ R2 tolerable interference (rely)

e.g., allows memory allocation

We also need a consistency predicate R ok.

30 / 94

Axiomatization of resources

• Star ⋆ is commutative and associative.

• R1 ⋆ R2 ok implies R1 ok.

• R ⋆ R̂ = R.

• R1 ⋆ R2 = R and R ok imply R̂1 = R̂.

• R ⋆ R = R implies R = R̂.

• R̂ ⋆ R̂ = R̂.

• R ◁ R.

• R1 ok and R1 ◁ R2 imply R2 ok.

• R1 ◁ R2 implies R̂1 ◁ R̂2.

• rely preserves splits:

R1 ⋆ R2 ◁ R′ R1 ⋆ R2 ok

∃R′
1R

′
2, R

′
1 ⋆ R′

2 = R′ ∧ R1 ◁ R′
1 ∧ R2 ◁ R′

2

31 / 94

Technical note

In Coq, a type class of monotonic separation algebras.

Currently 7 instances, and combinations thereof!

You want ⋆ to be represented as a total function.

Thomas Braibant's AAC plugin is very useful.

32 / 94

Agreement

We assume a notion of agreement between a machine state s and
a resource R:

s ∼ R

E.g., if s is a heap and R an instrumented heap (fragment), then they
must agree on the content of every address.

33 / 94

Typing judgements with resources

A typing judgement about a running thread must be parameterized
with a resource R:

R,K,P ⊢ t : T

It reflects the thread's view of the machine state.

Its partial knowledge of, and assumptions about, the global state.

34 / 94

Typing rules with resources

The previous typing rules are extended with a parameter R.

The extension is non-trivial in two cases:

R̂..;K, x : value;P ∗ x@T ⊢ t : U

R;K; (duplicable P) ∗ P ⊢ λx.t : T → U

R2;K;P1 ∗ P2 ⊢ t : T
R1;K ⊩ P1

..

R1 ⋆ R2
.. ;K;P2 ⊢ t : T

.

35 / 94

Typing rules with resources

The previous typing rules are extended with a parameter R.

The extension is non-trivial in two cases:

R̂..;K, x : value;P ∗ x@T ⊢ t : U

R;K; (duplicable P) ∗ P ⊢ λx.t : T → U

R2;K;P1 ∗ P2 ⊢ t : T
R1;K ⊩ P1

..

R1 ⋆ R2
.. ;K;P2 ⊢ t : T

..
one owns R when the function is defined
but only R̂ when the function is invoked

35 / 94

Typing rules with resources

The previous typing rules are extended with a parameter R.

The extension is non-trivial in two cases:

R̂..;K, x : value;P ∗ x@T ⊢ t : U

R;K; (duplicable P) ∗ P ⊢ λx.t : T → U

R2;K;P1 ∗ P2 ⊢ t : T
R1;K ⊩ P1

..

R1 ⋆ R2
.. ;K;P2 ⊢ t : T

..
if a typing rule has two premises
then R must be split between them

35 / 94

Typing rules with resources

The previous typing rules are extended with a parameter R.

The extension is non-trivial in two cases:

R̂..;K, x : value;P ∗ x@T ⊢ t : U

R;K; (duplicable P) ∗ P ⊢ λx.t : T → U

R2;K;P1 ∗ P2 ⊢ t : T
R1;K ⊩ P1

..

R1 ⋆ R2
.. ;K;P2 ⊢ t : T

..
permission interpretation judgement:
R1 justifies P1

35 / 94

The interpretation of permissions

The judgement R.. ;K ⊩ P.. gives meaning to permissions.

.

It is analogous to the semantics of separation logic, h ⊩ F.

36 / 94

The interpretation of permissions

The judgement R.. ;K ⊩ P.. gives meaning to permissions.

..

a “semantic” object

It is analogous to the semantics of separation logic, h ⊩ F.

36 / 94

The interpretation of permissions

The judgement R.. ;K ⊩ P.. gives meaning to permissions.

..

a syntactic object

It is analogous to the semantics of separation logic, h ⊩ F.

36 / 94

The interpretation of permissions

R1;K;P ⊩ v : T..

R2;K ⊩ P

R1 ⋆ R2;K ⊩ v@T
R.. ;K ⊩ empty

R1;K ⊩ P1 R2;K ⊩ P2

R1 ⋆ R2
.. ;K ⊩ P1 ∗ P2

θ is duplicable..

R;K ⊩ duplicable θ

R;K, x : κ ⊩ P

R;K ⊩ ∀x : κ.P

R;K ⊩ [U/x]P

R;K ⊩ ∃x : κ.P

.

37 / 94

The interpretation of permissions

R1;K;P ⊩ v : T..

R2;K ⊩ P

R1 ⋆ R2;K ⊩ v@T
R.. ;K ⊩ empty

R1;K ⊩ P1 R2;K ⊩ P2

R1 ⋆ R2
.. ;K ⊩ P1 ∗ P2

θ is duplicable..

R;K ⊩ duplicable θ

R;K, x : κ ⊩ P

R;K ⊩ ∀x : κ.P

R;K ⊩ [U/x]P

R;K ⊩ ∃x : κ.P

..

v@T holds if v has type T
mutual induction between the judgements

37 / 94

The interpretation of permissions

R1;K;P ⊩ v : T..

R2;K ⊩ P

R1 ⋆ R2;K ⊩ v@T
R.. ;K ⊩ empty

R1;K ⊩ P1 R2;K ⊩ P2

R1 ⋆ R2
.. ;K ⊩ P1 ∗ P2

θ is duplicable..

R;K ⊩ duplicable θ

R;K, x : κ ⊩ P

R;K ⊩ ∀x : κ.P

R;K ⊩ [U/x]P

R;K ⊩ ∃x : κ.P

..

we require a “canonical” derivation of v : T
i.e., one that does not use Sub or ExistsElim

37 / 94

The interpretation of permissions

R1;K;P ⊩ v : T..

R2;K ⊩ P

R1 ⋆ R2;K ⊩ v@T
R.. ;K ⊩ empty

R1;K ⊩ P1 R2;K ⊩ P2

R1 ⋆ R2
.. ;K ⊩ P1 ∗ P2

θ is duplicable..

R;K ⊩ duplicable θ

R;K, x : κ ⊩ P

R;K ⊩ ∀x : κ.P

R;K ⊩ [U/x]P

R;K ⊩ ∃x : κ.P

..

every resource justifies empty:
affine interpretation

37 / 94

The interpretation of permissions

R1;K;P ⊩ v : T..

R2;K ⊩ P

R1 ⋆ R2;K ⊩ v@T
R.. ;K ⊩ empty

R1;K ⊩ P1 R2;K ⊩ P2

R1 ⋆ R2
.. ;K ⊩ P1 ∗ P2

θ is duplicable..

R;K ⊩ duplicable θ

R;K, x : κ ⊩ P

R;K ⊩ ∀x : κ.P

R;K ⊩ [U/x]P

R;K ⊩ ∃x : κ.P

..

syntactic conjunction is interpreted by
“semantic” star

37 / 94

The interpretation of permissions

R1;K;P ⊩ v : T..

R2;K ⊩ P

R1 ⋆ R2;K ⊩ v@T
R.. ;K ⊩ empty

R1;K ⊩ P1 R2;K ⊩ P2

R1 ⋆ R2
.. ;K ⊩ P1 ∗ P2

θ is duplicable..

R;K ⊩ duplicable θ

R;K, x : κ ⊩ P

R;K ⊩ ∀x : κ.P

R;K ⊩ [U/x]P

R;K ⊩ ∃x : κ.P

..

object-level predicate interpreted by
meta-level predicate (not fully satisfactory)

37 / 94

The kernel

The path to type soundness

38 / 94

Road map

..weakening.
substitution

.

affinity

. duplication.

stability

. classification.
decomposition

.

soundness of
subsumption

.

canonicalization

.

subject
reduction

.

progress

.

type soundness

39 / 94

Substitution

Lemma (Substitution)

Let κ be value, type, or perm. Typing is preserved by the
substitution of an element u of kind κ for a variable of kind κ.

R;K, x : κ;P ⊢ t : T

R;K; [u/x]P ⊢ [u/x]t : [u/x]T

40 / 94

Technical note

The proof of this lemma involves 92 cases (as of now)...

... and the proof script takes up 4 lines.

apply the_great_mutind; intros; subst; simpl_subst_goal;
try closed; try econstructor (solve [

eauto 7 with insert_insert insert_concat
lift_subst subst_subst j_substitution]).

Of course, the hint databases must be carefully crafted.

41 / 94

Technical note

The proof of this lemma involves 92 cases (as of now)...

... and the proof script takes up 4 lines.

apply the_great_mutind; intros; subst; simpl_subst_goal;
try closed; try econstructor (solve [

eauto 7 with insert_insert insert_concat
lift_subst subst_subst j_substitution]).

Of course, the hint databases must be carefully crafted.

41 / 94

Technical note

One must sometimes reason by induction on the size of a type
derivation.

The typing judgement is indexed with a natural integer.

We prove that substitution is size-preserving.

42 / 94

Affinity

Lemma (Affinity)

Typing is preserved under the addition of unnecessary resources.

R1;K;P ⊢ t : T R1 ⋆ R2 ok

R1 ⋆ R2;K;P ⊢ t : T

43 / 94

Duplication

Lemma (Duplication)

Duplicable permissions can be justified by duplicable resources.

R;K ⊩ P R ok P is duplicable

R̂;K ⊩ P

The proof was difficult. Miraculous result?

44 / 94

Stability

Lemma (Stability)

Typing is preserved by tolerable interference ◁.

R1;K;P ⊢ t : T R1 ok R1 ◁ R2

R2;K;P ⊢ t : T

45 / 94

Classification

One such lemma per type constructor. For functions:

Lemma (Classification)

Among the values, only λ-abstractions admit a function type.

R;K ⊩ v@T → U

∃x, ∃t, v = λx.t

Easy to prove, because the hypothesis is a canonical derivation.

46 / 94

Decomposition

One such lemma per type constructor. For functions:

Lemma (Decomposition)

If λx.t has type T → U, then t has type U under the assumption x@T.

R;K ⊩ λx.t@T → U R ok

R̂;K, x : value; x@T ⊢ t : U

Easy to prove, because the hypothesis is a canonical derivation.

47 / 94

Soundness of subsumption

Lemma (Soundness of subsumption)

Permission subsumption is sound:

K ⊢ P ≤ Q R;K ⊩ P R ok

R;K ⊩ Q

R;K ⊩ P is canonical: classification and decomposition apply.

The only lemma where the subsumption rules play a role.

Only one case per subsumption rule.

It is easy to add new rules. A form of “semantic subtyping”?

48 / 94

Canonicalization

Lemma (Canonicalization)

If v has type T under an empty precondition, then there is a
canonical derivation of this fact.

R;K; empty ⊢ v : T R ok

R;K ⊩ v@T

The proof relies on

• Substitution, to eliminate ExistsElim;

• Soundness of Subsumption, to eliminate Sub.

49 / 94

Subject reduction

Lemma (S.R., preliminary form)

s1 / t1 −→ s2 / t2 ..

s1 ∼ R1 ⋆ R′
1
..

R1;∅; empty ⊢ t1 : T ..

∃R2R
′
2
..

s2 ∼ R2 ⋆ R′

2
..

R2;∅;empty ⊢ t2 : T ..

R′
1 ◁ R′

2
..

. .

50 / 94

Subject reduction

Lemma (S.R., preliminary form)

s1 / t1 −→ s2 / t2 ..

s1 ∼ R1 ⋆ R′
1
..

R1;∅; empty ⊢ t1 : T ..

∃R2R
′
2
..

s2 ∼ R2 ⋆ R′

2
..

R2;∅;empty ⊢ t2 : T ..

R′
1 ◁ R′

2
..

..

one thread takes a step

.

50 / 94

Subject reduction

Lemma (S.R., preliminary form)

s1 / t1 −→ s2 / t2 ..

s1 ∼ R1 ⋆ R′
1
..

R1;∅; empty ⊢ t1 : T ..

∃R2R
′
2
..

s2 ∼ R2 ⋆ R′

2
..

R2;∅;empty ⊢ t2 : T ..

R′
1 ◁ R′

2
..

..

this thread's view is R1

the other threads' view is R′
1

.

50 / 94

Subject reduction

Lemma (S.R., preliminary form)

s1 / t1 −→ s2 / t2 ..

s1 ∼ R1 ⋆ R′
1
..

R1;∅; empty ⊢ t1 : T ..

∃R2R
′
2
..

s2 ∼ R2 ⋆ R′

2
..

R2;∅;empty ⊢ t2 : T ..

R′
1 ◁ R′

2
..

..

this thread is well-typed
under its view

.

50 / 94

Subject reduction

Lemma (S.R., preliminary form)

s1 / t1 −→ s2 / t2 ..

s1 ∼ R1 ⋆ R′
1
..

R1;∅; empty ⊢ t1 : T ..

∃R2R
′
2
..

s2 ∼ R2 ⋆ R′

2
..

R2;∅;empty ⊢ t2 : T ..

R′
1 ◁ R′

2
..

. .. this thread's view and the
other threads' view evolve

50 / 94

Subject reduction

Lemma (S.R., preliminary form)

s1 / t1 −→ s2 / t2 ..

s1 ∼ R1 ⋆ R′
1
..

R1;∅; empty ⊢ t1 : T ..

∃R2R
′
2
..

s2 ∼ R2 ⋆ R′

2
..

R2;∅;empty ⊢ t2 : T ..

R′
1 ◁ R′

2
..

. .. the new machine state agrees
with the new views

50 / 94

Subject reduction

Lemma (S.R., preliminary form)

s1 / t1 −→ s2 / t2 ..

s1 ∼ R1 ⋆ R′
1
..

R1;∅; empty ⊢ t1 : T ..

∃R2R
′
2
..

s2 ∼ R2 ⋆ R′

2
..

R2;∅;empty ⊢ t2 : T ..

R′
1 ◁ R′

2
..

. .. the thread remains well-typed
under its view

50 / 94

Subject reduction

Lemma (S.R., preliminary form)

s1 / t1 −→ s2 / t2 ..

s1 ∼ R1 ⋆ R′
1
..

R1;∅; empty ⊢ t1 : T ..

∃R2R
′
2
..

s2 ∼ R2 ⋆ R′

2
..

R2;∅;empty ⊢ t2 : T ..

R′
1 ◁ R′

2
..

. .. the interference inflicted on
the other threads is tolerable

50 / 94

Subject reduction

Lemma (Subject Reduction)

Reduction preserves well-typedness.

c1 −→ c2 ⊢ c1
⊢ c2

51 / 94

Progress

A configuration c is acceptable if every thread either has reached a
value or is able to take a step; i.e., no thread has gone wrong.

Lemma (Progress)

Every well-typed configuration is acceptable.

⊢ c

c is acceptable

52 / 94

Type soundness

Well-typed programs do not go wrong.

Theorem (Type Soundness)

Assume void;∅; empty ⊢ t : T. Then, by executing initial / t, one
can reach only acceptable configurations.

53 / 94

Outline

Introduction

The kernel

Extensions

References

Locks

Adoption and abandon

Conclusion

54 / 94

What's an extension?

An extension typically involves:

• syntax, dynamic semantics:
• new terms;
• new machine state components;
• new reduction rules.

• static semantics of inert programs:
• new types;
• new typing rules, new subsumption rules.

• static semantics of running programs:
• new resource components;
• yet more typing rules!

• proofs:
• new proof cases in the main lemmas; new auxiliary lemmas.

55 / 94

Extensions

References

56 / 94

Why references?

References are simplified memory blocks:

• only one field;

• no tag;

• mutable or immutable; freezing is supported.

57 / 94

Syntax and dynamic semantics

New terms:
v ::= . . . | ℓ
t ::= . . . | newref v | !v | v := v

New machine state component:

• a heap maps an initial segment of N to values.

New reduction rules:

initial config. new configuration side condition
h / newref v −→ h++ v / limit h
h / !ℓ −→ h / v h(ℓ) = v
h / ℓ := v′ −→ h[ℓ 7→ v′] / () h(ℓ) = v

58 / 94

Type-checking inert programs

New types:
T ::= . . . | refm T
m ::= D | X

New typing rules:

R;K; v@T ⊢ newref v : refm T

R;K; (duplicable T) ∗ (v@ refm T) ⊢ !v : T | (v@ refm T)

R;K; (v@ refX T) ∗ (v′@T′) ⊢ v := v′ : ⊤ | (v@ refX T′)

59 / 94

Type-checking inert programs

New subsumption rules:

v@ refm T
≡ ∃x : value.((v@ refm =x) ∗ (x@T))

T ≤ U

v@ refm T ≤ v@ refm U

60 / 94

Type-checking running programs

New resource component:

• An instrumented heap maps memory locations to
instrumented values.

• An instrumented value is , N, Dv, or X v.

• The composition of resources satisfies:

N ⋆ X v = X v
N ⋆ N = N

Dv ⋆ Dv = Dv

Separation at mutable locations; agreement at immutable
locations.

61 / 94

Type-checking running programs

Agreement between a value and an instrumented value:

v and m v agree

(Just ignore the mutability flag.)

Agreement between raw and instrumented heaps (s ∼ R):
pointwise.

62 / 94

Type-checking running programs

New typing rule for memory locations:

R1;K ⊩ v@T R2(ℓ) = mv

R1 ⋆ R2;K;P ⊢ ℓ : refm T

Introduces (gives meaning to) the type refm T,
by connecting it with an instrumented heap fragment R1 ⋆ R2:

• R2 guarantees that ℓ holds some value v;

• if m is X, R2 guarantees exclusive knowledge of this fact;

• and (separately) R1 guarantees that v has type T.

63 / 94

Type soundness

Theorem
Well-typed programs do not go wrong.

“Just” a matter of dealing with the new proof cases.

64 / 94

Data race freedom

A data race occurs when two distinct threads are ready to access a
single location, and one of the accesses is a write.

Theorem
Well-typed programs are data race free.

The proof is immediate: writing requires exclusive ownership.

X v1 ⋆ m v2 =

65 / 94

Extensions

Locks

66 / 94

Syntax and dynamic semantics

New terms:

v ::= . . . | k
t ::= . . . | newlock | acquire v | release v

New machine state component:

• a lock heap maps an initial segment of N
to U (unlocked) or L (locked).

New reduction rules:

initial config. new configuration side condition
kh / newlock −→ kh++ L / limit kh
kh / acquire k −→ kh[k 7→ L] / () kh(k) = U
kh / release k −→ kh[k 7→ U] / () kh(k) = L

67 / 94

Type-checking inert programs

New types:
T ::= . . . | lock P | locked

New typing rules:

R;K;Q ⊢ newlock : ∃x : value.(=x | (x@ lock P) ∗ (x@ locked))

R;K; v@ lock P ⊢ acquire v : ⊤ | P ∗ (v@ locked)

R;K;P ∗ (v@ locked) ∗ (v@ lock P) ⊢ release v : ⊤

68 / 94

Type-checking running programs

New resource component:

• An instrumented lock heap maps lock addresses to
instrumented lock statuses.

• An instrumented lock status is a pair of:
• a lock invariant: a closed permission P.. ;
• an access right: one of , N, and X.

• The composition of resources satisfies:

P ⋆ P = P

N ⋆ X = X
N ⋆ N = N

Agreement on the lock invariant; separation concerning the
ownership of a locked lock.

.

69 / 94

Type-checking running programs

New resource component:

• An instrumented lock heap maps lock addresses to
instrumented lock statuses.

• An instrumented lock status is a pair of:
• a lock invariant: a closed permission P.. ;
• an access right: one of , N, and X.

• The composition of resources satisfies:

P ⋆ P = P

N ⋆ X = X
N ⋆ N = N

Agreement on the lock invariant; separation concerning the
ownership of a locked lock.

..

syntax!

69 / 94

Type-checking running programs

Agreement between a lock status and an instrumented lock status:

U and (P,N) agree
L and (P,X) agree (Just ignore the invariant P.)

Pointwise agreement between raw and instrumented lock heaps is
written s and R agree.

70 / 94

Type-checking running programs

On top of this, a more elaborate notion of agreement is defined:

s and R ⋆ R′ agree
R′.. ;∅ ⊩ hidden invariants of (R ⋆ R′)..

s ∼ R..

.

With this definition, the type soundness statements are unchanged.

71 / 94

Type-checking running programs

On top of this, a more elaborate notion of agreement is defined:

s and R ⋆ R′ agree
R′.. ;∅ ⊩ hidden invariants of (R ⋆ R′)..

s ∼ R..

..

the conjunction of the invariants
of all presently unlocked locks

With this definition, the type soundness statements are unchanged.

71 / 94

Type-checking running programs

On top of this, a more elaborate notion of agreement is defined:

s and R ⋆ R′ agree
R′.. ;∅ ⊩ hidden invariants of (R ⋆ R′)..

s ∼ R..

..

a fragment of the instrumented state
that justifies this conjunction

With this definition, the type soundness statements are unchanged.

71 / 94

Type-checking running programs

On top of this, a more elaborate notion of agreement is defined:

s and R ⋆ R′ agree
R′.. ;∅ ⊩ hidden invariants of (R ⋆ R′)..

s ∼ R..

..

the fragment of the instrumented state
that remains visible to the program

With this definition, the type soundness statements are unchanged.

71 / 94

Type-checking running programs

New typing rules for lock addresses:

R(k) = (P,_)

R;K;Q ⊢ k : lock P

R(k) = (_,X)

R;K;Q ⊢ k : locked

Introduce (give meaning to) the types lock P and locked.

72 / 94

Type soundness

A configuration is now acceptable if every thread:

• has reached a value,

• is able to take a step,

• or is waiting on a lock that is currently held.

The type discipline does not prevent deadlocks.

73 / 94

Type soundness

Theorem
Well-typed programs do not go wrong.

“Just” a matter of dealing with the new proof cases.

74 / 94

Extensions

Adoption and abandon

75 / 94

Syntax and dynamic semantics

No new values.

New terms:

t ::= . . . | give v1 to v2 | take v1 from v2 | fail | take! v1 from v2

Updated machine state component:

• the heap maps a memory location to a pair of an adopter
pointer p ::= null | ℓ and a value.

76 / 94

Syntax and dynamic semantics

New reduction rules:

initial config. new configuration side condition
h / give ℓ to ℓ′ −→ h[ℓ 7→ ⟨ ℓ′ | v ⟩] / () h(ℓ) = ⟨p | v ⟩
h / take ℓ from ℓ′ −→ h / take! ℓ from ℓ′ h(ℓ) = ⟨ ℓ′ | v ⟩
h / take ℓ from ℓ′ −→ h / fail h(ℓ) = ⟨p | v ⟩

∧ p ̸= ℓ′

h / take! ℓ from ℓ′ −→ h[ℓ 7→ ⟨null | v ⟩] / () h(ℓ) = ⟨p | v ⟩
s / E[fail] −→ s / fail

Note that takedoes not need an atomic implementation.

77 / 94

Type-checking inert programs

New types:

T ::= . . . | adoptable | unadopted | adopts T

Intuitively,

• v@ adoptable is v @ dynamic; it is duplicable;
• guarantees the existence of v's adopter field;
• allows an attempt to take v from its adopter.

• v@unadopted means we own v as a potential adoptee; affine;
• guarantees that v's adopter field exists and is null;
• allows to give v to some adopter.

• v@ adopts T means we own v as an adopter; it is affine;
• asserts that every adoptee of v has type T;
• represents the collective ownership of all such adoptees.

78 / 94

Type-checking inert programs

Modified typing rule for memory allocation:

R;K; v@T ⊢ newref v : ∃x : value.(=x |
(x@ refm T) ∗ (x@ adopts ⊥) ∗ (x@unadopted))

The value x produced by newref v:

• is the address of a memory block, as before;

• can be used as an adopter (and presently has no adoptees);

• can be used as an adoptee (i.e., is presently not adopted).

79 / 94

Type-checking inert programs

New typing rules for adoption and abandon:

R;K; (v2@ adopts U) ∗ (v1@U) ∗ (v1@unadopted)
⊢ give v1 to v2 : ⊤ |
(v2@ adopts U)

R;K; (v2@ adopts U) ∗ (v1@ adoptable)
⊢ take v1 from v2 : ⊤ |
(v2@ adopts U) ∗ (v1@U) ∗ (v1@unadopted)

80 /94

Type-checking inert programs

New subsumption rules:

empty ≤ duplicable adoptable

v@unadopted ≤ (v@unadopted) ∗ (v@ adoptable)

T ≤ U

v@ adopts T ≤ v@ adopts U

81 / 94

Type-checking running programs

New resource component:

• A raw adoption resource maps a memory location to a pair of
an adoptee status and an adopter status.

• An adoptee status is , N, or X p.

• An adopter status is , N, or X.

82 / 94

Type-checking running programs

Auxiliary definitions:

• R ⊢ ℓ is adoptable iff ℓ is in the domain of R.

• R ⊢ ℓ is unadopted iff R maps ℓ to (X null,).

• R ⊢ ℓ′ is an adopter iff R maps ℓ′ to (,X).

• R ⊢ ℓ⃗ are the adoptees of ℓ′ iff:
• R ⊢ ℓ′ is an adopter; and
• ℓ⃗ lists the addresses ℓ such that R ⊢ ℓ is adopted by ℓ′;

83 / 94

Type-checking running programs

We would like “· ⊢ ℓ⃗ are the adoptees of ℓ′” to be affine, i.e.:

R1 ⊢ ℓ⃗ are the adoptees of ℓ′

R1 ⋆ R2 ⊢ ℓ⃗ are the adoptees of ℓ′

But this does not hold.

R2 could own an adoptee of ℓ′.

There would be a dangling adopter edge out of R2.

84 / 94

Type-checking running programs

We avoid this issue by forbidding dangling adopter edges.

An adoption resource R is round if

R ⊢ ℓ is adopted by ℓ′ implies R ⊢ ℓ′ is an adopter.

Roundness is preserved by ⋆ and by ◁, which means we can work
in the subset of round resources.

85 / 94

Type-checking running programs

Three new typing rules for memory locations!

R ⊢ ℓ is adoptable

R;K;P ⊢ ℓ : adoptable

R ⊢ ℓ is unadopted

R;K;P ⊢ ℓ : unadopted

R1 ⊢ ℓ⃗ are the adoptees of ℓ′

R2;K ⊩ ℓ⃗@U

R1 ⋆ R2;K;P ⊢ ℓ′ : adopts U

They give meaning to the three new types.

86 / 94

Type-checking running programs

New typing rules for terms:

R;K;P ⊢ fail : T

R;K ⊩ ℓ′@ adopts U R ⊢ ℓ is adopted by ℓ′

R;K; P ⊢ take! ℓ from ℓ′ : ⊤ |
(ℓ′@ adopts U) ∗ (ℓ@U) ∗ (ℓ@unadopted)

87 / 94

Type soundness

Theorem
Well-typed programs do not go wrong.

“Just” a matter of dealing with the new proof cases.

88 / 94

Outline

Introduction

The kernel

Extensions

Conclusion

89 / 94

Facts

The Coq proof is currently 14K non-blank, non-comment lines.

• de Bruijn index library (2K) (reusable);

• MSA library (2K) (reusable);

• kernel (4K);

• references, locks, adoption and abandon (6K).

90 / 94

What is missing

An earlier version of the proof had the following features:

• memory blocks with multiple fields;

• memory blocks with a tag; tag update instruction;

• sum types; match instruction;

• (parameterized) iso-recursive types.

We need to add them back in.

91 / 94

Related work

Views (Dinsdale-Young et al., 2013) are particularly relevant.

• extensible framework;

• monolithic machine state, composable views, agreement;

• while-language instead of a λ-calculus.

92 / 94

Conclusion

Concerning the meta-theory:

• The good old syntactic approach to type soundness works.

• Formalization helped tremendously clarify and simplify the
design.

Concerning Mezzo:

• Type inference and type error reports need more research.

• Does Mezzo help write correct programs?
Does it help prove programs correct?

93 / 94

Thank you

More information online:
http://gallium.inria.fr/~protzenk/mezzo-lang/

94 / 94

http://gallium.inria.fr/~protzenk/mezzo-lang/

	Introduction
	The kernel
	The untyped calculus
	Type-checking inert programs
	Type-checking running programs; resources
	The path to type soundness

	Extensions
	References
	Locks
	Adoption and abandon

	Conclusion

