
An introduction to Mezzo

François Pottier
INRIA

Francois.Pottier@inria.fr

Jonathan Protzenko
INRIA

Jonathan.Protzenko@inria.fr

Abstract
We present the design of Mezzo, a programming language in
the ML tradition, which places strong emphasis on the con-
trol of aliasing and access to mutable memory. A balance be-
tween simplicity and expressiveness is achieved by marrying
a static discipline of permissions and a dynamic mechanism
of adoption and abandon.

1. Introduction
Programming with mutable, heap-allocated objects and data
structures is difficult. In many typed imperative program-
ming languages, including Java, C#, and ML, the type sys-
tem keeps track of the structure of objects, but not of how
they are aliased. As a result, a programming mistake can
cause undesired sharing, which in turn leads to breaches of
abstraction, invariant violations, race conditions, and so on.
Furthermore, the fact that sharing is uncontrolled implies
that the type of an object must never change. This forbids
certain idioms, such as delayed initialization, and prevents
the type system from keeping track of the manner in which
objects change state through method calls. In order to work
around this limitation, programmers typically use C# and
Java’s null pointer, or ML’s option type. This implies that
a failure to follow an intended protocol is not detected at
compile time, but leads to a runtime error.

In short, there is a price to pay for the simplicity of
traditional type systems:

• bugs caused by undesired sharing, or by the failure to
follow an object protocol, are not statically detected;

• the dynamic checks that must often be inserted in order
to satisfy the type-checker have a runtime cost.

This paper presents the design of a new programming lan-
guage, code-named Mezzo, which attempts to partly address
these issues. Mezzo is a high-level programming language in
the ML tradition. It has algebraic data structures and pattern
matching, first-class functions, and implicit memory man-
agement. Like ML, it blends functional and imperative pro-
gramming. Unlike Java, C#, and ML, it places strong em-
phasis on the control of ownership, aliasing, and access to
mutable memory.

Our design is influenced by several strands of existing
work. Although it is impossible to list all of our sources of

inspiration, let us mention type systems based on regions and
affine capabilities [11, 23, 30, 12, 15, 6, 7, 14, 10], affine
type systems [27], separation logic [22, 21] and separation-
logic-based analyses [2], and typestate systems [13, 3, 4, 1].
We borrow many ideas from these papers, and make the
following main contributions:

• The system is based entirely on permissions, as opposed
to types. A value x does not inherently “have a type”. In-
stead, at each program point, x may be referred to by zero,
one, or more permissions, which tell us what x is (say, a
linked list) and what we are allowed to do with it (say,
read and modify the list’s spine, but not its elements).
The permissions that describe x may change with time.
Permissions have structure: a compound permission can
be decomposed into multiple simpler permissions, out of
which other compound permissions can be constructed.

• The system is designed with simplicity in mind. There
are only two basic modes, or kinds of permissions: some
permissions are duplicable, while others are exclusive. A
permission that grants read access to an immutable ob-
ject is a typical example of a duplicable permission: an
immutable object has an uncontrolled number of readers.
A permission that grants read and write access to a mu-
table object is a typical example of an exclusive permis-
sion: a mutable object is governed by a single read and
write permission. We show that, in spite of this relative
simplicity, the system is very expressive. In particular, it
allows strong (type-varying) updates and can be used to
perform typestate checking.

• Modes are viewed as predicates over permissions. This
treatment is new and lightweight. For instance, many
of the polymorphic functions that operate on containers,
such as the length and map functions for immutable lists,
are indifferent to whether the elements are duplicable or
exclusive, while others, such as the shallow copy function
for mutable lists, require the elements to be duplicable.
This requirement is expressed via a mode constraint.

• An object can “adopt” a number of other objects, and
can “abandon” an object that it has adopted. We keep
track at runtime of the relationship between adoptees and
adopters, and allow abandon to fail at runtime. In return,
we obtain a simple and flexible discipline for managing

groups and permissions over groups. This mechanism
allows building and working with mutable data structures
that are not forest-shaped.

The system takes advantage of algebraic data structures
and pattern matching, and “feels” very much like ML. It
does not have global type inference: instead, it has intra-
procedural permission inference. Function signatures must
be provided by the programmer.

The system is meant to be sound: well-typed programs
cannot go wrong. Still, a program can stop abruptly if the
“abandon” operation, which involves a runtime check, is
mis-used. In a shared-memory concurrent setting, the system
guarantees mutual exclusion (the absence of race conditions)
between threads.

This paper presents the design of Mezzo in an informal
manner. As much as possible, we rely on examples and
write in a tutorial style. At present, the design is stable,
but still in a preliminary state. Several details, including the
concrete syntax, are not quite set in stone yet. The code-
name Mezzo itself is temporary. A prototype implementation
of the type-checker is in the works, but is not complete: the
examples presented in this paper have been manually type-
checked. We envision compiling Mezzo down to untyped
OCaml code, which can then be translated into native code
by the OCaml compiler. This has not yet been implemented.
A formal definition of the system, as well as a formal proof
of its soundness, are work in progress and should be the
subject of a forthcoming paper.

The paper is organized as follows. We present permis-
sions and explain how they describe heap-allocated data
structures (§2). Then, we introduce tuple types and function
types, which, together, are used to describe functions (§3).
In order to illustrate the power of these basic notions, we
show how to implement a number of standard operations on
immutable and mutable lists (§4). In order to support muta-
ble data structures that involve sharing, we propose groups,
adoption, and abandon (§5). We briefly discuss a few fea-
tures that we would like to include in the future (§7) and
conclude.

2. Permissions
2.1 Simple permissions
At the heart of the system is the notion of a permission. A
permission takes the form “x @ t”, where x is a variable and
t is a type. Such a permission plays three simultaneous roles:

• it describes the value denoted by the variable x as well
as a (possibly empty) part of the heap that is accessible
through x;

• it entitles us to perform certain read or write operations
on this part of the heap;

• it guarantees that others cannot perform certain read or
write operations on this part of the heap.

Here, “we” can be informally understood as “the soft-
ware component that we are implementing”, whereas “oth-
ers” means “other components in the system”. In a concur-
rent setting, “we” can additionally be understood as “the cur-
rent thread”, whereas “others” means “other threads in the
system”. By controlling who is allowed to do what, permis-
sions ensure that the components of a software system coop-
erate in a safe manner, without undesired interference.

In keeping with the ML tradition, variables are im-
mutable. Only heap-allocated objects can be modified.

Permissions do not exist at runtime. They are used by the
type-checker as a way of keeping track of which operations
are permitted at each point in the code. Permissions are
typically explicitly mentioned by the programmer as part of
function signatures. They are not explicitly mentioned in the
code: they flow implicitly.

It is tempting to interpret the permission “x @ t” as an
assertion that “x has type t”. This interpretation is accept-
able, provided one is well aware of a number of differences
between permissions and traditional type assertions. In most
typed programming languages, if x has type t when it is in-
troduced, then x has type t forever: the type of a variable
does not vary with time. Permissions, on the other hand,
come and go. We may, for instance, possess a permission
“x @ t” at a certain point in the code; at a later point, lose
this permission, so we no longer have any permission for x;
and, later yet, recover a different permission “x @ u”. We
could also, at a certain point in the code, possess multiple
distinct permissions for a single variable x. In short, there is
no such thing as “the” type of x.

Let us now give a few simple examples of permissions.
More elaborate forms of permissions are introduced later on
(§2.4, §2.5, §2.6).

Integer A very simple permission is “x @ int”, which
tells us that the variable x denotes an integer value. This
allows using x as an operand in an arithmetic operation.

Unknown An even simpler permission is “x @ unknown”,
which tells us nothing. This permission does not allow us
to do anything with x except copy it around. In fact, this
permission is just as good as no permission at all.

Immutable memory block Suppose we wish to manipulate
points in two-dimensional space with integer coordinates.
We can make the following algebraic data type definition:

data point =

Point { h: int; v: int }

This type describes a heap-allocated object with two integer
fields named h and v. Thus, the permission “x @ point”
guarantees that x denotes an address in the heap and that,
at this address, there exists an object whose fields contain
integer values. This permission allows us to read x.h and
x.v, and to treat the result as an integer value. It does not
allow us to modify x.h or x.v, and it guarantees that no

one else can modify them either. In other words, points are
immutable.

Mutable memory block Suppose now that we wish to de-
fine a variant of the type point whose fields are modifiable.
We can make the following algebraic data type definition:

exclusive data xpoint =

XPoint { h: int; v: int }

Like point, the type xpoint describes a heap-allocated
object with two integer fields named h and v. Thus, like
“x @ point”, the permission “x @ xpoint” guarantees that,
at address x, there exists an object whose fields contain inte-
ger values. However, this permission is strictly stronger than
“x @ point”. Indeed, it allows us to read and write x.h and
x.v, and guarantees that no one else can read or write them.
In other words, this permission gives us exclusive access to
the mutable memory block found at address x. One can think
of it as a token of ownership: whoever holds this permission
“owns” the memory block at address x. It is analogous to a
“unique” permission in other systems [3] and to a separation
logic assertion [22].

Towards composite permissions The permissions that we
have considered so far control access to either zero or one
memory block. Naturally, it is often desirable to construct
permissions that control a data structure (such as a list, a tree,
a hash table, etc.) or a combination of data structures. We
will soon present several ways of constructing a composite
permission out of simpler permissions, and, conversely, of
deconstructing a composite permission so as to recover more
elementary permissions (§2.4, §2.5).

2.2 Co-existence of permissions
As mentioned earlier, in general, multiple permissions for a
single object x may co-exist. However, these permissions are
always consistent with one another in the following sense:

• their descriptions of the value x, and of the part of the
heap that is accessible through x, must not contradict
each other;

• if one of them claims that “others” cannot perform a
certain operation on the heap, then the other permissions
must not allow “us” to perform this operation.

Let us give a few examples of permissions that can and
cannot co-exist.

The permission “x @ int” can co-exist with (a copy of)
itself. It cannot co-exist with “x @ point” or “x @ xpoint”,
because it claims that x is an integer value, whereas the latter
two permissions claim that x is an address in the heap.

The permission “x @ unknown” is consistent with every
permission. Indeed, it contains no information at all, so it
cannot contradict another permission.

The permission “x @ point” can co-exist with (a copy
of) itself. Indeed, this permission claims that “others” cannot

modify x.h and x.v, and at the same time prevents “us” from
modifying these fields.

The permission “x @ xpoint” cannot co-exist with itself
or with “x @ point”. Indeed, this permission claims that “no
one else can read x.h or x.v”, so it cannot co-exist with a
permission that allows reading these fields.

By the last remark, if the permissions “x @ xpoint” and
“y @ xpoint” co-exist, then x and y must be distinct heap
addresses. If “x @ xpoint” and “y @ point” co-exist, the
same conclusion can be drawn. On the other hand, if one
holds “x @ point” and “y @ point”, then one cannot tell
at compile time whether the heap addresses x and y are
distinct. Thus, permissions sometimes (but not always) carry
separation information, in the sense of separation logic [22].

2.3 Modes
Duplicable versus exclusive permissions The permissions
that we have presented so far can be classified in two disjoint
categories, or modes.

In the first category, we find the permissions “x @ int”,
“x @ unknown”, and “x @ point”. Each of these permissions
can co-exist with itself. Furthermore, each of them has the
property that two copies of itself are just as good as one
copy. That is, holding two copies of such a permission does
not provide more information or grant more privileges than
possessing just one copy. This implies that, if one holds one
copy of such a permission, it is sound to turn it into two
identical copies. (This can be useful, for example, if one
needs to pass one copy to a callee and keep one copy.) We
say that these permissions are duplicable. Of course, this
property has nothing to do with the variable x: it is a property
of the types int, unknown, and point. Thus, we say that these
types are duplicable.

In the second category, we find “x @ xpoint”. This per-
mission cannot co-exist with itself, so it is not duplicable.
It grants exclusive access to the object found at address x.
We say that this permission is exclusive. We also say that the
type xpoint is exclusive.

Permissions for immutable objects are always duplicable.
(We do not offer fractional permissions [6].) Full read/write
permissions for mutable objects are always exclusive. In
order to allow mutable objects to be shared in flexible ways,
we introduce later on a duplicable permission to perform a
dynamic ownership test over a mutable object (§5).

Affine permissions Although the modes “duplicable” and
“exclusive” are the two fundamental modes, there are two
reasons why a third mode is needed.

First, not all permissions are known to be duplicable or
known to be exclusive. For instance, the permission “x @ a”,
where a is a type variable (in other words, an abstract type),
could turn out to be duplicable if a is instantiated with point

and could turn out to be exclusive if a is instantiated with
xpoint. As long as the type a remains abstract, one must
treat this permission in a conservative manner. One assumes

Affine

Duplicable Exclusive

Figure 1. The hierarchy of modes

neither that it is duplicable nor that it is exclusive. Thus, this
permission cannot be copied, and does not allow adoption
and abandon (§5).

Second, as will be explained shortly (§2.4, §2.5), the
system allows building composite permissions, some of
which are neither duplicable nor exclusive. The permission
“x @ list xpoint”, which describes x as (a pointer to) an
immutable list of distinct mutable points, is one example. It
is not duplicable because it grants exclusive access to the list
elements, which are xpoint objects. It is not exclusive be-
cause it does not grant exclusive access to the object found
at address x (or, more generally, to the list spine).

A permission that must not be duplicated is said to be
affine. This is the third mode in the system.

A hierarchy of modes Modes form a hierarchy, which is
shown in Figure 1. The hierarchy is simple: “affine” is a
strict superset of “duplicable” and “exclusive”.

A duplicable permission, such as “x @ int”, is also
affine. An exclusive permission, such as “x @ xpoint”, is
also affine. Some permissions, such as “x @ a” (where a is a
type variable) and “x @ list xpoint”, are neither duplica-
ble nor exclusive, but are affine.

2.4 Conjunction of permissions
A simple way of building a composite permission consists
in putting several permissions side by side. If p and q are
permissions, then “p * q”, the conjunction of p and q, is also
a permission.

Naturally, the conjunction operation * is commutative and
associative. It is not idempotent: the permission “p * p” is
equivalent to p if and only if p is a duplicable permission.

It is convenient to equip conjunction with a neutral ele-
ment, which we write empty. The permission empty is trivial:
it does not allow anything.

2.5 Hierarchical permissions
A more powerful way of building a composite permission
consists in organizing several objects into a hierarchy that is
governed by a single permission.

Permissions for pairs The type point (§2.1) describes an
immutable pair of integer values. Let us now make this
notion more abstract and more general. The type “pair a b”
describes an immutable pair whose left-hand and right-hand
components respectively have types a and b:

data pair a b =

Pair { left: a; right: b }

This is a parameterized algebraic data type definition. The
type variables a and b are parameters and can be instantiated
with arbitrary types. For instance, the type “pair int int”,
where a and b are both instantiated with int, describes an
immutable pair of integers.

One can instantiate a and b with more complex types.
This yields new types of pairs, such as “pair point point”
and “pair xpoint xpoint”, which can be used to construct
permissions, such as “x @ pair point point” and “x @

pair xpoint xpoint”.
What is the meaning of these permissions? What descrip-

tion of the heap do they offer? Which operations do they
allow or deny? In order to answer these questions, one must
understand how these permissions can be decomposed into
conjunctions of more elementary permissions.

Structural permissions Apparently, the permission “x @

pair a b” indicates that x is the address of an immutable
object whose first and second fields respectively “have type”
a and b. However, we have stressed that it does not really
make sense to say that a value “has type” a or b. Instead, one
must think in terms of permissions. In order to explain what
a pair permission really means, we posit that the permission:

x @ pair a b

is equivalent to the following conjunction:

x @ Pair { left = l; right = r } *

l @ a *

r @ b

provided the variables l and r are fresh. Thus, “x @ pair a

b” is really a composite permission. It can be decomposed
into (that is, replaced with) the above conjunction of three
permissions. Conversely, this conjunction can be replaced
with “x @ pair a b”. Decomposition requires picking fresh
variables l and r, whereas reconstruction does not require
that l and r be fresh.

In the following, variables that are implicitly introduced
by the type-checker when unfolding a permission, such as l
and r above, are referred to as auxiliary variables, whereas
the variables that explicitly appear in the program text are
referred to as program variables.

The permission “x @ Pair { left = l; right = r }”
is a structural permission, something which we have not
encountered yet. This permission describes only one object
in the heap. It guarantees that there is an immutable memory
block at address x and that the values held in the fields
x.left and x.right are exactly l and r. The permissions
“l @ a” and “r @ b” describe what we are allowed to do
with the values l and r. Their exact meaning depends on the
types a and b. A few examples follow.

Pair of exclusive points By instantiating both a and b

with xpoint, we find that the permission “x @ pair xpoint

xpoint” is equivalent to:

x @ Pair { left = l; right = r } *

l @ xpoint *

r @ xpoint

where l and r are fresh. Because these three permissions co-
exist, and because the latter two are exclusive permissions,
the addresses x, l, and r must be distinct. Thus, this con-
junction of three permissions describes exactly three objects
in the heap, and grants exclusive access to two of them. It can
be read like thus: “x is an immutable pair of distinct mutable
points, which we own”.

Pair of immutable points An analogous analysis can be
carried out about the permission “x @ pair point point”.
This permission is equivalent to:

x @ Pair { left = l; right = r } *

l @ point *

r @ point

Because the permissions “l @ point” are “r @ point” are
not exclusive, the addresses l and r are not necessarily
distinct. This permission can be read as follows: “x is an
immutable pair of immutable points”.

Exclusive pair One can also define an exclusive version of
the pair algebraic data type:

exclusive data xpair a b =

XPair { left: a; right: b }

The permission “x @ xpair a b” is then equivalent to the
following conjunction:

x @ XPair { left = l; right = r } *

l @ a *

r @ b

Everything works in the same manner as in the case of
immutable pairs. The only difference is that the first of the
three permissions above is exclusive. This is determined by
looking up the definition of the data constructor XPair.

2.6 Equations and singleton types
Equations The structural permission “x @ Pair { left =

l; right = r }” refers to three variables, namely x, l,
and r. It guarantees that x is the address of a memory block,
that this block has two fields named left and right, and
that the values stored in these fields are respectively l and r.
Thus, this permission encodes the equations x.left = l

and x.right = r. Permissions can carry not only structural
information and ownership information, but also must-alias
information. This mechanism is inspired by alias types [23]
and by separation logic [22].

Structural permissions (again) and singleton types The
permission “x @ Pair { left = l; right = r }” plays a
double role. On the one hand, it guarantees that there is a
pair at address x. On the other hand, it encodes the equations
x.left = l and x.right = r. This remark encourages us to
view this permission as a combination of two more primitive
constructs, namely:

1. structural permissions of the following form:

x @ Pair { left: t; right: u }

where t and u are arbitrary types.

2. singleton types of the form “=x”, where x is a variable.

The one and only value that has type “=x” is the value
x itself. Thus, a permission of the form “x @ =y” is logi-
cally equivalent to the equation “x = y”. For this reason,
we write “x = y” for “x @ =y”. Similarly, we can now re-
interpret the structural permission “x @ Pair { left = l;

right = r }” as sugar for “x @ Pair { left: =l; right:

=r }”.
We now see that, when we explained how to decompose a

permission for a pair, we could have proceeded in two steps.
We could have stated that the permission:

x @ pair t u

is equivalent to:

x @ Pair { left: t; right: u }

which in turn is equivalent to:

x @ Pair { left = l; right = r } *

l @ t *

r @ u

where l and r are fresh. The first step expands the defini-
tion of the type pair and replaces the nominal permission
“x @ pair t u” with a structural permission. The second
step introduces the names l and r and uses singleton types
to indicate that these names stand for the components of the
pair.

Properties of equality A singleton type is duplicable. As
a result, a permission of the form “x = y” is duplicable as
well. An equation, once true, is true forever.

Equality is reflexive. Provided x is in scope, a permission
of the form “x = x” can be created out of thin air at any time.

Equals can be substituted for equals. In the presence of an
equation “x = y”, the singleton types =x and =y are consid-
ered equivalent. Furthermore, in the presence of this equa-
tion, any permission for x can be re-interpreted as a permis-
sion for y. More precisely, the conjunction “x @ t * x = y”
is equivalent to “y @ t * x = y”. These rules imply that
equality is symmetric and transitive.

The type-checker is aware of these rules and exploits
them transparently. Thus, when an equation “x = y” is
known to the type-checker, the variables x and y can be
used interchangeably by the programmer. We believe that
this mechanism is simpler and more powerful than “borrow-
ing” [20], a mechanism by which permissions are implicitly
transferred from one alias to another, without requiring an
explicit alias analysis. We do rely on must-alias information,
but this information is expressed in terms of permissions, so
it can be exposed to and controlled by the programmer.

2.7 Reading and writing
We have stated many times already that certain permissions
“allow reading”, while others “allow reading and writing”,
but we have not yet explained how reading and writing
are type-checked. Equipped with structural permissions and
equations, we can now do this.

Reading Suppose we hold the permission “x @ pair t u”,
where x is a program variable, and suppose we wish to gain
access to the left component of the pair x. We choose to use
a field access expression and to bind its value to a program
variable y. Thus, we write “let y = x.left in ...”. Is this
code legal? What permissions are available at the beginning
of the continuation “...”?

In order to answer these questions, the type-checker
transparently expands the permission “x @ pair t u” into:

x @ Pair { left = l; right = r } *

l @ t *

r @ u

where l and r are fresh auxiliary variables. At this point,
the structural permission “x @ Pair { left = l; right =

r }” plays a double role. First, it guarantees that there is
indeed a pair at address x, so the memory access expres-
sion x.left is safe. Second, it indicates that the value pro-
duced by this expression has already received a name, to
wit, l. Thus, the expression x.left “has type” =l, or, in other
words, the program variable y becomes bound to the value
denoted by the auxiliary variable l. In order to keep track of
this fact, the type-checker adds the equation “y = l” to the
currently available permissions. Thus, the available permis-
sions at the beginning of the continuation “...” are:

x @ Pair { left = l; right = r } *

l @ t *

r @ u *

y = l

It is important to remark that the permission “l @ t” was
not duplicated. Indeed, it is not necessarily duplicable: it
could be exclusive or affine. Thus, after the memory access
instruction, we still have just one permission for an object
that is now known under the names l and y.

As part of the code in the “...”, the programmer can use
the variable y at type t, because the permission “y @ t” can
be constructed out of “l @ t” and “y = l”. If desired, the
programmer can also read x.left again and use its value at
type t. The type-checker considers that this new occurrence
of x.left produces a value y’ together with the equation
“y’ = l”. Thus, the permission “y @ t” can be transformed
into “y’ @ t”. In short, even though permissions can in gen-
eral not be copied, values can be copied without restriction.

Writing Now, suppose we hold “x @ xpair t u”, and we
wish to update the first component of this pair with a new
value y, where x and y are program variables. We write
“x.left <- y”. Is this instruction legal? What permissions
are available after it?

In order to answer these questions, the type-checker
transparently expands the permission “x @ xpair t u” into:

x @ XPair { left = l; right = r } *

l @ t *

r @ u

At this point, the structural permission “x @ XPair { left

= l; right = r }” guarantees not only that there exists a
pair at address x, but also that no one else in the system
knows about this pair. This means that we can write into a
new value into x.left without running the risk of invalidat-
ing some other permission that we do not know about. After
the update instruction “x.left <- y”, the state of the heap
is described by the following conjunction of permissions:

x @ XPair { left = y; right = r } *

l @ t *

r @ u

The structural permission that describes the object x has
been updated: this is a strong update.

It is worth noting that the permissions “l @ t” and
“r @ u” do not play any role: they are neither required nor
affected by the update.

It is worth noting that no permission for y is required. If
we happen to have such a permission at hand, say “y @ t’”,
then, after the update, the permissions that describe x, y,
and r can be combined to produce “x @ xpair t’ u”. This
yields the high-level rule that one might expect: if initially
x has type “xpair t u” and if y has type t’, then, after the
update instruction, x has type “xpair t’ u”.

The permission “l @ t” remains available after the up-
date. Even though the value l is no longer found in the field
x.left, the programmer may have saved this value, say, by
writing “let z = x.left in ...” prior to the update. In
that case, an equation “z = l” is available, and the permis-
sion “l @ t” allows continuing to use z at type t.

Tag updates It is possible to update not only a field, but
also the tag of a mutable object. The tag update instruction
“x <- B” changes the tag of the object x to B. This instruc-
tion requires an exclusive structural permission of the form
“x @ A { ... }” and replaces it with a structural permis-
sion of the form “x @ B { ... }”. We provide more details
in §4.3 and §5.6, where this feature is exploited.

The data constructors A and B must have the same number
of fields. The fields of A need not have the same names as the
fields of B. The order of the fields in the algebraic data type
definitions is used in order to determine how the structural
permission must be transformed.

There is no requirement that the data constructors A and B

be associated with the same algebraic data type. If they are
associated with different types, say t and u, the memory
block found at address x migrates from one type to another.
This allows a memory block to be “recycled” [24].

Furthermore, there is no requirement that the destination
type u be exclusive. If u is immutable, the memory block

at address x becomes immutable. This feature enables the
delayed initialization of immutable objects. It is illustrated
in §4.3.

3. Tuples and functions
We have explained how permissions control access to data.
We will soon show that, by building upon these ideas, it
is easy to describe and work with algebraic data structures,
such as lists (§4) and trees. Before we do this, however, we
must introduce functions. Mezzo’s function types are some-
what unusual, because functions accept and produce not only
values, but also permissions. Because multiple arguments or
results are often grouped as a tuple, we begin with a presen-
tation of tuples and tuple types.

3.1 Tuples
Tuples of values A tuple may have zero, one, or more com-
ponents. A tuple expression has the form “(v1, ..., vn)”,
where v1, . . . , vn are expressions and n is other than one.
A tuple type has the form “(t1, ..., tn)”, where t1, . . . ,
tn are types and n is other than one. For instance, the pair
“(2, 3)” has type “(int, int)”. The use of parentheses is
in fact optional.

The empty tuple type () is also known as the unit type. It
has exactly one inhabitant, namely the empty tuple ().

Tuples are immutable. As a consequence, a tuple type
is duplicable if all of its components are duplicable, and is
otherwise affine.

A tuple permission can be expanded by the same mecha-
nism that was presented earlier (§2.6). The permission:

x @ (t1, ..., tn)

is equivalent to:

x @ (=x1, ..., =xn) *

x1 @ t1 * ... * xn @ tn

where the auxiliary variables x1, . . . , xn are fresh. Thus, the
tuple permission “x @ (t1, ..., tn)” guarantees that x is
an n-tuple and contains a permission for each component.

Packages of a value and a permission It is sometimes
necessary to package together a value and a permission. This
helps express the types of certain functions that require (or
produce) both values and permissions.

For this purpose, we introduce the type “t | p”. A value
of type “t | p” can be thought of as a package of a value
of type t and of the permission p. For instance, the type
“(t | y @ u)” describes a value of type t, packaged to-
gether with the permission “y @ u”. Here, the name y oc-
curs free. Thus, this type makes sense only in a context
where some variable y exists. As another example, the type
“(t1, t2 | y @ u)” describes a tuple whose two compo-
nents respectively have types t1 and t2, packaged together
with the permission “y @ u”.

Permissions do not exist at runtime: they are erased. Thus,
when we say that x is a package of a value of type t and

of the permission p, this really means that x is a value of
type t that has been conceptually packaged together with
the permission p. In other words, the permission:

x @ (t | p)

is equivalent to the following conjunction:

(x @ t) * p

The type-checker automatically applies this equivalence
rule, in one direction or the other, when this is appropri-
ate. In particular, if the declared argument type of a func-
tion f is “(int, int | p)”, then, at the beginning of the
body of f, the type-checker considers that the formal ar-
gument has type “(int, int)” and that the permission p

is available. Symmetrically, if the declared result type of f

is “(int, int | p)”, then, at the point where f returns,
the type-checker verifies that the result value has type
“(int, int)” and that p is currently available.

The construction and deconstruction of packages of a
value and a permission is always implicit. It is guided by the
type information that the programmer provides, including
algebraic data type definitions and function signatures.

Dependencies between components The tuple and pack-
age types that we have presented up to this point are non-
dependent: there is no way for one component to refer to
another.

In the type “(int, int | p)”, for instance, there is no
way for the permission p to refer to the values held in the first
and second components of the tuple. Any name that occurs
free in p is interpreted as a reference to a variable that exists
in the context.

We remove this limitation by allowing a value compo-
nent of a tuple or package to bind a variable that can be
referred to elsewhere. For instance, it is possible to write
“(x: int, y: int | p)”, where the variables x and y are
considered bound in p. As another example, one may write:

(x : unknown | x @ t)

Here, the leftmost occurrence of x binds this variable,
whereas the rightmost occurrence of x is a free occurrence.

This type happens to be equivalent to (x: t), which
itself is equivalent to t, so it is not very likely that one
will ever write this. A more realistic example of the use of
dependencies between components might be:

(x: unknown , y: unknown | listseg x y)

For an appropriate definition of the parameterized permis-
sion listseg, this type might represent a tuple of two values
x and y, together with the requirement that there exist in the
heap a list segment [22] that leads from x to y.

3.2 Functions
Mezzo does not have pervasive type inference in the style of
ML. Therefore, we require that every function be explicitly
annotated with its type.

Function types are of the form “t -> u”, where t is the
type of the argument and u is the type of the result. Functions
that have multiple arguments or multiple results are encoded
as functions that receive or return a tuple. Functions that
have no argument or no result are encoded as functions that
receive or return an empty tuple.

Function types are duplicable. This means that functions
can be shared without restriction and can be invoked as many
times as desired.

Dependencies between arguments and results It is often
the case that a function returns a permission that refers to
one of the function’s arguments. In order to allow this, we
adopt the following convention. In a function type “t -> u”,
if the type t is a tuple type, then the scope of the named
components of t encompasses not only t, but also u. For
instance, in the following (artificial) example:

(y : int) -> (| y @ unknown)

the free occurrence of y in the result type is interpreted as a
reference to the component named y in the argument type.

In and out permissions A function that needs access to
a data structure usually requires a permission for this data
structure to be passed as an argument. (Locks, discussed in
§7.2, offer a mechanism for evading this requirement.) There
are three typical ways in which the function can deal with
this permission:

1. It can return the permission to the caller after it is done.
Thus, the caller retains ownership of the data structure.
The list length function (§4.1.2) illustrates this.

2. It can choose not to return this permission to the caller.
Thus, the caller loses ownership of the data structure. The
bag insertion function (§3.5) illustrates this behavior.

3. It can return a different permission to the caller. The
caller retains ownership of the data structure, but is aware
that a “typestate” change took place. The “pair swap”
function (§3.4) is a simple illustration of this behavior.
The “tree size” function (§6.1) is a more elaborate one.

Because the first case above is the most common one,
we need a concise syntax for it. Drawing inspiration from
Sing# [14], we adopt the following convention: by default,
every permission that is passed to a function is returned by
this function. Thus, a function of type “(x: t) -> (y: u)”
requires the permission “x @ t” and returns this permission
in addition to the permission “y @ u”. For instance, a func-
tion incr that increments an integer reference would have
type “ref int -> ()”, which means that the call “incr r”
requires the permission “r @ ref int” and returns it.

Similarly, a function whose type is “(x: t | p) -> ...”
requires two permissions, namely “x @ t” and p, and returns
them in addition to those described in its result type.

In order to address the cases where the default behavior is
not appropriate, we introduce a new keyword, consumes. In

a function type “t -> u”, any (value or permission) compo-
nent of t can be preceded with this keyword. In that case, the
permission associated with this component is not considered
to be returned by this function. For instance, the following
type:

(consumes x: xpair () int ,

y: xpair int int) ->

(| x @ xpair int int)

describes a function that requires two permissions, namely
“x @ xpair () int” and “y @ xpair int int”, and also
returns two, namely “x @ xpair int int” and “y @ xpair

int int”. This function “changes the type” of x, possibly
by performing the update “x.left <- y.left”. It requires
access to the pair y, but does not “change its type”.

3.3 Kinds
In order to ensure that types are well-formed, we distinguish
different kinds of types. There are three kinds: TYPE, PERM
and TERM. We have already seen examples of inhabitants of
each of them:

• Ordinary types, including “int”, algebraic data types,
singleton types, tuple types, and function types, have kind
TYPE. They describe values that exist at runtime.

• Permissions, such as “x @ t”, “p * q”, and “empty”,
have kind PERM. They describe entities that do not ex-
ist at runtime.

• Program variables x, which occur in singleton types “=x”
and in permissions “x @ t”, have kind TERM.

The well-kindedness rules include: “a permission “x @ t”
has kind PERM if x has kind TERM and t has kind TYPE”, “the
type “t | p” has kind TYPE if t has kind TYPE and p has kind
PERM”, and so on. These rules are set up so that every type
has at most one kind.

Kinds remain mostly invisible to the programmer: they
explicitly appear only when polymorphism (§3.4) is used at
a kind other than TYPE (which is the default).

3.4 Polymorphism
Like ML, Java, and C#, Mezzo has polymorphism. As in Java
and C#, polymorphism is explicit: type variables must be
explicitly bound. We use square brackets to indicate univer-
sal quantification. For instance, is the type of a polymorphic
function that swaps the components of a mutable pair:

val swap: [a, b]

(consumes x : xpair a b) ->

(| x @ xpair b a)

The system offers not only type polymorphism, but also
permission polymorphism. The need for this feature arises
as soon as one wishes to combine higher-order functions and
side effects. The list map function (§4.1.4) illustrates this.

In the type of swap above, nothing is assumed about the
type variables a and b. They can later be instantiated with

type bag :: TYPE -> TYPE

fact [a] exclusive (bag a)

val create: [a] () -> bag a

val insert: [a] (consumes a, bag a) -> ()

val retrieve: [a] bag a -> option a

Figure 2. A signature for bags

arbitrary types. For this reason, a and b must be regarded
as affine while type-checking swap. Sometimes, however,
such a conservative treatment is unsatisfactory. In order
to address this problem, we introduce mode constraints.
A mode constraint takes the form “mode t”, where t is
a type and mode is one of duplicable, exclusive, and
affine. When quantifying over a type variable, one can
specify a mode constraint. For instance, the function that
takes an argument x and returns the tuple “(x, x)” has
type “[a] duplicable a => a -> (a, a)”. In the absence
of this constraint, this function would be ill-typed, because
it receives one copy of the permission “x @ a” and returns
two copies of it.

3.5 Example: a signature for bags
In order to illustrate the syntax and the expressive power
of our function types, we present the signature (that is, the
interface) of a module that implements a bag. In short, a bag
is a mutable container, which supports only two operations:
inserting a new element and retrieving an arbitrary element.
The signature appears in Figure 2. An implementation of this
signature is presented later on (§5).

The first line declares the existence of an abstract type
bag. The kind “TYPE -> TYPE” means that the type of a bag
is parameterized with the type of its elements: if the elements
have type a, then the bag has type “bag a”.

The second line is a mode declaration. It indicates that,
for every type a, the type “bag a” is exclusive. This implies,
in particular, that “bag a” is not duplicable: “every bag has
a unique owner”.

The last three lines publish the names and types of the
functions that allow creating and working with bags. All
three are polymorphic in the element type.

The function create takes no argument and returns a new
bag whose element type is chosen by the caller. Thus, if
the user writes “let x : bag a = create() in ...”, then,
after the call, the permission “x @ bag a” appears. In short,
one can say that “create returns a new bag, owned by the
caller”.

The function insert takes two arguments, namely an
element x and a bag b, and returns nothing. The idea is
that x is added to the bag b, which is modified in place.
The function requires two permissions, namely “x @ a” and
“b @ bag a”. The former is consumed, as indicated by the
consumes keyword, while the latter is returned to the caller.
Thus, the ownership of x is transferred from the caller to

the bag: “the bag owns its elements”. The ownership of the
bag is retained by the caller, but is nevertheless required in
order for a call to insert to be permitted: “only the owner
of the bag can insert (and retrieve) elements”. In a shared-
memory concurrent setting (§7.2), this guarantees that two
threads cannot simultaneously attempt to access a bag.

The function retrieve takes one argument, namely a
bag b, and produces one result, say o. Just like insert, it
requires the permission “b @ bag a”, and returns it. It also
produces the permission “o @ option a”. (The definition of
the option type, which is omitted, is the same as in ML.)
A match construct can then be used to determine whether o
carries the tag None or Some. More specifically, if o matches
the pattern None, then one finds out that the bag is empty.
If o matches the pattern “Some { value = x }”, then the
type-checker replaces the permission “o @ option a” with
“o @ Some { value = x } * x @ a”. (This permission re-
finement step is explained in greater depth in §4.1.2.) Thus,
we obtain a permission “x @ a” for the element x that was
retrieved: “the ownership of the retrieved element is trans-
ferred from the bag to the caller”.

In short, although the signature of Figure 2 is almost as
concise as its ML or Java analogue, it effectively contains
detailed information about the ownership of the bag and of
its elements.

We do not yet show how the bag signature can be im-
plemented; we do so later on (§5). However, let us point
out right away that many implementations of this signature
will pose a type-checking challenge. Here is why. Because
a successful call to retrieve yields a permission for the re-
trieved element, and because this permission could be ex-
clusive, the system guarantees that a sequence of success-
ful retrieve operations produces a sequence of pairwise
distinct elements. How can the system enforce such a non-
trivial property?

For a simple bag implementation, say a mutable reference
to a list of elements, the permission discipline is able to en-
sure that there is no duplication of permissions and therefore
that the retrieved element is no longer in the list.

However, for an implementation that involves more com-
plex patterns of sharing, say a doubly-linked list, it is quite
non-obvious that this property holds. In fact, we believe that,
in order to establish this property, either the programmer
must provide a mathematical argument (including a defini-
tion of what it means for a set of memory blocks to form a
“doubly-linked list”, and a proof that the code respects this
invariant), or one must rely on a dynamic check that some-
how enforces this property.

Because we do not wish type-checking to require proof,
we choose the latter path. Adoption and abandon, which we
introduce further on (§5), involve dynamic book-keeping and
dynamic checks. This approach simplifies the static disci-
pline while preserving its expressive power.

data list a =

| Nil

| Cons { head: a; tail: list a }

Figure 3. The definition of immutable lists

val length: [a] list a -> int

let rec length [a] xs =

match xs with

| Nil ->

0

| Cons { tail = tail }

1 + length tail

end

Figure 4. Measuring the length of a list

4. Lists
In order to illustrate how algebraic data types, function
types, and permissions work together, we present a num-
ber of operations on lists. We study “immutable lists” (that
is, lists whose spine is immutable; §4.1) as well as “mutable
lists” (lists whose spine is mutable; §4.2). We also illustrate
how a mutable list cell can be (permanently) turned into an
immutable one and why one might wish to do this (§4.3).

4.1 Immutable lists
The algebraic data type of immutable lists is defined in the
same manner as in ML or Haskell (Figure 3).

Because this definition does not contain the keyword
exclusive, list objects are immutable. This means that
the head and tail fields can never be written, and that the
tag of a list object can never be modified either.

4.1.1 Reasoning about modes
It is important to understand that the list objects represent
only the spine of the list. The elements of the list, which have
type a, can be immutable or mutable. Technically, the type
variable a can be instantiated with an arbitrary type, which
could be duplicable, exclusive, or affine.

Depending on the nature of a, the type “list a” has
subtly different meaning and properties.

When a is duplicable, the permission “xs @ list a”
does not imply that the elements of the list xs are pairwise
distinct. Indeed, since “x @ a” is a duplicable permission,
two distinct list cells can contain the same element x. Fur-
thermore, when a is duplicable, “list a” is duplicable as
well. Thus, the conjunction “xs @ list a * ys @ list a”
does not imply that xs and ys are distinct addresses. In other
words, immutable lists can be shared.

When a is exclusive, the permission “xs @ list a” does
imply that the elements of the list xs are pairwise distinct. In-
deed, the definition of the algebraic data type list states that
every cell contains a permission “x @ a” for the element x

that is contained in the head field. We have seen earlier that,
when a is exclusive, the conjunction “x @ a * y @ a” im-
plies that x and y are distinct. Thus, a list of exclusive ele-
ments is a list of pairwise distinct elements.

When a is exclusive, what mode is “list a”? It can’t be
duplicable: because duplicating a permission for a list entails
duplicating the permissions for its elements, that would be
unsound. It can’t be exclusive either. Indeed, if it were,
then the conjunction “xs @ list a * ys @ list a” would
imply that xs and ys are distinct values. This is not the case:
xs and ys can be both Nil. In conclusion, since “list a” is
neither duplicable nor exclusive, it must be affine.

In summary, the definition of the algebraic data type list

implies the following fact, which the system infers automat-
ically: the type “list a” is duplicable if a is duplicable and
is otherwise affine.

4.1.2 List length
Our first example of an operation on lists is the length

function (Figure 4), which measures the length of a list.
This example is interesting on at least two counts. First,
we take this opportunity to explain how the match construct
performs permission refinement, that is, how it replaces an
imprecise permission with a more precise one. Second, we
emphasize the fact that the length function is implicitly
mode-polymorphic, that is, it works equally well with lists
of duplicable elements, lists of exclusive elements, and lists
of affine elements.

The type of the length function, “[a] list a -> int”,
indicates that this function is polymorphic with respect to
the element type a. It also indicates that length requires a
permission “xs @ list a” for its argument xs and returns
this permission together with an integer result. The fact that
the permission for the argument is not consumed is indicated
by the absence of the consumes keyword.

The code is standard. The manner in which it is type-
checked, however, is new. Let us explain which permissions
are available at each point in the code.

Immediately before the match construct, the permission
“xs @ list a” is available, because length receives it as
an argument. This permission allows matching xs against
Nil and Cons patterns. The match construct examines the
value xs (and possibly dereferences it) so as to determine
which of the two patterns it matches. This construct yields
new information about xs. This is reflected, at type-checking
time, by refining the permission “xs @ list a”. Within each
branch, this permission is replaced with a more precise one,
as follows.

In the Nil branch, it is replaced with the structural permis-
sion “xs @ Nil {}”. This permission reflects the fact that
the tag carried by xs is now known to be Nil. If desired, this
permission can be converted back to “xs @ list a”, which
is less precise. This conversion is implicitly performed at the
end of the Nil branch, where the type-checker must verify

that the function returns not only an integer result but also
the permission “xs @ list a”.

In the Cons branch, the permission “xs @ list a” is re-
placed with the following conjunction:

xs @ Cons { head: a; tail = tail } *

tail @ list a

The first conjunct reflects the fact that xs is now known to
be the address of a Cons cell, whose tail field contains the
value tail. The second conjunct reflects the fact that the
value tail is a list.

The permission “tail @ list a” is exactly what we
need in order to justify the recursive call “length tail”.
The call requires this permission and returns it, so that, af-
ter the call, this permission is still available. The permis-
sion “xs @ Cons { ... }” is not needed by the recursive
call, so it just “sits there” while the call is in progress, and
remains available after the call. In the terminology of sep-
aration logic [22], it is “framed out” during the call. Thus,
after the call, the above conjunction of permissions is still
available.

At the end of the Cons branch, the type-checker must
verify that the permission “xs @ list a” is returned. Again,
this works because “xs @ Cons { ... } * tail @ list a”
can be folded back to “xs @ list a”, which is less precise.

This concludes our explanation of why length is well-
typed. Although the code appears analogous to ML or
Haskell code, the manner in which one reasons about it is
quite different.

It is worth emphasizing that no assumption is made about
the type parameter a. In other words, a is assumed to be
affine, because “affine” is the top element of the mode hi-
erarchy (Figure 1). As a result, “list a” is considered affine
as well. This implies that a permission for an element, or for
a list of elements, cannot be duplicated. Fortunately, no du-
plication of permissions is required in the above analysis of
length.

The length function can be applied to lists whose ele-
ments have a duplicable type, such as “int”, “point”, or
“list point”. It can also be applied to lists whose elements
have an exclusive type, such as “xpoint”, or an affine type,
such as “list xpoint”. Even though, technically, length

is just polymorphic in the type variable a, one can infor-
mally say that length is polymorphic both in the type and
in the mode of the list elements. We believe that this ap-
proach is original and is more lightweight than some of the
prior approaches. Tov and Pucella [27], for instance, view
our “modes” as kinds. This leads them to introducing kind
polymorphism (in addition to type polymorphism) as well as
a notion of dependent kinds.

As a stylistic note, the pattern “Cons { tail = tail }”,
which binds the tail variable to the contents of the tail

field, could be abbreviated to “Cons { tail }”. This is
known as a “pun”. It would also be possible to use the sim-
pler pattern “Cons {}”, or just “Cons”, which does not bind

val concat:

[a] (consumes list a,

consumes list a) -> list a

let rec concat [a] (xs , ys) =

match xs with

| Nil ->

ys

| Cons ->

Cons {

head = xs.head;

tail = concat (xs.tail , ys)

}

end

Figure 5. Immutable list concatenation

the variable tail. Instead of “length tail”, one would then
write “length xs.tail”. The presence of the structural per-
mission “xs @ Cons { head: a; tail = tail }” guaran-
tees that the field access expression xs.tail is valid and
allows the system to deduce that the type of this expression
is the singleton type =tail (see §2.6).

4.1.3 List concatenation
Our second example is a binary operation, namely the list
concatenation function, concat (Figure 5). As usual, this
function maps two lists to a list, and is polymorphic in the
element type a.

What is more interesting is that the permissions for the
two arguments are consumed. We will explain why these
consumes keywords are required and discuss the conse-
quences.

The code is standard: it follows and copies the spine of
the first list. Let us discuss how it is type-checked.

The permissions “xs @ list a” and “ys @ list a” are
available upon entry. Just as in the length function (§4.1.2),
the permission “xs @ list a” justifies the match construct,
and is refined by this construct.

In the Nil branch, the result is ys. Because the function
concat promises to produce a permission for its result at type
“list a”, the type-checker must verify that the permission
“ys @ list a” is available. This is indeed the case.

At this point, we see why a consumes keyword for the
second argument is necessary. Indeed, if concat promised
to also return a permission for its second argument, then, at
this particular point in the code, we would need two copies
of the permission “ys @ list a”. Because this permission
is affine, it cannot be duplicated. So, in the absence of a
consumes keyword for the second argument, a type error
would be reported at the end of the Nil branch.

In the Cons branch, the permission “xs @ list a” is re-
fined into “xs @ Cons { head: a; tail: list a }”. Fur-
thermore, the type-checker is free to introduce names that
stand for the values stored in the head and tail fields. That

is, the type-checker automatically expands this permission
into the conjunction:

xs @ Cons { head = head; tail = tail } *

head @ a *

tail @ list a

where head and tail are fresh auxiliary variables. This
mechanism was illustrated earlier in the case of pairs (§2.5).

The first conjunct above implies that the field access ex-
pression xs.tail is valid and has type =tail, which means
that its result must be the value tail. This allows the type
system to recognize that the permissions required by the re-
cursive call “concat (xs.tail, ys)” are “tail @ list a”
and “ys @ list a”. According to the explicitly-declared
type of the function concat, these permissions are consumed
by the call, and the new permission “zs @ list a” is pro-
duced, where the auxiliary variable zs is automatically in-
troduced by the type-checker to stand for the result of the
call. Thus, after the call, the current permission is:

xs @ Cons { head = head; tail = tail } *

head @ a *

zs @ list a

The field access expression xs.head has type =head,
which means that its result must be the value head. The result
of the call “concat (...)” has received the name zs. Thus,
the permission produced by the expression “Cons { ... }”,
which allocates a new list cell, is:

c @ Cons { head = head; tail = zs }

where the auxiliary variable c is again introduced by the
type-checker to stand for the result of this expression. This
permission, along with “head @ a” and “zs @ list a”, is
implicitly folded back to the (less precise) permission:

c @ Cons { head: a; tail: list a }

which in turn is transformed into the (still less precise):

c @ list a

Thus, the type-checker is able to verify that concat returns
the permission “c @ list a” for its result, which is c. This
confirms that the code satisfies the declared signature.

In the Cons branch, the permission that grants read access
to the cell xs, namely “xs @ Cons { head = head; tail =

tail }”, remains available until the end, but is unused, so
it is silently discarded. We now see why a consumes key-
word for the first argument is necessary. In the absence of
this keyword, we would need to reconstruct the permission
“xs @ list a”. This means that we would need the per-
missions “head @ a” and “tail @ list a”. However, these
permissions have been consumed. The permission for tail
was consumed by the recursive call, and the permission for
head was consumed by the construction of “c @ list a”. If
we could copy these permissions prior to consuming them,
this would not be a problem; however, they are not duplica-
ble. Thus, in the absence of a consumes keyword for the first

argument, a type error would be reported at the end of the
Cons branch.

The function concat can also be assigned the type:

[a] duplicable a =>

(list a, list a) -> list a

Here, the two consumes keywords have been removed, and
the assumption that a is duplicable has been added, so that
the code remains well-typed. This type is in fact subsumed
by the type of Figure 5. Indeed, when a is duplicable, the per-
missions “xs @ list a” and “ys @ list a” can be copied
at the call site, prior to invoking concat. This means that they
are still available after the invocation, even though concat

consumes one copy of them.

4.1.4 List map
All of the standard higher-order operations on lists can also
be defined. Their types can be more complex than in ML
or Haskell, both because Mezzo is more explicit about side
effects and because it is more expressive (it allows strong
updates). Let us consider the map function as an example.
This function accepts two arguments, namely a function f

and a list xs, and produces a new list, whose elements are
the images of the elements of xs through f. It can of course
be assigned its usual polymorphic type:

val map:

[a, b]

(f: (x: a) -> b,

xs: list a)

-> list b

For clarity, we have named the arguments of map and f, even
though these names could be omitted, since they are never
referred to. This type requires f to preserve its argument, and
guarantees that map also preserves its argument xs. However,
one might wish to apply map to a function f that destroys its
argument. Then, map should be assigned the following type:

val map:

[a, b]

(f: (consumes x: a) -> b,

consumes xs: list a)

-> list b

These two candidate types for map are incomparable: each of
them allows usage scenarios that the other forbids. Thus, it
might seem that we are in trouble and that we need to define
two versions of map. Fortunately, these types are subsumed
by a more general one. In the general case, we must allow f

to change the type of its argument from a1 to a2, while
producing a result of type b. Then, map changes the type of
its argument from “list a1” to “list a2”, while producing
a result of type “list b”. This is expressed as follows:

val map:

[a1 , a2 , b]

(f: (consumes x : a1) ->

(b | x @ a2),

consumes xs : list a1)

-> (list b | xs @ list a2)

If one takes both a1 and a2 to be a, one recovers the first
candidate type above as a special case. If one takes a1 to
be a and a2 to be unknown, one recovers the second candidate
type. Thus, this new candidate type is indeed stronger than
the previous two.

Are we done? Not quite. The above type is still not as
permissive as one might wish. Indeed, it does not allow the
function f to have a side effect on a data structure other than
its argument x.

For instance, one might wish to supply a function f that
increments a mutable counter c whenever it is invoked.
In ML, this is possible: the closure of f captures the ad-
dress of c. Here, the situation is slightly more complex. A
closure can capture a value, just as in ML. However, a value
is not good enough: a permission for this value is also re-
quired. Because our function types are duplicable, we can-
not allow a closure to capture a non-duplicable permission.
Thus, f cannot capture a permission to read and update the
counter c.

(Allowing a closure to capture an affine permission would
force the closure to be itself affine, which means that one
would be allowed to invoke it at most once. Thus, we would
have to introduce a distinction between ordinary and affine
functions, as in Alms [27]. Because we prefer to avoid such
a distinction, we disallow this scenario.)

This means that the permission to access c must be re-
peatedly passed to f and returned by f. This implies that this
permission must be initially passed to map and eventually re-
turned by map. Naturally, as the author of map, we do not
know about the counter c, so we must use permission poly-
morphism. For an arbitrary permission p, if the function f re-
quires p and returns it, then map itself requires p and returns
it. We say that if f has effect p, then map also has effect p.

This is formally expressed as follows. For simplicity, we
revert to the first of the three candidate types presented
above, and we extend it with an effect over a permission
parameter p. This yields the following type:

val map:

[a, b] [p :: PERM]

(f: (x: a | p) -> b,

xs: list a | p)

-> list b

The notation “p :: PERM” indicates that p is a permission
variable, as opposed to a type variable. Since the occurrences
of p are not preceded by the consumes keyword, the permis-
sion p is required and returned by f, and is also required and
returned by map.

If one takes p to be the permission empty, one recovers
the first candidate type above. Thus, this new type is indeed
stronger than the previous version.

exclusive data xlist a =

| XNil

| XCons { head: a; tail: xlist a }

Figure 6. The definition of mutable lists

If one takes p to be the permission “c @ ref int”,
where c is the name of a counter, one finds that map can
be applied to a function that increments c as a side effect.

We leave as an exercise for the reader to combine the two
ideas discussed above, that is, to write down a type for map
that allows f to perform a strong update on its argument and
to have a side effect on some other piece of state.

This discussion hopefully sheds light on some of the
strengths and weaknesses of the system. On the one hand,
it is quite powerful and flexible. On the other hand, there
is some danger that it is considered verbose and confusing.
Experience will tell.

4.2 Mutable lists
Mutable lists are identical in structure to immutable lists.
The only difference in their definition is the presence of the
exclusive keyword (Figure 6). The xlist objects, which
represent the spine of the list, are mutable. The elements of
the list, which have type a, can be immutable or mutable.

4.2.1 Reasoning about modes
The permission “xs @ xlist a” is exclusive, regardless of
the nature of the parameter a. Similarly, “xs @ XNil” and
“xs @ XCons { ... }” are always exclusive. Thus, the con-
junction “xs @ xlist a * ys @ xlist a” implies that xs

and ys are disjoint lists: they cannot share a sub-list.

4.2.2 Mutable list copy
The system rules out any programming error that would
cause an exclusive list to become shared. For instance, the
identity function (which immediately returns its argument,
without copying it) has type:

val id: [a]

(consumes xlist a) -> xlist a

If the consumes keyword is omitted by mistake, a type error
is reported. This artificial example illustrates the fact that
forgetting to copy, an all-too-common error in traditional
imperative programming languages, is detected.

When one must copy a list, one must decide whether a
shallow copy or a deep copy is required. A shallow copy
copies the spine, but not the elements, which become shared.
A deep copy copies both the spine and the elements. Again,
the type system helps us distinguish between these variants:
the shallow copy function, copy, requires the elements to be
duplicable, whereas the deep copy function, map, imposes no
such requirement.

val copy: [a] duplicable a =>

val concat: [a]

(consumes xlist a,

consumes xlist a) -> xlist a

let concat [a] (xs , ys) =

match xs with

| XNil ->

ys

| XCons ->

xs.tail <- concat (xs.tail , ys);

xs

end

Figure 7. Mutable list concatenation (naı̈ve version)

val concat1: [a]

(xs: XCons { head: a; tail: xlist a },

consumes ys: xlist a) -> ()

let rec concat1 (xs , ys) =

match xs.tail with

| XNil ->

xs.tail <- ys

| XCons ->

concat1 (xs.tail , ys)

end

val concat: [a]

(consumes xlist a,

consumes xlist a) -> xlist a

let concat (xs , ys) =

match xs with

| XNil ->

ys

| XCons ->

concat1 (xs , ys);

xs

end

Figure 8. Mutable list concatenation (tail-recursive version)

xlist a -> xlist a

val map: [a, b]

(a -> b, xlist a) -> xlist b

4.2.3 Mutable list concatenation
Because exclusive lists are never shared, they can be con-
catenated in place, that is, melded. A simple recursive func-
tion that performs this task is presented in Figure 7. Check-
ing that this code is well-typed is left as an exercise for the
reader. The mechanisms involved are exactly the same as in
the case of immutable lists (§4.1.2, §4.1.3).

Naturally, the code in Figure 7 is naı̈ve. It performs a
linear number of memory writes, whereas one should suffice,
and (because it is not tail-recursive) it uses linear space,
whereas constant space should suffice.

We can do better. The idea is to define a version of concat
that is specialized for the case where its argument carries
the tag XCons. In this new function, concat1, it is easy to
identify and eliminate the redundant write, and as a result,
the function becomes tail-recursive. Then, the main function,
concat, can be defined in terms of concat1.

The code appears in Figure 8. In the type of concat1,
we use a structural permission to require that xs be non-
empty. This permission justifies the read and write accesses
to xs.tail. The absence of a consumes keyword means that
this permission is returned by concat1. That is, after the call,
xs is still a valid, non-empty list. The permission for ys, on
the other hand, is consumed.

Whether concatenation should be implemented as a tail-
recursive function, as in Figure 8, or as a while loop, as
traditionally done by C programmers, may at first appear
to be purely a matter of taste. Indeed, the two implementa-
tions should in principle have identical efficiency, and, when
comparing untyped source code, they have roughly the same
length. (The recursive version is at a slight disadvantage.)
When it comes to reasoning about memory safety, however,
we believe that our tail-recursive version has a definite edge
over the iterative version. In Figure 8, the “loop invariant” is
just the type of concat1, which is pretty natural. In contrast,
Berdine et al.’s iterative version [2], which is proved correct
in separation logic, requires a more complex loop invariant,
which involves two “list segments”, as well as an inductive
proof that the concatenation of two list segments is a list seg-
ment.

How are we able to get away without list segments and
without inductive reasoning? The trick is that, even though
concat1 is tail-recursive, which means that no code is exe-
cuted after the call by concat1 to itself, a reasoning step still
takes place after the call. Immediately before the recursive
call to concat1, the current permissions are:

xs @ XCons { head: a; tail = xt } *

xt @ XCons { head: a; tail: xlist a } *

ys @ xlist a

where the auxiliary variable xt stands for xs.tail. The call
“concat1 (xs.tail, ys)” requires only the last two of the
above permissions. The first one is “framed out”, which
means that it is implicitly preserved by the call. The call
returns the permission for xt and consumes the permission
for ys. In summary, after the call, the permissions for xs

and xt remain available. The type-checker verifies that these
permissions can be folded back to:

xs @ XCons { head: a; tail: xlist a }

which means that the original permission for xs is returned
as promised. The framing out of a permission during the
recursive call, as well as the folding step that takes place
after the call, are the key technical mechanisms that allow us
to avoid the need for list segments and inductive reasoning.

val concat1: [a]

(consumes dst: XCons{head: a; tail: ()},

consumes xs: list a,

consumes ys: list a) ->

(| dst @ list a)

let rec concat1 (dst , xs , ys) =

match xs with

| Nil ->

dst.tail <- ys;

dst <- Cons

| Cons { head; tail } ->

let dst ’ = XCons {

head = head; tail = ()

} in

dst.tail <- dst ’;

concat1 (dst ’, tail , ys);

dst <- Cons

end

val concat: [a]

(consumes xs: list a,

consumes ys: list a) -> list a

let concat (xs , ys) =

match xs with

| Nil ->

ys

| Cons { head; tail } ->

let dst = XCons {

head = head; tail = ()

} in

concat1 (dst , tail , ys);

dst

end

Figure 9. Tail-recursive concatenation of immutable lists

In short, one might say that our code is tail-recursive, but the
manner in which the type-checker reasons about it is not.

Walker and Morrisett [30] also offer a tail-recursive ver-
sion of mutable list concatenation. Their code is formulated
in a low-level typed intermediate language, as opposed to a
surface language. The manner in which they are able to avoid
reasoning about list segments is analogous to ours. There,
because the code is formulated in continuation-passing style,
the reasoning step that takes place “after the recursive call”
amounts to composing the current continuation with a coer-
cion. Maeda et al. [18] study a slightly different approach,
also in the setting of a typed intermediate language, where
separating implication offers a generic way of defining list
segments.

Our approach can be adapted to an iterative setting by
adopting a new proof rule for while loops. This is noted
independently by Charguéraud [9, §3.3.2] and by Tuerk [28].

4.3 Tail-recursive concatenation of immutable lists
Whereas our implementation of mutable list concatenation
(§4.2.3) uses tail recursion and has constant space overhead,

our implementation of immutable list concatenation (§4.1.3)
uses general recursion and (as a result) has linear space
overhead.

Must concatenating immutable lists be more expensive
than concatenating mutable lists? No. In an untyped setting,
it is not difficult to write a tail-recursive function that con-
structs the concatenation of two immutable lists. The chal-
lenge lies in convincing a type-checker that this code makes
sense. There are two (related) reasons why this is difficult.
One reason is that the code allocates a fresh list cell and ini-
tializes its head field, but does not immediately initialize its
tail field. Instead, it makes a recursive call and delegates the
task of initializing the tail field to the callee. Thus, the pro-
gramming language must somehow allow the delayed ini-
tialization of an immutable data structure. The other reason
is that, while concatenation is in progress, the partly con-
structed data structure is not (yet) a list: it is a list segment.
Thus, it seems that the programming language must allow
defining and reasoning about list segments.

We solve the first difficulty via strong updates, that is,
instructions that update an exclusive permission. Writing
a value xs into the tail field of a mutable list cell is
a strong update: this instruction changes the type of the
tail field to the singleton type =xs. Turning a mutable
list cell dst into an immutable one is also a strong up-
date: the permission “dst @ XCons { ... }” is changed
into “dst @ Cons { ... }”. This change is performed via a
tag update instruction (§2.7), written “dst <- Cons”. In this
particular case, because XCons and Cons are ultimately repre-
sented by the same integer tag, this instruction does nothing
at runtime.

We solve the second difficulty in the same manner as in
the case of mutable list concatenation (§4.2.3). The code
is tail-recursive, but the manner in which the type-checker
reasons about it is not.

The tail-recursive version of immutable list concatenation
is presented in Figure 9. The auxiliary function concat1 is
written in destination-passing style. It accepts a partially-
initialized, mutable list cell dst, together with two im-
mutable lists xs and ys. Its task is to construct the concate-
nation of xs and ys and to write the address of this list into
dst.tail, thus transforming dst itself into an immutable
list. It returns no result. The type of concat1 expresses the
key idea that, after the call, dst is a well-formed immutable
list. Indeed, this type states that the original permissions
for dst, xs and ys are consumed and that the permission
“dst @ list a” is returned instead.

The function concat1 is tail-recursive because the tag
update instruction “dst <- Cons” does nothing at runtime.
This instruction serves as a type annotation: it indicates that,
at this point, the cell dst becomes immutable.

Why is concat1 well-typed? We let the reader check
that, after the allocation of the new cell dst’, the current
permission can be written under the following form:

dst @ XCons { head: a; tail: () } *

tail @ list a *

ys @ list a *

dst ’ @ XCons { head: a; tail: () }

That is, at this point, we have two partially-initialized mu-
table list cells and two immutable lists at hand. The field
update instruction “dst.tail <- dst’” changes the permis-
sion that describes the cell dst, so that, after this instruction,
the current permission is:

dst @ XCons { head: a; tail = dst ’ } *

tail @ list a *

ys @ list a *

dst ’ @ XCons { head: a; tail: () }

Next comes the recursive call to concat1. The first permis-
sion above is “framed out” during the call. The last three
are consumed by the call, which produces “dst’ @ list a”.
Thus, after the call, the current permission is:

dst @ XCons { head: a; tail = dst ’ } *

dst ’ @ list a

This can be folded back to:

dst @ XCons { head: a; tail: list a }

The tag update instruction “dst <- Cons” changes this to:

dst @ Cons { head: a; tail: list a }

which can be folded back to

dst @ list a

Thus, we are able to verify that the code meets its promise.
This approach, which involves delayed initialization and

the transformation of a mutable memory block into an im-
mutable one, can be used to implement other operations on
immutable lists, such as map, in a tail-recursive manner.

Minamide [19] approaches this problem by introducing
“data structures with a hole” as a primitive notion. These
data structures are equipped with primitive operations for
application and composition and with an affine type disci-
pline. Our approach is less expressive, but more elementary:
we use ordinary reads and writes, together with an instruc-
tion that makes an object immutable.

5. Adoption and abandon
The algebraic data types that we have presented so far are
limited in their expressive power. The heap structures that
they can describe are either immutable or tree-shaped. In
other words, they cannot describe mutable data structures
that involve sharing. This stems from the fact that permis-
sions for mutable objects are (by design) exclusive.

Thus, we must extend the system with a way of describing
and manipulating mutable data structures with sharing.

5.1 How to organize mutable objects in groups?
One way to approach the problem is to consider how one
might implement a FIFO queue that satisfies the bag signa-
ture (Figure 2). Let us choose a simple data structure, namely
a mutable singly-linked list. One inserts elements at the tail
and extracts elements at the head. There is a root object b,
which the client considers as “the bag”. This object con-
tains pointers to the head and tail of the list, so as to allow
constant-time insertion and extraction.

The last cell in the list is shared. It is accessible via two
distinct paths. This prevents us from declaring that “each cell
owns its successor”, that is, each cell contains an exclusive
permission for its successor. Indeed, if we declared such a
thing, then we would be unable to associate a non-trivial
permission with the tail pointer, which points directly from
the bag to the last cell. In short, because the heap is not tree-
structured, the ownership hierarchy cannot coincide with the
structure of the heap.

In order to overcome this problem, a natural idea is to
consider that the list cells are collectively owned by the bag.
This allows the ownership diagram to remain a hierarchy. To
do so, instead of keeping track of one exclusive permission
per cell, we keep track of one exclusive permission for the
group formed by all of the list cells. In fact, we go one step
further and fuse this permission with the permission that
governs the bag b.

This idea is not new: groups of objects, or “regions”,
have received sustained interest in the literature [11, 12, 15],
including in our own previous work [10]. The idea that there
can be a single permission for a group of objects is present
in these papers.

In this light, the adoption and abandon operations which
we are about to introduce can be presented as the operations
by which an object joins and leaves a group.

We require both adoptees and adopters to be exclusive.
The exclusive permission that controls the adopter also
serves as a permission for the entire group.

Adoption is the operation by which an object x joins a
group. Adoption requires and consumes a permission for x:
the ownership of x is transferred to the group.

As long as the object x remains a member of the group,
there is no way to read or write this object, because there
is no longer a permission for it. Indeed, a permission for a
group does not directly give access to the group members.
The only way of recovering read and write access to x is to
make it leave the group.

Abandon is the operation by which an object x leaves a
group. It produces a permission for x: the group relinquishes
the ownership of x.

Abandon must be carefully controlled. If an object x

could be abandoned twice by a group, one would gain two
permissions for x. This would be unsound. In the presence
of aliasing, ensuring that this situation does not arise is
potentially difficult. When a group successively abandons

two objects x and y, one must somehow ensure that x and y

are distinct objects.
Similarly, one must ensure that, at any single time, every

object is a member of at most one group. If an object could
be at once a member of two distinct groups, then (by aban-
don) one would again be able to obtain two permissions for
this object, which would be unsound.

5.2 What permission describes a member of a group?
Although we have announced that we intend to gather the
cells that form the FIFO queue into a group, we have not yet
explained how to solve the original problem, which is the
following. There exist two pointers to the last cell, which is a
mutable object. Each of these pointers must be accompanied
with a permission. What permission could this be?

• It cannot be the trivial permission unknown, because we
would then be unable to dereference these pointers.

• It cannot be an exclusive permission, because we would
be unable to exhibit two copies of such a permission.

• It could be a duplicable permission that grants non-
exclusive read and write access to a mutable object.
Bierhoff and Aldrich’s “share” permissions [3] are of
this kind. However, non-exclusive permissions are quite
weak. They do not support strong updates, which means
that they do not allow keeping precise track of must-alias
information as updates are performed. Furthermore, a
shared object cannot contain exclusive components, un-
less elaborate precautions are taken [3, §5.2]. Thus, it
is unclear whether “share” permissions could help us
implement bags whose elements can be exclusive and
whose internal representation involves sharing.

We answer this question by introducing a new type,
“dynamic”. The permission “x @ dynamic” is duplicable.
It does not grant read and write access to the object x. In-
stead, it represents a permission to perform a dynamic group
membership check, which, if successful, yields an ordinary
exclusive permission to read and write x. This is in fact the
abandon operation.

This resolves the tension between the desire to work with
exclusive permissions (which allow strong updates, and can
be constructed by combining a number of simpler exclusive
permissions) and the desire to use duplicable permissions
(which allow uncontrolled sharing). We work alternatively
with one and with the other, and offer operations for convert-
ing one to the other, and back. These operations are adoption
and abandon.

5.3 Design decisions
In order to make the use of groups as simple and as flexible
as possible, while ensuring type soundness, we make the
following two design decisions:

1. An adopter serves as a proxy for the group of its adoptees.

2. We keep track at runtime of which object is a member
of which group. We use this information to ensure at
runtime that abandon is used in a safe way.

The first decision means that instead of considering that
“the cells are part of some group g, and a permission for g is
stored in the object b”, the programmer declares directly that
“the cells are adopted by the object b”. Thus, b is not only
the name of an object that exists at runtime in the heap, but
also, in the eyes of the type-checker, the name of a group of
objects, namely, the group of the objects that are presently
adopted by b. We consider that a permission for b controls
not only the object b, but also all of its adoptees.

This allows us to avoid explicitly introducing the notion
of a “group” as a first-class concept: instead, we encourage
the programmer to think in terms of “adoption”. In the case
of bags and (we believe) in many other situations, this allows
the programmer to work with fewer names: there is no need
to come up with a name for the group.

The second decision implies that we implicitly maintain
a pointer from every adoptee to its adopter. More precisely,
within every exclusive object, we maintain an “adopter”
field, which contains either a pointer to the object’s current
adopter, if there is one, or null, otherwise. This information
is updated whenever an object is adopted or abandoned.
This makes it possible to dynamically test, for two objects x
and o, whether x is currently adopted by o. We build this
check into the dynamic semantics of abandon: an attempt to
make o abandon x fails if x is not currently adopted by o.
This ensures that abandon is safe.

In terms of space, the cost of this design decision is one
extra field per exclusive object. It is possible to lessen this
cost by letting the programmer declare that certain objects
cannot be adopted and don’t need this field. This is discussed
later on (§5.7.2); until there, we assume that every exclusive
object can be adopted.

Because abandon involves a dynamic check, it can cause
the program to encounter a (fatal) failure at runtime. In
principle, if the programmer knows what she is doing, no
failure should ever occur. There is some danger, but such is
the price to pay for a simpler static discipline. And, after
all, the danger is effectively less than in ML or Java, where
a programming error that creates an undesired alias goes
completely undetected—until the program misbehaves in
one way or another.

Adoption and abandon can be viewed as a dynamic dis-
cipline for ensuring that affine permissions are never dupli-
cated. Tov and Pucella’s stateful contracts [26] are another
such discipline. Wolff et al. [31] also study dynamic permis-
sion checking. For the moment, their approach “mandates a
fully-instrumented runtime semantics”.

5.4 The details of adoption and abandon
Let us now explain in detail the dynamic semantics of adop-
tion and abandon (what these operations do) as well as their
static semantics (what the type-checker requires).

5.4.1 adopter fields
As explained earlier (§5.3), every exclusive object contains a
hidden field, named “adopter”, which contains either null
or a pointer to another (exclusive) object. We maintain the
following informal invariant:

1. If y.adopter is null, then the object y is not currently a
member of any group. The object y is possibly currently
tracked by the type system: there may currently exist an
exclusive permission for this object.

2. If y.adopter is a non-null pointer to x, then the object y
is currently a member of the group represented by x. The
object y is definitely not tracked by the type system: there
currently exists no exclusive permission for y.

5.4.2 The type dynamic
As also explained earlier (§5.2), we introduce a new type,
named dynamic. Thus, “y @ dynamic” is a permission. This
permission guarantees that the field y.adopter exists and
grants the right to read it. Abandon exploits this permission.

if the field y.adopter exists now, then it exists forever.
This means that it is sound for the permission “y @ dynamic”
to be duplicable.

By convention, every exclusive object has an adopter

field. Thus, whenever one holds a permission of the form
“y @ u”, where the type u is exclusive, it is sound for the
permission “y @ dynamic” to spontaneously appear, in ad-
dition to “y @ u”. The type-checker is aware of this rule and
automatically applies it where needed.

The permission “y @ dynamic” does not allow reading or
writing the normal (non-hidden) fields of the object y. In
fact, it does not even tell how many normal fields there are.
In short, it does not represent the ownership of y.

In the FIFO bag implementation, shown in Figure 10,
the head and tail fields of a non-empty bag object, as well
as the next field of every cell object, have type dynamic

(lines 2 and 6). Thus, none of these “points-to” relationships
implies an “owns” relationship. Owning a cell c does not im-
ply that one owns the cell c.next; in fact, it does not even im-
ply that the object at address c.next is a cell. Similarly, own-
ing a bag b does not imply that one owns the objects b.head
and b.tail, nor does it imply that these objects are distinct.
The only fact that is known for sure is that it is permitted
to dynamically test whether (say) b.head.adopter is b. Of
course, we expect this test to always succeed, otherwise we
must have made a mistake in the code.

1 mutable data cell a =

2 Cell { elem: a; next: dynamic }

3

4 mutable data bag a =

5 Empty { head , tail: () }

6 | NonEmpty { head , tail: dynamic }

7 adopts cell a

8

9 val create [a] () : bag a =

10 Empty { head = (); tail = () }

11

12 val insert [a] (consumes x: a, b: bag a) : () =

13 let c = Cell { elem = x; next = () } in

14 c.next <- c;

15 give c to b;

16 match b with

17 | Empty ->

18 tag of b <- NonEmpty;

19 b.head <- c;

20 b.tail <- c

21 | NonEmpty ->

22 take b.tail from b;

23 b.tail.next <- c;

24 give b.tail to b;

25 b.tail <- c

26 end

27

28 val retrieve [a] (b: bag a) : option a =

29 match b with

30 | Empty ->

31 None

32 | NonEmpty ->

33 take b.head from b;

34 let x = b.head.elem in

35 if b.head == b.tail then begin

36 tag of b <- Empty;

37 b.head <- ();

38 b.tail <- ()

39 end else begin

40 b.head <- b.head.next

41 end;

42 Some { value = x }

43 end

Figure 10. A FIFO implementation of bags

5.4.3 adopts declarations
Once an object y has been adopted by some group, there
no longer exists an exclusive permission for this particular
object. That is, there cannot exist a permission of the form
“y @ u”, where the type u is exclusive. There can be permis-
sions of the form “y @ dynamic”, which guarantee that y has
an adopter field, but these permissions do not tell how many
fields exist in the object at address y and what their type is.
If at some point we decide to make the group abandon y, so
as to recover an exclusive permission of the form “y @ u”,
how can we find out which type u correctly describes y?

Our answer is, this information must be associated with
the group. That is, groups must be homogeneous: all mem-
bers of a common group must have a common type u. We
require the programmer to fix this type as part of the defi-
nition of the type of the adopter. More precisely, for x to be
able to act as an adopter, we require a permission of the form
“x @ t”, where t is an exclusive algebraic data type, and we
require that, as part of the definition of the data type t, the
programmer declare “adopts u”, where u must be an exclu-
sive type.

This is illustrated in the FIFO bag implementation, where
the definition of the algebraic data type “bag a” includes the
declaration “adopts cell a” (Figure 10). Thus, if b has type
“bag a”, then the type-checker must ensure that every object
that is adopted by b has type “cell a”. In return, the type-
checker can assume that every object that is abandoned by b

has type “cell a”.
In this mechanism, the address of the adopter effectively

serves as a tag that contains type information. Indeed, by
confirming that y.adopter is b, one gains the information
that y is a cell.

5.4.4 Adoption
The syntax of adoption is “give y to x”. When the type-
checker encounters this instruction, it checks that, at the
program point that precedes it, two permissions “x @ t” and
“y @ u” are available, where the definition of the algebraic
data type t contains the declaration “adopts u”.

At runtime, the effect of this operation is to write the ad-
dress x to the field y.adopter. The presence of an exclusive
permission “y @ u” guarantees that this field exists and that
the value of this field, prior to the adoption, is null.

At the program point that follows this instruction, the
type-checker considers that the permission “x @ t” is still
available, but the permission “y @ u” has been consumed.
As explained before, this means that the ownership of the
adoptee now resides with the group. That is, the permission
“x @ t” represents not just the ownership of x, but also the
ownership of its adoptees.

At the program point that follows the give instruction, the
permission “y @ dynamic” is available. In fact, this permis-
sion was present already before the give instruction. This
follows from the fact that “y @ dynamic” spontaneously ap-

pears out of “y @ u” (§5.4.2). While “y @ u” is consumed
during adoption, “y @ dynamic” is not.

In the FIFO bag implementation (Figure 10), adoption
is used at the beginning of insert (line 15), after a fresh
cell c has been allocated and initialized. It allows us to make
this new cell a member of the group, so as to maintain the
(unstated) invariant that every cell that is reachable from b is
a member of the group b.

When the type-checker encounters the instruction “give
c to b”, it first checks that we own b. This is the case: at this
point, we have “b @ bag a”. Then, the type-checker looks
up the definition of the data type bag, and finds that b can
adopt objects of type “cell a”. The next step is to check
that we have the permission “c @ cell a”. At this point, we
have:

1. “c @ Cell { elem = x; next = c }”, as a result of the
memory allocation expression and of the assignment that
follows it;

2. “x @ a”, by assumption;

3. “c @ dynamic”, because, as soon as there is an exclusive
permission for c, the permission “c @ dynamic” appears.

By combining these three permissions, the type-checker is
indeed able to construct “c @ cell a”. Thus, adoption is le-
gal. After the give instruction, we lose “c @ cell a”. We
retain “b @ bag a” and “c @ dynamic”. The presence of the
latter permission, as well as the fact that this permission is
duplicable, justify why, in the code that follows, it is permit-
ted to write the value c into a subset of b.head, b.tail, and
tail.next (lines 19, 20, 23, and 25).

5.4.5 Abandon
The syntax of abandon is “take y from x”. When the type-
checker encounters this instruction, it checks that, at the
program point that precedes it, two permissions “x @ t”
and “y @ dynamic” are available. It also checks that the
definition of the algebraic data type t contains a declaration
of the form “adopts u”, for some type u.

At runtime, the effect of this operation is to first check
that the field y.adopter contains the address x. (The permis-
sion “y @ dynamic” guarantees that this field exists.) If this
is the case, the operation succeeds: the value null is written
into y.adopter, so as to reflect the fact that x abandons y.
Otherwise, the operation fails: the execution of the program
is aborted.

At the program point that follows this instruction, the
permission “x @ t” remains available. Furthermore, the per-
mission “y @ u” appears. This is sound because y.adopter

is now null. If the programmer (intentionally or mistakenly)
attempts to have some group x twice abandon some object y
(perhaps under two different names y1 and y2, which at run-
time happen to denote the same address), then the second
abandon operation will fail at runtime.

In the FIFO bag implementation (Figure 10), abandon
is used near the beginning of retrieve, at line 33. There,
the first cell in the FIFO queue, whose address is found in
b.head, must be abandoned by the group. It is absolutely
necessary that this cell be abandoned: indeed, otherwise, we
would be unable to recover a permission “x @ a” for the
value x that is found in the elem field of this cell.

The abandon operation “take b.head from b” is al-
lowed by the permissions “b @ NonEmpty { ... }” and
“head @ dynamic”. After the operation, these permissions re-
main available, and, in addition, the permission “head @ cell a”
appears. This explains why, in the code that follows, it is per-
mitted to read head.next and head.elem (lines 40 and 34)
and why we recover the permission “x @ a”, where x is the
value found in the field head.elem.

Abandon and adoption are also used inside insert, at
lines 22 and 24. There, the bag b is non-empty, and the cell
b.tail must be updated in order to reflect the fact that it is
no longer the last cell in the queue. However, we cannot just
go ahead and access this cell, because the only permission
that we have at this point about tail is “tail @ dynamic”.
The group must abandon this cell, yielding the permission
“tail @ cell a”. We can then update this cell. When we are
done, we relinquish the permission “tail @ cell a” by let-
ting the group adopt this cell again. This well-parenthesized
use of take and give is related to Fähndrich and DeLine’s
“focus” [15] and to Sing#’s “expose” [14]. One could con-
ceivably offer syntactic sugar for such a well-parenthesized
use.

5.5 Summary
Let us briefly summarize what has been said so far about the
FIFO bag implementation.

The main ideas that we wish to convey via this example
are the following:

1. this data structure involves sharing (it is not a forest);

2. this data structure is mutable; furthermore, it implements
a container whose elements can be mutable as well;

3. hence, this data structure must involve a group; inserting
a new element must involve adoption, and retrieving an
element must involve abandon.

We would like the programmer to reason in this manner,
so as to recognize when and where adoption and abandon
are needed.

5.6 On tag updates and state changes
Our implementation exploits the fact that it is permitted to
mutate not just the fields, but also the tag of an exclusive
object (§2.7). We declare that an object of type “bag a”
carries either the tag Empty, in which case the head and tail

fields have the unit type (), or the tag NonEmpty, in which
case these fields have type dynamic. When the status of a
bag b changes from empty to non-empty (lines 18–20) or

vice-versa (lines 36–38), we reflect this change by updating
the tag and the fields of b. At line 18, for instance, the
permission that initially describes b is:

b @ Empty { head , tail : () }

After the first assignment, it is replaced with:

b @ NonEmpty { head , tail: () }

This structural permission may seem disturbing, because it
cannot be folded back to “b @ bag a”. This is not a problem:
at this point, nothing requires us to produce the permission
“b @ bag a”. After the second assignment, the current per-
mission is:

b @ NonEmpty { head = c; tail: () }

Finally, after the last assignment, the current permission is:

b @ NonEmpty { head = c; tail = c }

Because we also have “c @ dynamic”, this permission can
be folded back to “b @ bag a”, so that, when insert com-
pletes, we are able to return “b @ bag a”, as promised.

If we did not have the ability to mutate an object’s tag, we
could get away by using the option type. Instead of tagging
bags, we would declare that the head and tail fields have
type “option dynamic”. This is how things are usually done
in ML. This approach, however, incurs a space and time
overhead, because objects of type option dynamic are heap-
allocated.

Our algebraic data type definitions allow the types of the
fields of an object to depend on this object’s tag. Our tag
update instructions allow an object’s tag to change with
time. Our permissions include not only nominal permis-
sions, such as “b @ bag a”, but also structural permissions,
such as “b @ Empty { head = c; tail = c }”, which of-
fer precise information about an object’s tag and fields.
These ideas seem to be closely related to the treatment of
states in Plaid [1]. The design of Plaid is more ambitious
in that Plaid’s states are organized in a subtyping and in-
heritance hierarchy, whereas we do not have any inheri-
tance and our subtyping hierarchy is only one level deep:
the nominal permission “b @ bag a” lies above the more
precise structural permissions “b @ Empty { ... }” and
“b @ NonEmpty { ... }”.

5.7 Further refinements and extensions
Up to this point, we have tried to present groups, adoption
and abandon in the simplest possible manner. We now dis-
cuss a few extensions and refinements of the basic proposal.

5.7.1 Testing membership in a group
Abandon involves a dynamic membership check. The in-
struction “take y from x” succeeds if y is currently a mem-
ber of the group x and fails otherwise. This failure is consid-
ered fatal.

Affine

Duplicable Exclusive

Fat
Exclusive

Slim
Exclusive

Figure 11. The full mode hierarchy

It seems natural to also offer a dynamic membership test,
that is, an expression that tests whether y is currently a
member of the group x, and produces a Boolean result.

The syntax of this expression is “x owns y”. Just like
abandon, this expression requires the permissions “x @ t”
and “y @ dynamic”, where t is an algebraic data type whose
definition contains an adopts declaration. It preserves these
permissions. Unlike abandon, this expression does not pro-
duce a new permission. It yields a Boolean result, which rep-
resents the outcome of the comparison “y.adopter == x”.

We have observed earlier that, during abandon, the ad-
dress of the adopter serves as a tag that allows recover-
ing information about the adoptee. Introducing the construct
“x owns y” allows the programmer to branch on this tag.

5.7.2 Finer-grained control of hidden fields
So far, we have assumed that every exclusive object can be
adopted. This implies that every exclusive object must have
an adopter field, which is costly.

There is another reason why this is undesirable. It inter-
acts with another feature, namely the transformation of an
exclusive object into an immutable one via a tag update in-
struction (§4.3). Type soundness dictates that, after the trans-
formation, the adopter field must continue to exist, and must
contain null forever. Furthermore, we would like this field
to remain hidden after the transformation, because its exis-
tence is an implementation detail that we do not wish to ex-
pose. The combination of these constraints makes it difficult
to compile field access in immutable objects.

In order to mitigate this issue, we propose a slightly
more fine-grained approach. We distinguish two kinds of
exclusive objects, namely slim and fat ones. A slim object
has no hidden fields, so it cannot be adopted. A fat object
has a hidden adopter field and can be adopted, The mode
hierarchy is extended as shown in Figure 11.

When the programmer defines an algebraic data type, she
chooses between immutable, fat exclusive, and slim exclu-
sive. In the FIFO bag implementation of Figure 10, the type
cell would have to be declared “fat exclusive”, because
cells must be adopted. The type parameter a remains un-
constrained, because we do not directly adopt elements of
type a, but instead adopt cells that serve as wrappers for el-
ements. The type bag can be declared “slim exclusive”.

(Thus, a client who wishes to adopt a bag cannot do so di-
rectly, but can still wrap the bag and adopt the wrapper.)

Adoption and abandon are restricted to fat adoptees. That
is, a declaration “adopts u” (§5.4.3) is allowed only if u is
fat, and the permission “y @ u” gives rise to the permission
“y @ dynamic” (§5.4.2) only if u is fat.

The tag update instruction (§2.7) is restricted to one of the
following three kinds of transitions: slim to duplicable; slim
to slim; and fat to fat.

5.7.3 Merging groups
Imagine that we wish to extend the bag interface and imple-
mentation (Figures 2 and 10) with an operation that adds the
contents of one bag en masse to another bag:

val transfer:

[a] (consumes bag a, bag a) -> ()

The idea is, the call “transfer (b1, b2)” inserts all of the
elements of the bag b1 into the bag b2. The bag b1 is de-
stroyed in the process: that is, the permission “b1 @ bag a”
is consumed.

A priori, there is hope that this operation can be imple-
mented in constant time. In our singly-linked list implemen-
tation, for instance, it seems that it suffices to meld the two
lists in place. Indeed, in a traditional setting, this is true.
Here, however, this is not quite sufficient: in addition, we
must also arrange for every element of b1 to be abandoned
by b1 and adopted by b2.

Using the instructions give and take, the only way of
doing this is to iterate over every element of b1. However,
this is unacceptable: it prevents us from achieving constant
time complexity.

In order to address this issue, it seems desirable to offer
a primitive operation for efficiently merging a group into
another group. Let us now describe how this operation might
be presented to the programmer and implemented.

The syntax is “merge x1 into x2”. This operation re-
quires two permissions “x1 @ t1” and “x2 @ t2”, where
t1 and t2 are algebraic data types whose definitions con-
tain the declaration “adopts u”, for a common type u. (The
two groups must agree on the type of the adoptees). The ef-
fect of this operation is that every adoptee of x1 becomes
adopted by x2 instead. The permission “x1 @ t1” is con-
sumed: the group x1 disappears. The permission “x2 @ t2”
is preserved.

How do we implement this mechanism? We now need
two basic operations over groups, instead of one. As before,
in order to implement abandon, we must be able to find
which group an object belongs in. In addition, we must now
be able to merge one group into another. This is exactly
the union-find problem, for which efficient solutions are
known [25].

We add one new hidden field, named link, to every object
that can serve as an adopter. We use this field to implement
a union-find data structure over adopters. We maintain the

1 val transfer [a]

2 (consumes b1: bag a, b2: bag a) : () =

3 match b1 with

4 | Empty ->

5 ()

6 | NonEmpty ->

7 match b2 with

8 | Empty ->

9 b2 <- NonEmpty;

10 b2.head <- b1.head;

11 b2.tail <- b1.tail

12 | NonEmpty ->

13 take b2.tail from b2;

14 b2.tail.next <- b1.head;

15 give b2.tail to b2;

16 b2.tail <- b1.tail

17 end;

18 merge b1 into b2

19 end

Figure 12. An implementation of transfer for FIFO bags

invariant that, if there exists an exclusive permission for an
adopter x, then x.link is null, that is, x is the root of a
union-find tree. Such a permission for x can then effectively
be regarded as a permission for every adopter in the tree
whose root is x.

The instruction “merge x1 into x2” is implemented by
one memory write: “x1.link <- x2”. Because this oper-
ation requires a permission for x1, the previous value of
x1.link must be null.

The implementation of adoption (§5.4.4) is unchanged.
In the implementation of abandon (§5.4.5) and of the group
membership test (§5.7.1), the test “y.adopter == x” is re-
placed with “find(y.adopter) == x”, where the auxiliary
function find follows the link pointers up to the root of the
adopter tree and performs path compression on the fly. Be-
cause these operations require a permission for x, the field
x.link must be null, hence there is no need to call find(x).

For simplicity, we adopt the convention that “fat exclu-
sive” objects (§5.7.2) have both an adopter field and a link

field, while “slim exclusive” and immutable objects have
neither. Thus, only a fat exclusive object can be an adopter
or an adoptee, and it can be both at once.

In summary, by using a simple union-find data structure,
we are able to implement merging in constant time, while
slightly degrading the performance of abandon and of the
group membership test, whose amortized time complexity
becomes logarithmic in the number of merge operations.
The cost in terms of space is one more hidden field per fat
exclusive object.

Figure 12 shows how one might implement transfer for
our FIFO bags. One potential trap is that, if the programmer
were to forget the merge instruction (line 18), then the code
would still be well-typed, and a call to transfer (b1, b2)

exclusive data tree a =

| Leaf

| Node { size: a; left , right: tree a }

Figure 13. A type of mutable trees with size annotations

would still succeed at runtime. The program would fail only
later on, upon attempting to retrieve out of b2 an element that
was transferred from b1 to b2.

5.7.4 Static groups
Our groups are “dynamic” in the sense that membership in a
group is not controlled by the type system, but controlled at
runtime. Following other authors [15, 7, 10], one could also
offer “static” groups, where the type system keeps track of
which object is a member of which group (or “region”) and
no runtime machinery is required. Static groups can in some
situations offer stronger static guarantees of correctness as
well as better performance. However, they are less flexible
and more complex than dynamic groups. In particular, aban-
don (known as “focus” [15, 10] or “carving out” [7]) is not
permanent, but temporary: when an object is abandoned, the
group becomes disabled until the object is returned. (Boy-
land and Retert [7] do allow “carving” multiple objects out
of a group, but this requires the type system to be able to rec-
ognize that these objects are distinct.) While in principle we
could offer both flavors of groups in a single programming
language, we feel that this would have a high cost in terms
of conceptual complexity, for little practical benefit.

6. Typestate checking
In this section, we show how the sytem can be used to
perform what is usually known as typestate checking. This
section is presently incomplete.

6.1 In-place tree annotation
In this example, we define an algebraic data type for mutable
trees. We present a straightforward recursive traversal which
annotates every node in a tree with the size of its sub-
tree. We explain how the typechecker is able to differentiate
between an unannotated tree and an annotated one, and to
recognize that the traversal function turns one into the other.

We begin with a definition of the algebraic data type of
trees (Figure 13). Our trees are binary: a tree either is empty
or has a binary node at its root. A node contains pointers to
its left and right children. In addition, every node contains a
size field.

Because we wish to allow constructing nodes whose size

field is uninitialized, we do not declare that this field has
type int. Instead, we declare that it has type a and we
make this type a parameter. Thus, “tree a” is the type of
a tree where every node has a size field of type a. This type
can be instantiated in several useful ways. For instance, the
type “tree int” describes trees that carry size information.

val size: [a] (consumes t: tree a) ->

(int | t @ tree int)

let rec size t =

match t with

| Leaf {} ->

0

| Node { left = left; right = right } ->

let lsize = size left in

let rsize = size right in

let total = lsize + rsize + 1 in

t.size <- total;

total

end

Figure 14. In-place tree annotation

The type “tree ()” describes trees that definitely do not
carry size information. The type “tree a”, where a is a type
variable, describes trees where nodes carry information of
unknown nature.

Because we wish to be able to update the size field, we
declare the type tree as exclusive. This implies that, at every
node, the left and right sub-trees are disjoint. Thus, the type
“tree a” describes trees, as opposed to DAGs or graphs.

Now, imagine that we have a tree t that either does not
carry size information or carries stale information (perhaps
because we have re-organized its structure by mutating the
left and right fields in some nodes). Both situations are de-
scribed by the permission “t @ tree a”, for an appropriate
choice of a.

We would like to traverse this tree, computing sizes and
updating size fields in a bottom-up manner. To this end, we
define a recursive function, which we name size (Figure 14).
We intend the function call “size t” to return the number of
nodes in the tree t and as a side effect to update the size field
of every node in the tree t. The type of the function size

reflects this informal specification. The function requires the
permission “t @ tree a”, but does not return it. Instead,
it returns an integer result, together with a new permission
for t, namely “t @ tree int”. In short, a call to “size t”
performs a strong update: the “type” (or the “typestate”) of
the tree t changes.

Let us now review how the size function is type-checked.
At the beginning, just before the match construct, the per-
mission “t @ tree a” is available. (This is determined by
consulting the type signature of the function size, which the
programmer provides.) This permission allows case analysis
to take place, and is refined by the case analysis.

In the Leaf branch, the permission “t @ Leaf {}” ap-
pears. The type-checker verifies that this permission can
be folded back to “t @ tree int”. Thus, the code of the
Leaf branch satisfies the explicitly-declared result type of
the function size.

In the Node branch, the following permissions are present:

t @ Node {

size: a;

left = left; right = right

} *

left @ tree a *

right @ tree a

In the code that follows, we explicitly name the inter-
mediate results lsize and rsize. We do so only in order
to better explain, step by step, what is going on. If we in-
stead wrote “let total = size left + size right + 1”,
the type-checker would automatically introduce auxiliary
variables to stand for the results of the recursive calls.

Is the recursive call “size left” legal? Yes. This call
requires the permission “left @ tree a”, which we have.
This permission is consumed. After the call, it is replaced
with “left @ tree int”. In addition, the call yields the
permission “lsize @ int”.

Similarly, the recursive call “size right” is permitted.
This call replaces the permission “right @ tree a” with
“right @ tree int”, and yields “rsize @ int”.

At this point, the left and right sub-trees have been anno-
tated with up-to-date size information, but the root node t

has not been updated yet. The following permissions are
available:

t @ Node {

size: a;

left = left; right = right

} *

left @ tree int *

right @ tree int *

lsize @ int *

rsize @ int

It is interesting to note that these permissions cannot be
folded back to “t @ tree int”. We are in an intermedi-
ate state where the data structure at address t cannot be
described as an instance of the tree algebraic data type.
Thus, we must now update t.size with an integer value,
or the type-checker will reject the code. The definition
“let total = ...” yields the permission “total @ int”.
Then, the instruction “t.size <- total” causes the type-
checker to update the structural permission that describes t.
After this instruction, the available permissions are:

t @ Node {

size = total;

left = left; right = right

} *

left @ tree int *

right @ tree int *

lsize @ int *

rsize @ int *

total @ int

These permissions can be folded back to:

t @ Node {

size: int;

left , right: tree int

} *

lsize @ int *

rsize @ int *

total @ int

which in turn can be transformed to:

t @ tree int *

lsize @ int *

rsize @ int *

total @ int

Thus, the code of the Node branch satisfies the explicitly-
declared result type of the function size.

We have demonstrated that the system supports a strong
update of an entire tree structure. Of course, this is an “easy”
example: there is no sharing or aliasing. Nevertheless, we
believe that this example illustrates the power and relative
simplicity of the system.

7. Future features
In this section, we briefly discuss a few features which we
believe can be fairly easily added to Mezzo, and which we
plan to include.

7.1 Arrays
Arrays are compact: their use can lead to space savings
and improved data locality. Furthermore, in a high-level lan-
guage, arrays are the only way of exploiting the machine’s
ability to perform address arithmetic and “random” mem-
ory accesses. For these reasons, arrays play a central role in
many efficient algorithms.

It seems straightforward to extend Mezzo with support for
arrays. We would distinguish two types of arrays, namely an
(exclusive) type of mutable arrays and a (duplicable) type
of immutable arrays. The former would be equipped with
five main operations, namely creation, read, update, length
query, and transformation into an immutable array. The latter
would support only two of these operations, namely reading
the array and retrieving its length.

Because the last two operations are supported both by
mutable arrays and by immutable arrays, we would arrange
for these operations to be polymorphic in the mutability of
the array to which they are applied.

Because retrieving a value out of an array duplicates this
value, the element type of an array would be required to
be duplicable. Arrays of elements of arbitrary type (“arrays
that own their elements”, so to speak) could then be defined
by the user in terms of primitive arrays and adoption and
abandon. This could be done as part of the standard library.

7.2 Concurrency
Up to this point, we have illustrated the use of permissions
in a sequential setting. We have explained that permissions
forbid certain programming errors (undesired aliasing, rep-

type lock :: PERM -> TYPE

fact [p :: PERM] duplicable (lock p)

val create: [p :: PERM] () -> lock p

val acquire: [p :: PERM] lock p -> (| p)

val release: [p :: PERM]

(lock p | consumes p) -> ()

Figure 15. A signature for first-class locks

resentation exposure, etc.) and allow certain new idioms (de-
layed initialization, etc.).

However, the single strongest argument in favor of using
permissions is perhaps the fact that, in a shared-memory
concurrent setting, this discipline guarantees the absence of
race conditions between threads. In other words, every valid
Mezzo program is data-race-free.

Data-race freeness is a very desirable property, because
it allows one to work in a simple and traditional memory
model, as opposed to a “relaxed” memory model [5]. Yet,
in the absence of a mechanically-enforced discipline, it is
notoriously difficult to achieve.

Why is it the case that Mezzo programs are data-race-
free? In the absence of adoption and abandon (§5), this prop-
erty is an immediate consequence of the fact that our write
permissions are exclusive: a write permission and a read per-
mission for the same object can never co-exist. Basic sepa-
ration logic [22] enjoys this property for the same reason.
In the presence of adoption and abandon, things are slightly
more subtle. The instruction “take y from x” reads the field
y.adopter, yet does not require an exclusive permission for
the object y. It requires only “y @ dynamic”, a duplicable
permission, which can co-exist with an exclusive permission
for y. Thus, there is a possibility that one thread may attempt
to read y.adopter while another thread attempts to write it.
More precisely, the first thread, say “thread 1”, must be in
the process of executing “take y from x1”, while the sec-
ond thread, say “thread 2”, must be in the process of execut-
ing either “give y to x2” (which changes y.adopter from
null to x2) or “take y from x2” (which involves changing
y.adopter from x2 to null). This implies that thread 1 must
have an exclusive permission for x1 and that thread 2 must
have an exclusive permission for x2. Thus, x1 and x2 must
be distinct addresses. This means that the outcome of the
test “y.adopter == x1” performed by thread 1 is unaffected
by the write instruction performed by thread 2. Whether the
value read by thread 1 is null or x2, the test must fail. Thus,
there is a race condition on y.adopter, but it is possible
to argue that this is a benign race, one that does not cause
non-deterministic behavior. In short, the implementation of
adoption and abandon in terms of reads and writes that was
presented earlier (§5) remains correct in a concurrent setting.

In the absence of any primitive synchronization opera-
tions, data-race-freeness means that threads are completely
isolated from one another. Naturally, for shared memory to

be useful, there must exist one or more mechanisms that al-
low threads to communicate with one another and that are
not considered as causing data races.

Locks are one such mechanism. Concurrent separation
logic [21] has shown how a lock can be used to mediate
access to a permission p by several threads. The idea is,
a thread that successfully acquires the lock acquires the
permission p at the same time; and, when releasing the lock,
this thread must give up the permission p. In the terminology
of separation logic, p is the “resource invariant” that the lock
protects. This approach extends to the case where locks are
first-class, dynamically-allocated values [16, 17, 8].

It seems straightforward to extend Mezzo with support for
primitive locks. A slightly simplified version of the inter-
face that might be offered by these locks is presented in Fig-
ure 15. In short, the type “lock p” of locks is parameterized
with a permission p. A specific instance of p is chosen by the
user at lock creation time. The type “lock p” is duplicable:
this allows multiple threads to attempt to acquire a single
lock at the same time. Acquiring a lock of type “lock p”
produces the permission p; releasing such a lock consumes
this permission. This interface guarantees that “well-typed
programs do not go wrong”, but does not guarantee the ab-
sence of deadlocks.

Locks are useful not only because they allow synchro-
nization, but also because they enable “hidden state”. In the
absence of locks, whenever a function needs access to a mu-
table memory area, it must explicitly require a permission.
In the presence of locks, however, it becomes possible for
a function of type “() -> ()” to have a “hidden” side ef-
fect. Indeed, because locks are duplicable, it is permitted for
a closure to capture the address of a lock.

Locks are one synchronization mechanism among many
others. We hope to be able to support other mechanisms as
well, such as communication channels along which permis-
sions can travel [14, 29].

7.3 Permissions within algebraic data structures
Structural permissions carry accurate information about an
object’s tag and fields. They evolve with time: they are up-
dated by the field update and tag update instructions (§2.7).
For these reasons, one might claim that the system, as pre-
sented so far, is able to perform “typestate checking”, that is,
to keep precise track of the manner in which the “type” or
“state” of an object evolves over time.

To some extent, this is true. Yet, one more feature seems
required in order to achieve sufficient expressive power for
realistic “typestate checking” applications. This feature is
the ability for a dynamic test on an object x to produce new
or refined permissions about another object y. Bierhoff and
Aldrich [3] use Java iterators to illustrate this phenomenon.
The method hasNext requires a permission for an iterator
in an arbitrary state, and produces a Boolean outcome. By
examining whether this Boolean value is true or false,
one recovers a permission for the iterator in a specific state,

which is either “available” or “end”. Thanks to this, in the
true branch, it is permitted to invoke the iterator’s next

method, whose precondition is that the iterator be in the
“available” state.

In the system that we have presented so far, the match

construct does perform permission refinement (§4.1.2), al-
beit only in a limited manner: a dynamic test on an object x
produces a refined permission for this object. In order for
a test on x to be able to produce an arbitrary permission, it
seems natural to add the ability for an algebraic data type
to have permission components, in the same way that values
can be packaged with permissions (§3.1). The only novelty,
with respect to §3.1, is that the permission that is packaged
with an object can now depend on the object’s tag. This al-
lows us to define a type of permission-carrying Boolean val-
ues, as follows:

data outcome (p :: PERM) (q :: PERM) =

| No {| p }

| Yes {| q }

A value of type “outcome p q” is just a tag: either No or
Yes. If it is No, then it carries the permission p; otherwise, it
carries the permission q. A match construct can be used to
distinguish between these cases and gain access to the corre-
sponding permission. It seems straightforward to extend the
system with support for this feature.

8. Conclusion
We have presented the design of a high-level functional and
imperative programming language where the central con-
cept of “type” is replaced with the more powerful concept
of “permission”. This design strives to achieve a balance be-
tween simplicity and expressiveness by marrying a static dis-
cipline of permissions and a dynamic mechanism of adop-
tion and abandon. We believe that the system is sound in
the sense that well-typed programs cannot go wrong (unless
an abandon operation fails) and are data-race-free. We have
used a wide range of examples in order to illustrate the ex-
pressiveness of the language. Ongoing and future work in-
cludes implementing a type-checker and compiler, proving
that the system is sound, and gaining deeper practical expe-
rience with the use of the language.

References
[1] Jonathan Aldrich, Joshua Sunshine, Darpan Saini, and Zacha-

ry Sparks. Typestate-oriented programming. In Companion to
the ACM Conference on Object-Oriented Programming, Sys-
tems, Languages, and Applications (OOPSLA), pages 1015–
1022, 2009.

[2] Josh Berdine, Cristiano Calcagno, and Peter W. O’Hearn.
Smallfoot: Modular automatic assertion checking with sepa-
ration logic. In International Symposium on Formal Methods
for Components and Objects, volume 4111 of Lecture Notes
in Computer Science, pages 115–137. Springer, 2005.

http://www.cs.cmu.edu/~aldrich/papers/onward2009-state.pdf
http://research.microsoft.com/~jjb/papers/smallfoot.pdf
http://research.microsoft.com/~jjb/papers/smallfoot.pdf

[3] Kevin Bierhoff and Jonathan Aldrich. Modular typestate
checking of aliased objects. In ACM Conference on Object-
Oriented Programming, Systems, Languages, and Applica-
tions (OOPSLA), pages 301–320, 2007.

[4] Kevin Bierhoff, Nels E. Beckman, and Jonathan Aldrich.
Practical API protocol checking with access permissions. In
European Conference on Object-Oriented Programming, vol-
ume 5653 of Lecture Notes in Computer Science, pages 195–
219. Springer, 2009.

[5] Hans-J. Boehm and Sarita V. Adve. You don’t know jack
about shared variables or memory models. Communications
of the ACM, 55(2):48–54, 2012.

[6] John Boyland. Checking interference with fractional permis-
sions. In Static Analysis Symposium (SAS), volume 2694 of
Lecture Notes in Computer Science, pages 55–72. Springer,
2003.

[7] John Tang Boyland and William Retert. Connecting effects
and uniqueness with adoption. In ACM Symposium on Prin-
ciples of Programming Languages (POPL), pages 283–295,
2005.

[8] Alexandre Buisse, Lars Birkedal, and Kristian Støvring. A
step-indexed Kripke model of separation logic for storable
locks. Electronic Notes in Theoretical Computer Science,
276:121–143, 2011.

[9] Arthur Charguéraud. Characteristic Formulae for Mecha-
nized Program Verification. PhD thesis, Université Paris 7,
2010.

[10] Arthur Charguéraud and François Pottier. Functional transla-
tion of a calculus of capabilities. In ACM International Con-
ference on Functional Programming (ICFP), pages 213–224,
2008.

[11] Karl Crary, David Walker, and Greg Morrisett. Typed mem-
ory management in a calculus of capabilities. In ACM Sym-
posium on Principles of Programming Languages (POPL),
pages 262–275, 1999.

[12] Robert DeLine and Manuel Fähndrich. Enforcing high-level
protocols in low-level software. In ACM Conference on
Programming Language Design and Implementation (PLDI),
pages 59–69, 2001.

[13] Robert DeLine and Manuel Fähndrich. Typestates for objects.
In European Conference on Object-Oriented Programming,
volume 3086 of Lecture Notes in Computer Science, pages
465–490. Springer, 2004.

[14] Manuel Fähndrich, Mark Aiken, Chris Hawblitzel, Orion
Hodson, Galen Hunt, James R. Larus, and Steven Levi. Lan-
guage support for fast and reliable message-based communi-
cation in Singularity OS. In EuroSys, pages 177–190, 2006.

[15] Manuel Fähndrich and Robert DeLine. Adoption and focus:
practical linear types for imperative programming. In ACM
Conference on Programming Language Design and Imple-
mentation (PLDI), pages 13–24, 2002.

[16] Alexey Gotsman, Josh Berdine, Byron Cook, Noam Rinet-
zky, and Mooly Sagiv. Local reasoning for storable locks and
threads. Technical Report MSR-TR-2007-39, Microsoft Re-
search, 2007.

[17] Aquinas Hobor, Andrew W. Appel, and Francesco Zappa
Nardelli. Oracle semantics for concurrent separation logic.
In European Symposium on Programming (ESOP), volume
4960 of Lecture Notes in Computer Science, pages 353–367.
Springer, 2008.

[18] Toshiyuki Maeda, Haruki Sato, and Akinori Yonezawa. Ex-
tended alias type system using separating implication. In
Workshop on Types in Language Design and Implementation
(TLDI), 2011.

[19] Yasuhiko Minamide. A functional representation of data
structures with a hole. In ACM Symposium on Principles of
Programming Languages (POPL), pages 75–84, 1998.

[20] Karl Naden, Robert Bocchino, Jonathan Aldrich, and Kevin
Bierhoff. A type system for borrowing permissions. In
ACM Symposium on Principles of Programming Languages
(POPL), pages 557–570, 2012.

[21] Peter W. O’Hearn. Resources, concurrency and local reason-
ing. Theoretical Computer Science, 375(1–3):271–307, 2007.

[22] John C. Reynolds. Separation logic: A logic for shared muta-
ble data structures. In IEEE Symposium on Logic in Computer
Science (LICS), pages 55–74, 2002.

[23] Frederick Smith, David Walker, and Greg Morrisett. Alias
types. In European Symposium on Programming (ESOP),
volume 1782 of Lecture Notes in Computer Science, pages
366–381. Springer, 2000.

[24] Jonathan Sobel and Daniel P. Friedman. Recycling continua-
tions. In ACM International Conference on Functional Pro-
gramming (ICFP), pages 251–260, 1998.

[25] Robert Endre Tarjan. Efficiency of a good but not linear set
union algorithm. Journal of the ACM, 22(2):215–225, 1975.

[26] Jesse A. Tov and Riccardo Pucella. Stateful contracts for
affine types. In European Symposium on Programming
(ESOP), volume 6012 of Lecture Notes in Computer Science,
pages 550–569. Springer, 2010.

[27] Jesse A. Tov and Riccardo Pucella. Practical affine types. In
ACM Symposium on Principles of Programming Languages
(POPL), pages 447–458, 2011.

[28] Thomas Tuerk. Local reasoning about while-loops. Unpub-
lished, 2010.

[29] Jules Villard, Étienne Lozes, and Cristiano Calcagno. Prov-
ing copyless message passing. In Asian Symposium on Pro-
gramming Languages and Systems (APLAS), volume 5904 of
Lecture Notes in Computer Science, pages 194–209. Springer,
2009.

[30] David Walker and Greg Morrisett. Alias types for recursive
data structures. In Workshop on Types in Compilation (TIC),
volume 2071 of Lecture Notes in Computer Science, pages
177–206. Springer, 2000.

[31] Roger Wolff, Ronald Garcia, Éric Tanter, and Jonathan
Aldrich. Gradual typestate. In European Conference on
Object-Oriented Programming, volume 6813 of Lecture
Notes in Computer Science, pages 459–483. Springer, 2011.

http://www.cs.cmu.edu/~kbierhof/papers/typestate-verification.pdf
http://www.cs.cmu.edu/~kbierhof/papers/typestate-verification.pdf
http://www.cs.cmu.edu/~kbierhof/papers/permission-practice.pdf
http://doi.acm.org/10.1145/2076450.2076465
http://doi.acm.org/10.1145/2076450.2076465
http://www.cs.uwm.edu/~boyland/papers/permissions.html
http://www.cs.uwm.edu/~boyland/papers/permissions.html
http://www.cs.uwm.edu/~boyland/papers/connecting2.pdf
http://www.cs.uwm.edu/~boyland/papers/connecting2.pdf
http://www.itu.dk/~birkedal/papers/locks.pdf
http://www.itu.dk/~birkedal/papers/locks.pdf
http://www.itu.dk/~birkedal/papers/locks.pdf
http://www.chargueraud.org/arthur/research/2010/thesis/
http://www.chargueraud.org/arthur/research/2010/thesis/
http://gallium.inria.fr/~fpottier/publis/chargueraud-pottier-capabilities.pdf
http://gallium.inria.fr/~fpottier/publis/chargueraud-pottier-capabilities.pdf
http://www.cs.cornell.edu/talc/papers/capabilities.pdf
http://www.cs.cornell.edu/talc/papers/capabilities.pdf
http://research.microsoft.com/apps/pubs/default.aspx?id=67457
http://research.microsoft.com/apps/pubs/default.aspx?id=67457
http://research.microsoft.com/apps/pubs/default.aspx?id=67463
http://www.cs.kuleuven.ac.be/conference/EuroSys2006/papers/p177-fahndrich.pdf
http://www.cs.kuleuven.ac.be/conference/EuroSys2006/papers/p177-fahndrich.pdf
http://www.cs.kuleuven.ac.be/conference/EuroSys2006/papers/p177-fahndrich.pdf
http://research.microsoft.com/pubs/67459/pldi02.pdf
http://research.microsoft.com/pubs/67459/pldi02.pdf
ftp://ftp.research.microsoft.com/pub/tr/TR-2007-39.pdf
ftp://ftp.research.microsoft.com/pub/tr/TR-2007-39.pdf
http://www.cs.princeton.edu/~appel/papers/concurrent.pdf
http://dx.doi.org/10.1145/1929553.1929559
http://dx.doi.org/10.1145/1929553.1929559
http://www.score.is.tsukuba.ac.jp/~minamide/papers/hole.popl98.pdf
http://www.score.is.tsukuba.ac.jp/~minamide/papers/hole.popl98.pdf
http://cs.cmu.edu/afs/cs.cmu.edu/Web/People/kbn/pubs/poplBorrowing.pdf
http://www.dcs.qmul.ac.uk/~ohearn/papers/concurrency.pdf
http://www.dcs.qmul.ac.uk/~ohearn/papers/concurrency.pdf
ftp://ftp.cs.cmu.edu/user/jcr/seplogic.ps.gz
ftp://ftp.cs.cmu.edu/user/jcr/seplogic.ps.gz
http://www.cs.cornell.edu/talc/papers/alias.pdf
http://www.cs.cornell.edu/talc/papers/alias.pdf
http://www.cs.indiana.edu/hyplan/dfried/rc.ps
http://www.cs.indiana.edu/hyplan/dfried/rc.ps
http://www.csd.uwo.ca/~eschost/Teaching/07-08/CS445a/p215-tarjan.pdf
http://www.csd.uwo.ca/~eschost/Teaching/07-08/CS445a/p215-tarjan.pdf
http://www.eecs.harvard.edu/~tov/pubs/affine-contracts/affinecontracts10-bw.pdf
http://www.eecs.harvard.edu/~tov/pubs/affine-contracts/affinecontracts10-bw.pdf
http://www.eecs.harvard.edu/~tov/pubs/alms/
http://www.cl.cam.ac.uk/~tt291/talks/vstte10.pdf
http://www.lsv.ens-cachan.fr/Publis/PAPERS/PDF/VLC-aplas09.pdf
http://www.lsv.ens-cachan.fr/Publis/PAPERS/PDF/VLC-aplas09.pdf
http://www.cs.cornell.edu/talc/papers/alias-recursion.pdf
http://www.cs.cornell.edu/talc/papers/alias-recursion.pdf
http://www.cs.cmu.edu/~aldrich/papers/aldrich-gradual-ecoop11.pdf

	Introduction
	Permissions
	Simple permissions
	Co-existence of permissions
	Modes
	Conjunction of permissions
	Hierarchical permissions
	Equations and singleton types
	Reading and writing

	Tuples and functions
	Tuples
	Functions
	Kinds
	Polymorphism
	Example: a signature for bags

	Lists
	Immutable lists
	Reasoning about modes
	List length
	List concatenation
	List map

	Mutable lists
	Reasoning about modes
	Mutable list copy
	Mutable list concatenation

	Tail-recursive concatenation of immutable lists

	Adoption and abandon
	How to organize mutable objects in groups?
	What permission describes a member of a group?
	Design decisions
	The details of adoption and abandon
	adopter fields
	The type dynamic
	adopts declarations
	Adoption
	Abandon

	Summary
	On tag updates and state changes
	Further refinements and extensions
	Testing membership in a group
	Finer-grained control of hidden fields
	Merging groups
	Static groups

	Typestate checking
	In-place tree annotation

	Future features
	Arrays
	Concurrency
	Permissions within algebraic data structures

	Conclusion

