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An implementation of Caml-Light with existential types

Abstract

This work is based on a proposal by L�aufer and Odersky [3]. They show that it is possible

to add existential types to an ML-like language without even modifying its syntax. ML's strong

typing properties are of course retained. We implemented their proposal into Caml-Light 0.6

[4], thus making it possible to write realistic programs using existential types.

The �rst part of this paper describes this simple form of existential types and showss how to

use them in our enhanced version of Caml-Light. We then give several examples demonstrating

their usefulness. Finally, a more technical section gives an overview of the changes made to the

compiler and discusses some technical issues.

Une impl�ementation de Caml-Light avec types existentiels

R�esum�e

Ce travail est fond�e sur une proposition de L�aufer et Odersky [3] montrant l'adjonction de

types existentiels aux langages ML sans modi�cation de la syntaxe de ces langages. Les pro-

pri�et�es du typage fort de ML sont bien sûr pr�eserv�ees. Nous avons impl�ement�e cette proposition

en Caml-Light 0.6, permettant ainsi l'�ecriture de programmes de taille r�eelle utilisant ces types

existentiels.

La premiere partie de ce document d�ecrit cette forme simple de types existentiels, et montre

leur utilisation dans le langage ainsi �etendu. Apr�es quoi nous donnons quelques exemples d�e-

montrant l'utilit�e de ces types existentiels. En�n, une section plus technique d�ecrit bi�evement

les principaux changements que nous avons apport�es au compilateur et aborde quelques points

techniques.

Authors addresses: Michel Mauny, INRIA-Rocquencourt, projet Cristal, Michel.Mauny@inria.fr and Fran�cois Pot-

tier, Ecole Normale Sup�erieure, Paris, Francois.Pottier@ens.fr
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Introduction

This work is based on a proposal by L�aufer and Odersky [3]. They show that it is possible to add

existential types to an ML-like language without even modifying its syntax. ML's strong typing

properties are of course retained. We implemented their proposal into Caml-Light 0.6 [4], thus

making it possible to write realistic programs using existential types.

Existential types, even under such a simple form provide an abstraction mechanism that is

already useful for programming libraries (such as the set library given in section 2.3). We also

believe that our implementation provides a nice platform for conducting small-sized experiments

with the abstraction mechanism provided, and is also an interesting tool for teaching important

concepts such as abstract data types in functional programming courses.

The �rst part of this paper describes this simple form of existential types and show how to use

them in our enhanced version of Caml-Light. We then give several examples demonstrating their

usefulness. Finally, a more technical section gives an overview of the changes made to the compiler

and discusses some technical issues.

1 Using existential types in Caml-Light

Type speci�cations for variables of a universally quanti�ed type have the following form, for any

type expression t(a):

� : 8a:t(a) (e:g: id : 8a:a ! a)

By analogy with universal quanti�cation, we give a meaning to existentially quanti�ed types. By

stating that a value � has the existential type 9�:t(�), we mean that for some unknown type �̂, �

has type t(�̂).

L�aufer and Odersky proposed an interpretation of type variables occurring free in ML type

de�nitions [2, 3]: such variables should be thought of as being existentially quanti�ed, and they

show that, with such an interpretation, we obtain a simple but still useful form of abstract data

types. We explain below our adaptation and implementation of their work in the Caml-Light

context.

1.1 Type declarations

In Caml-Light, a type declaration is of the form

type [argument-list] identi�er = body ;;

where argument-list is the list of formal type parameters, which may appear free in the type

expression body. The resulting type is universally quanti�ed over these parameters, and no other

type variables may appear free in body.

Without altering the syntax of the type declaration, we now give a meaning to type variables

that appear free in body, but not in the type parameter list. Following L�aufer and Odersky, we

interpret such type variables as existentially quanti�ed.

For instance,

#type key = Key of 'a * ('a -> int);;

Type key defined.
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describes a type with one value constructor, Key, whose arguments are pairs of a value of type 'a

and a function of type 'a -> int. Here we don't know anything about 'a, except that the value

is of the same type 'a as the function domain.

1.2 Constructing values with existential types

Values of existential types are constructed using usual Caml-Light syntax. For instance, the ex-

pressions

#Key (3, fun x -> x + 3);;

- : key = Key (<abstract>, <fun>)

#Key ([0; 1], list_length);;

- : key = Key (<abstract>, <fun>)

both have type key. Note that no argument types appear in the result types of these expressions:

the underlying types (respectively int and int list) have been \forgotten". Caml only displays

the <abstract> keyword: since those values are of unknown types, they cannot be displayed.

On the other hand, this is incorrect:

#Key (true, list_length);;

> Toplevel input:

>Key (true, list_length);;

> ^^^^^^^^^^^

> Expression of type 'a list -> int

> cannot be used with type bool -> int

since the type of true and the domain type of list length don't match.

1.3 Decomposing values with existential types

1.3.1 Pattern-matching on values with existential types

Besides constructing values with existential types, we can decompose them using a match (or let,

or fun) construct, such as:

#let x = Key ("abc", string_length);;

x : key = Key (<abstract>, <fun>)

#match x with Key (v, f) -> f v;;

- : int = 3

What happens when a value with an existentially quanti�ed type is decomposed? Suppose we write

\match e with p

1

-> e

1

| : : :p

n

-> e

n

", where e has type 9�

1

: : :9�

n

: t(�

1

: : :�

n

). When Caml's

typechecker encounters this expression, for each pattern p

i

, it takes an instance of this type, i.e. it

creates n abstract types �̂

i

1

, : : : , �̂

i

n

(called Skolem type constructors) and assigns type t(�̂

i

1

; : : : ; �̂

i

n

)

to p

i

in order to conduct the pattern matching. A Skolem constructor �̂ has the property that it

can match no types but itself. This re
ects the fact that a Skolem type constructor represents an

unknown type; hence it cannot be uni�ed with other types.

This process is illustrated in the following pattern-matching let construct:
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#let (Key (a, b)) = x;;

b : ?A -> int = <fun>

a : ?A = <abstract>

Here x has type key, which is the same as 9�: key(� � (� ! int)). Thus the typechecker creates a

Skolem constructor ?A, a is given type ?A and b is given type ?A -> int. The Caml-Light compiler

uses ?A, ?B, : : : , (upper-case letters) for printing toplevel Skolem constructors, and ?a, ?b, : : : ,

(lower-case letters) for local ones (cf. error messages below).

On the other hand, this is incorrect:

#let x = Key (3, succ) in

# match x with Key (v, _) -> v + 6;;

> Toplevel input:

> match x with Key (v, _) -> v + 6;;

> ^

> Expression of type ?a

> cannot be used with type int

The match construct gives v a unique, abstract type ?a, which can match no types but itself. When

the typechecker encounters v + 6, it tries to unify ?a with int, which is illegal. Hence evaluating

v + 6 is impossible, even though v has a concrete value (3) of type int.

1.3.2 Scope restrictions

In order for the type system to be safe, the scope of existential type variables must be restricted.

L�aufer and Odersky suggest to put the scope limit to the end of pattern-matching constructs (In

Caml, let, match, fun etc.). Our scope limitation is only on fun constructs: using our previous

notations, this means that ?a must not appear in the result type of all enclosing fun constructs.

Without this rule, it is easy to produce well-typed programs that lead to crashes (see section 3.1).

Here are some examples of prohibited expressions. This one

#fun x -> match x with Key (v, f) -> f;;

> Toplevel input:

>fun x -> match x with Key (v, f) -> f;;

> ^

> Expression has an existential type escaping out of its scope.

is invalid because the result type of the fun construct would be key -> ?a -> int.

So is this one:

#let g h = fun (Key (v, f)) -> h v;;

> Toplevel input:

>let g h = fun (Key (v, f)) -> h v;;

> ^

> Expression has an existential type escaping out of its scope.

Even though the abstract type ?a doesn't appear in the type of fun Key (v, f) -> h v, allowing

such an expression would give type ?a -> 'a to h, thus letting ?a escape out of its scope.

Existential type variables can appear in the types of variables that have been bound at toplevel,

such as v in
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#let (Key (v, f)) = x;;

f : ?B -> int = <fun>

v : ?B = <abstract>

#let v' = let (Key(v,_)) = x in v;;

v' : ?C = <abstract>

since the scope of such variables is the whole toplevel session (or the current module). In order

to ensure the safety of the type system, values with existential types cannot be exported out of a

module (cf. section1.4).

1.3.3 Existential types and the dot notation

In regular Caml-Light, the dot notation expr.Field is totally equivalent to the pattern-matching

construct:

let {Field = f} = expr in f

For example, given the following type and value de�nition

#type obj = {Data : 'a; Op : 'a -> int};;

Type obj defined.

#let o = {Data="abcd"; Op=string_length};;

o : obj = {Data=<abstract>; Op=<fun>}

we can access the Data and Op �elds with the dot notation:

#let d1 = o.Data

#and d2 = o.Data

#and op = o.Op;;

d1 : ?D = <abstract>

d2 : ?E = <abstract>

op : ?F -> int = <fun>

Unfortunately, since we opened three times the o value, values d1, d2 and op cannot communicate:

#op d1;;

> Toplevel input:

>op d1;;

> ^^

> Expression of type ?D

> cannot be used with type ?F

#[d1;d2];;

> Toplevel input:

>[d1;d2];;

> ^^

> Expression of type ?E

> cannot be used with type ?D
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This example shows that the dot notation is very impractical (if not useless) in presence of existential

types, since each access to a given �eld of the same value receives a type which is incompatible

with those of all other accesses.

Solutions to this problem have been proposed [1] by considering an access path equivalence that

identi�es several accesses to the same variable as belonging to a single pattern-matching construct.

The trick is to virtually decompose that variable only once, at its binding occurence. Given such

an equivalence, it would be possible to assign the same existential type to equivalent accesses.

At present we have not tried to tackle this problem. In our implementation it is necessary to

explicitly use a matching construct large enough in order to open a package. This matching may

be done at top-level, which makes things slightly easier.

1.4 Existential types, modules and separate compilation

If we wanted to be able to export values with existential types out of a module, we would need

a kind of stamp relocalization in order to avoid confusing existential types coming from di�erent

modules. Instead of implementing such a mechanism, we chose to avoid exporting such values.

Since there is no syntactic support for interface speci�cations such as

value r : ?A

we had only two cases to consider:

� module mod.ml is being compiled, but does not possess an interface mod.mli;

� and mod.ml has an interface mod.mli, but is being compiled with -g option.

These two situations are similar: in both cases a default interface is generated with all values and

types being exported. If an existential type occurs in the type of one of the exported values, a

self-explanatory warning is generated by the compiler, as shown by the following Unix session:

% cat mod.ml

type key = Key of 'a * ('a -> int);;

let (r,f) = let (Key(r,f)) = Key(1, succ) in (r,f);;

% camlc -c -g mod.ml

# Warning: value f not exported (its type contains existential variables)

# Warning: value r not exported (its type contains existential variables)

The module mod.ml has been successfully compiled, generating �les mod.zo (object code) and

mod.zix (extended compiled interface). However, values r and f are inaccessible.

2 Applications { Code examples

2.1 Existential types as abstract types

What new opportunities are provided by existential types? Not all existential types turn out to be

useful. For example, if we de�ne

#type dumb = K of 'a;;

Type dumb defined.
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and if we have an object of type dumb, we have absolutely no way of manipulating it (except passing

it around) because we have no information about it.

Existentially typed objects can however be useful if they are su�ciently structured. For example,

let us de�ne

#type obj = {Data : 'a; Op : 'a -> int};;

Type obj defined.

An object of type obj provides su�cient structure to allow us to compute with it. We can de�ne

#let f {Data = d; Op = o} = o d;;

f : obj -> int = <fun>

f is a function of type obj -> int and can be applied to any value of type obj, independently of

its actual concrete representation.

In fact, obj is a simple example of an abstract type packaged with its set of operations. The

abstract type is represented by the 'a variable in the type declaration; here the type is provided

with two operators, data of type 'a (actually a constant) and op of type 'a -> int.

When given a value { one could say a package { of type obj, the user will not be able to take

advantage of the way it is implemented, because its actual type is hidden. Thus, existential types

provide an easy way to achieve type abstraction.

2.2 A sample abstract type: stack

We give here an implementation of stacks in Caml-Light, which serves as a very simple example of

type abstraction using existential quanti�cation.

#(* Type and exception definitions *)

#type 'a stack = {

# mutable Repr : 'b;

# Push : 'a -> 'b -> 'b;

# Pop : 'b -> 'b * 'a;

# Size : 'b -> int

#};;

Type stack defined.

#exception Empty;;

Exception Empty defined.

#exception Full;;

Exception Full defined.

#(* Generic functions *)

#let gpush elem = fun {Repr = r; Push = push_func} ->

# r <- push_func elem r;;

gpush : 'a -> 'a stack -> unit = <fun>

#let gpop = fun {Repr = r; Pop = pop_func} ->

# let (r', elem) = pop_func r

# in r <- r';
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# elem;;

gpop : 'a stack -> 'a = <fun>

#let gsize = fun {Repr = r; Size = size_func} ->

# size_func r;;

gsize : 'a stack -> int = <fun>

#(* A list-based implementation *)

#let lpush elem lst = elem::lst;;

lpush : 'a -> 'a list -> 'a list = <fun>

#let lpop lst = match lst with

# [] -> raise Empty

#| elem::rest -> (rest, elem);;

lpop : 'a list -> 'a list * 'a = <fun>

#let stack1 = ({

# Repr = [];

# Push = lpush;

# Pop = lpop;

# Size = list_length} : int stack)

#;;

stack1 : int stack = {Repr=<abstract>; Push=<fun>; Pop=<fun>; Size=<fun>}

#(* An array-based implementation *)

#let max = 1000;;

max : int = 1000

#let apush elem (index, array) =

# if index = max then raise Full

# else vect_assign array (index+1) elem;

# (index+1, array);;

apush : 'a -> int * 'a vect -> int * 'a vect = <fun>

#let apop (index, array) =

# if index = 0 then raise Empty

# else ((index-1, array), vect_item array index);;

apop : int * 'a vect -> (int * 'a vect) * 'a = <fun>

#let stack2 = {Repr = (0, make_vect max 0);

# Push = apush;

# Pop = apop;

# Size = fst}

#;;

stack2 : int stack = {Repr=<abstract>; Push=<fun>; Pop=<fun>; Size=<fun>}

This example shows two advantages of existential quanti�cation.

First, a value of type stack is opaque, i.e. the user doesn't have direct access to its components.

Since he doesn't have any knowledge of the stack's internal structure, he is forced to use the stack

through the mechanisms we provided, i.e. the Push, Pop and Size �elds.
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Second, although stack1 and stack2 have totally di�erent implementations, they both are

of type int stack and they look identical to the user (except that they have di�erent over
ow

conditions). The user can use them exactly the same way, using the generic functions gpush, gpop

and gsize. It is even possible to build and use heterogeneous structures:

#let het_list = [stack1; stack2]

#in do_list (gpush 3) het_list;;

- : unit = ()

The gpush function accepts any arguments of type key, regardless of their concrete representation,

and performs what could be called a dynamic dispatching based on its argument's type. Dynamic

dispatching is an important feature of object-oriented languages. Hence existential types allow for

a new kind of polymorphism, which resembles that found in object-oriented languages. Of course

we are still far away from the power of these languages, since no inheritance mechanism is present.

2.3 An interesting case: the set library

In mid-93, there was a discussion in the Caml mailing list about the new set module, to be

introduced in Caml-Light release 0.6. This module provides basic operations on sets.

In order to achieve good e�ciency, sets are represented internally as balanced binary trees. But

balanced trees can be built only over an ordered set of elements. Hence, in order to create a set,

an ordering function must be speci�ed.

Some people proposed using a generic ordering primitive, which would compare two elements

by looking at their physical structure. This primitive can be easily programmed, in the same way

as the generic equality primitive. The problem is that, in most cases, this primitive is inadequate.

For instance, if we create a set of stamped objects, generic ordering will insist on comparing all

�elds of the object, possibly looping, while all is needed is to compare the stamp �elds. It doesn't

work with sets of sets, either: since sets have a complex structure, two sets can be equal and yet

have a di�erent physical structure.

Hence, it appears clear that the ordering function must be chosen by the user. It has been

proposed to give the following interface to the module:

type 'a t;; (* The type of sets containing elements of type 'a *)

type 'a ordering == 'a -> 'a -> int;;

value empty: 'a t

and mem: 'a ordering -> 'a -> 'a t -> bool

and add: 'a ordering -> 'a -> 'a t -> 'a t

and union: 'a ordering -> 'a t -> 'a t -> 'a t

;;

There were other operations, but they are omitted here for the sake of brevity.

An ordering function is a two-argument function f such that f e1 e2 is zero if e1 and e2

are equal, negative if e1 is smaller than e2, and positive otherwise. In this scheme, the user is

responsible for always using the same function to operate on a given set. Otherwise, the above

functions could produce incorrect results.
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This works, but it is not foolproof at all. Even the most experienced programmer could pass

the wrong ordering function by mistake and confuse the library functions. Besides, always passing

an ordering function as �rst argument is cumbersome.

Therefore, it was suggested to write the interface this way:

type 'a t;;

type 'a ordering == 'a -> 'a -> int;;

value empty: 'a ordering -> 'a t

and mem: 'a -> 'a t -> bool

and add: 'a -> 'a t -> 'a t

and union: 'a t -> 'a t -> 'a t

;;

and the implementation of type 'a t would then look like:

type 'a t = {Order: 'a ordering; Data: (* whatever *) };;

In this scheme, the ordering function is speci�ed only once { when creating the set with the empty

function. It is then stored inside the set structure. This seems to solve the problems we previously

encountered. First, it suppresses the need to pass an ordering function every time. Second, since

the function is stored inside each set, it is impossible to specify the wrong ordering.

But there remains a slight problem with functions that take two set arguments, such as union.

These functions work correctly only if their two set arguments have the same ordering function {

and yet nothing prevents the user from passing incompatible sets. Hence, this interface is still not

foolproof.

Existential types provide a way to solve this problem. The following example demonstrates

it. Only the implementation is shown, along with the toplevel's output. If we were to write an

interface, only set and buildset would appear in it.

#type 'a set = {

# Empty : 'b;

# Mem : 'a -> 'b -> bool;

# Add : 'a -> 'b -> 'b;

# Union : 'b -> 'b -> 'b

# }

#;;

Type set defined.

#let list_member compare x l =

# let rec rec_member = function

# [] -> false

# | elem::rest -> (match compare x elem

# with 0 -> true

# | _ -> rec_member rest)

# in rec_member l

#;;

list_member : ('a -> 'b -> int) -> 'a -> 'b list -> bool = <fun>
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#let list_union compare set1 =

# let rec rec_union accu = function

# [] -> accu

# | elem::rest -> rec_union (if list_member compare elem accu then accu

# else elem::accu) rest

# in rec_union set1

#;;

list_union : ('a -> 'a -> int) -> 'a list -> 'a list -> 'a list = <fun>

#let buildset compare =

# {Empty = [];

# Mem = list_member compare;

# Add = (fun x l -> if list_member compare x l then l else x::l);

# Union = list_union compare}

#;;

buildset : ('a -> 'a -> int) -> 'a set = <fun>

In order to operate on sets, it is necessary to create an object of type set, which provides all basic

set operations. There is only one way to create such a package, namely through the buildset

function. When using this function it is necessary to specify an ordering function, compare.

We have now solved the problem of functions with two set arguments. Suppose we create a

package and open it with a decomposing match or let. A unique Skolem constructor, which we

may call ?a, is created. The union function will then only accept arguments that have type ?a.

Such arguments must have been created with the same package { otherwise their type would be

another Skolem constructor. This is demonstrated below:

#let package = buildset (fun i j -> (i - j) mod 7);;

package : int set = {Empty=<abstract>; Mem=<fun>; Add=<fun>; Union=<fun>}

#let {Empty = e; Mem = m; Add = a; Union = u} = package;;

u : ?G -> ?G -> ?G = <fun>

a : int -> ?G -> ?G = <fun>

m : int -> ?G -> bool = <fun>

e : ?G = <abstract>

#m 2 (u (a 1 e) (a 9 e));;

- : bool = true

Now let's create another package and try to use them together:

#let {Empty = e2; Mem = m2; Add = a2; Union = u2} =

# buildset (fun i j -> i - j);;

u2 : ?H -> ?H -> ?H = <fun>

a2 : int -> ?H -> ?H = <fun>

m2 : int -> ?H -> bool = <fun>

e2 : ?H = <abstract>

#u (a 1 e) (a2 1 e2);;

> Toplevel input:
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>u (a 1 e) (a2 1 e2);;

> ^^

> Expression of type int -> ?H -> ?H

> cannot be used with type int -> ?H -> ?G

As one can see, the typechecker tries to unify two di�erent Skolem constructors and fails. Note

that opening a package is rather cumbersome, but it is done only once at toplevel.

As a conclusion, this is an interesting application of existential type variables. Not only can

they be used as abstract types { in some cases they bring a real improvement over Caml-Light's

plain typing system.

3 Implementation

This section discusses the changes made to the compiler, as well as some implementation choices.

3.1 Scope restrictions

Skolem type constructors have a scope, and they cannot be exported out of this scope. We give

here a code sample that illustrates the need to restrict the scope of Skolem type constructors. Then

we discuss how we enforced this restriction in the implementation.

Reproduced below is the output of a hypothetical, non-restrictive version of Caml-Light.

#let x = Key (3, succ)

#and y = Key (true, fun x -> 1);;

x : key = Key (<abstract>, <fun>)

y : key = Key (<abstract>, <fun>)

#let decompose (Key (a, b)) = (a, b);;

decompose : key -> ?A * (?A -> int) = <fun>

#let (rx, fx) = decompose x

#and (ry, fy) = decompose y

#in fx ry;;

Bus error

The problem arises from the fact that when we de�ne the decompose function, it is typed

statically, i.e. every time we apply decompose to a value of type key, the result is considered

as being of type ?A * (?A -> int), where ?A remains the same Skolem constructor every time.

This allows us to confuse the typechecker into thinking that fx can be applied to ry, thus causing

a critical error. This is of course incorrect: a new Skolem constructor should be created for

each application of the function; but this requires an explicit existential quanti�cation of Skolem

constructors. In other words, the type of decompose should be key -> 9�.�*(�->int). Since there

is no support for such a quanti�cation, it is necessary to make sure that Skolem type constructors

remain local to the fun construct that created them.

Although the scope restrictions given in L�aufer and Odersky's original work concerned all

pattern-matching constructs (let and match), we found that the only necessary restriction con-

cerned fun constructs. As shown by the example above, problems occur if we are able to match
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several di�erent values while producing the same Skolem constructors each time. This is the typical

behaviour of the fun construct. Other matching constructs (let and match

1

) apply to only one

textual expression: the scope of Skolem constructors produced by such constructs can therefore be

extended to the enclosing fun, if any.

We found a very simple and e�ective way of enforcing this restriction. In the original version

of Caml-Light, every type variable carries a number, called its binding level. It is the nesting

level of the let construct which caused this variable to appear, and it is used in order to correctly

generalize type variables after typing a let ... in clause. We chose to make these numbers re
ect

not only the nesting level of let constructs, but of fun constructs too, with a special processing

of newly generated Skolem constructors at these occurrences. Now we can very easily enforce our

scope restriction: all we have to do is prevent Skolem constructors from being uni�ed with a type

variable with a higher binding level.

3.2 Skolem constructors are parameterized

Internally, a Skolem constructor is represented as follows:

| TSkolem of int * typ list

The int is simply a unique stamp used to distinguish di�erent constructors. Then each Skolem

constructor carries a typ list. Since this fact is not crucial to the understanding of our system,

but makes it more complex, it has been overlooked until now.

Every type is of the form

8�

1

; : : : ; �

n

9


1

; : : : ; 


p

: t

where t is a type expression in which the �

i

and 


i

may appear.

When we take an instance of such a type (for instance, in order to conduct pattern matching on

a value of this type) we create p new Skolem constructors, which are functions of �

1

; : : :�

n

. The

resulting type is of the form

8�

1

; : : : ; �

n

: t [


i

=�

i

(�

1

; : : :�

n

)]

For instance, let us consider this:

#type 'a t = K of 'b * ('b -> 'a);;

Type t defined.

#let x = K (3, succ)

#in let (K (a, b)) = x

#in b a;;

- : int = 4

Here a's type is a Skolem constructor with one parameter, int (because x was of type int t).

We then set the following rule : when unifying two Skolems constructors, we must also unify

their parameters. For instance, unifying �(�

1

; : : :�

k

) with �(�

1

; : : :�

k

) requires unifying �

i

with �

i

for all i.

It is not at all obvious that these parameters are necessary to ensure the safety of the type

system. Here is an example that demonstrates it. It is the output of a hypothetical version of

Caml-Light with non-parameterized Skolem constructors.

1

Although match and let should behave the same from typing point of view, since there is no match node in

Caml-Light abstract syntax trees, a match is typed as the application of an anonymous fun.
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#type 'a crash = C of ('a -> 'u) * ('u -> 'a);;

Type crash defined.

#let io = C ((fun x -> x), (fun x -> x));;

io : 'a crash = C (<fun>, <fun>)

#let crash =

# let (C (i, o)) = io in

# fun x -> o (i x)

#;;

crash : 'a -> 'b = <fun>

#let x = crash 1

# in x true;;

Bus error

When we write let (C (i, o)) = io in ..., i and o are generalized separately: i is given type

'a -> ?c and o type ?c -> 'b. Therefore, crash is thought to be of type 'a -> 'b, which is

incorrect. It is then easy to produce a fatal error: the typechecker thinks x is of type 'b, so x true

is thought to be valid. Now let us have a look at the output of our compiler:

#let crash =

# let (C (i, o)) = io in

# fun x -> o (i x)

#;;

crash : 'a -> 'a = <fun>

#let x = crash 1

# in x true;;

> Toplevel input:

> in x true;;

> ^

> Expression of type int

> cannot be used with type 'a -> 'b

This time, when evaluating the �rst let clause, the Skolem constructor we create is parameterized.

It has one parameter, which is the 'a variable in 'a crash. Therefore, after we generalize i and

o, i has type 'a -> ?c('a) and o type ?c('b) -> 'b. When we write fun x -> o (i x), the

result type of i is uni�ed with the domain type of o. When unifying two Skolem constructors, we

also unify their parameters; hence 'a is uni�ed with 'b, and crash is found to have type 'a ->

'a, which is correct.

3.3 Summary of changes

Here is a short summary of the changes made to the source code. Since some functions changed

calling syntax, changes also had to be made every time one of these functions was called. Those

unimportant changes have been omitted in the list below.

� File globals.ml:

Type typ desc has been extended with two new constructors, TExist and TSkolem. The

former represents an existentially quanti�ed variable in a type scheme; the latter represents

a Skolem constructor, along with its unique tag and its parameter list.

14



| TExist

| TSkolem of int * typ list

� File types.ml:

Functions type instance, type pair instance, etc. have undergone a complete rewrite.

They now take one more parameter, of type unit -> typ * typ list. It is a function

that describes what to do when an existential type variable (TExist) is encountered. Possible

behaviors in such a case are: replace it with a Skolem constructor (used in pattern matching),

replace it with a normal type variable (used when constructing a value with an existential

type), or raise an exception.

Function unify has been modi�ed in order to handle Skolem constructors. (They can only

be uni�ed with themselves, or with a type variable that has a greater binding level). Also,

unifying two Skolem constructors implies unifying their parameters.

� File typing.ml:

Function type of type expression has been modi�ed in order to handle type declaration

with existential variables.

Function tpat, which does the pattern matching job, has been modi�ed. The two interesting

cases are records (Zrecordpat) and constructors (Zconstruct1pat). In both cases, existential

variables are instantiated into new Skolems contructors with the proper parameter list.

Function type expr, the heart of the typing system, has been modi�ed. When constructing

values (Zconstruct1 or Zrecord), existential variables are instantiated into normal variables.

When typechecking a fun construct (Zfunction), the binding level is incremented. This

was not necessary in regular Caml-Light, since no generalization is performed after such

constructs. It is now, in order to prevent Skolem constructors to escape out of their scope.

Also, the way let constructs (Zlet) are handled has been changed slightly. Otherwise, since

the declaration part is one level deeper than the body of the let, we would get \Skolems out

of scope" errors. We devised a little kluge to avoid this.

� Files pr type.ml and pr type.mli:

Some functions have been added and others modi�ed in order to properly display existential

variables.

� File ty error.ml:

Function skolem going up err was added in order to produce the \existential variable out

of scope" error message.

� File ty intf.ml: Added the de�nition of check default interface (cf. modi�cations to �le

compiler.ml).

� File compiler.ml:

Calls to check default interface were added in order to prevent existential variables from

being exported out of a module.

� File pr value.ml:

Functions print val and print concrete type have been modi�ed in order to display the

<abstract> keyword when displaying a value whose type is a Skolem constructor.
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� File pr type.ml: Added code for printing existential type variables.

� A few other �les were a�ected by minor changes.
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