The theory of Mezzo

François Pottier

INRIA

IHP, April 2014

Acknowledgements

Jonathan Protzenko, Thibaut Balabonski, Henri Chataing, Armaël Guéneau, Cyprien Mangin.

Outline

• Introduction

- The kernel
- Extensions
- Conclusion

Concerning the syntax of types,

- Surface has the *name introduction* form x: t,
- which Kernel does not have;

Furthermore, the conventional reading of function types differs:

- Surface functions do not consume their arguments, except for the parts marked with consumes;
- Kernel has the opposite convention, which is standard in affine λ -calculi, hence no consumes keyword.

```
Recall the type of the length function for mutable lists.
[a] mlist a -> int
```

In Surface syntax, this could also be written:

```
[a] (consumes xs : mlist a) ->
        (int | xs @ mlist a)
```

or, by exploiting universal quantification and a singleton type:

```
[a, xs : value]
   (=xs | consumes xs @ mlist a) ->
        (int | xs @ mlist a)
```

Erasing consumes yields a Kernel type that means the same thing.

A Surface pair of a value and a function that consumes it: $(x: a, (| consumes \times @ a) \rightarrow ())$

In Surface syntax, this could also be written:
{x : value} ((=x | x @ a), (| consumes x @ a) -> ())

This uses existential quantification and a singleton type. Erasing consumes yields a Kernel type that means the same thing.

Outline

Introduction

• The kernel

- The untyped calculus
- Type-checking inert programs
- Type-checking running programs; resources
- The path to type soundness
- Extensions
- Conclusion

The kernel

The untyped calculus

A fairly unremarkable untyped λ -calculus.

κ	::=	value term soup \dots	(Kinds)
v	::=	$\mathbf{x} \mid \lambda \mathbf{x}. \mathbf{t}$	(Values)

$$t ::= v | v t |$$
 spawn $v v$

$$sp ::=$$
 thread $(t) | sp || sp$
 $E ::= v ||$

$$D ::= [] \stackrel{\cup}{|} E[D]$$

(Terms) (Soups)

(Shallow evaluation contexts) (Deep evaluation contexts)

Values and terms

a variant of A-normal form

A fairly unremarkable untyped λ -calculus.

- (Kinds)
- κ ::= value | terra | soup | ... v ::= $x \mid \lambda x.t$

$$t ::= v | v t' |$$
 spawn $v v$

$$sp ::= thread (t) | sp || sp$$

(Terms) (Soups)

(Values)

(Shallow evaluation contexts) (Deep evaluation contexts)

Values and terms

	a primitive of for spawning			construct a new thread			
A fairly unremarkable untyped				\-calculu	IS.		
κ	::=	value	term soup	(Kine	ds)		
v	::=	$\boldsymbol{x} \mid \lambda \boldsymbol{x}$.t	(Valı	ues)		
t	::=	vivt	spawn v v	(Teri	ms)		
sp	::=	threa	d (t) <i>sp</i> <i>sp</i>	(Sou	ıps)		
Ε	::=	v []		(Sha	llow e	evaluatio	n contexts)
D	::=	[] <i>E</i> [<i>l</i>	D]	(Dee	ep eva	luation o	contexts)

Operational semantics

initial configuration s / (λx.t) ν	new configuration $\rightarrow s / [v/x]t$
s / E[t]	\longrightarrow s' / E[t']
s / thread (t)	
$s \ / \ t_1 \parallel t_2$	$ \begin{array}{c} \text{if } s \ / \ t \longrightarrow s' \ / \ t' \\ \longrightarrow s' \ / \ t'_1 \parallel t_2 \end{array} $
$s \ / \ t_1 \parallel t_2$	$ \begin{array}{c} \text{if } \mathbf{s} \ / \ \mathbf{t}_1 \longrightarrow \mathbf{s}' \ / \ \mathbf{t}_1 \\ \longrightarrow \mathbf{s}' \ / \ \mathbf{t}_1 \ \parallel \mathbf{t}_2' \end{array} $
$s \ / \ thread \ (D[spawn \ v_1 \ v_2])$	if $\mathbf{s} / \mathbf{t}_2 \longrightarrow \mathbf{s}' / \mathbf{t}'_2$ $\longrightarrow \mathbf{s} / \text{thread } (\mathbf{D}[()]) \parallel \text{thread } (\mathbf{v}_1 \mathbf{v}_2)$

Operational semantics

s / E[t]

The kernel

Type-checking inert programs

Types and permissions

$$\kappa ::= \dots | type | perm$$
(Kinds)

$$T, U ::= x | =v | T \rightarrow T | (T | P)$$
(Types)

$$\forall x : \kappa.T | \exists x : \kappa.T$$

$$P, Q ::= x | v @ T | empty | P * P$$
(Permissions)

$$\forall x : \kappa.P | \exists x : \kappa.P$$
duplicable θ

 θ ::= $T \mid P$

In the Coq formalisation, only *one syntactic category*. Well-kindedness serves to distinguish values, terms, types, etc.

- avoids a quadratic number of substitution functions!
- makes it easy to deal with dependency.

Binding encoded via de Bruijn indices. Re-usable library, dblib.

A traditional type system uses a list Γ of *type assumptions*:

$\Gamma \vdash \boldsymbol{t} : \boldsymbol{T}$

Here, it is split into a list K of kind assumptions and a permission P:

 $K, P \vdash t : T$

This can be read like a Hoare triple: $K \vdash \{P\} t \{T\}$.

A traditional type system uses a list Γ of *type assumptions*:

 $\Gamma \vdash \boldsymbol{t} : \boldsymbol{T}$

Here, it is split into a list K of kind assumptions and a permission P:

 $K, P \vdash t : T$

This can be read like a Hoare triple: $K \vdash P$ t $\{T\}$.

precondition

A traditional type system uses a list Γ of *type assumptions*:

 $\Gamma \vdash \boldsymbol{t} : \boldsymbol{T}$

Here, it is split into a list K of kind assumptions and a permission P:

 $K, P \vdash t : T$

This can be read like a Hoare triple: $K \vdash \{P\} t \{T\}$.

postcondition

What is needed to type-check an *inert* program?

- one introduction rule for each type construct (5 of them);
- one rule for each term construct (2 of them);
- a few non-syntax-directed rules (Cut, ExistsElim, Sub);
- and a bunch of subsumption rules.

More is needed to check a *running* program; discussed later on.

Introduction rules (1/5)

A variable x has type =x in the absence of *any* assumption.

 $K; P \vdash v : = v$

Introduction rules (2/5)

The introduction rule for $T \mid Q$ is also the *frame rule*.

$$\frac{K; P \vdash t : T}{K; P * Q \vdash t : T \mid Q}$$

lambda *separately* extends *K* and *P*.

 $\frac{K, x: \mathsf{value}; P * x @ T \vdash t: U}{K; (\mathsf{duplicable} P) * P \vdash \lambda x.t: T \rightarrow U}$

The *duplicable* facts that hold when the function is defined remain valid when the function is invoked.

Introduction rules (3/5)

The *duplicable* facts that hold when the function is defined remain valid when the function is invoked.

Introduction rules (3/5)

The *duplicable* facts that hold when the function is defined remain valid when the function is invoked.

lambda *separately* extends *K* and *P*.

 $K, x: value; P * x @ T \vdash t: U$

 $K; (\text{duplicable } P) * P \vdash \lambda x.t : T \rightarrow U$

The *duplicable* facts that hold when the function is defined remain valid when the function is invoked.

this is a permission!

Universal quantifier introduction is restricted to *harmless* terms.

 $\frac{t \text{ is harmless}}{K, x : \kappa; P \vdash t : T}$ $\overline{K; \forall x : \kappa. P \vdash t : \forall x : \kappa. T}$

They include values, memory allocation, but not *lock* allocation.

The well-known interaction between polymorphism and mutable state is really between polymorphism and *hidden* state.

Introduction rules (5/5)

Existential quantifier introduction.

$$\frac{K; P \vdash v : [U/x]T}{K; P \vdash v : \exists x : \kappa.T}$$

Syntax-directed rules for terms (1/2)

Function application.

$$\frac{K; Q \vdash t : T}{K; (v @ T \rightarrow U) * Q \vdash v t : U}$$

Syntax-directed rules for terms (1/2)

Function application.

Spawning a thread is a like a function call,

$$\textit{K}; (\textit{v}_1 \textcircled{a} \textit{T}
ightarrow \textit{U}) \, st \, (\textit{v}_2 \textcircled{a} \textit{T}) dash \, spawn \, \textit{v}_1 \, \textit{v}_2 : op$$

but produces a unit result.

Cut hides a part of the precondition, P_1 , that happens to be "true".

 $\frac{\textit{K};\textit{P}_1 * \textit{P}_2 \vdash \textit{t}:\textit{T}}{\textit{K} \Vdash \textit{P}_1}}{\textit{K};\textit{P}_2 \vdash \textit{t}:\textit{T}}}$

Cut hides a part of the precondition, P_1 , that happens to be "true".

Non-syntax-directed rules (2/3)

Existential quantifier elimination.

$$\frac{K, \mathbf{x} : \kappa; \mathbf{P} \vdash \mathbf{t} : \mathbf{T}}{K; \exists \mathbf{x} : \kappa. \mathbf{P} \vdash \mathbf{t} : \mathbf{T}}$$

Non-syntax-directed rules (3/3)

Subsumption is Hoare's rule of consequence.

$$\frac{\textit{\textit{K}} \vdash \textit{\textit{P}}_1 \leq \textit{\textit{P}}_2 \qquad \textit{\textit{K}}; \textit{\textit{P}}_2 \vdash \textit{\textit{t}}:\textit{\textit{T}}_1 \qquad \textit{\textit{K}} \vdash \textit{\textit{T}}_1 \leq \textit{\textit{T}}_2}{\textit{\textit{K}};\textit{\textit{P}}_1 \vdash \textit{\textit{t}}:\textit{\textit{T}}_2}$$

Permission subsumption

Many rules. (More than 50 in the full system.) Excerpt:

 $\forall \mathbf{x} : \kappa . \mathbf{P} \leq [\mathbf{U}/\mathbf{x}]\mathbf{P}$ $(v @ T) * P \equiv v @ T | P$ $\mathbf{v} \otimes \mathbf{T}_1 \rightarrow \mathbf{T}_2 < \mathbf{v} \otimes (\mathbf{T}_1 \mid \mathbf{P}) \rightarrow (\mathbf{T}_2 \mid \mathbf{P})$ (duplicable P) * P < P * Pempty < duplicable = vempty < duplicable $(T \rightarrow U)$

 $\mathsf{empty} \leq \mathsf{duplicable}\;(\mathsf{duplicable}\;\theta)$

This axiomatization is neither *minimal* nor *complete*.
The kernel

Type-checking running programs; resources

Towards type soundness

We wish to prove that *well-typed programs do not go wrong*. But that is true of *all* programs in this trivial calculus! We must organize the proof so that it is *robust* in the face of extensions: references, locks, adoption and abandon, etc. We would like to prove that this affine type system *keeps correct track of ownership*, in some sense.

But there are no resources in this trivial calculus!

We need an abstract notion of resource, to be later instantiated.

E.g., a resource could be a heap fragment that one owns.

We need some tools to reason abstractly about resources.

R resource e.g., an instrumented heap fragment maps every address to $\frac{1}{2}$, N, X v, or D v $R_1 \star R_2$ conjunction e.g., requires separation at mutable addresses requires agreement at immutable addresses R duplicable core e.g., throws away mutable addresses keeps immutable addresses $R_1 \triangleleft R_2$ tolerable interference (rely) e.g., allows memory allocation

We also need a *consistency* predicate *R* ok.

- Star * is commutative and associative.
- $R_1 \star R_2$ ok implies R_1 ok.
- $R \star \widehat{R} = R$.
- $R_1 \star R_2 = R$ and R ok imply $\widehat{R_1} = \widehat{R}$.
- $R \star R = R$ implies $R = \widehat{R}$.
- $\widehat{R} \star \widehat{R} = \widehat{R}$.
- *R* ⊲ *R*.
- R_1 ok and $R_1 \lhd R_2$ imply R_2 ok.
- $R_1 \lhd R_2$ implies $\widehat{R_1} \lhd \widehat{R_2}$.
- rely preserves splits:

$$\frac{\textit{\textbf{R}}_{1} \star \textit{\textbf{R}}_{2} \lhd \textit{\textbf{R}}'}{\exists \textit{\textbf{R}}_{1}'\textit{\textbf{R}}_{2}', \textit{\textbf{R}}_{1}' \star \textit{\textbf{R}}_{2}' = \textit{\textbf{R}}' \land \textit{\textbf{R}}_{1} \lhd \textit{\textbf{R}}_{1}' \land \textit{\textbf{R}}_{2} \lhd \textit{\textbf{R}}_{2}'}$$

Technical note

In Coq, a *type class* of *monotonic separation algebras*. Currently 7 instances, and combinations thereof! You want * to be represented as a *total function*. Thomas Braibant's *AAC* plugin is very useful. We assume a notion of *agreement* between a machine state *s* and a resource *R*:

$s \sim R$

E.g., if *s* is a heap and *R* an instrumented heap (fragment), then they must agree on the content of every address.

A typing judgement about a *running* thread must be parameterized with a resource *R*:

$$\mathsf{R}, \mathsf{K}, \mathsf{P} \vdash \mathsf{t} : \mathsf{T}$$

It reflects the thread's *view* of the machine state.

Its partial knowledge of, and assumptions about, the global state.

The previous typing rules are extended with a parameter *R*. The extension is non-trivial in two cases:

$$\frac{\widehat{R}; K, x: \text{value}; P * x @ T \vdash t: U}{R; K; (\text{duplicable } P) * P \vdash \lambda x.t: T \rightarrow U}$$

 $\frac{R_2; K; P_1 * P_2 \vdash t : T}{R_1; K \Vdash P_1}$ $\frac{R_1; K \Vdash P_1}{R_1 \star R_2; K; P_2 \vdash t : T}$

 $\mathbf{P}_{\alpha} \cdot \mathbf{K} \cdot \mathbf{P}_{1} + \mathbf{P}_{\alpha} \vdash \mathbf{t} \cdot \mathbf{T}$

The previous typing rules are extended with a parameter *R*. The extension is non-trivial in two cases:

$$\begin{array}{c}
\widehat{R}; \mathcal{K}, x: \text{value}; P * x @ T \vdash t: U \\
\overline{R}; \mathcal{K}; (\text{duplicable } P) * P \vdash \lambda x.t: T \rightarrow U
\end{array}$$

$$\begin{array}{c}
R_2, R, P_1 * P_2 \vdash t: T \\
R_1; \mathcal{K} \Vdash P_1 \\
\overline{R_1 \star R_2}; \mathcal{K}; P_2 \vdash t: T
\end{array}$$
one owns R when the function is defined but only \widehat{R} when the function is invoked

 $\mathbf{D}_{\mathbf{a}} \cdot \mathbf{K} \cdot \mathbf{D}_{\mathbf{a}} \downarrow \mathbf{D}_{\mathbf{a}} \vdash \mathbf{f} \cdot \mathbf{T}$

The previous typing rules are extended with a parameter *R*. The extension is non-trivial in two cases:

$$\frac{\widehat{R}; K, x: \text{value}; P * x @ T \vdash t: U}{R; K; (\text{duplicable } P) * P \vdash \lambda x.t: T \rightarrow U} \xrightarrow{R_1; K \Vdash P_1} \frac{R_1; K \Vdash P_1}{R_2 \star R_2; K; P_2 \vdash t: T}$$
if a typing rule has two premises
then R must be split between them

 \mathbf{D} , \mathbf{V} , \mathbf{D} , \mathbf{D} | +, \mathbf{T}

The previous typing rules are extended with a parameter *R*. The extension is non-trivial in two cases:

$$\frac{\widehat{R}; K, x: \text{value}; P * x @ T \vdash t: U}{R; K; (\text{duplicable } P) * P \vdash \lambda x.t: T \rightarrow U} \xrightarrow{R_1; K \Vdash P_1} \\
\frac{R_1; K \vdash P_1}{R_1; K \vdash P_1} \\
\text{permission interpretation judgement:} \\
R_1; justifies P_1$$

The judgement R; $K \Vdash P$ gives meaning to permissions.

It is analogous to the semantics of separation logic, $h \Vdash F$.

The judgement $R, K \Vdash P$ gives meaning to permissions.

It is analogous to the semantics of separation logic, $h \Vdash F$.

It is analogous to the semantics of separation logic, $h \Vdash F$.

$$\frac{R_{1}; \mathcal{K}; \mathcal{P} \Vdash \mathbf{v} : T}{R_{2}; \mathcal{K} \Vdash \mathcal{P}} \\
\frac{R_{2}; \mathcal{K} \Vdash \mathcal{P}}{R_{1} \star R_{2}; \mathcal{K} \Vdash \mathbf{v} @ T} \qquad R; \mathcal{K} \Vdash \text{ empty} \qquad \frac{R_{1}; \mathcal{K} \Vdash \mathcal{P}_{1} \qquad R_{2}; \mathcal{K} \Vdash \mathcal{P}_{2}}{R_{1} \star R_{2}; \mathcal{K} \Vdash \mathcal{P}_{1} \ast \mathcal{P}_{2}} \\
\frac{\theta \text{ is duplicable}}{R; \mathcal{K} \Vdash \text{ duplicable } \theta} \qquad \frac{R; \mathcal{K}, \mathbf{x} : \kappa \Vdash \mathcal{P}}{R; \mathcal{K} \Vdash \forall \mathbf{x} : \kappa . \mathcal{P}} \qquad \frac{R; \mathcal{K} \Vdash [U/x] \mathcal{P}}{R; \mathcal{K} \Vdash \exists \mathbf{x} : \kappa . \mathcal{P}}$$

The kernel

The path to type soundness

Road map

Lemma (Substitution)

Let κ be value, type, or perm. Typing is preserved by the substitution of an element u of kind κ for a variable of kind κ .

 $\frac{R; K, x : \kappa; P \vdash t : T}{R; K; [u/x]P \vdash [u/x]t : [u/x]T}$

Technical note

The proof of this lemma involves 92 cases (as of now)...

The proof of this lemma involves 92 cases (as of now)... ... and the proof script takes up 4 lines.

Of course, the hint databases must be carefully crafted.

One must sometimes reason by induction on the *size* of a type derivation.

The typing judgement is indexed with a natural integer. We prove that substitution is size-preserving.

Lemma (Affinity)

Typing is preserved under the addition of unnecessary resources.

$$\frac{R_1; K; P \vdash t : T \qquad R_1 \star R_2 \text{ ok}}{R_1 \star R_2; K; P \vdash t : T}$$

Lemma (Duplication)

Duplicable permissions can be justified by duplicable resources.

$$\frac{R; K \Vdash P \qquad R \ ok \qquad P \ is \ duplicable}{\widehat{R}; K \Vdash P}$$

The proof was difficult. Miraculous result?

Stability

Lemma (Stability)

Typing is preserved by tolerable interference \lhd .

$$\frac{R_1; K; P \vdash t: T \quad R_1 \text{ ok} \quad R_1 \triangleleft R_2}{R_2; K; P \vdash t: T}$$

One such lemma per type constructor. For functions:

Lemma (Classification)

Among the values, only λ -abstractions admit a function type.

 $\frac{R; K \Vdash v @ T \to U}{\exists x, \exists t, v = \lambda x. t}$

Easy to prove, because the hypothesis is a *canonical* derivation.

One such lemma per type constructor. For functions:

Lemma (Decomposition)

If λx t has type T \rightarrow U, then t has type U under the assumption x @ T.

$$\frac{R; K \Vdash \lambda x. t @ T \to U \qquad R ok}{\widehat{R}; K, x : value; x @ T \vdash t : U}$$

Easy to prove, because the hypothesis is a *canonical* derivation.

Lemma (Soundness of subsumption)

Permission subsumption is sound:

$$\frac{\textit{K}\vdash\textit{P}\leq\textit{Q}\quad\textit{R};\textit{K}\Vdash\textit{P}\quad\textit{Rok}}{\textit{R};\textit{K}\Vdash\textit{Q}}$$

 $R; K \Vdash P$ is canonical: classification and decomposition apply. The *only* lemma where the subsumption rules play a role. Only *one case* per subsumption rule.

It is easy to add new rules. A form of "semantic subtyping"?

Lemma (Canonicalization)

If v has type T under an empty precondition, then there is a canonical derivation of this fact.

$$\frac{R;K; \mathsf{empty} \vdash v:T \qquad R \ ok}{R;K \Vdash v \ @ T}$$

The proof relies on

- Substitution, to eliminate ExistsElim;
- Soundness of Subsumption, to eliminate Sub.

Subject reduction

Lemma (S.R., preliminary form)

$$\frac{ \begin{array}{c} s_1 \ / \ t_1 \longrightarrow s_2 \ / \ t_2 \\ s_1 \sim \mathcal{R}_1 \ \star \ \mathcal{R}_1' \\ \hline \mathcal{R}_1; \varnothing; \texttt{empty} \vdash t_1: \mathcal{T} \\ \hline \\ \exists \mathcal{R}_2 \mathcal{R}_2' \left\{ \begin{array}{c} s_2 \sim \mathcal{R}_2 \ \star \ \mathcal{R}_2' \\ \mathcal{R}_2; \varnothing; \texttt{empty} \vdash t_2: \mathcal{T} \\ \mathcal{R}_1' \lhd \mathcal{R}_2' \end{array} \right. \end{array} \right.$$

Subject reduction

one thread takes a step

Lemma (S.R., preliminary form)

$$\frac{ \begin{array}{c} s_1 \ / \ t_1 \longrightarrow s_2 \ / \ t_2 \\ s_1 \sim R_1 \ \star \ R_1' \\ \hline R_1; \varnothing; empty \vdash t_1 : T \\ \hline \hline \exists R_2 R_2' \left\{ \begin{array}{c} s_2 \sim R_2 \ \star \ R_2' \\ R_2; \varnothing; empty \vdash t_2 : T \\ R_1' \lhd R_2' \end{array} \right.$$
this thread's view is R_1 the other threads' view is R_1^\prime

$$\frac{s_1 / t_1 \longrightarrow s_2 / t_2}{s_1 \sim R_1 \star R'_1}$$
$$\frac{R_1; \emptyset; \mathsf{empty} \vdash t_1 : T}{\exists R_2 R'_2 \begin{cases} s_2 \sim R_2 \star R'_2 \\ R_2; \emptyset; \mathsf{empty} \vdash t_2 : T \\ R'_1 \lhd R'_2 \end{cases}}$$

this thread is well-typed under its view

$$\frac{\begin{array}{c} s_1 \ / \ t_1 \longrightarrow s_2 \ / \ t_2 \\ s_1 \sim R_1 \ \star \ R_1' \\ R_1; \varnothing; empty \vdash t_1 : T \end{array}}{\exists R_2 R_2' \left\{ \begin{array}{c} s_2 \sim R_2 \ \star \ R_2' \\ R_2; \varnothing; empty \vdash t_2 : T \\ R_1' \lhd R_2' \end{array} \right.}$$

$$\begin{split} & \begin{array}{c} s_1 \ / \ t_1 \longrightarrow s_2 \ / \ t_2 \\ & s_1 \sim R_1 \ \star \ R_1' \\ \hline & R_1; \varnothing; empty \vdash t_1: T \\ \hline & \exists R_2 R_2' \left\{ \begin{array}{c} s_2 \sim R_2 \ \star \ R_2' \\ & R_2; \varnothing; empty \vdash t_2: T \\ & R_1' \lhd R_2' \end{array} \right. \end{split} \\ & \begin{array}{c} \text{the new machine state agrees} \\ & \text{with the new views} \end{array} \end{split}$$

Lemma (S.R., preliminary form)

$$\begin{array}{c} s_1 \ / \ t_1 \longrightarrow s_2 \ / \ t_2 \\ s_1 \sim R_1 \ \star \ R_1' \\ \hline R_1; \ \varnothing; \ empty \vdash t_1 : T \\ \hline \hline \\ \exists R_2 R_2' \left\{ \begin{array}{c} s_2 \sim R_2 \ \star \ R_2' \\ R_2; \ \varnothing; \ empty \vdash t_2 : T \\ R_1' \ \lhd \ R_2' \end{array} \right. \\ the \ thread \ remains \ well-type \\ \end{array} \right.$$

the thread remains well-typed under its view

Lemma (Subject Reduction)

Reduction preserves well-typedness.

$$\frac{\boldsymbol{c}_1 \longrightarrow \boldsymbol{c}_2 \qquad \vdash \boldsymbol{c}_1}{\vdash \boldsymbol{c}_2}$$

A configuration *c* is *acceptable* if every thread either has reached a value or is able to take a step; i.e., *no thread has gone wrong*.

Lemma (Progress)

Every well-typed configuration is acceptable.

⊢ **c**

c is acceptable

Type soundness

Well-typed programs do not go wrong.

Theorem (Type Soundness)

Assume void; \emptyset ; empty \vdash t : T. Then, by executing initial / t, one can reach only acceptable configurations.

Outline

Introduction

• The kernel

• Extensions

- References
- Locks
- Adoption and abandon

Conclusion

What's an extension?

An extension typically involves:

- syntax, dynamic semantics:
 - new terms;
 - new machine state components;
 - new reduction rules.
- static semantics of inert programs:
 - new types;
 - new typing rules, new subsumption rules.
- static semantics of running programs:
 - new resource components;
 - yet more typing rules!
- proofs:
 - new proof cases in the main lemmas; new auxiliary lemmas.

Extensions

References

Why references?

References are simplified memory blocks:

- only one field;
- no tag;
- mutable or immutable; freezing is supported.

Syntax and dynamic semantics

New terms:

New machine state component:

• a *heap* maps an initial segment of \mathbb{N} to values.

New reduction rules:

 $\begin{array}{ll} \mbox{initial config.} & \mbox{new configuration} & \mbox{side condition} \\ \mbox{h / newref } \mathbf{v} \longrightarrow \mbox{h} + \mathbf{v} & \mbox{/ limit h} \\ \mbox{h / !}\ell & \longrightarrow \mbox{h} = \mathbf{v} \\ \mbox{h / }\ell := \mathbf{v}' & \longrightarrow \mbox{h}[\ell \mapsto \mathbf{v}'] \mbox{/ }() & \mbox{h}(\ell) = \mathbf{v} \\ \end{array}$

New types:

$$\begin{array}{rcl} T & ::= & \dots \mid \operatorname{ref}_m T \\ m & ::= & D \mid X \end{array}$$

New typing rules:

 $R; K; v @ T \vdash newref v : ref_m T$

 $R; K; (\text{duplicable } T) * (v @ \operatorname{ref}_m T) \vdash !v : T \mid (v @ \operatorname{ref}_m T)$

 $R; K; (v @ \operatorname{ref}_X T) * (v' @ T') \vdash v := v' : \top \mid (v @ \operatorname{ref}_X T')$

New subsumption rules:

 $v @ \operatorname{ref}_m T \qquad \qquad T \leq U$ = $\exists x : \operatorname{value.}((v @ \operatorname{ref}_m = x) * (x @ T)) \qquad \qquad \overline{v @ \operatorname{ref}_m T \leq v @ \operatorname{ref}_m U}$ New resource component:

- An *instrumented heap* maps memory locations to instrumented values.
- An *instrumented value* is \oint , *N*, *Dv*, or *Xv*.
- The composition of resources satisfies:

$$N \star Xv = Xv$$
$$N \star N = N$$
$$Dv \star Dv = Dv$$

Separation at mutable locations; *agreement* at immutable locations.

Agreement between a value and an instrumented value:

v and m v agree

(Just ignore the mutability flag.)

Agreement between raw and instrumented heaps (s \sim R): pointwise.

New typing rule for memory locations:

$$\frac{\mathsf{R}_1; \mathsf{K} \Vdash \mathsf{v} \otimes \mathsf{T} \qquad \mathsf{R}_2(\ell) = \mathsf{m} \mathsf{v}}{\mathsf{R}_1 \star \mathsf{R}_2; \mathsf{K}; \mathsf{P} \vdash \ell : \mathsf{ref}_{\mathsf{m}} \mathsf{T}}$$

Introduces (gives meaning to) the type $ref_m T$, by connecting it with an *instrumented heap fragment* $R_1 \star R_2$:

- R_2 guarantees that ℓ holds some value v;
- if *m* is *X*, *R*₂ guarantees exclusive knowledge of this fact;
- and (separately) R_1 guarantees that v has type T.

Type soundness

Theorem Well-typed programs do not go wrong.

"Just" a matter of dealing with the new proof cases.

A *data race* occurs when two distinct threads are ready to access a single location, and one of the accesses is a write.

Theorem

Well-typed programs are data race free.

The proof is immediate: writing requires exclusive ownership.

$$X \mathbf{v}_1 \star \mathbf{m} \mathbf{v}_2 = 4$$

Extensions

Locks

Syntax and dynamic semantics

New terms:

$$v ::= \dots | k$$

 $t ::= \dots |$ newlock | acquire v | release v

New machine state component:

 a lock heap maps an initial segment of N to U (unlocked) or L (locked).

New reduction rules:

 $\begin{array}{ll} \mbox{initial config.} & \mbox{new configuration} & \mbox{side condition} \\ \mbox{kh / newlock} & \longrightarrow \mbox{kh} + L & \mbox{limit kh} \\ \mbox{kh / acquire } k & \longrightarrow \mbox{kh}[k \mapsto L] & \mbox{()} & \mbox{kh}(k) = U \\ \mbox{kh / release } k & \longrightarrow \mbox{kh}[k \mapsto U] & \mbox{()} & \mbox{kh}(k) = L \\ \end{array}$

New types:

$$T ::= \ldots | \operatorname{lock} P | \operatorname{locked}$$

New typing rules:

 $R; K; Q \vdash \text{newlock} : \exists x : \text{value}.(=x \mid (x @ \text{lock } P) * (x @ \text{locked}))$

 $R; K; v @ lock P \vdash acquire v : \top | P * (v @ locked)$

 $R; K; P * (v @ locked) * (v @ lock P) \vdash release v : \top$

New resource component:

- An *instrumented lock heap* maps lock addresses to instrumented lock statuses.
- An instrumented lock status is a pair of:
 - a lock invariant: a closed permission P;
 - an *access right*: one of \oint , *N*, and *X*.
- The composition of resources satisfies:

 $P \star P = P$ $N \star X = X$ $N \star N = N$

Agreement on the lock invariant; *separation* concerning the ownership of a locked lock.

New resource component:

- An *instrumented lock heap* maps lock addresses to instrumented lock statuses.
- An instrumented lock status is a pair of:
 - a lock invariant: a closed permission P
 - an *access right*: one of *∮*, *N*, and *X*.
- The composition of resources satisfies:

```
P \star P = PN \star X = XN \star N = N
```

syntax!

Agreement on the lock invariant; *separation* concerning the ownership of a locked lock.

Agreement between a lock status and an instrumented lock status:

U and (P, N) agree (Just ignore the invariant P.)

Pointwise agreement between raw and instrumented lock heaps is written *s* and *R* agree.

On top of this, a more elaborate notion of agreement is defined:

s and $R \star R'$ agree $R'; \varnothing \Vdash$ hidden invariants of $(R \star R')$

 $s \sim R$

the conjunction of the invariants of all presently unlocked locks

On top of this, a more elaborate notion f agreement is defined:

s and $R \star R'$ igree $R'; \varnothing \Vdash$ hidden invariants of $(R \star R')$

 $s \sim R$

a fragment of the instrumented state that justifies this conjunction

On top of this, a more elaborate notion of agreement is defined:

s and $R \star R'$ agree $R', \varnothing \Vdash$ hidden invariants of $(R \star R')$

 $s \sim R$

On top of this, a more elaborate notion of agreement is defined:

New typing rules for lock addresses:

$$\frac{R(k) = (P, _)}{R; K; Q \vdash k : \text{lock } P}$$

$$\frac{R(k) = (_, X)}{R; K; Q \vdash k : \text{locked}}$$

Introduce (give meaning to) the types lock P and locked.

Type soundness

A configuration is now *acceptable* if every thread:

- has reached a value,
- is able to take a step,
- or *is waiting on a lock* that is currently held.

The type discipline does not prevent deadlocks.

Type soundness

Theorem Well-typed programs do not go wrong.

"Just" a matter of dealing with the new proof cases.

Extensions

Adoption and abandon

No new values.

New terms:

 $t ::= \dots |$ give v_1 to $v_2 |$ take v_1 from $v_2 |$ fail | take! v_1 from v_2

Updated machine state component:

 the heap maps a memory location to a pair of an adopter pointer p ::= null | l and a value.
New reduction rules:

side condition $\boldsymbol{h}(\ell) = \langle \, \boldsymbol{p} \mid \boldsymbol{v} \, \rangle$ $h(\ell) = \langle \mathbf{p} \mid \mathbf{v} \rangle$ $\land p \neq \ell'$ $h(\ell) = \langle p | v \rangle$

Note that take does not need an atomic implementation.

New types:

 $T ::= \ldots | adoptable | unadopted | adopts T$

Intuitively,

- v@adoptable is v @ dynamic; it is duplicable;
 - guarantees the existence of v's adopter field;
 - allows an attempt to take v from its adopter.
- v@unadopted means we own v as a potential adoptee; affine;
 - guarantees that v's adopter field exists and is null;
 - allows to give v to some adopter.
- v@adopts T means we own v as an adopter; it is affine;
 - asserts that every adoptee of v has type T;
 - represents the collective ownership of all such adoptees.

Modified typing rule for memory allocation:

```
R; K; v @ T \vdash newref v : \exists x : value.(=x | (x @ ref_m T) * (x @ adopts \bot) * (x @ unadopted))
```

The value *x* produced by newref *v*:

- is the address of a memory block, as before;
- can be used as an adopter (and presently has no adoptees);
- can be used as an adoptee (i.e., is presently not adopted).

New typing rules for adoption and abandon:

$$\begin{array}{l} \mathsf{R}; \mathsf{K}; \, (\mathsf{v}_2 \, \texttt{@} \, \texttt{adopts} \, \mathsf{U}) \, \ast \, (\mathsf{v}_1 \, \texttt{@} \, \mathsf{U}) \, \ast \, (\mathsf{v}_1 \, \texttt{@} \, \texttt{unadopted}) \\ & \vdash \, \mathsf{give} \, \mathsf{v}_1 \, \mathsf{to} \, \mathsf{v}_2 : \top \mid \\ & (\mathsf{v}_2 \, \texttt{@} \, \texttt{adopts} \, \mathsf{U}) \end{array}$$

 $\begin{array}{l} {\it R}; {\it K}; \, (v_2 \, @\, adopts \, {\it U}) \, \ast \, (v_1 \, @\, adoptable) \\ {\it \vdash take \, v_1 \, from \, v_2} : {\it \top \mid} \\ (v_2 \, @\, adopts \, {\it U}) \, \ast \, (v_1 \, @\, {\it U}) \, \ast \, (v_1 \, @\, unadopted) \end{array}$

New subsumption rules:

 $empty \leq duplicable \ adoptable$

v @ unadopted $\leq (v @$ unadopted) * (v @ adoptable)

 $\frac{T \le U}{v @ adopts T \le v @ adopts U}$

Type-checking running programs

New resource component:

- A *raw adoption resource* maps a memory location to a pair of an adoptee status and an adopter status.
- An *adoptee status* is \oint , *N*, or *X p*.
- An *adopter status* is $\frac{1}{2}$, *N*, or *X*.

Auxiliary definitions:

- $R \vdash \ell$ is adoptable iff ℓ is in the domain of R.
- $R \vdash \ell$ is unadopted iff R maps ℓ to (X null, .).
- $R \vdash \ell'$ is an adopter iff R maps ℓ' to $(_, X)$.
- $R \vdash \vec{\ell}$ are the adoptees of ℓ' iff:
 - $R \vdash \ell'$ is an adopter; and
 - \vec{l} lists the addresses ℓ such that $R \vdash \ell$ is adopted by ℓ' ;

We would like " $\cdot \vdash \vec{\ell}$ are the adoptees of ℓ' " to be affine, i.e.:

 $\frac{R_1 \vdash \vec{\ell} \text{ are the adoptees of } \ell'}{R_1 \star R_2 \vdash \vec{\ell} \text{ are the adoptees of } \ell'}$

But this does *not* hold.

 R_2 could own an adoptee of ℓ' .

There would be a *dangling adopter edge* out of R_2 .

We avoid this issue by forbidding dangling adopter edges. An adoption resource *R* is *round* if

 $R \vdash \ell$ is adopted by ℓ' implies $R \vdash \ell'$ is an adopter.

Roundness is preserved by \star and by \triangleleft , which means we can work in the subset of round resources.

Three new typing rules for memory locations!

 $\frac{R \vdash \ell \text{ is adoptable}}{R; K; P \vdash \ell : \text{adoptable}} \qquad \frac{R \vdash \ell \text{ is unadopted}}{R; K; P \vdash \ell : \text{unadopted}} \\
\frac{R_1 \vdash \vec{\ell} \text{ are the adoptees of } \ell'}{R_2; K \vdash \vec{\ell} @ U} \\
\frac{R_1 \vdash \vec{\ell} R_2; K; P \vdash \ell' : \text{adopts } U}{R_1 \star R_2; K; P \vdash \ell' : \text{adopts } U}$

They give meaning to the three new types.

Type-checking running programs

New typing rules for terms:

 $R; K; P \vdash fail : T$

 $\frac{R; K \Vdash \ell' @ \text{ adopts } U \qquad R \vdash \ell \text{ is adopted by } \ell'}{R; K; P \vdash \text{take! } \ell \text{ from } \ell' : \top |} \\ (\ell' @ \text{ adopts } U) * (\ell @ U) * (\ell @ \text{ unadopted})$

Type soundness

Theorem Well-typed programs do not go wrong.

"Just" a matter of dealing with the new proof cases.

Outline

- Introduction
- The kernel
- Extensions
- Conclusion

The Coq proof is currently 14K non-blank, non-comment lines.

- de Bruijn index library (2K) (reusable);
- MSA library (2K) (reusable);
- kernel (4K);
- references, locks, adoption and abandon (6K).

An earlier version of the proof had the following features:

- memory blocks with multiple fields;
- memory blocks with a tag; tag update instruction;
- sum types; match instruction;
- (parameterized) iso-recursive types.

We need to add them back in.

Views (Dinsdale-Young *et al.*, 2013) are particularly relevant.

- extensible framework;
- monolithic machine state, composable views, agreement;
- while-language instead of a λ -calculus.

Concerning the meta-theory:

- The good old syntactic approach to type soundness works.
- Formalization *helped tremendously* clarify and simplify the design.

Concerning Mezzo:

- *Type inference* and type error reports need more research.
- Does Mezzo help write correct programs? Does it help prove programs correct?

Thank you

More information online: http://gallium.inria.fr/~protzenk/mezzo-lang/