
Static Name Control for FreshML

François Pottier
INRIA

Francois.Pottier@inria.fr

April 17, 2007

Abstract

FreshML extends ML with constructs for declaring and manipulating abstract syntax trees that
involve names and statically scoped binders. It is impure: name generation is an observable side
effect. In practice, this means that FreshML allows writingprograms that create fresh names and
unintentionally fail to bind them. Following in the steps ofearly work by Pitts and Gabbay, this paper
defines Pure FreshML, a subset of FreshML equipped with a static proof system that guarantees
purity. Pure FreshML relies on a rich binding specification language, on user-provided assertions,
expressed in a logic that allows reasoning about values and about the names that they contain, and
on a conservative, automatic decision procedure for this logic. It is argued that Pure FreshML can
express non-trivial syntax-manipulating algorithms.

1 Introduction

FreshML [23, 22] extends ML with constructs for declaring and manipulating abstract syntax trees that
involve names and statically scoped binders. FreshML aims to be a better meta-programming language
than ML by allowing a programming style that closely reflectsthe standard, semi-informal practice of
reasoning “up toα-conversion”.

Unfortunately, FreshML isimpure, in the sense that fresh name generation is an observable side ef-
fect. For instance, in FreshML, one can introduce a type ofλ-terms and define a function that purports
to construct “the” set ofboundnames of aλ-term [15, Figure 1]. Such a function is accepted, and pro-
duces twodistinctsets of names if applied twice to the same term! This is undesirable: one would like
to be able to define onlypure functions, that is, functions mapα-equivalent arguments toα-equivalent
results.

As another facet of the same problem, a FreshML meta-programcan construct terms that acciden-
tally contain unbound names. Again, this is undesirable: one would like to be warned by the compiler
when a meta-programgeneratesa fresh name, but fails to eventuallybind it.

State of the art This deficiency is a known problem. Pitts and Gabbay attackedit by equipping
FreshML 2000 [15] with a static “freshness inference” system whose purpose was to rule out all impure
uses of the fresh name generation facility. FreshML 2000 achieves this goal, but is too conservative.
For this reason, static name control was abandoned by Shinwell, Pitts, and Gabbay in later work [23].

The problem is not specific to FreshML. To the best of my knowledge, it is shared by most meta-
programming languages in existence today. One exception isMetaML [20], which avoids the problem
in an interesting way. In MetaML, the idiom〈fn x ⇒ ẽ〉 generatesa fresh name, denoted by the
meta-variablex, evaluates the expressione, producing an abstract syntax tree〈t〉 that can contain free
occurrences of the name denoted byx, andbinds that name by constructing the abstract syntax tree
〈fn x ⇒ t〉, which is returned. In this design, the operations ofgeneratingandbindingnames cannot
be separated. This guarantees purity, but comes at a heavy cost in expressiveness: it is often useful, or
necessary, to view these operations as separate. For a similar reason, MetaML allows theconstruction
of code fragments, but not theirdeconstruction: it does not offer an analogue of FreshML’scase con-
struct, which inspects a piece of abstract syntax via pattern matching. In FreshML, matching against an
abstractionpatterngeneratesa fresh name, but does notbind it.

Cαml (pronounced: “alphaCaml”) [16] can be thought of as a toolthat provides much of the power
of FreshML to Objective Caml users. The tool accepts so-calledbinding specifications, that is, algebraic

1

data type declarations, enriched with information on whereand how atoms are bound. The tool turns
these specifications into Objective Caml type declarationsand code. By relying on Objective Caml’s
abstract types, it is able to guarantee that atoms of different sorts are not mixed, and that abstractions
(in FreshML’s sense) are not violated—that is, their bound atoms are “freshened” when they are decon-
structed. However, the tool contains no type system or proofsystem of its own, so it cannot guarantee
that its fresh name generation facility is used in a pure manner.

Other pieces of related work are discussed in§7.
Even though neither FreshML, MetaML, Cαml, or any deployed meta-programming language that

I know of, solves this problem, it is worth attacking. It is easy, and important, to statically detect that a
programis lexically ill-formed. It should be just as important to statically detect that a meta-program
cangeneratea lexically ill-formed program.

Towards a solution This paper presents Pure FreshML, a version of FreshML equipped with a static
discipline for enforcing purity. I refer to this disciplineas aproof system, rather than a type system,
because it is very much like a Hoare logic for proving properties of programs. Throughout the paper,
I use the words “pure” and “purity” in a somewhat non-standard fashion: in a “pure” program, name
generation is not an observable side effect, but non-termination remains possible.

The proof system is layered on top of a conventionaltype system, which, in this paper, is a sys-
tem of simple types. Enriching the type system with more features, such as ML- or System F-style
polymorphism, would be straightforward. In fact, the proofsystem is almost entirely independent of the
underlying type system. The only connection between the tworesides in the interpretation of constraints
(§3), which is typed: that is, the type of a variable can influence the meaning of a constraint. If desired,
the type system can have type inference: the presence of the proof system does not prevent that.

The proof system is inspired by Pitts and Gabbay’s “freshness inference” system [15], but is signif-
icantly more expressive, thanks to three new ingredients.

First, the system relies on a logic that combines Boolean constraints over sets of atoms, equations
between values, and the primitive functionfa, also known assupport, which maps a value to the set of
its free atoms. The judgements of the proof system involve Hoare-style triples of the form{H} e {P},
whereH is a constraint—a precondition—andP is a parameterized constraint—a postcondition. The
logic comes with a fully automated decision procedure for entailment problems, which is sound, and
slightly conservative.

Second, the system allows explicit assertions to be provided by the programmer. Function definitions
are annotated with optionalpreconditionsandpostconditions. Similarly, let constructs carry an optional
postcondition. Last, data constructor declarations carryan optionalguard.

Last, the system relies on Cαml’s binding specificationlanguage [16] as a means of describing how
names are bound. This language is more expressive than Urban, Pitts, and Gabbay’s nominal signa-
tures [25], which only allow binding one name at a time, and than Fresh Objective Caml’s abstraction
types [21], which do not allow binding occurrences and free occurrences to coexist within a single data
structure, such as an environment. The need for an expressive binding specification language arises
not only when dealing with complex abstract syntax, but alsowhen defining internal data structures
that involve names, such as evaluation environments (§6.1) and nested, name-capturing contexts (§6.2).
It should be noted that the choice of Cαml’s specification language, as opposed to some (as of now
hypothetical) other language of comparable expressiveness, is not essential.

A taste of purity Before delving into the technical presentation of Pure FreshML, I encourage the
reader to have a brief look at Figure 8, which shows hownormalization by evaluationis expressed in
Pure FreshML.

Normalization by evaluation is an interesting benchmark because it makes non-trivial use of names
and environments. It is used by Shinwellet al. [23], who stress the ease with which it is expressed
in FreshML. They point out that it isnot accepted by FreshML 2000’s static “freshness inference”
system [15], and that even a manual proof of its correctness is “far from immediate” [23]. Up to a few
changes and annotations, itis expressible in Pure FreshML.

Submitting the program in Figure 8 to the proof system results in 10 proof obligations. One such
obligation arises from the use of thefresh construct (line 21). Three arise from the use of pattern
matching against an abstraction pattern (lines 20, 46, and 50). Six arise from the need to establish the
postcondition in the body of functionevals(lines 41, 43, 44, 47, 51, and 53). All ten obligations are
automatically discharged. This proves that the program ispure. That is,normalizedenotes a (possibly

2

Syntactic objects

v ::= x | () | (v, v) | K v | 〈x〉 v
p ::= () | (x, x) | K x | 〈x〉x
e ::= v

| case p = v then e
| absurd | next | fail

| try e else e
| fresh x in e
| if x = x then e else e
| let x where C = e in e
| f(v)

fd ::= fun f(x where C) : x where C = e
C, H ::= (see§3.1)

τ ::= atom | unit | τ × τ | δ | 〈atom〉 τ
Γ ::= ǫ | Γ; x : τ

Semantic objects

w ::= a | () | (w, w) | K w | 〈a〉w
F ::= a | x.e | x = w | e
S ::= ǫ | S; F
c ::= S/e | S/w

Mapping values to semantic values

ρ(()) = ()

ρ((v1, v2)) = (ρ(v1), ρ(v2))

ρ(K v) = K ρ(v)

ρ(〈x〉 v) = 〈ρ(x)〉 ρ(v) if ρ(x) is an atom

Figure 1: Syntax of Pure FreshML

non-terminating) pure function fromλ-terms toλ-terms: the fact that it internally generates fresh atoms
is not an observable side effect.

Road map The paper is laid out as follows. First (§2), I introduce the syntax of Pure FreshML,
its operational semantics, and a simple type system, which statically prevents most errors, but does
not prevent incorrect uses of the name generator. Then (§3), I define the syntax and interpretation
of constraints, as well as a conservative decision procedure for entailment problems. Equipped with
these tools, I introduce the proof system (§4) and prove that it statically preventsall errors. Cαml-
style abstractions and generalized algebraic data type declarations are described only informally (§5). A
couple of extended examples are presented in§6. The paper ends with discussions of related and future
work (§7, §8). An early prototype implementation, together with several code samples, is available
online [17].

2 Pure FreshML

2.1 Syntax

The syntax of Pure FreshML appears in Figure 1. It is similar to the calculi of Pittset al. [15, 23], up
to the omission of first-class functions (see§8 for a discussion). Two important features, Cαml-style
abstractions and generalized algebraic data types, are omitted in this formal presentation. They are
informally described in§5 and§6.

3

Values and patterns Valuesv include variablesx, the unit value(), pairs(v, v), injectionsK v, where
K ranges over data constructors, and binaryabstractions〈x〉 v, where the variablex denotes an atom—
that is, an object-level name. In an abstraction〈x〉 v, the variablex is not bound: this is a free occurrence
of x. Patternsp are shallow and form a subset of values. They are required to be linear. It would be
interesting to remove this restriction (§8).

Expressions In order to facilitate the formulation of the proof system, acouple of simplifications are
built into the syntax. First, the actual argument of a function call, as well as the scrutinee of acase
construct, must be values. This requirement, which is reminiscent ofA-normal form [5], is met by
introducinglet forms to name the results of intermediate computations. Second, thecase construct only
has one branch, guarded by a shallow pattern. Two exception forms,next andfail, together with atry
construct, allow encoding generalcase constructs featuring an arbitrary number of branches and deep
(nested) patterns. These simplifications make Pure FreshML, as presented here, a kernel language. In
practice, one would offer an unrestricted surface languageand define a translation from the surface
language down to the kernel language. This is done in my prototype implementation.

Expressions can build values via “v” and deconstruct them via “case p = v then e”, where the
variables inp are considered bound withine. The execution of acase construct aborts, by raisingnext,
if p does not matchv. next is an exception that is caught with atry construct.fail is an exception that
cannot be caught.absurd asserts that the current program point is unreachable. It issomewhat similar
to fail, but is statically checked, so, in a valid program, it is never executed. As in Pitts and Gabbay’s
paper [15], theif construct is specialized: it compares two atoms for equality. It is possible to replace
it with a general-purposeif form, while preserving the precision of the analysis, but I lack space to
describe this extension.

Thefresh construct generates a fresh atom. As in Pitts and Gabbay’s original work [15], the atom is
bound to a variablex whose scope is the expressione. In contrast, in Shinwellet al.’s later work [23],
fresh is just an effectful primitive operation. It seems that onlythe first form can be given a pure
semantics, so it is naturally the one I adopt.

The let form is standard, except for the assertionC. In let x where C = e1 in e2, the variablex is
bound inC ande2. The constraintC acts as a postcondition fore1, and must in general be explicitly
supplied by the user. (Automatically computing a strongestpostcondition for an arbitrary expression is
not possible, because the constraint logic is too weak—for instance, it lacks existential quantification.)
Yet, in certain common cases, the translation from the surface language down to the kernel language
can make up an appropriate constraint. For instance, ife1 is a valuev, thenx = v is the strongest
postcondition. Ife1 is a function callf(v), then the postcondition associated withf , instantiated withv
andx, is the strongest postcondition.

Function definitions A program is composed of a set of mutually recursive toplevelfunction defini-
tions. Each such definition takes the formfun f(x1 where C1) : x2 where C2 = e, wherex1 is bound
within C1, C2, ande, while x2 is bound only withinC2. This defines a function whose precondition
is C1 and whose postcondition isC2. If desired, one function of no arguments can be distinguished as
the program’s entry point.

2.2 Operational semantics

Semantic values I have pointed out that, in an abstraction〈x〉 v, the variablex is not bound inv. Yet,
an intuitive understanding of the semantics of FreshML dictates that, when this abstraction is evaluated,
the atom denoted byx becomes boundin the value denoted byv. In order to formalize this intuition, I
introduce a distinct syntactic category ofsemantic values, writtenw (Figure 1).

Semantic values do not contain variables, but containatomsa, drawn from a countably infinite set
A, and contain abstractions of the form〈a〉w, wherea is considered bound inw. The set offree atoms
of a semantic valuew, written fa(w), is defined in the obvious way. It is also known as thesupportof
w. An atoma is fresh forsome syntactic entity when it is not among the free atoms of that entity.

Semantic values are used in the operational semantics and inthe interpretation of constraints (§3.1).
They coincide with Pitts’α-terms [14,§2.4].

Valuesv contain variables, but not atoms, while semantic valuesw contain atoms, but not variables.
Values are turned into semantic values viasimultaneoussubstitution of semantic values forall free
variables. In order to maintain a strict segregation between values and semantic values, the operational

4

S/v −→ S/S(v) (1)

S/case () = v then e −→ S/e if S(v) = () (2)

S/case (x1, x2) = v then e −→ S; x1 = w1; x2 = w2/e if S(v) = (w1, w2) (3)

S/case K1 x = v then e −→ S; x = w/e if S(v) = K2 w andK1 = K2 (4)

S/case K1 x = v then e −→ S/next if S(v) = K2 w andK1 6= K2 (5)

S/case 〈x1〉x2 = v then e −→ S; a;x1 = a; x2 = w/e if S(v) = 〈a〉w anda fresh forS (6)

S/try e1 else e2 −→ S; e2/e1 (7)

S; e/next −→ S/e (8)

S; F/next −→ S/next except if the previous rule applies (9)

S;F/fail −→ S/fail (10)

S/fresh x in e −→ S; a;x = a/e if a fresh forS (11)

S/if x1 = x2 then e1 else e2 −→ S/e1 if S(x1) = a1 andS(x2) = a2 anda1 = a2

(12)

S/if x1 = x2 then e1 else e2 −→ S/e2 if S(x1) = a1 andS(x2) = a2 anda1 6= a2

(13)

S/let x where C = e1 in e2 −→ S; x.e2/e1 (14)

S/f(v) −→ S; x1 = S(v)/e if fun f(x1) . . . = e (15)

S; a/w −→ S/w if a fresh forw (16)

S; x.e/w −→ S; x = w/e (17)

S; x = w′/w −→ S/w (18)

S; e/w −→ S/w (19)

Figure 2: Operational semantics

5

semantics relies onstacks, which, among other roles, represent a deferred substitution of semantic
values for all variables in scope. This is in contrast with a more standard operational semantics based
on evaluation contexts, in the style of Wright and Felleisen[27], where substitutions are not deferred.

In order to avoid deferring substitutions and to allow defining standard notions of evaluation contexts
andβ-reduction, an alternate approach would be to make semanticvalues a subset of values, and to
ensure that values are stable under substitutions of a single atom for a single variable. One disadvantage
of such an approach, in my opinion, would be a more complex (and perhaps confusing) treatment of
values.

Stacks and configurations A stackS is a sequence offramesF (Figure 1). There are four kinds of
frames, which intuitively correspond to “evaluation contexts” of depth 1, as per the following table:

frame intuitive reading
a fresh a in []

x.e let x = [] in e
x = w let x = w in []

e try [] else e

The presence of the framea on the stack means that afresh construct was entered, that the freshly
generated atom isa, and that thefresh construct was not exited yet. The framex.e means that the left-
hand side of alet construct was entered. The value of the left-hand side, whenavailable, will be bound
to x in the evaluation ofe. Note thatx is considered bound withine. The framex = w means thatx is
currently bound to the semantic valuew. The framee means that atry construct was entered, and was
not exited yet. If the exceptionnext is raised, it will be caught ande will be evaluated; if, on the other
hand, a value is returned,e will be discarded.

I define thedomainof a frameF as follows. The domain ofa is a; the domain ofx = w is x;
the domain ofx.e and ofe is empty. The domain of a stackS is the ordered sequence of variables and
atoms obtained by concatenating the domains of the frames that make upS. A syntactic entity isclosed
underS when its free variables and free atoms are members of the domain of S.

A configurationis of the formS/e or S/w, wheree andw are closed underS. The variables and
atoms in the domain ofS are considered bound in such a configuration, so that configurations are closed.
A result is a configuration of the formǫ/w or ǫ/next or ǫ/fail.

Turning values into semantic values A valuation ρ is a finite mapping of variables to semantic
values. It is lifted to a mapping of values to semantic values(Figure 1). Note that a syntactic abstraction
〈x〉 v is mapped down to a semantic abstraction〈ρ(x)〉 ρ(v), where the atomρ(x) is now bound in the
semantic valueρ(v). If ρ(x) happens not to be an atom, thenρ(〈x〉 v) is undefined. Such a situation is
ruled out by the type system (§2.3).

A stackS can be viewed as a valuation, defined by the collection of all frames of the formx = w
within S. Thus, a valuev that is closed under a stackS can be turned into a semantic valueS(v).

Reduction The small-step operational semantics of Pure FreshML is given by a binary reduction
relation over configurations (Figure 2). The rules may seem numerous, but are simple. I now explain
some of them.

Reduction rule 1 turns a valuev into a semantic value; it is applicable only ifS(v) is defined.
Reduction rules 2–6, 12–13, and 15 also exploit this mechanism.

Reduction rule 11 states that evaluating “fresh x in e” creates a fresh atoma, augments the stack
with two new frames, which separately record the fact thata was created and the fact thatx was bound
to a, and proceeds with the evaluation ofe. When and ife eventually reduces to a semantic valuew,
these two stack frames are popped by reduction rules 18 and 16, provideda does not appear free in
w. This requirement is directly inspired by Gabbay and Pitts’ treatment of “locally fresh atoms” [6,
Remark 6.4]. When the side condition of reduction rule 16 is violated, no reduction is possible: the
configurationS; a/w is stuck. This corresponds to an incorrect use of thefresh construct, which one
would like to statically prevent.

Reduction rules 2–6 describe pattern matching. In particular, reduction rule 5 states that the failure
of pattern matching causes the exceptionnext to be raised. Reduction rule 6 states that matching against
an abstraction pattern〈x1〉x2 causes a fresh atoma to be generated, just as if afresh construct had been
evaluated [15, 23, 22].

6

T-VAR

Γ ⊢ x : Γ(x)
T-UNIT

Γ ⊢ () : unit

T-PAIR

Γ ⊢ v1 : τ1 Γ ⊢ v2 : τ2

Γ ⊢ (v1, v2) : τ1 × τ2

T-SUM

K : τ → δ Γ ⊢ v : τ

Γ ⊢ K v : δ

T-ABS

Γ ⊢ x : atom Γ ⊢ v : τ

Γ ⊢ 〈x〉 v : 〈atom〉 τ

T-CASE

dom(p) fresh forΓ dom(p) = dom(Γ′)
Γ ⊢ v : τ Γ′ ⊢ p : τ Γ, Γ′ ⊢ e : τ ′

Γ ⊢ case p = v then e : τ ′

T-ABSURD

Γ ⊢ absurd : τ

T-NEXT

Γ ⊢ next : τ
T-FAIL

Γ ⊢ fail : τ

T-TRY

Γ ⊢ e1 : τ Γ ⊢ e2 : τ

Γ ⊢ try e1 else e2 : τ

T-FRESH

Γ, x : atom ⊢ e : τ

Γ ⊢ fresh x in e : τ

T-IF

Γ ⊢ x1 : atom Γ ⊢ x2 : atom

Γ ⊢ e1 : τ Γ ⊢ e2 : τ

Γ ⊢ if x1 = x2 then e1 else e2 : τ

T-LETWHERE

Γ ⊢ e1 : τ1 Γ, x : τ1 ⊢ C
Γ, x : τ1 ⊢ e2 : τ2

Γ ⊢ let x where C = e1 in e2 : τ2

T-CALL

f : τ1 → τ2 Γ ⊢ v : τ1

Γ ⊢ f(v) : τ2

T-DEF

f : τ1 → τ2 x1 : τ1 ⊢ C1

x1 : τ1, x2 : τ2 ⊢ C2 x1 : τ1 ⊢ e : τ2

⊢ fun f(x1 where C1) : x2 where C2 = e

Figure 3: The type system (source-level objects)

Remarks The semantics is deterministic. In particular, in reduction rule 11, the choice of the fresh
atoma does not matter, since its appearance in the stack framea causes it to become bound. In reduction
rule 16, the atoma, which was bound, ceases to be so, due to the destruction of the stack framea.
Fortunately, the rule is applicable only under the condition thata be fresh forw, which means that no
free occurrences ofa can possibly appear.

The semantics is pure, in the sense that it does not rely on global state, as would be necessary if
the creation of fresh atoms was an uncontrolled side effect [23]. Here, the stack discipline ensures that
the dynamic extent of a fresh atom does not exceed the static scope of thefresh construct. According
to this semantics, a program that attempts to exploitfresh in an impure manner goes wrong: it reduces
to a stuck configuration. Thus, the slogan “valid programs cannot go wrong”, which I establish later
(Theorem 4.7), means that valid programs are in fact pure.

When executing a valid Pure FreshML program, it is known ahead of time that nothing can go
wrong, so the side condition of reduction rule 16 does not require a runtime check. As a result, all stack
frames of the forma are superfluous, since their sole purpose is to enable such a runtime check. In other
words, Pure FreshMLcan be efficiently implemented in terms of an uncontrolled, global fresh name
generator.

Shinwell and Pitts established a “correctness of representation” result for FreshML [22, Theo-
rem 2.3]. I believe that a Pure FreshML analogue of this result would admit a particularly direct
and straightforward proof. For instance, the expressions “fresh x in fresh y in (〈x〉x, 〈y〉 y)” and
“ fresh x in (〈x〉x, 〈x〉x)” both reduce, under an arbitrary stack, to the semantic value (〈a〉 a, 〈a〉 a), so
it seems clear that these expressions are contextually equivalent.

An earlier draft of this paper presented a denotational semantics, based on nominal sets [14]. Thanks
to the absence of fresh name generation as a side effect, the semantics was expressed in direct style, in
contrast with Shinwell and Pitts’ monadic semantics for FreshML [22]. In comparison with that earlier
semantics, the operational semantics presented here is simpler, and assigns meaning to all programs, as
opposed to only the valid programs. Furthermore, it seems better suited to extensions with new features
such as higher-order functions and mutable state.

7

TS-ATOM

⊢ a : atom

TS-UNIT

⊢ () : unit

TS-PAIR

⊢ w1 : τ1 ⊢ w2 : τ2

⊢ (w1, w2) : τ1 × τ2

TS-SUM

K : τ → δ ⊢ w : τ

⊢ K w : δ

TS-ABS

⊢ w : τ

⊢ 〈a〉w : 〈atom〉 τ

TS-NIL

ǫ ⊢ ǫ : τ

TS-FRESH

Γ ⊢ S : τ

Γ ⊢ (S; a) : τ

TS-LET-LEFT

Γ ⊢ S : τ
Γ, x : τ ′ ⊢ e : τ

Γ ⊢ (S; x.e) : τ ′

TS-LET-RIGHT

Γ ⊢ S : τ ⊢ w : τ ′

Γ, x : τ ′ ⊢ (S; x = w) : τ

TS-TRY

Γ ⊢ S : τ Γ ⊢ e : τ

Γ ⊢ (S; e) : τ

TS-CONF-EXPR

Γ ⊢ S : τ Γ ⊢ e : τ

⊢ S/e ok

TS-CONF-VAL

Γ ⊢ S : τ ⊢ w : τ

⊢ S/w ok

Figure 4: The type system (semantic objects)

2.3 Type system

I equip Pure FreshML with a conventional system of simple types [23]. The proof system relies on
it in only two ways: to guarantee that only well-formed values appear in constraints, and to obtain
information about the support of a variable, based on its type (§3.3).

Presentation The types (Figure 1) are Pitts’ nominal arities [14,§2.2]. Every data constructorK
carries a signature of the formτ → δ, whereδ is a data type. (The introduction ofgeneralizedalgebraic
data types is deferred to§5.) Every functionf carries a signature of the formτ1 → τ2.

The typing rules for values, expressions, and function definitions appear in Figure 3. Rules T-
LETWHERE and T-DEF require constraints to be well-typed: this is made necessary by the fact that
constraints can refer to values. The judgementΓ ⊢ C is defined in§3. It requires the values and value
equations that appear withinC to be well-typed underΓ.

The typing rules for semantic values, stacks, and configurations appear in Figure 4. A judgement
about a stack takes the formΓ ⊢ S : τ , and states that the stackS providesan evaluation environment
described by the type environmentΓ andexpectsto receive a result of typeτ . This is dual to the standard
judgementΓ ⊢ e : τ , which states that expressione expects an evaluation environment described byΓ
and produces a result of typeτ . The two dual judgements are combined in rule TS-CONF-EXPR, whose
conclusion states thatS/e is a well-formed configuration.

Soundness The type system isalmostsound: it enjoys subject reduction andpartial progress proper-
ties. This is proven using Wright and Felleisen’s standard syntactic approach [27].

This lemma states that turning a well-typed syntactic valueinto a semantic value always succeeds,
and is a type-preserving operation.

Lemma 2.1 LetΓ ⊢ S : τ ′ andΓ ⊢ v : τ . Then,S(v) is defined, and⊢ S(v) : τ holds. ⋄

Proof. The proof is by induction on the structure ofv.

◦ Casev ≡ x. The hypothesisΓ ⊢ x : τ implies thatx is in the domain ofΓ. The hypothesis
Γ ⊢ S : τ ′, together with an inspection of the five typing rules for stacks, implies that every variable
in the domain ofΓ must be in the domain ofS. Hence,S cannot be the empty stackǫ. Two sub-cases
arise.

Sub-caseS ≡ (S′; x = w). Then,S(x) is defined asw. Since the domains ofΓ andS match, and
sinceΓ ⊢ x : τ holds,Γ must be of the form(Γ′, x : τ). By inverting TS-LET-RIGHT, Γ ⊢ S : τ ′ gives
⊢ w : τ .

Sub-caseS ≡ (S′; F), whereF 6≡ (x = w). Then,S(x) is defined asS′(x). Since the domains of
Γ andS match,Γ must be of the form(Γ′, Γ′′), whereΓ′′ does not definex, so thatΓ′ ⊢ x : τ holds. By
inverting one of the four typing rules for non-empty stacks,the hypothesisΓ ⊢ S : τ ′ givesΓ′ ⊢ S : τ ′′,
for some typeτ ′′. By the induction hypothesis, we obtain thatS′(x) is defined and that⊢ S′(x) : τ
holds.

◦ Casesv ≡ (), v ≡ (v1, v2), andv ≡ K v1. Immediate.

8

◦ Casev ≡ 〈x〉 v1. By inverting T-ABS, the hypothesisΓ ⊢ v : τ gives τ ≡ 〈atom〉 τ1 and
Γ ⊢ x : atom andΓ ⊢ v1 : τ1, for some typeτ1. By the induction hypothesis,S(x) is defined and
⊢ S(x) : atom holds, which implies thatS(x) is an atoma. By the induction hypothesis again,S(v1)
is defined and⊢ S(v1) : τ1 holds. There follows thatS(v), which by definition is〈S(x)〉S(v1), is a
well-formed semantic value. Furthermore, by applying T-ABS, we find that⊢ 〈S(x)〉S(v1) : τ holds.�

Theorem 2.2 (Subject reduction)A well-typed configuration can reduce only to a well-typed configu-
ration. That is,⊢ c1 ok andc1 −→ c2 imply⊢ c2 ok. ⋄

Proof. By cases over the reductionc1 −→ c2. I refer to the rule numbers in Figure 2 and use the
notations in that figure.

◦ Case(1). By inverting TS-CONF-EXPR, the hypothesis⊢ c1 ok yieldsΓ ⊢ S : τ andΓ ⊢ v : τ .
By Lemma 2.1, this implies⊢ S(v) : τ , which by TS-CONF-VAL implies⊢ c2 ok.

◦ Cases(2), (3), (4). Analogous to case (6).

◦ Case(5). By inverting TS-CONF-EXPR, we findΓ ⊢ S : τ . By applying T-NEXT, we have
Γ ⊢ next : τ . These imply⊢ S/next ok.

◦ Case(6). By inverting T-CASE and T-ABS, we find Γ ⊢ S : τ andΓ ⊢ v : 〈atom〉 τ2 and
Γ, x1 : atom, x2 : τ2 ⊢ e : τ . By Lemma 2.1, the first two of these imply⊢ S(v) : 〈atom〉 τ2. By
exploiting the hypothesisS(v) = 〈a〉w and by inverting TS-ABS, we find⊢ w : τ2. By applying
TS-FRESHonce and TS-LET-RIGHT twice, we successively derive:

Γ ⊢ (S; a) : τ

Γ, x1 : atom ⊢ (S; a; x1 = a) : τ

Γ, x1 : atom, x2 : τ2 ⊢ (S; a; x1 = a; x2 = w) : τ

This implies⊢ S; a; x1 = a; x2 = w/e ok.

◦ Case(7). By inverting TS-CONF-EXPR and T-TRY, we findΓ ⊢ S : τ andΓ ⊢ e1 : τ and
Γ ⊢ e2 : τ . By applying TS-TRY, the first and last of these implyΓ ⊢ (S; e2) : τ . This implies
⊢ (S; e2)/e1 ok.

◦ Case(8). By inverting TS-CONF-EXPR and TS-TRY, we findΓ ⊢ S : τ andΓ ⊢ e : τ , which
imply ⊢ S/e ok.

◦ Case(9). By inverting TS-CONF-EXPR and one of the four typing rules for non-empty stacks, we
getΓ ⊢ S : τ , for some arbitraryΓ andτ . By applying T-NEXT, we haveΓ ⊢ next : τ . These imply
⊢ S/next ok.

◦ Case(10). Analogous to case (9).

◦ Case(11). Analogous to case (6).

◦ Case(12). By inverting TS-CONF-EXPR and T-IF, we get, among other hypotheses,Γ ⊢ S : τ
andΓ ⊢ e1 : τ . These imply⊢ S/e1 ok.

◦ Case(13). Analogous to case (12).

◦ Case(14). By inverting TS-CONF-EXPR and T-LETWHERE, we getΓ ⊢ S : τ2 andΓ ⊢ e1 : τ1

andΓ, x : τ1 ⊢ e2 : τ2. By applying TS-LET-LEFT, the first and last of these implyΓ ⊢ (S; x.e2) : τ1.
There follows⊢ (S; x.e2)/e1 ok.

◦ Case(15). By inverting TS-CONF-EXPR and T-CALL , we getΓ ⊢ S : τ2 andf : τ1 → τ2

andΓ ⊢ v : τ1. By Lemma 2.1, these imply⊢ S(v) : τ1. By applying TS-LET-RIGHT, we derive
Γ, x : τ1 ⊢ (S; x = S(v)) : τ2. By recalling the hypothesisfun f(x1) . . . = e and inverting T-DEF, we
getx1 : τ1 ⊢ e : τ2, whicha fortiori impliesΓ, x1 : τ1 ⊢ e : τ2. There follows⊢ (S; x1 = S(v))/e ok.

◦ Case(16). By inverting TS-CONF-VAL and TS-FRESH, we getΓ ⊢ S : τ and⊢ w : τ . There
follows ⊢ S/w ok.

◦ Case(17). By inverting TS-CONF-VAL and TS-LET-LEFT, we getΓ ⊢ S : τ andΓ, x : τ ′ ⊢ e : τ
and⊢ w : τ ′. By applying TS-LET-RIGHT, the first and last of these implyΓ, x : τ ′ ⊢ (S;x = w) : τ .
There follows⊢ (S; x = w)/e ok.

◦ Case(18). By inverting TS-CONF-VAL and TS-LET-RIGHT, we getΓ ⊢ S : τ and⊢ w : τ .
There follows⊢ S/w ok.

◦ Case(19). By inverting TS-CONF-VAL and TS-TRY, we getΓ ⊢ S : τ and⊢ w : τ . There
follows ⊢ S/w ok. �

9

Theorem 2.3 (Partial Progress)A well-typed, irreducible configuration is either a result,or of the
formS/absurd, or of the formS; a/w, wherea occurs free inw. ⋄

Proof. For configurations of the formS/e, by cases overe.

◦ Casee ≡ v. By inverting TS-CONF-EXPR, we getΓ ⊢ S : τ andΓ ⊢ v : τ . By Lemma 2.1, this
implies thatS(v) is defined. So, reduction rule 1 is applicable.

◦ Casee ≡ case p = v then e1. Four sub-cases arise, depending on the structure ofp. We deal with
the sub-case wherep ≡ 〈x1〉x2; the other sub-cases are analogous. By inverting T-CASE and T-ABS,
we findΓ ⊢ S : τ andΓ ⊢ v : 〈atom〉 τ2. By Lemma 2.1, these imply thatS(v) is defined and that
⊢ S(v) : 〈atom〉 τ2 holds. This implies thatS(v) is of the form〈a〉w, for some atoma, which, without
loss of generality, we can take to be fresh forS. So, reduction rule 6 is applicable.

◦ Casee ≡ absurd. This is one of the two kinds of blocked configurations allowed by the theorem’s
statement.

◦ Casee ≡ next. If S is the empty stackǫ, thenS/e is a result. Otherwise, one of reduction rule 8
and reduction rule 9 is applicable.

◦ Casee ≡ fail. If S is the empty stackǫ, thenS/e is a result. Otherwise, reduction rule 10 is
applicable.

◦ Casee ≡ try e1 else e2. Reduction rule 7 is applicable.

◦ Casee ≡ fresh x in e1. Reduction rule 11 is applicable.

◦ Casee ≡ if x1 = x2 then e1 else e2. By inverting TS-CONF-EXPR and T-IF, we getΓ ⊢ S : τ
andΓ ⊢ x1 : atom andΓ ⊢ x2 : atom. By Lemma 2.1, these imply thatS(x1) andS(x2) are defined
and have typeatom, which means that they are atomsa1 anda2. So, one of reduction rule 12 and
reduction rule 13 is applicable.

◦ Casee ≡ let x where C = e1 in e2. Reduction rule 14 is applicable.

◦ Casee ≡ f(v). By inverting TS-CONF-EXPR and T-CALL , we getΓ ⊢ S : τ andΓ ⊢ v : τ1. By
Lemma 2.1, these imply thatS(v) is defined. So, reduction rule 15 is applicable.

For configurations of the formS/w, by cases overS.

◦ CaseS ≡ ǫ. Then,S/w is a result.

◦ CaseS ≡ (S; a). If a is fresh forw, then reduction rule 16 is applicable. Otherwise, this is one of
the two kinds of blocked configurations allowed by the theorem’s statement.

◦ CaseS ≡ (S; x.e1). Reduction rule 17 is applicable.

◦ CaseS ≡ (S; x = w1). Reduction rule 18 is applicable.

◦ CaseS ≡ (S; e1). Reduction rule 19 is applicable. �

The statement of Theorem 2.3 pinpoints the basic issue that this paper addresses: a conventional
type system does not guarantee that a Pure FreshML program cannot go wrong. A well-typed Pure
FreshML programcango wrong, either by attempting to execute anabsurd statement, or by letting a
fresh-bound atom escape its static scope.

3 Constraints

I now present the constraint logic and the decision procedure for entailment problems that underlie Pure
FreshML’s proof system. This is done in several steps. I firstintroduce the syntax and interpretation of
constraints (§3.1). Then, I present a sound, conservative decision procedure for entailment problems. It
is defined via a reduction to SAT, in three steps: eliminationof all value equations (§3.2), elimination of
all applications offa (§3.3), and switch from the Boolean algebraP(A) to the Boolean algebraB (§3.4).
The decision procedure is sound, but incomplete. There are two sources of incompleteness, discussed
in §3.2 and§3.3.

3.1 Syntax and interpretation

Syntax Here is the syntax ofset expressionss andconstraintsC:

s ::= fa(v) | ∅ | A | s ∩ s | s ∪ s | ¬s
C,H ::= s = ∅ | s 6= ∅ | v = v | C ∧ C

10

I use the following sugar:

s1 \ s2 stands fors1 ∩ ¬s2

falsestands forA = ∅
true stands for∅ = ∅

s1 ⊆ s2 stands for(s1 ∩ ¬s2) = ∅
s1 = s2 stands for(s1 ⊆ s2) ∧ (s2 ⊆ s1)
s1 # s2 stands for(s1 ∩ s2) = ∅

Set expressions denote sets of atoms, that is, elements of the Boolean algebraP(A), the powerset of
the set of atomsA. The most interesting form of set expression is the application of the mathematical
function fa to a valuev. (For now, only thefa function is made available, but other functions are
introduced in§5.) Set expressions can then be built up using the standard set-theoretic connectives
for the empty set of atoms, the full set of atoms, intersection, union, and negation. Constraints are
conjunctions ofatomic constraints: set emptiness (or non-emptiness) assertions and value equations.

Despite its name, Pure FreshML is animpurelanguage in the sense that thereis one side effect: non-
termination. For this reason, I follow standard practice and allow constraints to depend on variables,
and, more generally, on values, but never on arbitrary expressions.

Constraints are typed. For a constraintC to be well-typed under environmentΓ, (i) if a valuev
appears withinC, thenv must be well-typed underΓ, and (ii) if a value equationv1 = v2 appears within
C, thenv1 andv2 must have the same type underΓ. Throughout the paper, I manipulate constraints
without explicitly mentioning under which type environment Γ they are to be considered.

Interpretation A valuationρ respectsa type environmentΓ if it maps every variablex in the domain
of Γ to a semantic value of typeΓ(x). The satisfaction judgementρ ⊢ C is defined whenC is well-typed
underΓ andρ respectsΓ. I omit its formal definition. In short, the interpretation of a valuev underρ
is ρ(v) (Figure 1). The symbolfa maps the semantic values intoP(A). The set-theoretic connectives
and the set-theoretic atomic constraints are interpreted in the algebraP(A). Value equations are
interpreted in terms of equality of semantic values (which,at atom abstractions, involvesα-equivalence).
Satisfiabilityandentailmentare defined in the standard way. I write⊢ C whenC is satisfiable (that is,
when some valuation satisfiesC) andC1
 C2 whenC1 entailsC2 (that is, when every valuation that
satisfiesC1 also satisfiesC2).

3.2 Eliminating value equations

I first eliminate value equations, that is, I reduce general entailment and satisfiability problems down to
problems that involve no value equations. The reduction is sound, and incomplete.

I assume that the right-hand side of every entailment problem is a set constraint (as opposed to a
value equation). That is, a value equation can only be a hypothesis, not a goal. All problems emitted by
the proof system in§4 satisfy this assumption. Then, entailment problems are reduced to satisfiability
problems by exploiting the following facts:

C
 C1 ∧ C2 if and only if C
 C1 andC
 C2

C
 s = ∅ if and only if not ⊢ C ∧ s 6= ∅

C
 s 6= ∅ if and only if not ⊢ C ∧ s = ∅

I now explain how to reduce an arbitrary constraintC to a constraintC ′ that contains no value
equations, in such a way that, ifC is satisfiable, then so isC ′. This transformation issoundin the
sense that, modulo the reduction of entailment down to satisfiability, it leads to a conservative decision
procedure for entailment problems.

The idea is simple: first, examine the value equations inC and discover as many of their con-
sequences as possible, including new value equations and new set constraints; then, drop all value
equations.

11

Step 1 The first step can be viewed as a closure computation, defined by the following rules:

v1 = v2 → v2 = v1

v1 = v2 ∧ v2 = v3 → v1 = v3

(v1, v
′

1
) = (v2, v

′

2
) → v1 = v2 ∧ v′

1
= v′

2

K v1 = K v2 → v1 = v2

K1 v1 = K2 v2 → false if K1 6= K2

v1 = v2 → fa(v1) = fa(v2)

A rule C → C′ means: if the conjunctC exists, add the conjunctC′. The process is iterated until a
fixed point is reached. In practice, it can be implemented efficiently in terms of first-order unification
of values. It is clear that each of the rules preserves the interpretation of the constraint, so this step is
sound and complete. One rule that I have purposely omitted, because it is not interpretation-preserving,
is the following:

〈x1〉 v1 = 〈x2〉 v2 → x1 = x2 ∧ v1 = v2 (unsound)

This rule is incorrect, because equality of abstractions isnot syntactic—that is the whole point of ab-
stractions! The equation〈x1〉 v1 = 〈x2〉 v2 does have consequences, which can be stated as follows [25]:
first, the atomx1 is not in the support of the value〈x2〉 v2; second, the valuesv1 andv2 are images of one
another modulo swapping of the atomsx1 andx2. Because the second statement cannot be expressed
as a constraint, I pretend that the equation〈x1〉 v1 = 〈x2〉 v2 has no consequences. Thus, information is
lost in step 2 when this equation is dropped.

Step 2 The second step consists in dropping all value equations. Itis clearly sound. It is also incom-
plete, because of the missing closure rule for abstractions. In practice, I expect equations of the form
v1 = v2, where neitherv1 norv2 is a variable, to rarely arise. Indeed, they appear only whena value is
constructed and immediately deconstructed, a pattern thatseems unlikely to occur, at least in programs
written by humans.

3.3 Eliminating applications of fa

I now explain how to reduce a constraintC (without value equations) to a Boolean constraintC′ in such
a way that, ifC is satisfiable, thenC′ is satisfiable as well, when interpreted overP(A).

The syntax ofBoolean constraintsis as follows:

s ::= X | 0 | 1 | s ∧ s | s ∨ s | ¬s
C ::= s = 0 | s 6= 0 | C ∧ C

Here,X ranges over a new category ofBoolean variables. Boolean constraints can be interpreted over
any Boolean algebra. In particular, when they are interpreted overP(A), a Boolean variableX denotes
a set of atoms. (In that case, I also refer toX as aset variable.) When they are interpreted over the
two-point algebraB = {0, 1}, such a variable denotes a truth value.

An atomic constraint of the forms = 0 is positive; an atomic constraint of the forms 6= 0 is
negative. A conjunction of atomic constraints that contains at most one negative conjunct issimple.

In order to perform the reduction announced above, only one transformation is required: to replace
all applications of thefa symbol with set variables. This is done is two steps.

Step 1 First, applications offa are reduced:

fa(()) → ∅
fa((v1, v2)) → fa(v1) ∪ fa(v2)

fa(K v) → fa(v)
fa(〈x〉 v) → fa(v) \ fa(x)

As a result, only applications of the formfa(x) remain. It is clear that this simplification process
preserves the interpretation of constraints.

12

Step 2 Second, each occurrence offa(x), wherex has typeτ , is rewritten as follows:

1. if every semantic value of typeτ has empty support, thenfa(x) is replaced with∅;

2. if no semantic value of typeτ has empty support, thenfa(x) is replaced with a set variableX ,
and the conjunctX 6= ∅ is added to the constraint;

3. otherwise,fa(x) is replaced with a set variableX.

The basic idea behind this transformation resides in the third rule: fa(x) is considered an unknown set of
atoms, so a set variable, writtenX, is introduced to stand for it. (I assume a one-to-one correspondence
between variablesx and set variablesX.) The result is a Boolean constraint. Rules 1 and 2 are not
required for the transformation to be sound. Instead, they help bring it “closer to completeness”. I now
discuss each of these two rules, as well as the issue of incompleteness, in turn.

On “purity” Rule 1 states that, ifx has typeτ and if every value of typeτ has empty support, then
fa(x) must be empty. (Pitts and Gabbay [15] refer to such a typeτ as “pure”.) This is the case ifτ is
a base type, such asbool, int, or string. It is also the case ifτ is a data typeδ and if one can prove, by
structural induction, that all values of typeδ have empty support. Such a proof is easily automated, so
that it is decidable whether rule 1 is applicable.

This rule is generalized when functions other thanfa are introduced (§5). These new functions also
take the value∅ at certain types, and it is important for the system to know about it.

On “definite impurity” and absurdity Rule 2 is, in a way, the dual of rule 1. It is applicable, for
instance, ifτ is atom, or a data type of non-empty lists of atoms. In that case,fa(x) is replaced with a
set variableX , as in rule 3, but, in addition, the hypothesisX 6= ∅ is introduced.

This rule is important because it is the only source of negative hypotheses in the entire system. If
it was removed, then all of the entailment problems producedby the proof system would carry positive
hypotheses only. Why would that be a problem? Notice that thepositive Boolean constraints that the
system produces are somewhat peculiar. Because they exploit the connectives∅, ∪, \, but do not exploit
the connectivesA and¬, they are always satisfied by the valuation that maps every Boolean variable to
∅. This means that, in the absence of rule 2, the current set of hypothesesH would always be satisfiable.
So, the entailment assertionH
 falsewould never hold, and the expressionabsurd would never be
accepted by the proof system (see rule ABSURD in Figure 5). In short, negative hypotheses of the form
X 6= ∅ are required in order to establish absurdity.

Conversely, by the independence property of negative constraints, a negative hypothesis cannot help
establish a positive goal (unless it in fact establishes absurdity). So, if one is willing to accept the
postulate that the user should never write non-trivial codein a context whereabsurd is permitted, then
nothing is lost bynot exploiting the negative hypotheses when trying to establish a goalother than
absurdity. This remark is practically important, as it greatly reduces the number of problems that must
be presented to the SAT solver.

On incompleteness The transformation performed in the second step is not complete: it can turn an
unsatisfiable constraint into a satisfiable Boolean constraint. For instance, ifx, x1, andx2 have type
atom, then the constraint

fa(x1) # fa(x2) ∧
fa(x1) ∪ fa(x2) ⊆ fa(x)

is unsatisfiable, because it requiresfa(x) to have cardinal 2, which is impossible—the support of an
atom is a singleton. Yet, it is reduced to the Boolean constraint

X1 ∩ X2 = ∅ ∧
X1 ∪ X2 ⊆ X ∧
X 6= ∅ ∧ X1 6= ∅ ∧ X2 6= ∅

which is satisfiable overP(A)—takeX1 = {a1}, X2 = {a2}, andX = {a1, a2}, wherea1 anda2

are distinct atoms. In summary, the decision procedure doesdistinguish between empty and non-empty
sets of atoms, but is unable to reason about cardinality.

13

3.4 Satisfiability of Boolean constraints

I now focus on the satisfiability problem for Boolean constraints (as defined in§3.3) interpreted over
the Boolean algebraP(A).

Marriott and Odersky [10] have shown that any Boolean algebra of infinite height is weakly indepen-
dent. This means that satisfiability of arbitrary constraints reduces to satisfiability of simple constraints:

Lemma 3.1 LetC be a conjunction of positive atomic constraints. The constraint C ∧ s1 6= 0 ∧ . . . ∧
sn 6= 0, wheren > 0, is satisfiable overP(A) if and only if each of the simple constraintsC ∧ si 6= 0
is satisfiable overP(A). ⋄

There remains to explain how to decide whether a simple constraint is satisfiable. I establish the follow-
ing result:

Lemma 3.2 A simple constraint is satisfiable overP(A) if and only if it is satisfiable overB. ⋄

Proof. This result is known in the case of positive constraints [10]. So, let us consider a simple con-
straint of the formC ∧ s 6= 0, whereC is a conjunction of positive atomic constraints.

Assume thatC ∧ s 6= 0 is satisfiable overP(A). Then, there exists a valuationφ (a mapping of
the variables to subsets ofA) that satisfies it. We have, in particular,φ(s) 6= ∅, so there exists an atom
a ∈ φ(s). Let us now define a mappingf of P(A) ontoB as follows: for everyA ∈ P(A), f(A) is 1
if a ∈ A and0 otherwise. It is clear thatf is a homomorphism, that is,f preserves all of the Boolean
connectives. As a result, if a positive (atomic or non-atomic) constraint is satisfied overP(A) by φ,
then it is also satisfied overB by f ◦ φ. That is,f ◦ φ satisfiesC. Furthermore, by construction,f ◦ φ
satisfiess 6= 0: indeed,a ∈ φ(s) impliesf(φ(s)) = 1. We have proved thatC ∧ s 6= 0 is satisfiable
overB.

Conversely, pick an arbitrarya ∈ A. Then,B is isomorphic to the subalgebra{∅, {a}} of P(A).
Thus, any constraint (simple or not simple) that is satisfiable overB is also satisfiable overP(A). �

When interpreted overB, the atomic constraints 6= 0 is equivalent to(¬s) = 0. As a result, de-
termining whether a constraint is satisfiable overB is exactly the Boolean satisfiability problem SAT.
Today, moderate-size instances of this problem are easily solved using off-the-shelf tools such as Chaff
and its variants [11]. I should point out that the problems that I generate are small: for instance, the sam-
ple programs in§6 give rise to problems whose conjunctive normal forms exhibit at most 20 variables
and 80 clauses.

4 A proof system

I now define the proof system that lies at the heart of Pure FreshML. It can be viewed as an algorithm
that extracts proof obligations out of a Pure FreshML program. Each proof obligation is an entailment
problem and is discharged using the decision procedure of§3. As explained there, the decision proce-
dure needs access to type information. However, the proof systemper sedoes not, so I do not keep track
of types in this section.

4.1 Presentation

The proof system consists of three main judgements, which concern patterns, expressions, and function
definitions (Figure 5). In order to establish the soundness of the proof system, judgements on stacks and
configurations are also required (Figure 6).

Before explaining the judgements, it is worth stressing thedistinction between two distinct kinds
of freshness requirements. In Figures 5 and 6, a premise of the form “x fresh for . . .” is a standard
meta-theoreticfreshness requirement, bearing on themeta-variablex. Such a requirement, found in all
type systems or proof systems, is satisfied by ensuring that “all names are distinct” in the program, and
can safely be ignored by the casual reader. On the other hand,formulas of the form “fa(x) # . . .” are
constraintsspecific to this paper, bearing on thevalue denoted byx. They are explicit hypotheses or
goals and are eventually transmitted to the decision procedure for entailment problems.

14

ABSTRACTION-PATTERN

∆ ⊢ {fa(x1) # fa(∆)} 〈x1〉x2 {fa(x1) # fa(·)}

OTHER-PATTERN

p 6≡ 〈x1〉x2

∆ ⊢ {true} p {true}

VALUE

H
 P (v)

∆ ⊢ {H} v {P}

CASE

dom(p) fresh for∆, H, v, P ∆ ⊢ {H ′} p {P ′}
∆, dom(p) ⊢ {H ∧ H ′ ∧ p = v} e {P ∧ P ′}

∆ ⊢ {H} case p = v then e {P}

ABSURD

H
 false

∆ ⊢ {H} absurd {P}

NEXT

∆ ⊢ {H} next {P}
FAIL

∆ ⊢ {H} fail {P}

TRY

∆ ⊢ {H} e1 {P}
∆ ⊢ {H} e2 {P}

∆ ⊢ {H} try e1 else e2 {P}

FRESH

x fresh for∆, H, P
∆, x ⊢ {H ∧ fa(x) # fa(∆)} e {P ∧ fa(x) # fa(·)}

∆ ⊢ {H} fresh x in e {P}

IF

∆ ⊢ {H ∧ fa(x1) = fa(x2)} e1 {P}
∆ ⊢ {H ∧ fa(x1) # fa(x2)} e2 {P}

∆ ⊢ {H} if x1 = x2 then e1 else e2 {P}

LETWHERE

x fresh for∆, H, P ∆ ⊢ {H} e1 {λx.C}
∆, x ⊢ {H ∧ C ∧ fa(x) ⊆ fa(∆)} e2 {P}

∆ ⊢ {H} let x where C = e1 in e2 {P}

CALL

H
 pre(f)(v)
H
 post(f)(v, ·) ⇒ P

∆ ⊢ {H} f(v) {P}

DEF

x1 ⊢ {C1} e {λx2.C2} pre(f) = λx1.C1

post(f) = λ(x1, x2).(C2 ∧ fa(x2) ⊆ fa(x1))

⊢ fun f(x1 where C1) : x2 where C2 = e

Figure 5: The proof system (source-level objects)

STK-NIL

⊢ ǫ {true}

STK-FRESH

⊢ S {P}

⊢ (S; a) {P ∧ a # fa(·)}

STK-LET-LEFT

∆ = dom(S) x fresh for∆, P
⊢ S {P} ∆, x ⊢ {S ∧ C} e {P}

⊢ (S; x.e) {λx.C}

STK-LET-RIGHT

x fresh forP ⊢ S {P}

⊢ (S;x = w) {P}

STK-TRY

∆ = dom(S) ⊢ S {P}
∆ ⊢ {S} e {P}

⊢ (S; e) {P}

CONF-EXPR

∆ = dom(S) ⊢ S {P}
∆ ⊢ {S} e {P}

⊢ S/e ok

CONF-VAL

⊢ S {P} S
 P (w)

⊢ S/w ok

Figure 6: The proof system (semantic objects)

15

Expressions Judgements about expressions are of the form∆ ⊢ {H} e {P}. ∆ is a set of all variables
currently in scope, and includes the free variables ofe. I implicitly assume thate is well-typed under a
type environment whose domain is∆. H is a constraint. It represents a precondition, that is, a hypoth-
esis. (I useC andH for constraints.)P is a predicate: a constraint, parameterized over one variable.
It represents a postcondition, that is, a goal. The use of triples of a precondition, a program fragment,
and a postcondition dates back to Hoare. More recently, Honda and Yoshida [7] have developed a proof
system whose triples take the same form as mine.

I sometimes explicitly writeλx.C for a parameterized constraint: then, the parameterx stands for
the result of the expressione. WhenP is λx.C, I write P (v) for [x 7→ v]C, wherev is a value. I write
C[·] for the predicateλx.C[x], wherex is chosen fresh forC. I write true for the predicateλx.true. I
write P1 ∧ P2 for the predicateλx.(P1(x) ∧ P2(x)), wherex is fresh forP1 andP2.

In an algorithmic reading of the definition, all four components (∆, H , e, andP) should be consid-
ered inputs. The output of the algorithm consists in the proof obligations carried by the leaves of the
derivation (VALUE, ABSURD, CALL).

Rule VALUE states that the triple{H} v {P} is satisfied if and only if the preconditionH entails
that the valuev satisfies the postconditionP . Its premise, an entailment judgement, represents a proof
obligation.

Rule FRESHaugmentsH with the hypothesisfa(x) # fa(∆). (I write fa(∆) for the symbolic union
of all fa(y), wherey ranges over∆.) This means that the support ofx can safely be assumed disjoint
with the support of every pre-existing variable. FRESH also augments the postcondition with the new
goal fa(x) # fa(·), that is, the atomx should not appear in the support of the result that is eventually
produced by thefresh construct. This goal clearly reflects the side condition of reduction rule 16.

Rule CASE describes what can be assumed, and what must be proved, when avaluev is successfully
matched against a patternp. First, the equationp = v can be assumed. Second, an extra hypothesisH ′

and an extra goalP ′ are derived from the patternp, using either ABSTRACTION-PATTERN or OTHER-
PATTERN. Whenp is an abstraction pattern〈x1〉x2, H ′ states thatx1 can be assumed to be fresh and
P ′ states thatx1 must not appear in the result of evaluatinge, just as ifx1 wasfresh-bound. Whenp is
another pattern form,H ′ andP ′ are empty. (The symbol≡ means “is of the form”.)

Rule ABSURD emits a proof obligation that requires the current hypothesis to be inconsistent. This
ensures that theabsurd statement is unreachable.

Rules NEXT and FAIL state that the exceptionsnext andfail can be used in an arbitrary context, with
no proof obligation whatsoever. Rule TRY requires both branches to satisfy the Hoare triple. The fact
that the second branch is executed only if the first branch raisesnext is not reflected in the current proof
system. When thetry construct is used to encode surface-levelcase constructs, this means that each
branch of acase construct is analyzed in isolation, without regard for the patterns that guard previous
branches.

Rule IF augmentsH, in each branch, with a constraint that reflects the outcome of the dynamic
test. Becausex1 andx2 have typeatom, fa(x1) # fa(x2) is equivalent to, and can be used instead of,
fa(x1) 6= fa(x2), a disequation that the constraint language is not directlyable to express.

Rule LETWHERE usesλx.C, whereC is supplied by the user, as a postcondition fore1, and makes
C ∧ fa(x) ⊆ fa(∆) a new hypothesis for the continuatione2. Within e2, nothing else is known about
x. Thus, an appropriate choice ofC is important. As noted earlier, I do not attempt toinfer a strongest
postcondition fore1.

Rule CALL emits two proof obligations. One checks thatf ’s precondition is satisfied by the actual
argumentv. The other checks that the postconditionP of the call statement is implied byf ’s postcon-
dition. In the second premise, I use the notationH
 P1 ⇒ P2, whereH is a constraint andP1, P2 are
predicates, to denote the fact that, under hypothesisH , predicateP1 is stronger thanP2. This can also
be writtenH
 ∀x.P1(x) ⇒ P2(x), or, equivalently,H ∧ P1(x)
 P2(x), for a freshx.

Function definitions Rule DEF states that the body of a function must be checked under the precon-
dition C1 and postconditionC2 that were provided by the user. It also defines the notations “pre(f)”
and “post(f)” used in rule CALL . One interesting point is thatpost(f) contains not onlyC2, but also
fa(x2) ⊆ fa(x1). This means that, at every call site, the support of the result can be assumed to be a
subset of the support of the argument. This assumption comes“for free”. It is, in fact, a consequence of
the fact that toplevel functions must have empty support. Itis justified by Lemma 4.4.

Judgements about function definitions take the form⊢ fd . The entire program is accepted by the
proof system if and only if every single function definition is.

16

Stacks and configurations In order to establish the soundness of the proof system, the system must
be extended to stacks and configurations. This is done in Figure 6. The judgement⊢ S {P} states that
the stackS expects a result that satisfies the predicateP .

In these rules and in the soundness proof, I use constraints that mix syntactic elements (values) and
semantic elements (semantic values). For instance, rule STK-FRESHstates that the stack(S; a) expects
a result that is fresh for the atoma. I also view a stackS as a constraint, obtained as the conjunction of all
equations of the formx = w found withinS. For instance, in the last premise of rule STK-LET-LEFT,
the precondition under whiche is checked isS ∧ C.

4.2 Soundness

Lemma 4.1 (Precondition Strengthening)H ′

 H and∆ ⊢ {H} e {P} imply∆ ⊢ {H ′} e {P}. ⋄

Proof. By a straightforward induction over the derivation of∆ ⊢ {H} e {P}. �

Lemma 4.2 (Postcondition Weakening)H
 P ⇒ P ′ and∆ ⊢ {H} e {P} imply∆ ⊢ {H} e {P ′}.⋄

Proof. By a straightforward induction over the derivation of∆ ⊢ {H} e {P}. �

Lemma 4.3 (Environment Widening) ∆′ ⊇ ∆ and∆ ⊢ {H} e {P} imply∆′ ⊢ {H} e {P}. ⋄

Proof. By a straightforward induction over the derivation of∆ ⊢ {H} e {P}. In case FRESH, note that
widening∆ leads to strengthening the constraintH ∧ fa(x)# fa(∆), so that applying Lemma 4.1 to the
second premise, in conjunction with the induction hypothesis, yields the result. �

The following lemma states that, if an expressione is accepted at all by the proof system, then the
system is in fact sufficiently strong to prove that the atoms that appear free in the result of evaluatinge
must also appear free in the initial evaluation environment. In other words, evaluating a provably correct
expressione does not cause any new atoms to appear.

Lemma 4.4 (No Atoms Made Up)∆ ⊢ {H} e {P} implies∆ ⊢ {H} e {P ∧ fa(·) ⊆ fa(∆)}. ⋄

Proof. By induction over the derivation of∆ ⊢ {H} e {P}. I adopt the notations of Figure 5. I exploit
the implicit hypothesis that the free variables ofe form a subset of∆.

◦ CaseVALUE. One first shows that, when the free variables ofv form a subset of∆, the constraint
fa(v) ⊆ fa(∆) is valid, that is, satisfied by every valuation. The proof of this fact is by structural
induction overv, and is immediate. As a result of this fact, VALUE ’s premiseH
 P (v) implies
H
 P (v) ∧ fa(v) ⊆ fa(∆). By applying VALUE, we get∆ ⊢ {H} v {P ∧ fa(·) ⊆ fa(∆)}.

◦ CaseCASE. As above, the constraintfa(v) ⊆ fa(∆) is valid. Let∆′ stand for(∆, dom(p)). Then,
applying the induction hypothesis to CASE’s third premise yields

∆′ ⊢ {H ∧ H ′ ∧ p = v} e {P ∧ P ′ ∧ fa(·) ⊆ fa(∆′)}

We will now show that, underp = v, the predicateP ′ ∧ fa(·) ⊆ fa(∆′) entailsfa(·) ⊆ fa(∆). To do so,
we consider two sub-cases.

Sub-casep ≡ 〈x1〉x2. By inverting ABSTRACTION-PATTERN, we find thatP ′ is fa(x1)# fa(·). As
a result, the predicate

P ′ ∧ fa(·) ⊆ fa(∆′)

can be written
fa(x1) # fa(·) ∧ fa(·) ⊆ fa(∆, x1, x2)

which is equivalent to
fa(·) ⊆ fa(∆, x2) \ fa(x1)

Furthermore, the constraintp = v entailsfa(x2) \ fa(x1) = fa(v), so that, underp = v, the above
predicate entails

fa(·) ⊆ fa(∆) ∪ fa(v)

which is equivalent to
fa(·) ⊆ fa(∆)

17

This ends the first sub-case.
Sub-casep 6≡ 〈x1〉x2. A case analysis overp shows thatp = v entailsfa(dom(p)) = fa(v), whence

fa(∆′) = fa(∆). As a result, underp = v, the predicatefa(·) ⊆ fa(∆′) entailsfa(·) ⊆ fa(∆). This ends
the second sub-case.

We now apply Lemma 4.2, which yields

∆′ ⊢ {H ∧ H ′ ∧ p = v} e {P ∧ P ′ ∧ fa(·) ⊆ fa(∆)}

There only remains to apply CASE to conclude

∆ ⊢ {H} case p = v then e {P ∧ fa(·) ⊆ fa(∆)}

◦ CasesABSURD, NEXT, FAIL . Immediate.

◦ CasesTRY, IF. Apply the induction hypothesis and conclude.

◦ CaseFRESH. Analogous to the first sub-case of case CASE.

◦ CaseLETWHERE. Applying the induction hypothesis to the second premise yields

∆, x ⊢ {H ∧ C ∧ fa(x) ⊆ fa(∆)} e2 {P ∧ fa(·) ⊆ fa(∆, x)}

It is clear thatfa(x) ⊆ fa(∆) entailsfa(∆, x) = fa(∆), so, by applying Lemma 4.2 to the above, we
get:

∆, x ⊢ {H ∧ C ∧ fa(x) ⊆ fa(∆)} e2 {P ∧ fa(·) ⊆ fa(∆)}

By applying LETWHERE, we conclude:

∆ ⊢ {H} let x where C = e1 in e2 {P ∧ fa(·) ⊆ fa(∆)}

◦ CaseCALL . Let the definition of the functionf be

fun f(x1 where C1) : x2 where C2 = e

Then, by inverting DEF, we find

post(f) = λ(x1, x2).(C2 ∧ fa(x2) ⊆ fa(x1))

which means thatpost(f)(v, ·) entailsfa(·) ⊆ fa(v). As in previous cases, the constraintfa(v) ⊆ fa(∆)
is valid, sopost(f)(v, ·) entailsfa(·) ⊆ fa(∆). By applying CALL , we conclude:

∆ ⊢ {H} f(v) {P ∧ fa(·) ⊆ fa(∆)} �

The combination of the type system and proof system is sound with respect to the operational se-
mantics. This is proven via standard subject reduction and progress results. A configuration isvalid
when it is accepted by the type system and proof system.

Theorem 4.5 (Subject Reduction)A valid configuration can reduce only to a valid configuration.
That is,⊢ c1 ok andc1 −→ c2 imply⊢ c2 ok. ⋄

Proof. By cases over the reductionc1 −→ c2. I refer to the rule numbers in Figure 2 and use the
notations in that figure. In every case,∆ stands fordom(S).

◦ Case(1). By inverting CONF-EXPR and VALUE, we get⊢ S {P} andS
 P (v). The latter
impliesS
 P (w), wherew = S(v). By applying VALUE and CONF-VAL , we find⊢ S/w ok.

◦ Case(3). By inverting CONF-EXPR, CASE, and OTHER-PATTERN, we get

⊢ S {P}

x1, x2 fresh for∆, v, P

∆, x1, x2 ⊢ {S ∧ (x1, x2) = v} e {P}

Due to the hypothesisS(v) = (w1, w2), and to the fact thatx1 andx2 are fresh for∆ andv, the
constraintS ∧ (x1, x2) = v is equivalent toS; x1 = w1;x2 = w2. Thus, by Lemma 4.1, we have

∆′ ⊢ {S′} e {P}

18

where∆′ stands for∆, x1, x2 andS′ stands forS; x1 = w1; x2 = w2. Furthermore, thanks to the
hypothesis⊢ S {P} and to the fact thatx1 andx2 are fresh forP , we have

⊢ S′ {P}

By applying CONF-EXPR, we finally obtain⊢ S′/e ok.

◦ Cases(2), (4), (5). Analogous to case (3).

◦ Case(6). Analogous to a combination of cases (3) and (11).

◦ Case(7). By inverting CONF-EXPR and TRY, we get

⊢ S {P}

∆ ⊢ {H} e1 {P}

∆ ⊢ {H} e2 {P}

By applying STK-TRY and CONF-EXPR, we obtain⊢ (S; e2)/e1 ok.

◦ Case(8). By inverting CONF-EXPR and STK-TRY, we get

⊢ S {P}

∆ ⊢ {H} e {P}

By applying CONF-EXPR, we obtain⊢ S/e ok.

◦ Case(9). By inverting CONF-EXPR, we get

⊢ (S; F) {P}

By inverting one of STK-FRESH, STK-LET-LEFT, or STK-LET-RIGHT, we get

⊢ S {P ′}

for some predicateP ′. Now, by applying NEXT, we have

∆ ⊢ {S} next {P ′}

Finally, by applying CONF-EXPR, we obtain⊢ S/next ok.

◦ Case(10). Analogous to case (9).

◦ Case(11). By inverting CONF-EXPR and FRESH, we get

⊢ S {P}

x fresh for∆, P

∆, x ⊢ {S ∧ fa(x) # fa(∆)} e {P ∧ fa(x) # fa(·)}

Let S′ stand forS; a;x = a. Becausex is fresh for∆, we have

S′

 S

Becausea is fresh forS, we have
x = a
 fa(x) # fa(∆)

Furthermore, we have
x = a
 fa(x) # fa(·) ⇒ a # fa(·)

Thus, by applying Lemma 4.1 and Lemma 4.2, we obtain

∆, x ⊢ {S′} e {P ∧ a # fa(·)}

Besides, by applying STK-FRESHand STK-LET-RIGHT, we find

⊢ S′ {P ∧ a # fa(·)}

Finally, by applying CONF-EXPR, we obtain⊢ S′/e ok.

19

◦ Case(12). By inverting CONF-EXPR and IF, we get

⊢ S {P}

∆ ⊢ {S ∧ fa(x1) = fa(x2)} e1 {P}

Thanks to the hypothesesS(x1) = a1, S(x2) = a2, anda1 = a2, we have

S
 fa(x1) = fa(x2)

Thus, by Lemma 4.1, we have
∆ ⊢ {S} e1 {P}

By applying CONF-EXPR, we finally obtain⊢ S/e1 ok.

◦ Case(13). Analogous to case (12).

◦ Case(14). By inverting CONF-EXPR and LETWHERE, we get

⊢ S {P}

x fresh for∆, P

∆ ⊢ {S} e1 {λx.C}

∆, x ⊢ {S ∧ C ∧ fa(x) ⊆ fa(∆)} e2 {P}

By applying STK-LET-LEFT, we obtain

⊢ S′ {(λx.C) ∧ fa(·) ⊆ fa(∆)}

whereS′ stands forS; x.e2. Note that∆ = dom(S) = dom(S′). Furthermore, because the stacksS
andS′ give rise to the same constraint, we have

∆ ⊢ {S′} e1 {λx.C}

By Lemma 4.4, this implies

∆ ⊢ {S′} e1 {(λx.C) ∧ (fa(·) ⊆ fa(∆))}

By applying CONF-EXPR, we finally obtain⊢ S′/e1 ok.

◦ Case(15). By inverting CONF-EXPR and CALL , we get

⊢ S {P}

S
 pre(f)(v)

S
 post(f)(v, ·) ⇒ P

By inverting DEF, we get

x1 ⊢ {C1} e {λx2.C2}

pre(f) = λx1.C1

post(f) = λ(x1, x2).(C2 ∧ fa(x2) ⊆ fa(x1))

Without loss of generality, we pickx1 fresh for∆, v, P . Let S′ stand forS; x1 = S(v). By applying
STK-LET-RIGHT, we obtain

⊢ S′ {P}

Becausex1 is fresh forv, we haveS′(v) = S(v), which impliesS′

 x1 = v. Furthermore, because

x1 is fresh for∆, we haveS′

 S. As a result, we have

S′

 S ∧ x1 = v

 pre(f)(v) ∧ x1 = v

 pre(f)(x1)

= C1

20

Hence, by Lemma 4.1, we have
x1 ⊢ {S′} e {λx2.C2}

By Lemma 4.4, this implies

x1 ⊢ {S′} e {λx2.(C2 ∧ fa(x2) ⊆ fa(x1))}

that is,
x1 ⊢ {S′} e {post(f)(x1, ·)}

Again, underS′, x1 andv coincide, so this can be written:

x1 ⊢ {S′} e {post(f)(v, ·)}

By Lemma 4.2 and Lemma 4.3, this implies

∆, x1 ⊢ {S′} e {P}

By applying CONF-EXPR, we finally obtain⊢ S′/e ok.

◦ Case(16). By inverting CONF-VAL and STK-FRESH, we get

⊢ S {P}

S
 (P ∧ a # fa(·))(w)

In particular, we have
S
 P (w)

By applying CONF-VAL , we obtain⊢ S/w ok.

◦ Case(17). By inverting CONF-VAL and STK-LET-LEFT, we get

x fresh for∆, P

⊢ S {P}

∆, x ⊢ {S ∧ C} e {P}

S
 (λx.C)(w)

The last fact above implies
S′

 C

whereS′ stands forS; x = w. Furthermore, becausex is fresh for∆, we have

S′

 S

By Lemma 4.1, these imply
∆, x ⊢ {S′} e {P}

By applying STK-LET-RIGHT, we obtain
⊢ S′ {P}

By applying CONF-EXPR, we finally get⊢ S′/e ok.

◦ Case(18). By inverting CONF-VAL and STK-LET-RIGHT, we get

x fresh forP

⊢ S {P}

S;x = w′

 P (w)

The first and last of these imply
S
 P (w)

By applying CONF-VAL , we get⊢ S/w ok.

◦ Case(19). By inverting CONF-VAL and STK-TRY, we get

⊢ S {P}

S; e
 P (w)

The last of these implies
S
 P (w)

By applying CONF-VAL , we get⊢ S/w ok. �

21

Theorem 4.6 (Progress)A valid, irreducible configuration is a result. ⋄

Proof. By Theorem 2.3, only two cases need be examined and ruled out.

◦ CaseS/absurd. By inverting CONF-EXPR and ABSURD, we getS
 false. Yet, a stackS, when
viewed as a constraint, is a satisfiable constraint, sinceS is its own satisfying valuation. A contradiction
follows.

◦ CaseS; a/w, wherea occurs free inw. By inverting CONF-VAL and STK-FRESH, we get, in
particular:

S
 (P ∧ a # fa(·))(w)

This implies that the ground constrainta # fa(w) is valid, that is,a is fresh forw. This contradicts our
hypothesis thata occurs free inw. �

Corollary 4.7 (Soundness)A valid configuration cannot go wrong. ⋄

Proof. By Theorem 2.2 and Theorem 4.5, a valid configuration can reduce only to a valid configuration.
By Theorem 4.6, a valid, irreducible configuration is a result. Together, these facts imply that a reduction
sequence out of a valid configuration must either diverge or converge to a result. In other words, such a
sequence cannot go wrong, that is, lead to an irreducible configuration that is not a result. �

5 Extensions

I now informally present Cαml-style abstractions and generalized algebraic data types, which, for the
sake of simplicity, I omitted in the formal presentation of the proof system.

5.1 Cαml-style abstractions

Presentation I have advocated elsewhere [16] that FreshML’s binary abstraction construct〈x〉 e is
too limited for many practical uses. Fresh Objective Caml’smore general construct〈e1〉 e2 is also
inconvenient, because it requires structuring every abstraction as apair whose left-hand componente1

holdsall binding occurrences of atoms (andonlythem) and whose right-hand componente2 corresponds
to the scope of the abstraction. This construct cannot express such typical idioms as lists of bindings,
environments, etc. For this reason, Cαml [16] offers a richer binding specification language, which Pure
FreshML can adopt. In principle, the syntax of values becomes:

v ::= x | () | (v, v) | K v | 〈v〉 | inner v | outer v

In my prototype implementation, the angle brackets〈·〉 as well as theinner andouter keywords appear
only in algebraic data type declarations, and become implicitly attached to data constructors. This
allows omitting them in the actual syntax of values.

Two kinds of values are distinguished, called “expressions” and “patterns” in [16]. (Better termi-
nology would be needed.) Inside the former, an occurrence ofan atom is regarded as afreeoccurrence.
Inside the latter, an occurrence of an atom is interpreted asabindingoccurrence. The abstraction former
〈·〉, which is now unary, expects a “pattern” and constructs an “expression”. Conversely, the keywords
inner and outer expect an “expression” and construct a “pattern”. They serve to end an enclosing
abstraction, that is, they mean: “as far as the current abstraction is concerned, there are no binding
occurrences of atoms below this point”. In addition,inner (resp.outer) indicates that the value that
follows lieswithin (resp.outside) the scope of the abstraction.

Due to space constraints, it is impossible to repeat here a full explanation of Cαml’s binding speci-
fication language. The reader is referred to the existing paper [16] as well as to the examples contained
in the present paper (§6). For instance, the definition of the data constructorLamon line 3 of Figure 8
illustrates the Cαml idiom for an abstraction that would be expressible in FreshML. The definition of
the data constructorL (line 7), together with the definition of the “pattern” typeenv (line 14), shows
how to define an abstraction that binds a statically unknown number of names. More explanations are
provided in§6.

22

fa(〈v〉) → outer(v) ∪ (inner(v) \ bound(v))

for f ∈ {fa, inner, outer, bound},
f(()) → ∅

f((v1, v2)) → f(v1) ∪ f(v2)
f(K v) → f(v)

for f ∈ {inner, outer, bound},
f(〈v〉) is undefined

fa(inner v) → fa(v)
fa(outer v) → fa(v)

inner(inner v) → fa(v)
inner(outer v) → ∅
outer(inner v) → ∅
outer(outer v) → fa(v)
bound(inner v) → ∅
bound(outer v) → ∅

Figure 7: Reducing applications of set functions to non-variables

Changes to Pure FreshML As far as Pure FreshML is concerned, the introduction of Cαml’s binding
specification language has relatively little impact. I focus, in the following, on the changes made to the
decision procedure and proof system.

The introduction of a richer binding specification languageaffects the way in which the support of
a value is computed. In particular, the support of an abstraction 〈v〉 satisfies the equation:

fa(〈v〉) = outer(v) ∪ (inner(v) \ bound(v))

Here,v is a value of “pattern” type. Its support is computed in termsof three auxiliary functions, whose
informal meaning is as follows:inner(v) (resp.outer(v)) is the combined support of the sub-values ofv
that appear below aninner (resp.outer) keyword, whilebound(v) is the set of atoms that have a binding
occurrence inv (not below aninner or outer keyword).

The syntax of set expressions (§3.1) is extended to includeinner(v), outer(v), andbound(v) for all
valuesv of “pattern” type, whilefa remains available at all types.

The simplification rules that define the meaning offa are modified so as to reflect the above equation,
and supplemented with new simplification rules forinner, outer, andbound. All updated rules appear
in Figure 7.

The technique that was used to eliminate applications offa to variables is extended to also deal with
applications ofouter, inner, andbound. Again, the type of the variable influences this step. In particular,
if x has typeatom, then bothinner(x) andouter(x) are empty, andbound(x) equalsfa(x). As a more
subtle example, ifx has typeenvas defined on line 14 of Figure 8, theninner(x) must be empty.

The universal lawf(x) ⊆ fa(x), wheref is any set function (here, one ofinner, outer, andbound)
is reflected by introducing an explicit constraint on the setvariables that stand forf(x) andfa(x).

The proof rules are almost unchanged. The only notable change is in rule ABSTRACTION-PATTERN

(Figure 5), which becomes:

ABSTRACTION-PATTERN’
∆ ⊢ {bound(x) # fa(∆)} 〈x〉 {bound(x) # fa(·)}

In short, the setfa(x1) of ABSTRACTION-PATTERN, which denotes a single atom, is replaced with the
setbound(p), which possibly denotes zero, one, or more atoms. This reflects the fact that an abstraction
now binds a set of atoms at once.

5.2 Generalized algebraic data types

Presentation So far, I have used traditional algebraic data types, where every data constructor carries
a signature of the formτ → δ (§2.3). In practice, it is sometimes useful to attachassertions, also known

23

asguards, with data constructors. This is done by letting every data constructorK carry a signature of
the more general form:

(x : τ where C) → δ

Here, the identifierx is bound in the constraintC. In type-theoretic terms, the data constructorK now
carries a dependent pair of a value of typeτ , referred to asx, and a proof (not represented at runtime,
of course) thatx satisfies the constraintC. For example, the typecontext(line 8 of Figure 9) is a
generalized algebraic data type. Its definition is explained further on (§6.2).

Changes to Pure FreshML The changes to the proof system are simple. An application ofK to a
valuev now gives rise to the proof obligationH
 [x 7→ v]C, whereH is the current hypothesis.
Conversely, matching against the patternK p augmentsH with the new conjunct[x 7→ p]C.

There is a slight catch, though. The semantics of FreshML dictates that, when an abstraction is
deconstructed via pattern matching, its bound atoms are replaced with fresh atoms (see reduction rule 6).
If, because of this renaming, the propertyC was broken, then the proof system would be unsound.

Could such a thing happen? In fact, not whenC has a single free variablex, as above. It is not
difficult to prove that, if a predicateλx.C is true of a valuev, then it is also true of any renaming
of v. Onecan get into trouble, however, when one allows guards to refer tomultiple variables, to
which distinct renamings could be applied. For instance, my prototype implementation allows data
constructors to carry multiple arguments, some of which canbe nested inside abstractions, so one might
attempt to write:

type dangerous=
| Danger of x: atom× 〈 y : atom 〉 where free (x) = free (y)

This is meaningless. Matching against the patternDanger(x, y) leavesx unmodified but renamesy to a
fresh atom, so the property thatx equalsy cannot possibly be preserved.

For this reason, such a declaration must be ruled out. I have not formalized how this is done, but the
informal rule is simple: a guard must not mix variables that originate in distinct abstractions.

6 Illustration

I now discuss two small but non-trivial example programs that are accepted by the proof system: nor-
malization by evaluation (Figure 8) and conversion toA-normal form (Figure 9).

The concrete syntax is that of my prototype implementation.As explained earlier (§2.1), what is
shown here issurfacesyntax. It is translated down to Pure FreshML before being passed on to the proof
system. The details of the translation are omitted.

The concrete syntax uses the keywordfree for fa.

6.1 Normalization by evaluation

I first explain how Shinwellet al.’s benchmark [23] is adapted to Pure FreshML. There are threemain
changes, which I now review.

Simulating first-class functions First, because my proof system does not yet have first-class func-
tions, I have defunctionalized [18] the code. That is, I havereplaced every first-class function with a
closure—a data structure formed of a tag and a tuple of the function’sfree variables.

Here, the effect of defunctionalization is that the data constructorL carries data—a triple of an
environment, an atom, and a term—instead of a first-class function. These three components correspond
to the three free variables of the function that was carried by L in the original code [23, figure 7, line
27]. Where a first-class function was applied in the originalcode [23, figure 7, lines 16 and 30], explicit
use is made of the closure—which boils down to a recursive call to evals(lines 22 and 51).

In order to simplify things a little, I have replaced the typeunit → sem[23, figure 7, line 8] with
just sem. This affects the termination of the algorithm, but makes essentially no difference as far as
proof obligations are concerned. Being faithful to the original code would have required introducing
one more data type and one more auxiliary function, with no pedagogic gain.

24

1 type lam =
2 | Var of atom
3 | Lam of 〈 atom× inner lam 〉
4 | App of lam × lam
5

6 type sem=
7 | L of 〈 env× atom× inner lam 〉
8 | N of neu
9

10 type neu =
11 | V of atom
12 | A of neu× sem
13

14 type env binds =
15 | ENil
16 | ECons of env× atom× outer sem
17

18 fun re i fy accepts s produces t =
19 case s of
20 | L (env, y , t) →
21 fresh x in
22 Lam (x , re i fy (evals (ECons (env, y , N (V (x))) , t)))
23 | N (n) →
24 rei fyn (n)
25 end
26

27 fun rei fyn accepts n produces t =
28 case n of
29 | V (x) →
30 Var (x)
31 | A (n, d) →
32 App (rei fyn (n) , re i fy (d))
33 end
34

35 fun evals accepts env, t produces v
36 where free (v) ⊆ outer (env) ∪ (free (t) \ bound(env)) =
37 case t of
38 | Var (x) →
39 case env of
40 | ENil →
41 N (V (x))
42 | ECons (ta i l , y , v) →
43 i f x = y then v
44 else evals (ta i l , t) end
45 end
46 | Lam (x , t) →
47 L (env, x , t)
48 | App (t1 , t2) →
49 case evals (env, t1) of
50 | L (cenv, x , t) →
51 evals (ECons (cenv, x , evals (env, t2)) , t)
52 | N (n) →
53 N (A (n, evals (env, t2)))
54 end
55 end
56

57 fun eval accepts t produces s =
58 evals (ENil , t)
59

60 fun normalize accepts t produces u =
61 re i fy (eval (t))

Figure 8: A sample program: normalization by evaluation

25

Specifying the binding structure of environments and closures Second, I have made essential use
of Cαml’s “binding specification” language. The definition of thetype lam is identical to Shinwellet
al.’s, modulo differences in notation. The key novelty is in thedefinition of the typeenv, which I have
made a “pattern type”, in Cαml parlance [16]—this is indicated by thebinds keyword on line 14 of
Figure 8. This means that, in an environment of the form

env= ECons(. . . ECons(ENil, x1, v1) . . . , xn, vn)

the atomsx1, . . . , xn are considered asbinding occurrences. Thus, by definition,bound(env) denotes
the set of atoms{x1, . . . , xn}, which one would usually refer to as thedomainof the environment.

According to theouter keyword in the definition ofECons(line 16), the semantic valuesv1, . . . , vn

are considered to lieoutsidethe scope of these atoms. Thus,outer(env) denotes the set of atomsfa(v1)∪
. . . ∪ fa(vn), which one might refer to as theimageof the environment.

What is the scope of the atomsx1, . . . , xn? According to theinner keyword in the definition ofL
(line 7), within a closure of the form

v = L(env, x, t)

the atoms inbound(env), as well as the atomx, are considered bound within theλ-term t. In particular,
this implies:

fa(v) = outer(env) ∪
(

fa(t) \ (bound(env) ∪ {x})
)

That is, the support of the closurev includes theimageof its environmentenv, as well as the atoms that
appear free in its bodyt and are neither in thedomainof envnor the formal argumentx.

This explains why the proof obligation associated with the deconstruction ofLam on line 46 suc-
ceeds. DeconstructingLamyields a “fresh” atomx, which one must prove does not appear in the support
of the right-hand sideL(env, x, t). The fact thatx is “fresh” means, in particular, thatx is not in the sup-
port of env, which by definition includesouter(env). By exploiting the above displayed equation, one
finds thatx is not in the support ofL(env, x, t), as desired. This fact is proved automatically by the
conservative decision procedure of§3.

The proof obligation on line 46 is interesting because it corresponds, in part, to the obligation that
FreshML 2000 was not able to automatically discharge [23, figure 7, lines 26–27]. By declaring that the
data constructorL carries an abstraction, I have been able to get away with the deconstruction ofLam.
Of course, as a result, new proof obligations appear wherever L is deconstructed (lines 20 and 50). Both
of these require exploiting a non-trivial property ofevals, which I now discuss.

Specifyingevals’ behavior with respect to support The functionevalsexpects a pair of an environ-
mentenvand a termt, and evaluatest within the context ofenv. As one might expect, any atom that
appears in the support oft as well as in thedomainof envis substituted out—which means that, ifevals
produces a resultv, then (line 36):

fa(v) ⊆ outer(env) ∪ (fa(t) \ bound(env))

This property is not automatically inferred by the system—it is a loop invariant—so it has to be explicitly
provided. Then, it is easily checked.

An alternative way of providing this information to the proof system would be to haveevalsaccept
anabstractionof type〈env× inner lam〉, instead of a pair of typeenv× lam. Then, no explicit postcon-
dition would be required: the support ofevals’ result would be simply the support of its argument. This
alternative style can seem attractive, but is less efficientif abstractions are blindly “freshened” when
deconstructed. I come back to this issue in§8.

This property is easily proved correct. Becauseevalsis recursive, the proof is “by induction”—that
is, the property is exploited in its own proof. This might seem surprising, because there is no guarantee
thatevalsterminates. This approach is sound, because the property isa partial correctness assertion: it
is a statement about the result ofevals, should it terminate.

6.2 Conversion toA-normal form

Figure 9 defines the abstract syntax of aλ-calculus equipped withlet and if constructs and gives an
algorithm that converts arbitrary terms toA-normal form, as defined by Flanaganet al. [5]. A-normal

26

1 type term =
2 | Var of atom
3 | Lambda of 〈 atom× inner term 〉
4 | App of term × term
5 | Let of 〈 atom× outer term × inner term 〉
6 | I f of term × term × term
7

8 type context binds =
9 | CEmpty

10 | CLet of x: atom× inner t : term × c : context
11 where free (t) # free (x) ∪ bound(c)
12 | CComposeof c1: context× c2: context
13 where inner (c1) # bound(c2)
14

15 type closure =
16 | Clo of 〈 context× inner term 〉
17

18 fun f i l l accepts clo produces u =
19 l e t Clo (c , t) = clo in
20 case c of
21 | CEmpty→
22 t
23 | CLet (x , t1 , c2) →
24 Let (x , t1 , f i l l (Clo (c2, t)))
25 | CCompose(c1, c2) →
26 f i l l (Clo (c1, f i l l (Clo (c2, t))))
27 end
28

29 fun norm accepts t produces u =
30 f i l l (sp l i t (t , false))
31

32 fun sp l i t accepts t , mode produces clo =
33 case t of
34 | Var () →
35 Clo (CEmpty, t)
36 | Lambda (x , t) →
37 Clo (CEmpty, Lambda (x , norm (t)))
38 | App (t1 , t2) →
39 l e t Clo (c1, u1) = sp l i t (t1 , true) in
40 l e t Clo (c2, u2) = sp l i t (t2 , true) in
41 l e t clo = Clo (CCompose(c1, c2) , App (u1, u2)) in
42 valuei fy (clo , mode)
43 | Let (x , t1 , t2) →
44 l e t Clo (c1, u1) = sp l i t (t1 , false) in
45 l e t Clo (c2, u2) = sp l i t (t2 , mode) in
46 Clo (CCompose(c1, CLet (x , u1, c2)) , u2)
47 | I f (t1 , t2 , t3) →
48 l e t Clo (c1, u1) = sp l i t (t1 , true) in
49 l e t clo = Clo (c1, I f (u1, norm (t2) , norm (t3))) in
50 valuei fy (clo , mode)
51 end
52

53 fun valuei fy accepts clo , mode produces clo =
54 i f mode then
55 l e t Clo (c , t) = clo in
56 fresh x in
57 Clo (CCompose(c , CLet (x , t , CEmpty)) , Var (x))
58 else
59 clo
60 end

Figure 9: A sample program: conversion toA-normal form

27

form requires operators of applications, operands of applications, and conditions ofif constructs to be
values, and forbids nesting oflet constructs towards the left.

Flanaganet al. provide a rather subtle conversion algorithm, expressed incontinuation-passing
style. I was surprised to find that this algorithm, once defunctionalized and translated to the input
language of my prototype implementation, requires only single-atom abstractions, as opposed to Cαml-
style abstractions, and gives rise to only a handful of proofobligations, all of which are trivial. This
algorithm is probably expressible in FreshML 2000 [15].

In order to make things more interesting, I present a different algorithm, expressed in direct style
(Figure 9). I would say that this algorithm is conceptually more straightforward than Flanaganet al.’s—
there are no continuations, no first-class functions, or defunctionalized versions thereof. Yet, it requires
advanced use of Cαml-style abstractions and of generalized algebraic data types, and gives rise to 17
proof obligations, many of which are non-trivial. This is because the algorithm makes explicit use of
contexts: the central function,split, produces a pair of a context—a sequence oflet definitions that are
being floated out—and a residual term. It is interesting thatan arguably more natural algorithm should
require a significantly more powerful proof system!

Contexts The abstract syntax of contexts is simple. It would be written, on paper, as follows:

c ::= [] | let x = t in c | c1[c2]

Intuitively, a context is just an ordered list of bindings ofthe form

let x1 = t1 in . . . let xn = tn in []

In the following, I refer to the set{x1, . . . , xn} as thedomainof such a context. In the code, things will
be set up so that the domain ofc is referred to asbound(c).

The first two productions in the above grammar would be sufficient to generate all lists of bindings.
The third production, which denotes list concatenation, isconceptually redundant, but allows constant
time composition of contexts.

The termc[t] obtained by filling contextc with termt would be defined, on paper, as follows:

[][t] = t
(let x = t1 in c)[t2] = let x = t1 in c[t2]

(c1[c2])[t] = c1[c2[t]]

This corresponds to functionfill (line 18). Context filling is, by design, acapturingoperation: any atom
that occurs free int and is in the domain ofc becomes bound in the termc[t]. It is important to note that
the atoms that form the domain ofc occurfree in c, that is, they are members offa(c). They become
boundonlywhenc is filled with a term.

Representing closures Several functions (fill , split, andvalueify) accept or return pairs of a contextc
and a termt, wheret is to be viewed as “within the contextc”. One cannot fuse the two by forming the
termc[t] right away because the inductive definition ofsplit requires individual access toc andt. They
are eventually fused whennorm, the algorithm’s main entry point, invokesfill (line 30).

What does it mean fort to be viewed as “within the contextc”? The answer is, even though one
has not yet filled the hole and formedc[t], onepromisesto do so in the future, so that the atoms in the
domain ofc canbe considered bound in the pair(c, t).

I formalize this intuition by wrappingc andt together in aclosure(line 15), that is, a Cαml-style
abstraction, where the atoms in the domain ofc are declared to be bound withint.

Representing contexts Because a context defines a set of atoms that are bound by theclosureabstrac-
tion, the typecontextmust be a “pattern” type, in Cαml parlance [16]. This is indicated by thebinds
keyword on line 8. The three data constructor declarations for CEmpty, CLet, andCComposereflect the
abstract syntax of contexts that was given earlier. Two non-trivial aspects, which I now explain, are the
use of theinner keyword (line 10) and of a guard (lines 11 and 13).

Sincetermis a Cαml “expression” type, whilecontextis a “pattern” type, thetermcomponent in the
declaration ofCLet must be preceded with one of theinner or outer keywords [16], so as to indicate

28

whether this term liesinsideor outsidethe scope of the abstractions in which contexts participate(here,
closures).

Which of the two keywords is appropriate here? Suppose I construct the closure

clo = Clo(c, t)

wherec is a context of the form

let x1 = t1 in . . . let xn = tn in []

Within this closure, should the termst1, . . . , tn lie insideor outsideof the scope of the atomsx1, . . . , xn?
Aha, that’s a trick question. One answer is,neither. Considering how thelet forms are nested, eachti
should lie within the scope of{x1, . . . , xi−1}.

If neither keyword is appropriate, are we out of luck? Is Cαml’s binding specification language too
crude for this application? No—there is a way out. I use theinner keyword, thuspretendingthat each
ti lies within the scope of{x1, . . . , xn}. Then, I add a side condition (line 11) stating thatti contains no
occurrence of the atoms{xi, . . . , xn}. The end effect is exactly what was needed! The side condition
carried byCCompose(line 13) serves the same purpose.

I don’t know how general this trick really is. I believe it is quite interesting, and could also be
useful in the setting of a proof assistant, should one attempt to mechanize, in a nominal style, proofs
that involve nested contexts.

The algorithm Once appropriate definitions of the typescontextandclosureare made, the code is
straightforward. In short,fill fills a contextc with a termt, producing a term.normaccepts a term and
produces itsA-normal form. split accepts a pair of a termt1 and a Boolean flagmodeand produces
a closureClo(c2, t2) such thatt1 is semantically equivalent toc2[t2] and, if modeis true, thent2 is a
value. valueifyaccepts a pair of a closureClo(c1, t1) and a Boolean flagmodeand produces a closure
Clo(c2, t2) such thatc1[t1] is semantically equivalent toc2[t2] and, if modeis true, thent2 is a value.
If modeis true, valueifydefinest2 to be a fresh variablex and floats the binding “let x = t1 in []” up
into the context (lines 56 and 57). It is essential to havevalueifyreturn a closure, as opposed to a pair
of a context and a term. Otherwise, the proof system would think thatx escapes the scope of thefresh

construct that created it.
The code gives rise to 17 proof obligations, all of which are successfully and automatically dis-

charged.
It is remarkable that there are no visible assertions in the code. Of course, this is an illusion, since

the numerous explicit uses ofClo are really annotations.

Introducing an error Imagine that, on line 46, the programmer is confused and writes

Clo (CCompose(c1, CCompose(c2, CLet (x , u1, CEmpty))) , u2)

That is, she constructs the contextc1[c2[let x = u1 in []]] instead ofc1[let x = u1 in c2].
This incorrect program is rejected. The current prototype implementation produces the following

error message:

File ”anf−direct . fml” , l ine 46, characters 25−60:
I am unable to prove that the following hypotheses:
inner (c1) ⊆ free (c1)
bound(c1) ⊆ free (c1)
bound(c2) ⊆ free (c2)
inner (c2) ⊆ free (c2)
free (?closure 1) = (inner (c2) ∪ free (u2)) \ bound(c2)
free (?closure) = (free (u1) ∪ inner (c1)) \ bound(c1)
free (t) = free (t1) ∪ free (t2) \ free (x)
bound(c2) # free (x) ∪ free (t) ∪ free (t1) ∪ free (t2)

∪ free (c1) ∪ free (u1) ∪ free (?closure)
∪ free (?closure 1)

free (?closure 1) ⊆ free (t2)
bound(c1) # free (x) ∪ free (t) ∪ free (t1) ∪ free (t2)

∪ free (?closure)

29

free (?closure) ⊆ free (t1)
free (x) # free (t)
enta i l the goal:
inner (c2) # free (x)
The reason why I am attempting to prove th is assertion is. . .
File ”anf−direct . fml” , l ine 46, characters 25−60:
I t is part of the invariant for data constructor CCompose.

The list of hypotheses is rather difficult to decipher. (The names?closureand?closure 1 stand for
the results of the two recursive calls tosplit. They are generated during the translation of the surface
language down to the kernel language described in this paper.) The proof system complains that, under
a certain set of hypotheses, it cannot proveinner (c2) # free (x). (This proof obligation corresponds
to the guard of the right-handCCompose.) This means that the atomx could appear free in the context
c2. This is true:c2 was constructed out oft2, which can contain free occurrences ofx. For this reason,
c2[let x = u1 in []] is not a well-formed context.

The quality of this error message could hopefully be improved. The point, for now, is that this
subtle programming error, which a standard type system would not have caught, is detected by the
proof system.

Note that the setsfree (mode), outer (c1), outer (c2) , etc. are not mentioned in any of the hypotheses.
By examining the types ofmode, c1, andc2, the system can tell that these sets are empty. (This was
discussed in§3.3.) This knowledge can be necessary for the proof obligations to go through, and helps
reduce visual clutter.

7 Related work

This paper was inspired by Pitts and Gabbay’s work on static “freshness inference” for FreshML [15].
Pitts and Gabbay’s algorithm attempts toinfer freshness assertions about values and expressions, or,
equivalently, to infer an approximation of the support of values and expressions. The proof system
presented in this paper is oriented purely towardschecking. It does not attempt to do any kind of
inference besides the simple type inference performed by the underlying type system. For this reason,
explicit assertions must sometimes be provided atlet constructs. I did initially attempt to infer an
approximation of the support of values and expressions, butI found that this approach was much more
complex and not worth the trouble.

The design of a dependent type system for an impure programming language was pioneered by
Xi [28]. The key insight that constraints can be dependent only on values, as opposed to arbitrary
computations, is exploited here.

Pašalić and Linger [13] exploit the programming languageΩmega to define a data type that rep-
resents the abstract syntax of an object language, expressed in de Bruijn notation. The data type is
parameterized in a way that guarantees that out-of-range deBruijn indices cannot be constructed. The
syntax of the object language includes non-trivial bindingstructures (patterns). Donnelly and Xi [4]
explore a similar approach in the programming language ATS.These are interesting ideas, but I believe
that the nominal programming style supported by FreshML is more natural and appealing than a de
Bruijn-based approach.

Scḧurmannet al.’s ∇-calculus [19] is a core meta-programming language where object-level terms
are encoded using higher-order abstract syntax. There are no object-level names: both object-level
and meta-level abstractions bind meta-variables. Object-level substitution is application of object-level
abstractions. A type system guarantees that meta-variables cannot escape their scope—which, in this
case, also means that object-level terms are lexically well-formed. It is quite different from the proof
system presented in this paper. The constructνx.e introduces a new meta-variablex and at the same
time requires the result of evaluatinge to depend only on meta-variables that were bound prior tox.
This requirement is encoded via stacks of typing contexts and via a “box” type constructor that prevents
exploiting the topmost context. This is quite impressive, but, again, I find nominal encodings much more
direct than higher-order abstract syntax encodings. The price to pay for the simpler, nominal approach
is the need to hand-code substitution functions, or to carryexplicit environments around.

MetaOCaml relies on environment classifiers [24] to tell which code fragments are closed. An
environment classifier is a type variable that abstracts a set of names. The code type constructor is pa-
rameterized with an environment classifier. This allows thetype system to keep track, in a conservative

30

way, of which names appear free in a code fragment. Closed code fragments are recognized by the
fact that they are polymorphic in their environment classifier. This approach seems coarser than that
followed in the present paper, but lends itself better to type inference techniques [2].

Nanevski’s calculusν� [12] is inspired by FreshML, and, like Pure FreshML, provides a static dis-
cipline for enforcing purity. This is done by explicitly keeping track of the support of every value, and
exploiting this information to ensure that freshly-created names do not escape. An important difference
betweenν� and Pure FreshML is thatν� lets thetype systemcarry the support information, by pa-
rameterizing the “code” type constructor with a set of names, while Pure FreshML relies on a separate
proof systemand requires no changes to the type system. I believe that thelatter approach is lighter (for
instance, Nanevski’s “support polymorphism” comes for free here) and potentially more expressive,
because constraints can express properties other than approximations of the support of certain values.
Another design difference is thatν� is ahomogeneous, multi-levelstaged programming language, while
FreshML is aheterogeneousmeta-programming language. This means, for instance, thatNanevski does
not distinguish between meta-levelλ-abstraction and object-level name abstraction.

Kim, Yi, and Calcagno [9] present a meta-programming language equipped with a type system
that uses rows to keep track of the free names of each code fragment. The language is not hygienic,
however—a code fragment can refer to the name “x” in a context where no such name was ever intro-
duced.

A line of works by Jacksonet al. [8, 26, 3] rely on a SAT solver to detect bugs in software. A finite
approximation of the procedure’s behavior is encoded as a formula in first-order relational logic. It is
then conjoined with the procedure’s precondition and with the negation of the procedure’s postcondition,
so as to look for executions that violate the procedure’s specification. The resulting formula in first-order
relational logic is translated down, under a finite bound on the size of its models, to propositional logic,
and handed to a SAT solver. This approach appears effective at finding bugs, but cannot prove their
absence.

8 Future work

Many features must be added in order to turn Pure FreshML intoa realistic meta-programming language.
Here are a few:

• First-class functions. I am confident that first-class functions can be introduced without difficulty.
This requires extending the grammar of types with function types, carrying a precondition and
a postcondition. Furthermore, Pitts and Gabbay [15] remarked that the support of a function is
a subset of the combined support of its free variables. This approximation can be exploited to
conservatively eliminate applications offa to λ-abstractions.

• Mutable state. Shared, modifiable references offer new ways for atoms to escape their scope.
Calcagnoet al. [1] attack the problem in the setting of MetaML and offer a solution that requires
references to containclosedcode fragments. An analogous restriction—to require references to
contain values ofempty support—would be easy to enforce in Pure FreshML, via proof obliga-
tions.

• Exceptions. Their addition should be unproblematic, provided that every function declares which
exceptions it can raise and (if necessary) provides postconditions for exceptional exits.

• Primitive operations. The language should provide sets of atoms, maps over atoms,etc. The
proof system should keep precise track of all operations over these data structures.

• Multiple sorts of atoms. Distinguishing multiple sorts of atoms is easy [16], useful, and, in the
setting of Pure FreshML, provides extra freshness assumptions for free: two atoms of distinct
sorts are automatically known to be fresh for one another.

• Polymorphism. Type polymorphism, sort polymorphism, and parameterizedalgebraic data types
are important features that I have left aside until now. Their combination with Cαml-style alge-
braic data types could raise non-trivial issues.

• Non-linear patterns. As noted by Pitts and Gabbay [15,§5.2], non-linear patterns sometimes offer
an elegant way of avoiding an explicit renaming. It would be interesting to extend the dynamic
semantics and the proof system with direct support for them.

31

• Safe non-freshening. The nominal approach to abstract syntax has been criticized for its runtime
cost.Freshening, that is, automatically replacing an abstraction’s bound atoms with fresh atoms
when that abstraction is inspected, is expensive. Furthermore, it can be unnecessary: sometimes,
there simply is no risk of inadvertent capture. I believe that a Pure FreshML compiler could
detect many such situations and produce efficient code (by performing no freshening) without
sacrificing safety.

• Typed abstract syntax. It is well-known that generalized algebraic data types [29] allow reflecting
the typing rules of a simply-typed object language into the meta-language. Combining this tech-
nique with Pure FreshML would lead to a meta-programming language that can only construct
lexically well-formedandwell-typedobject program fragments.

A mid-term goal is to design a realistic meta-programming language on top of Pure FreshML. In
order to ensure interoperability with existing libraries,it would be compiled down to Objective Caml,
using some of the techniques developed for Cαml [16].

References

[1] C. Calcagno, E. Moggi, and T. Sheard. Closed types for a safe imperative MetaML.Journal of Functional
Programming, 13(3):545–571, May 2003.

[2] C. Calcagno, E. Moggi, and W. Taha. ML-like inference forclassifiers. InEuropean Symposium on Pro-
gramming (ESOP), volume 2986 ofLecture Notes in Computer Science, pages 79–93. Springer Verlag, 2004.

[3] G. Dennis, F. Change, and D. Jackson. Modular verification of code with SAT. InInternational Symposium
on Software Testing and Analysis (ISSTA), July 2006.

[4] K. Donnelly and H. Xi. Combining higher-order abstract syntax with first-order abstract syntax in ATS. In
ACM Workshop on Mechanized Reasoning about Languages with Variable Binding, pages 58–63, 2005.

[5] C. Flanagan, A. Sabry, B. F. Duba, and M. Felleisen. The essence of compiling with continuations. InACM
Conference on Programming Language Design and Implementation (PLDI), pages 237–247, 1993.

[6] M. J. Gabbay and A. M. Pitts. A new approach to abstract syntax with variable binding.Formal Aspects of
Computing, 13(3–5):341–363, July 2002.

[7] K. Honda and N. Yoshida. A compositional logic for polymorphic higher-order functions. InInternational
ACM Conference on Principles and Practice of Declarative Programming (PPDP), pages 191–202, Aug.
2004.

[8] D. Jackson and M. Vaziri. Finding bugs with a constraint solver. In International Symposium on Software
Testing and Analysis (ISSTA), Aug. 2000.

[9] I.-S. Kim, K. Yi, and C. Calcagno. A polymorphic modal type system for Lisp-like multi-staged languages.
In ACM Symposium on Principles of Programming Languages (POPL), pages 257–268, 2006.

[10] K. Marriott and M. Odersky. Negative Boolean constraints. Technical Report 94/203, Monash University,
Aug. 1994.

[11] M. W. Moskewicz, C. F. Madigan, Y. Zhao, L. Zhang, and S. Malik. Chaff: Engineering an efficient SAT
solver. InDesign Automation Conference (DAC), July 2001.

[12] A. Nanevski. Meta-programming with names and necessity. Technical Report CMU-CS-02-123R, School of
Computer Science, Carnegie Mellon University, Nov. 2002.

[13] Pašalić and N. Linger. Meta-programming with typed object-language representations. InInternational
Conference on Generative Programming and Component Engineering (GPCE), pages 136–167, Oct. 2004.

[14] A. M. Pitts. Alpha-structural recursion and induction. Journal of the ACM, 53:459–506, 2006.
[15] A. M. Pitts and M. J. Gabbay. A metalanguage for programming with bound names modulo renaming. In

International Conference on Mathematics of Program Construction (MPC), volume 1837 ofLecture Notes
in Computer Science, pages 230–255. Springer Verlag, 2000.

[16] F. Pottier. An overview of Cαml. In ACM Workshop on ML, volume 148(2) ofElectronic Notes in Theoretical
Computer Science, pages 27–52, Mar. 2006.

[17] F. Pottier. Prototype implementation of Pure FreshML,Jan. 2007.
[18] J. C. Reynolds. Definitional interpreters for higher-order programming languages.Higher-Order and Sym-

bolic Computation, 11(4):363–397, Dec. 1998.
[19] C. Scḧurmann, A. Poswolsky, and J. Sarnat. The∇-calculus: Functional programming with higher-order

encodings. Technical Report YALEU/DCS/TR-1272, Yale University, Nov. 2004.
[20] T. Sheard. Using MetaML: A staged programming language. In Advanced Functional Programming, volume

1608 ofLecture Notes in Computer Science, pages 207–239. Springer Verlag, Sept. 1998.
[21] M. R. Shinwell. Fresh O’Caml: nominal abstract syntax for the masses. InACM Workshop on ML, Sept.

2005.
[22] M. R. Shinwell and A. M. Pitts. On a monadic semantics forfreshness.Theoretical Computer Science,

342:28–55, 2005.

32

[23] M. R. Shinwell, A. M. Pitts, and M. J. Gabbay. FreshML: Programming with binders made simple. InACM
International Conference on Functional Programming (ICFP), pages 263–274, Aug. 2003.

[24] W. Taha and M. F. Nielsen. Environment classifiers. InACM Symposium on Principles of Programming
Languages (POPL), pages 26–37, Jan. 2003.

[25] C. Urban, A. Pitts, and M. Gabbay. Nominal unification.Theoretical Computer Science, 323:473–497, 2004.
[26] M. Vaziri and D. Jackson. Checking heap-manipulating procedures with a constraint solver. InInternational

Conference on Tools and Algorithms for Construction and Analysis of Systems (TACAS), volume 2619 of
Lecture Notes in Computer Science. Springer Verlag, Apr. 2003.

[27] A. K. Wright and M. Felleisen. A syntactic approach to type soundness.Information and Computation,
115(1):38–94, Nov. 1994.

[28] H. Xi. Dependent Types in Practical Programming. PhD thesis, Carnegie Mellon University, Dec. 1998.
[29] H. Xi, C. Chen, and G. Chen. Guarded recursive datatype constructors. InACM Symposium on Principles of

Programming Languages (POPL), pages 224–235, Jan. 2003.

33

