Static Name Control for FreshML

Francois Pottier
INRIA

Francois.Pottier@inria.fr

April 17, 2007

Abstract

FreshML extends ML with constructs for declaring and malsiping abstract syntax trees that
involve names and statically scoped binders. It is impu@ma generation is an observable side
effect. In practice, this means that FreshML allows writprggrams that create fresh names and
unintentionally fail to bind them. Following in the stepsearly work by Pitts and Gabbay, this paper
defines Pure FreshML, a subset of FreshML equipped with & giedof system that guarantees
purity. Pure FreshML relies on a rich binding specificatianduage, on user-provided assertions,
expressed in a logic that allows reasoning about values lodt ahe names that they contain, and
on a conservative, automatic decision procedure for tigiclolt is argued that Pure FreshML can
express non-trivial syntax-manipulating algorithms.

1 Introduction

FreshML [23, 22] extends ML with constructs for declaringlananipulating abstract syntax trees that
involve names and statically scoped binders. FreshML ainh&ta better meta-programming language
than ML by allowing a programming style that closely reflettis standard, semi-informal practice of
reasoning “up tex-conversion”.

Unfortunately, FreshML igmpure in the sense that fresh name generation is an observablefsid
fect. For instance, in FreshML, one can introduce a typs-té€frms and define a function that purports
to construct “the” set oboundnames of a\-term [15, Figure 1]. Such a function is accepted, and pro-
duces twddistinctsets of names if applied twice to the same term! This is unalels: one would like
to be able to define onlgure functions, that is, functions map-equivalent arguments te-equivalent
results.

As another facet of the same problem, a FreshML meta-progeantonstruct terms that acciden-
tally contain unbound names. Again, this is undesirable wauld like to be warned by the compiler
when a meta-programgenerates fresh name, but fails to eventuabind it.

State of the art This deficiency is a known problem. Pitts and Gabbay attaékbyg equipping
FreshML 2000 [15] with a static “freshness inference” sgstehose purpose was to rule out all impure
uses of the fresh name generation facility. FreshML 2000eaek this goal, but is too conservative.
For this reason, static name control was abandoned by ShjmRites, and Gabbay in later work [23].

The problem is not specific to FreshML. To the best of my kndgt it is shared by most meta-
programming languages in existence today. One exceptigieiaML [20], which avoids the problem
in an interesting way. In MetaML, the idiofn = = “e) generatesa fresh name, denoted by the
meta-variabler, evaluates the expressienproducing an abstract syntax trg that can contain free
occurrences of the name denotedyyandbindsthat name by constructing the abstract syntax tree
(fn z = t), which is returned. In this design, the operationgeferatingandbindingnames cannot
be separated. This guarantees purity, but comes at a heavin@xpressiveness: it is often useful, or
necessary, to view these operations as separate. For arsigason, MetaML allows theonstruction
of code fragments, but not thedeconstructionit does not offer an analogue of FreshMEsse con-
struct, which inspects a piece of abstract syntax via pattetching. In FreshML, matching against an
abstractionpatterngenerates fresh name, but does naind it.

Caml (pronounced: “alphaCaml”) [16] can be thought of as a tbat provides much of the power
of FreshML to Objective Caml users. The tool accepts sedaihding specificationghat is, algebraic

data type declarations, enriched with information on wlaré how atoms are bound. The tool turns
these specifications into Objective Caml type declarataond code. By relying on Objective Caml’s
abstract types, it is able to guarantee that atoms of diffeserts are not mixed, and that abstractions
(in FreshML's sense) are not violated—that is, their boutotrs are “freshened” when they are decon-
structed. However, the tool contains no type system or psgstiem of its own, so it cannot guarantee
that its fresh name generation facility is used in a pure raann

Other pieces of related work are discussegi7in

Even though neither FreshML, MetaMLo@l, or any deployed meta-programming language that
| know of, solves this problem, it is worth attacking. It issgaand important, to statically detect that a
programis lexically ill-formed. It should be just as important to stally detect that a meta-program
cangeneratea lexically ill-formed program.

Towards a solution This paper presents Pure FreshML, a version of FreshML eeqdiwvith a static
discipline for enforcing purity. | refer to this disciplirees aproof systemrather than a type system,
because it is very much like a Hoare logic for proving projesrbf programs. Throughout the paper,
| use the words “pure” and “purity” in a somewhat non-stadd@shion: in a “pure” program, name
generation is not an observable side effect, but non-textioin remains possible.

The proof system is layered on top of a conventiayak systemwhich, in this paper, is a sys-
tem of simple types. Enriching the type system with moreuiestt, such as ML- or System F-style
polymorphism, would be straightforward. In fact, the pregétem is almost entirely independent of the
underlying type system. The only connection between theésides in the interpretation of constraints
(§3), which is typed: that is, the type of a variable can infleetiee meaning of a constraint. If desired,
the type system can have type inference: the presence ofdbégystem does not prevent that.

The proof system is inspired by Pitts and Gabbay’s “freshimgfgrence” system [15], but is signif-
icantly more expressive, thanks to three new ingredients.

First, the system relies on a logic that combines Booleastcaimts over sets of atoms, equations
between values, and the primitive functita) also known asupport which maps a value to the set of
its free atoms. The judgements of the proof system involvarktstyle triples of the forfiH } e { P},
whereH is a constraint—a precondition—aritlis a parameterized constraint—a postcondition. The
logic comes with a fully automated decision procedure fda#ment problems, which is sound, and
slightly conservative.

Second, the system allows explicit assertions to be pravigiehe programmer. Function definitions
are annotated with optionpteconditionsandpostconditionsSimilarly, let constructs carry an optional
postcondition. Last, data constructor declarations canrgptionalguard

Last, the system relies oml’s binding specificatiofranguage [16] as a means of describing how
names are bound. This language is more expressive than UrPkits) and Gabbay’s nominal signa-
tures [25], which only allow binding one name at a time, arehtkresh Objective Caml’s abstraction
types [21], which do not allow binding occurrences and freeuorences to coexist within a single data
structure, such as an environment. The need for an expeglssiding specification language arises
not only when dealing with complex abstract syntax, but aben defining internal data structures
that involve names, such as evaluation environmejétd f and nested, name-capturing conte¥&2).

It should be noted that the choice oftv@l's specification language, as opposed to some (as of now
hypothetical) other language of comparable expressiggigrot essential.

A taste of purity Before delving into the technical presentation of Pure s | encourage the
reader to have a brief look at Figure 8, which shows Immrmalization by evaluatioris expressed in
Pure FreshML.

Normalization by evaluation is an interesting benchmaitabse it makes non-trivial use of names
and environments. It is used by Shinwetl al. [23], who stress the ease with which it is expressed
in FreshML. They point out that it isot accepted by FreshML 2000’s static “freshness inference”
system [15], and that even a manual proof of its correctreedai from immediate” [23]. Up to a few
changes and annotationsigexpressible in Pure FreshML.

Submitting the program in Figure 8 to the proof system resultLlO proof obligations. One such
obligation arises from the use of tHessh construct (line 21). Three arise from the use of pattern
matching against an abstraction pattern (lines 20, 46, 8hdSix arise from the need to establish the
postcondition in the body of functioevals(lines 41, 43, 44, 47, 51, and 53). All ten obligations are
automatically discharged. This proves that the prograpuie. That is,normalizedenotes a (possibly

Syntactic objects

v o= x| ()]
$ 01

case p = v thene
absurd | next | fail
try e else e
freshxine
if t =z theneelsee
let x where C =eine
f(v)

fd == fun f(xz where C) : x where C' = ¢
C,H == (see§3.1)

T == atom |unit|7 x 7|0]| (atom) T

e| Tz 7

(v,v) | Kv | (z)v

S
\

—
|

Semantic objects

= a}()lfw,iv)lf(wHa)w
= | SiF
n= S/e|S/w

o ln'g e
I

Mapping values to semantic values

= (p(x)) p(v) if p(x) is an atom
Figure 1: Syntax of Pure FreshML

non-terminating) pure function frorkrterms to-terms: the fact that it internally generates fresh atoms
is not an observable side effect.

Road map The paper is laid out as follows. Firsi?), | introduce the syntax of Pure FreshML,
its operational semantics, and a simple type system, whatitally prevents most errors, but does
not prevent incorrect uses of the name generator. T8} (define the syntax and interpretation
of constraints, as well as a conservative decision proeefturentailment problems. Equipped with
these tools, | introduce the proof systefd) and prove that it statically preveradl errors. Guml-
style abstractions and generalized algebraic data tygardéons are described only informallgs). A
couple of extended examples are presenté®inlhe paper ends with discussions of related and future
work (57, §8). An early prototype implementation, together with sal@ode samples, is available
online [17].

2 Pure FreshML

2.1 Syntax

The syntax of Pure FreshML appears in Figure 1. It is simdahte calculi of Pittset al. [15, 23], up
to the omission of first-class functions (sgfor a discussion). Two important featuresyr@l-style
abstractions and generalized algebraic data types, argednim this formal presentation. They are
informally described ir$5 ands6.

Values and patterns Valuesv include variableg:, the unit valug), pairs(v, v), injectionsK v, where
K ranges over data constructors, and birebgtractionsz:) v, where the variable denotes an atom—
that is, an object-level name. In an abstractiohw, the variabler is not bound: this is a free occurrence
of x. Patterng are shallow and form a subset of values. They are requiree tméar. It would be
interesting to remove this restrictiod).

Expressions In order to facilitate the formulation of the proof systentauple of simplifications are
built into the syntax. First, the actual argument of a fumetcall, as well as the scrutinee ofcase
construct, must be values. This requirement, which is reoémt of A-normal form [5], is met by
introducinglet forms to name the results of intermediate computationsor®kdhecase construct only
has one branch, guarded by a shallow pattern. Two excepiiomsfnext andfail, together with &ry
construct, allow encoding generalse constructs featuring an arbitrary number of branches arg de
(nested) patterns. These simplifications make Pure Freshblpresented here, a kernel language. In
practice, one would offer an unrestricted surface languagedefine a translation from the surface
language down to the kernel language. This is done in my fyj@éamplementation.

Expressions can build values via™and deconstruct them viacdse p = v then e”, where the
variables inp are considered bound within The execution of @aase construct aborts, by raisingxt,
if p does not match. next is an exception that is caught withtey construct.fail is an exception that
cannot be caughtbsurd asserts that the current program point is unreachable séirreewhat similar
to fail, but is statically checked, so, in a valid program, it is memeecuted. As in Pitts and Gabbay’s
paper [15], thef construct is specialized: it compares two atoms for equdliis possible to replace
it with a general-purposé form, while preserving the precision of the analysis, buadk space to
describe this extension.

Thefresh construct generates a fresh atom. As in Pitts and Gabbagisairwork [15], the atom is
bound to a variable whose scope is the expressianin contrast, in Shinwelét al’s later work [23],
fresh is just an effectful primitive operation. It seems that oftthe first form can be given a pure
semantics, so it is naturally the one | adopt.

Thelet form is standard, except for the assert@nin let where C' = e; in e5, the variabler is
bound inC ande,. The constrainC acts as a postcondition fef, and must in general be explicitly
supplied by the user. (Automatically computing a strongestcondition for an arbitrary expression is
not possible, because the constraint logic is too weak—Aftance, it lacks existential quantification.)
Yet, in certain common cases, the translation from the sarfanguage down to the kernel language
can make up an appropriate constraint. For instance, i§ a valuev, thenx = v is the strongest
postcondition. Ife; is a function callf (v), then the postcondition associated withinstantiated with
andz, is the strongest postcondition.

Function definitions A program is composed of a set of mutually recursive topléwettion defini-
tions. Each such definition takes the fofam f(x; where C}) : x5 where Cy = e, wherex; is bound
within C1, Cs, ande, while x5 is bound only withinCs. This defines a function whose precondition
is C; and whose postcondition {S,. If desired, one function of no arguments can be distingadsins
the program’s entry point.

2.2 Operational semantics

Semantic values | have pointed out that, in an abstractir) v, the variable is not bound irv. Yet,
an intuitive understanding of the semantics of FreshMLadég that, when this abstraction is evaluated,
the atom denoted by becomes bounih the value denoted by. In order to formalize this intuition, |
introduce a distinct syntactic categorysg#mantic valugswrittenw (Figure 1).
Semantic values do not contain variables, but coratdmsa, drawn from a countably infinite set
A, and contain abstractions of the foxm) w, wherea is considered bound im. The set ofree atoms
of a semantic value, writtenfa(w), is defined in the obvious way. It is also known as spportof
w. An atoma is fresh forsome syntactic entity when it is not among the free atomsaifehtity.
Semantic values are used in the operational semantics ahne interpretation of constraint$3.1).
They coincide with Pittsa-terms [14,§2.4].
Valuesv contain variables, but not atoms, while semantic valuesntain atoms, but not variables.
Values are turned into semantic values simultaneoussubstitution of semantic values fail free
variables. In order to maintain a strict segregation betwedues and semantic values, the operational

S/v— S/S(v)
S/case () = v thene — S/e
S/case (x1,x2) = vthen e — S; 11 = w1; 29 = wa/e
S/case K1z =vthene — S;z=w/e
S/case K1 x = v then e — S/next
S/case (1) xo = vthen e — S;a;21 = a; 20 = w/e
S/try e else e — S;ea/eq
S;e/next — S/e
S; F/next — S/next
S; F/fail — S/fail
S/fresh zine — S;a;x =afe

S/If T1 = To then e else eg — 5/61
S/If T1 = To then eq else eg — 5/62

S/let x where C' = ey in e — S;w.ea/e;
S/f(v) — S;z1 = S(v)/e
S;a/w — S/w
S;x.efw — S;x=w/e
Six=w'/w— S/w

S;e/w — S/w

except if the previous rule applies

if a fresh for.S

1)
()
(3)
(4)
()
(6)
(7)
(8)

(10)
(11)

)

if S(acl) = a andS(xg) = a9 anda1 = a2

(12)

if S(acl) = a andS(xg) = a9 anda1 75 as

if fun f(z1) ... =

if a fresh forw

Figure 2: Operational semantics

(13)
(14)
(15)
(16)
(17)
(18)
(19)

semantics relies ostacks which, among other roles, represent a deferred substitudf semantic
values for all variables in scope. This is in contrast with @enstandard operational semantics based
on evaluation contexts, in the style of Wright and Felleig&f], where substitutions are not deferred.

In order to avoid deferring substitutions and to allow defiystandard notions of evaluation contexts
and g-reduction, an alternate approach would be to make semeaaities a subset of values, and to
ensure that values are stable under substitutions of sesagh for a single variable. One disadvantage
of such an approach, in my opinion, would be a more compled (rhaps confusing) treatment of
values.

Stacks and configurations A stacksS is a sequence dfamesF' (Figure 1). There are four kinds of
frames, which intuitively correspond to “evaluation cod$s of depth 1, as per the following table:

frame | intuitive reading

a fresh a in []

x.e letz =1 ine
r=w| letzx=win

e try [else e

The presence of the frameon the stack means thatfeesh construct was entered, that the freshly
generated atom ig, and that théresh construct was not exited yet. The framme means that the left-
hand side of det construct was entered. The value of the left-hand side, \eheitable, will be bound
to x in the evaluation oé. Note thatz is considered bound withian The framer = w means that: is
currently bound to the semantic value The framee means that ary construct was entered, and was
not exited yet. If the exceptiomext is raised, it will be caught anewill be evaluated; if, on the other
hand, a value is returnedwill be discarded.

| define thedomainof a frameF" as follows. The domain of is a; the domain ofr = w is z;
the domain ofc.e and ofe is empty. The domain of a stadkis the ordered sequence of variables and
atoms obtained by concatenating the domains of the frana¢sifike upS. A syntactic entity isclosed
underS when its free variables and free atoms are members of theidah4.

A configurationis of the formS/e or S/w, wheree andw are closed unde$. The variables and
atoms in the domain df are considered bound in such a configuration, so that coafigus are closed.
A resultis a configuration of the form/w or e/next or ¢/fail.

Turning values into semantic values A valuation p is a finite mapping of variables to semantic
values. Itis lifted to a mapping of values to semantic vallégure 1). Note that a syntactic abstraction
(x) v is mapped down to a semantic abstractip(x)) p(v), where the atomp(x) is now bound in the
semantic valug(v). If p(x) happens not to be an atom, the{x) v) is undefined. Such a situation is
ruled out by the type systerjZ.3).

A stack S can be viewed as a valuation, defined by the collection ofrafthés of the formx = w
within S. Thus, a value that is closed under a staékcan be turned into a semantic valtiev).

Reduction The small-step operational semantics of Pure FreshML isnglwy a binary reduction
relation over configurations (Figure 2). The rules may seamearous, but are simple. | now explain
some of them.

Reduction rule 1 turns a valueinto a semantic value; it is applicable only $f(v) is defined.
Reduction rules 2—-6, 12—13, and 15 also exploit this meshani

Reduction rule 11 states that evaluatifigesh 2 in ¢” creates a fresh atoms, augments the stack
with two new frames, which separately record the fact thaas created and the fact thatvas bound
to a, and proceeds with the evaluation«f When and ife eventually reduces to a semantic vatug
these two stack frames are popped by reduction rules 18 angfdddeda does not appear free in
w. This requirement is directly inspired by Gabbay and Pittsatment of “locally fresh atoms” [6,
Remark 6.4]. When the side condition of reduction rule 16itdated, no reduction is possible: the
configurationS; a/w is stuck. This corresponds to an incorrect use offtheh construct, which one
would like to statically prevent.

Reduction rules 2—6 describe pattern matching. In pagicuéduction rule 5 states that the failure
of pattern matching causes the exceptiext to be raised. Reduction rule 6 states that matching against
an abstraction patterix;) x5 causes a fresh atomto be generated, just as ifiesh construct had been
evaluated [15, 23, 22].

T-PaIR T-Sum
T-VAR T-Unit I'kFov:m I'Fwvg:im K:t—9 I'Fo:r

I'Fa: T I'F(): unit
z: () () uni Tk (v1,v2): 71 X Ty I'Kwv:é

T-CASE
T-ABS dom(p) freshforl’ dom(p) = dom(I")

Fkaz:atom Tru:r Fkvir [bp:ir DVke:r T-ABSURD
' absurd : 7

'k (z)v: (atom) T I'tcasep=wvthene: 7’

T-TRY T-FRESH

T-NEXT T-FAlL T'he:T IF'keg:T I,z :atombe:T

I'Fnext: 7 I'Ffail . 7

T'ktryejelsees: 7 I'Hfreshzine:r

T-1F T-LETWHERE
I'F 2, : atom ' x5 : atom I'ke:m xe:mbEC
ke :7 I'Fey: T Tx:mbey:m

I'Hifzq =29 theneg else ey : 7 I'tlet z where C = e iney : 7o

T-DEF
T-CALL fimm—mn z1:m FCy
f:im — 1 I'Fov:m r1:T1,To o b Co T1:T e

Tk f(v):m F fun f(z1 where C1) : 25 where Cy = e

Figure 3: The type system (source-level objects)

Remarks The semantics is deterministic. In particular, in reductiole 11, the choice of the fresh
atoma does not matter, since its appearance in the stack feasaases it to become bound. In reduction
rule 16, the atornu, which was bound, ceases to be so, due to the destructiore aftéick framen.
Fortunately, the rule is applicable only under the conditizata be fresh forw, which means that no
free occurrences af can possibly appear.

The semantics is pure, in the sense that it does not rely dragktate, as would be necessary if
the creation of fresh atoms was an uncontrolled side eff8jt Here, the stack discipline ensures that
the dynamic extent of a fresh atom does not exceed the statie0f thefresh construct. According
to this semantics, a program that attempts to expteih in an impure manner goes wrong: it reduces
to a stuck configuration. Thus, the slogan “valid progranmreoa go wrong”, which | establish later
(Theorem 4.7), means that valid programs are in fact pure.

When executing a valid Pure FreshML program, it is known dhafatime that nothing can go
wrong, so the side condition of reduction rule 16 does natireca runtime check. As a result, all stack
frames of the fornu are superfluous, since their sole purpose is to enable surtiime check. In other
words, Pure FreshMkan be efficiently implemented in terms of an uncontrolled, glotbesh name
generator.

Shinwell and Pitts established a “correctness of repraient result for FreshML [22, Theo-
rem 2.3]. | believe that a Pure FreshML analogue of this tesould admit a particularly direct
and straightforward proof. For instance, the expressidrsh' z in fresh y in ((z)z, (y)y)” and
“fresh 2 in ((z) x, () x)” both reduce, under an arbitrary stack, to the semantie@ty a, (a) a), so
it seems clear that these expressions are contextuallyadent.

An earlier draft of this paper presented a denotational séiog based on nominal sets [14]. Thanks
to the absence of fresh name generation as a side effecgntengics was expressed in direct style, in
contrast with Shinwell and Pitts’ monadic semantics forsBiML [22]. In comparison with that earlier
semantics, the operational semantics presented hereptesjmnd assigns meaning to all programs, as
opposed to only the valid programs. Furthermore, it seerttsimuited to extensions with new features
such as higher-order functions and mutable state.

TS-ATOM TS-UNIT TS-PAIR TS-Sum

) Fw:m Fws : T K:7—9 Fw:Tt
F a:atom F () : unit
F(wi,ws) 1 71 X T2 FKw:é
TS-LET-LEFT
TS-ABS TSN TS-FRESH r=S:r TS-LET-RIGHT
Fw:T NIk 'ES:7 Dx:7'kFe:r '=S:r Fw: 7
eFe:T ; ;
F (a) w : (atom) T ' (S;a):7 TF(S;ze):T De:7F(S;z=w):7
TS-TrRY TS-CONF-EXPR TS-CONF-VAL
I'ES:7 I'Fe:r I'ES:7 I'kFe:r I'ES:7 Fw:T
L'kE(S;e): 7 F S/e ok F S/w ok

Figure 4: The type system (semantic objects)

2.3 Type system

| equip Pure FreshML with a conventional system of simplestyf23]. The proof system relies on
it in only two ways: to guarantee that only well-formed vausppear in constraints, and to obtain
information about the support of a variable, based on its (§B.3).

Presentation The types (Figure 1) are Pitts’ nominal arities [£2,.2]. Every data constructak
carries a signature of the form— 0, whered is a data type. (The introduction géneralizedalgebraic
data types is deferred §%.) Every functionf carries a signature of the form — 7.

The typing rules for values, expressions, and function defirs appear in Figure 3. Rules T-
LETWHERE and T-DeF require constraints to be well-typed: this is made necgdsaithe fact that
constraints can refer to values. The judgeniént C is defined in§3. It requires the values and value
equations that appear withi to be well-typed under'.

The typing rules for semantic values, stacks, and configumratappear in Figure 4. A judgement
about a stack takes the fortht S : 7, and states that the stadkprovidesan evaluation environment
described by the type environmdhandexpectdo receive a result of type. This is dual to the standard
judgement’ - e : 7, which states that expressierexpects an evaluation environment described’ by
and produces a result of type The two dual judgements are combined in rule TSNE-EXPR, whose
conclusion states th&t/e is a well-formed configuration.

Soundness The type system ialmostsound: it enjoys subject reduction apdrtial progress proper-
ties. This is proven using Wright and Felleisen’s standsirdectic approach [27].

This lemma states that turning a well-typed syntactic valte a semantic value always succeeds,
and is a type-preserving operation.

Lemma?2.1lLetl' .S : 7" andl' F v : 7. Then,S(v) is defined, andt S(v) : 7 holds. o

Proof. The proof is by induction on the structureaf

o Casev = z. The hypothesi§’ - x : 7 implies thatz is in the domain off. The hypothesis
I' - S : 7/, together with an inspection of the five typing rules for kmdmplies that every variable
in the domain ofl" must be in the domain &§. Hence,S cannot be the empty staek Two sub-cases
arise.

Sub-casé = (5’;x = w). Then,S(x) is defined asv. Since the domains df andS match, and
sincel’ - x : 7 holds,I’ must be of the fornfI”, = : 7). By inverting TS-LET-RIGHT, " - S : 7/ gives
Fw:T.

Sub-case& = (5'; F), whereF # (xz = w). Then,S(x) is defined ass’(z). Since the domains of
I' andS match,I' must be of the forn{I”, T"""), wherel"”’ does not define, so thal” - « : 7 holds. By
inverting one of the four typing rules for non-empty statkg, hypothesi$' + S : 7/ givesIV + S : 7"/,
for some typer”. By the induction hypothesis, we obtain thf#l{z) is defined and that S'(z) : 7
holds.

o Casex = (), v = (v1,v2), andv = K v1. Immediate.

o Casev = (x)v;. By inverting T-ABs, the hypothesi§” - v : 7 givesT = (atom) ; and
I' F z : atom andl' - vy : 7y, for some typer;. By the induction hypothesisy(x) is defined and
F S(z) : atom holds, which implies that(z) is an atonu. By the induction hypothesis agaifi(v;)
is defined and- S(v1) : 71 holds. There follows tha$'(v), which by definition is(S(z)) S(v1), is a
well-formed semantic value. Furthermore, by applying BsAwe find that- (S(z)) S(v;) : 7 holdsO

Theorem 2.2 (Subject reduction) A well-typed configuration can reduce only to a well-typenfigu-
ration. That is}f ¢; ok ande; — ¢ imply - ¢; oK. o

Proof. By cases over the reduction — c5. | refer to the rule numbers in Figure 2 and use the
notations in that figure.

o Case(1). By inverting TS-@®NF-EXPR, the hypothesis ¢; ok yieldsI' - S : randl' F v : 7.
By Lemma 2.1, this implies S(v) : 7, which by TS-®NF-VAL impliest ¢, ok.

o Caseq?2), (3), (4). Analogous to case (6).

o Case(5). By inverting TS-@NF-EXPR, we findI" = S : 7. By applying T-NexT, we have
T I next : 7. These imply- S/next ok.

o Case(6). By inverting T-Gxse and T-ABs, we findT' = S : 7 andT' + v : (atom) 75 and
T,x1 : atom,z2 : 72 - e : 7. By Lemma 2.1, the first two of these impty S(v) : (atom) 72. By
exploiting the hypothesi§'(v) = (a)w and by inverting TS-&s, we find- w : 7. By applying
TS-FRESHonNce and TS-ET-RIGHT twice, we successively derive:

'k (S;a):7
I,z :atom b (S;a;21 =a) : 7

[zy:atom,xo : 7o b (S;a;21 = a;xe = w) 1 7

This impliest- S; a; 21 = a; 9 = w/e Ok.

o Case(7). By inverting TS-®NF-ExPR and T-TRy, we findI' - § : 7 andI' - e; : 7 and
T+ ey : 7. By applying TS-TRy, the first and last of these imply - (S;es) : 7. This implies
= (5;62)/61 ok.

o Case(8). By inverting TS-@NF-ExPR and TS-TRy, we findI" = S : 7 andI' - e : 7, which
imply = S/e ok.

o Case(9). By inverting TS-@NF-ExPR and one of the four typing rules for non-empty stacks, we
getI' = S : 7, for some arbitrany” andr. By applying T-NexT, we havel’ next : 7. These imply
F S/next ok.

o Case(10). Analogous to case (9).

o Case(11). Analogous to case (6).

o Case(12). By inverting TS-©NF-ExPR and T-IF, we get, among other hypothes&st- S : 7
andl' F e; : 7. These imply- S/e; ok.

o Case(13). Analogous to case (12).

o Case(14). By inverting TS-@NF-ExPR and T-LETWHERE, we getl' - S : m andl' F ey : 74
andl,x : 7y F es : 7o. By applying TS-LET-LEFT, the first and last of these imply - (S; z.es) : 71.
There follows- (S;z.e2) /ey OK.

o Case(15). By inverting TS-ONF-ExPR and T-CALL, we getl’ = S : mandf : 1 —
andl’ + v : 7;. By Lemma 2.1, these imply S(v) : 7. By applying TS-lET-RIGHT, we derive
Tyz:m b (S;2 = S(v)) : 72. By recalling the hypothesien f(z1) ... = e andinverting T-Q=F, we
getz, : 71 b e : o, whicha fortiori impliesT', 2y : 7, e : 7. There follows- (S; 2, = S(v))/e ok.

o Case(16). By inverting TS-@NF-VAL and TS-RESH we getl’ - S : 7 andk w : 7. There
follows + S/w ok.

o Casg(17). By inverting TS-@NF-VAL and TS-LET-LEFT,wegetl' - S : randl,z : 7' Fe: 7
and- w : 7'. By applying TS-lET-RIGHT, the first and last of these imply, z : 7/ (S;2 = w) : 7.
There follows- (S;z = w)/e ok.

o Case(18). By inverting TS-©NF-VAL and TS-LET-RIGHT, we getl' + S : 7 and+ w : 7.
There follows S/w ok.

o Case(19). By inverting TS-ONF-VAL and TS-TRy, we getl’ - S : 7 and w : 7. There
follows - S/w ok. O

Theorem 2.3 (Partial Progress)A well-typed, irreducible configuration is either a resuit, of the
form S/absurd, or of the formS; a/w, wherea occurs free inw. o

Proof. For configurations of the forri/e, by cases over.

o Casee = v. By inverting TS-®NF-EXPR, we getl’ - S : 7 andl" - v : 7. By Lemma 2.1, this
implies thatS(v) is defined. So, reduction rule 1 is applicable.

o Casee = case p = v then e;. Four sub-cases arise, depending on the structyse\We deal with
the sub-case where= (z1) xz; the other sub-cases are analogous. By invertingsB#and T-ABS,
we find[' F S : 7 andI' F v : (atom) 75. By Lemma 2.1, these imply tha&t(v) is defined and that
F S(v) : (atom) 72 holds. This implies thaf(v) is of the form{a) w, for some atona, which, without
loss of generality, we can take to be fresh $orSo, reduction rule 6 is applicable.

o Casee = absurd. This is one of the two kinds of blocked configurations alldvg the theorem’s
statement.

o Casee = next. If S is the empty stack, thenS/e is a result. Otherwise, one of reduction rule 8
and reduction rule 9 is applicable.

o Casee = fail. If S is the empty stack, thenS/e is a result. Otherwise, reduction rule 10 is
applicable.

o Casee = try e; else es. Reduction rule 7 is applicable.

o Casee = fresh x in e;. Reduction rule 11 is applicable.

o Casee = if ©1 = x5 then e else e;. By inverting TS-®ONF-ExPrand T-IF, we getl' - S : 7
andIl’ - z; : atom andT' F 25 : atom. By Lemma 2.1, these imply that(x,) and.S(z3) are defined
and have typatom, which means that they are atomg andas. So, one of reduction rule 12 and
reduction rule 13 is applicable.

o Casee = let « where C' = e in e5. Reduction rule 14 is applicable.

o Casee = f(v). By inverting TS-®NF-ExPRand T-CaLL, we getl’' = S : 7 andI' - v : 7. By
Lemma 2.1, these imply th&t(v) is defined. So, reduction rule 15 is applicable.

For configurations of the form§/w, by cases oves.

o CaseS = e. Then,S/w is aresult.

o CaseS = (S;a). If ais fresh forw, then reduction rule 16 is applicable. Otherwise, this is oh
the two kinds of blocked configurations allowed by the thetsestatement.

o CaseS = (5;x.e1). Reduction rule 17 is applicable.

o CaseS = (S;x = wy). Reduction rule 18 is applicable.

o CaseS = (5;e1). Reduction rule 19 is applicable. O

The statement of Theorem 2.3 pinpoints the basic issue liisapaper addresses: a conventional
type system does not guarantee that a Pure FreshML prognamotcgo wrong. A well-typed Pure
FreshML prograntango wrong, either by attempting to executeasurd statement, or by letting a
fresh-bound atom escape its static scope.

3 Constraints

I now present the constraint logic and the decision proaefhurentailment problems that underlie Pure
FreshML's proof system. This is done in several steps. lifitsbduce the syntax and interpretation of
constraints§3.1). Then, | present a sound, conservative decision pueddr entailment problems. It
is defined via a reduction to SAT, in three steps: eliminatiball value equations;@.2), elimination of

all applications ofa (§3.3), and switch from the Boolean algeli?éA) to the Boolean algebi (§3.4).
The decision procedure is sound, but incomplete. Therenaresources of incompleteness, discussed
in §3.2 and§3.3.

3.1 Syntax and interpretation

Syntax Here is the syntax adet expressionsandconstraintsC':

s u= faw)|0|A]sNs|sUs|-s
C,H = s=0|s#0jv=v|CAC

10

| use the following sugar:

s1 \ s2 stands fors; N —sy
falsestands forA = ()
true stands foi) = 0
s1 C s9 stands for(s; N —sg) = 0
s1 = so stands fOI(Sl - 82) (52 - 51)
s1 7 s stands for(s; Nsg) =0

Set expressions denote sets of atoms, that is, elemente &ublean algebr®(A), the powerset of
the set of atomg\. The most interesting form of set expression is the apjinaif the mathematical
function fa to a valuev. (For now, only thefa function is made available, but other functions are
introduced in§5.) Set expressions can then be built up using the stand&ttiesgetic connectives
for the empty set of atoms, the full set of atoms, intersectimion, and negation. Constraints are
conjunctions ofitomic constraintsset emptiness (or non-emptiness) assertions and valati@ost

Despite its name, Pure FreshML isiampurelanguage in the sense that thexene side effect: non-
termination. For this reason, | follow standard practicd altow constraints to depend on variables,
and, more generally, on values, but never on arbitrary asjoas.

Constraints are typed. For a constrainto be well-typed under environment (i) if a valuev
appears withir', thenv must be well-typed unddt, and (i) if a value equation; = v, appears within
C, thenv; andv, must have the same type undér Throughout the paper, | manipulate constraints
without explicitly mentioning under which type environntéhthey are to be considered.

Interpretation A valuationp respectsa type environment if it maps every variable: in the domain
of I" to a semantic value of tyd&(x). The satisfaction judgemept- C is defined wheit” is well-typed
underT” andp respectd”. | omit its formal definition. In short, the interpretatiofi@valuev underp

is p(v) (Figure 1). The symbdia maps the semantic values ifR{A). The set-theoretic connectives
and the set-theoretic atomic constraints are interpretetié algebraP(A). Value equations are
interpreted in terms of equality of semantic values (whitlatom abstractions, involvesequivalence).
Satisfiabilityandentailmentare defined in the standard way. | writeC' when(' is satisfiable (that is,
when some valuation satisfié§ andC; IF Cy, whenC; entailsCs (that is, when every valuation that
satisfies”; also satisfie€,).

3.2 Eliminating value equations

| first eliminate value equations, that is, | reduce genentdigment and satisfiability problems down to
problems that involve no value equations. The reductionusid, and incomplete.

I assume that the right-hand side of every entailment prolifea set constraint (as opposed to a
value equation). That is, a value equation can only be a hgstg, not a goal. All problems emitted by
the proof system i§4 satisfy this assumption. Then, entailment problems ateced to satisfiability
problems by exploiting the following facts:

ClFCyNCyifandonly if C IF Cp andC IF Cy
ClFs=0ifand onlyifnot - C A s # ()
ClFs#Qifandonlyifnot - C As =10

| now explain how to reduce an arbitrary constraihto a constraintC’ that contains no value
equations, in such a way that, @f is satisfiable, then so i€”. This transformation isoundin the
sense that, modulo the reduction of entailment down tofgtikity, it leads to a conservative decision
procedure for entailment problems.

The idea is simple: first, examine the value equation€§’iand discover as many of their con-
sequences as possible, including new value equations amaseteconstraints; then, drop all value
equations.

11

Step 1 The first step can be viewed as a closure computation, defingeefollowing rules:

V1 = Vg — Vg = VU1
V1 = Vg N\ Vg = U3 — V] = U3
! _ ! _ o
(v1,v]) = (vg,v5) — v = vy Av] = V)
K’UlzK’Ug—>’U1:U2
Kiv, = Koy — false if Ky 7& Ky
v) = vy — fa(vy) = fa(vy)

Arule C — C’ means: if the conjunaf’ exists, add the conjunct’. The process is iterated until a
fixed point is reached. In practice, it can be implementediefitly in terms of first-order unification
of values. Itis clear that each of the rules preserves tlggretation of the constraint, so this step is
sound and complete. One rule that | have purposely omittzhuse it is not interpretation-preserving,
is the following:

(1) v1 = (T2) V2 — 1 = T2 A1 = Vg (unsound)

This rule is incorrect, because equality of abstractionsissyntactic—that is the whole point of ab-
stractions! The equatiofx;) v; = (x2) v2 does have consequences, which can be stated as follows [25]:
first, the atome; is notin the support of the value-) v2; second, the values andu, are images of one
another modulo swapping of the atomsandz,. Because the second statement cannot be expressed
as a constraint, | pretend that the equation) v; = (x2) v2 has no consequences. Thus, information is
lost in step 2 when this equation is dropped.

Step 2 The second step consists in dropping all value equationis clearly sound. It is also incom-
plete, because of the missing closure rule for abstractibnpractice, | expect equations of the form
v1 = v9, Where neithep; norw, is a variable, to rarely arise. Indeed, they appear only véhealue is
constructed and immediately deconstructed, a patterrségahs unlikely to occur, at least in programs
written by humans.

3.3 Eliminating applications offa

I now explain how to reduce a constradit(without value equations) to a Boolean constréifitn such
a way that, ifC is satisfiable, thew” is satisfiable as well, when interpreted oA).
The syntax oBoolean constraints as follows:

s X|0|1]sAs|sVs]|s
C == s=0|s#0|CAC

Here, X ranges over a new category®bolean variablesBoolean constraints can be interpreted over
any Boolean algebra. In particular, when they are inteegreverP (A), a Boolean variabl& denotes
a set of atoms. (In that case, | also referXoas aset variable) When they are interpreted over the
two-point algebrd = {0, 1}, such a variable denotes a truth value.

An atomic constraint of the form = 0 is positive an atomic constraint of the form # 0 is
negative A conjunction of atomic constraints that contains at mos negative conjunct ismple

In order to perform the reduction announced above, only @restormation is required: to replace
all applications of théa symbol with set variables. This is done is two steps.

Step 1 First, applications ofa are reduced:

)— 0
) — fa(Ul) U fa(’l}g)
fa(K v) — fa(v)
fa((z) v) — fa(v) \ fa(z)
As a result, only applications of the forfa(z) remain. It is clear that this simplification process
preserves the interpretation of constraints.

12

Step 2 Second, each occurrencefafz), wherex has typer, is rewritten as follows:
1. if every semantic value of typehas empty support, thea(z) is replaced wittp;

2. if no semantic value of type has empty support, theia(z) is replaced with a set variablg,
and the conjuncK # () is added to the constraint;

3. otherwisefa(z) is replaced with a set variablg.

The basic idea behind this transformation resides in thd thie: fa(z) is considered an unknown set of
atoms, so a set variable, writtéf, is introduced to stand for it. (I assume a one-to-one cparedence
between variables and set variablex.) The result is a Boolean constraint. Rules 1 and 2 are not
required for the transformation to be sound. Instead, tkedly bring it “closer to completeness”. | now
discuss each of these two rules, as well as the issue of ifetenpss, in turn.

On “purity” Rule 1 states that, if has typer and if every value of type has empty support, then
fa(x) must be empty. (Pitts and Gabbay [15] refer to such a typs “pure”.) This is the case if is
a base type, such &sol, int, orstring. It is also the case if is a data typ@ and if one can prove, by
structural induction, that all values of typehave empty support. Such a proof is easily automated, so
that it is decidable whether rule 1 is applicable.

This rule is generalized when functions other tif@are introducedsb). These new functions also
take the valud at certain types, and it is important for the system to knooual.

On “definite impurity” and absurdity ~ Rule 2 is, in a way, the dual of rule 1. It is applicable, for
instance, ifr is atom, or a data type of non-empty lists of atoms. In that cése;) is replaced with a
set variableX, as in rule 3, but, in addition, the hypothedis+ {) is introduced.

This rule is important because it is the only source of negatypotheses in the entire system. If
it was removed, then all of the entailment problems produmethe proof system would carry positive
hypotheses only. Why would that be a problem? Notice thaptsitive Boolean constraints that the
system produces are somewhat peculiar. Because theytakgl@onnective§, U, \, but do not exploit
the connectived and—, they are always satisfied by the valuation that maps eveoyeaa variable to
(). This means that, in the absence of rule 2, the current sefpafthesed? would always be satisfiable.
So, the entailment assertidi |- falsewould never hold, and the expressialssurd would never be
accepted by the proof system (see rues&RD in Figure 5). In short, negative hypotheses of the form
X # are required in order to establish absurdity.

Conversely, by the independence property of negative @ingt, a negative hypothesis cannot help
establish a positive goal (unless it in fact establishesiralty). So, if one is willing to accept the
postulate that the user should never write non-trivial dode context wherabsurd is permitted, then
nothing is lost bynot exploiting the negative hypotheses when trying to estatdigjoalother than
absurdity. This remark is practically important, as it gigeeduces the number of problems that must
be presented to the SAT solver.

On incompleteness The transformation performed in the second step is not cet@pit can turn an
unsatisfiable constraint into a satisfiable Boolean coimtr&or instance, if, 21, andxy have type
atom, then the constraint

fa(a:l) +# fa(mg) A\

fa(z) Ufa(zq) C fa(z)

is unsatisfiable, because it requifeéz) to have cardinal 2, which is impossible—the support of an
atom is a singleton. Yet, it is reduced to the Boolean coimgtra

XiNXy=0A
X{UXo C XA
X;A(Z)/\leé@/\Xg;é@

which is satisfiable oveP(A)—take X; = {a1}, X2 = {a2}, andX = {ay, a2}, wherea; andas

are distinct atoms. In summary, the decision procedure disdaguish between empty and non-empty
sets of atoms, but is unable to reason about cardinality.

13

3.4 Satisfiability of Boolean constraints

I now focus on the satisfiability problem for Boolean conistisa (as defined ir83.3) interpreted over
the Boolean algebr(A).

Marriott and Odersky [10] have shown that any Boolean algebmfinite height is weakly indepen-
dent. This means that satisfiability of arbitrary constisineduces to satisfiability of simple constraints:

Lemma 3.1 LetC be a conjunction of positive atomic constraints. The caistiC' A s; #0A ... A
sn # 0, wheren > 0, is satisfiable ove (A) if and only if each of the simple constrair@sA s; # 0
is satisfiable oveP (A). o

There remains to explain how to decide whether a simple cainsts satisfiable. | establish the follow-
ing result:

Lemma 3.2 A simple constraint is satisfiable ovB(A) if and only if it is satisfiable oveB. o

Proof. This result is known in the case of positive constraints [189, let us consider a simple con-
straint of the formC' A s # 0, whereC' is a conjunction of positive atomic constraints.

Assume thatC' A s # 0 is satisfiable ove(A). Then, there exists a valuati@n(a mapping of
the variables to subsets 4f) that satisfies it. We have, in particulai(s) # (), so there exists an atom
a € ¢(s). Let us now define a mappingof P(A) ontoB as follows: for everyd € P(A), f(A)is1
if a € A and0 otherwise. It is clear that is a homomorphism, that i, preserves all of the Boolean
connectives. As a result, if a positive (atomic or non-atnednstraint is satisfied ové?(A) by ¢,
then it is also satisfied ové by f o ¢. That is, f o ¢ satisfiesC. Furthermore, by constructiotf,o ¢
satisfiess # 0: indeed,a € ¢(s) implies f(¢(s)) = 1. We have proved thal’ A s # 0 is satisfiable
overB.

Conversely, pick an arbitrary € A. Then,B is isomorphic to the subalgebf#, {a}} of P(A).
Thus, any constraint (simple or not simple) that is satifialerB is also satisfiable oveP(A). O

When interpreted oveB, the atomic constraird # 0 is equivalent to—s) = 0. As a result, de-
termining whether a constraint is satisfiable oleis exactly the Boolean satisfiability problem SAT.
Today, moderate-size instances of this problem are eadilgd using off-the-shelf tools such as Chaff
and its variants [11]. | should point out that the problena tlgenerate are small: for instance, the sam-
ple programs ir§6 give rise to problems whose conjunctive normal forms exklaibmost 20 variables
and 80 clauses.

4 A proof system

I now define the proof system that lies at the heart of PurehiMes|t can be viewed as an algorithm

that extracts proof obligations out of a Pure FreshML progr&ach proof obligation is an entailment
problem and is discharged using the decision procedu§8.ofs explained there, the decision proce-
dure needs access to type information. However, the pratésper sedoes not, so | do not keep track
of types in this section.

4.1 Presentation

The proof system consists of three main judgements, whinherm patterns, expressions, and function
definitions (Figure 5). In order to establish the soundné#segproof system, judgements on stacks and
configurations are also required (Figure 6).

Before explaining the judgements, it is worth stressingdis¢inction between two distinct kinds
of freshness requirements. In Figures 5 and 6, a premiseedbtim “z fresh for...” is a standard
meta-theoretidreshness requirement, bearing on theta-variabler. Such a requirement, found in all
type systems or proof systems, is satisfied by ensuring #tladdmes are distinct” in the program, and
can safely be ignored by the casual reader. On the other Famalylas of the form fa(z) # ...” are
constraintsspecific to this paper, bearing on thalue denoted by.. They are explicit hypotheses or
goals and are eventually transmitted to the decision prgesir entailment problems.

14

OTHER-PATTERN VALUE
pZ (w1) T2 H IF P(v)
A F {true} p {true} A+{H}v{P}

ABSTRACTION-PATTERN

A {fa(z)) # fa(A)} (z1) 2 {fa(z1) # fa(-)}

CASE
dom(p) fresh forA, H,v, P A+ {H'}p{P'} ABSURD
A,dom(p) F{HAH Ap=v}e{P AP} H I false

A+ {H} case p = v then e { P} A+ {H} absurd { P}

TRY
AF{H}e {P}
AF{H}ea{P}

A {H}try e else ea { P}

NEXT FAIL
A+ {H}next{P} A+ {H}fail { P}

resr x fresh forA, H, P " AF{H Nfa(zy) =fa(zz)} e {P}
A,z F {H Nfa(z) # fa(A)} e {P A fa(x) # fa(-)} A {H Nfa(z1) # fa(xe)} ea {P}
A+ {H}fresh z in e {P} A F {H}if 21 = x2 then e else ex { P}

LETWHERE
x fresh forA, H, P AF{H}e {Xa.C}
A,z {HANCANfa(z) Cfa(A)}es {P}

AF {H}let z where C' = e; in ex { P}

CALL DErF
H IF pre(f)(v) x1 F{C}e{ \xa.Cq} pre(f) = Ax1.Ch
H |- post(f)(v,) = P post(f) = A(w1, 22).(C2 A fa(az) C fa(ey))
A+{H} f(v){P} F fun f(x1 where Cy) : 2o where Cy = ¢

Figure 5: The proof system (source-level objects)

STK-LET-LEFT
STK-FRESH A = dom(S5) x fresh forA, P
ETK%tNrLLe} - S{P} FS{P} AzF{SAC}e{P}
‘ - (S;a) (P ha#fa()} - (S;z.0) DO}

STK-TRY CONF-EXPR
STK-LET-RIGHT A= dom(S) FS {P} A= dOIIl(S) FS {P}
x fresh for P FS{P} AF{S}e{P} AF{S}e{P}

F(S;2 =w){P} F (S;e) {P} F S/e ok

CONF-VAL
FS{P} SIFP(w)

F S/w ok

Figure 6: The proof system (semantic objects)

15

Expressions Judgements about expressions are of the farm { H} e { P}. A is a set of all variables
currently in scope, and includes the free variables. dfimplicitly assume that is well-typed under a
type environment whose domainds H is a constraint. It represents a precondition, that is, athyp
esis. (I useC’ and H for constraints.)P is a predicate: a constraint, parameterized over one Variab
It represents a postcondition, that is, a goal. The usemésiof a precondition, a program fragment,
and a postcondition dates back to Hoare. More recently, Hand Yoshida [7] have developed a proof
system whose triples take the same form as mine.

| sometimes explicitly write\z.C' for a parameterized constraint: then, the parametands for
the result of the expressien WhenP is Az.C, | write P(v) for [z — v]C, wherev is a value. | write
C-] for the predicate\z.C[z], wherex is chosen fresh fo€'. | write true for the predicate\z.true. |
write P; A P, for the predicaté\x.(P; (z) A Py(z)), wherex is fresh forP; and P,.

In an algorithmic reading of the definition, all four compate(\, H, ¢, andP) should be consid-
ered inputs. The output of the algorithm consists in the poddigations carried by the leaves of the
derivation (\ALUE, ABSURD, CALL).

Rule VALUE states that the tripl¢ 7 } v { P} is satisfied if and only if the preconditioH entails
that the value» satisfies the postconditioR. Its premise, an entailment judgement, represents a proof
obligation.

Rule FREsHaugmentd? with the hypothesia(x) # fa(A). (I write fa(A) for the symbolic union
of all fa(y), wherey ranges over\.) This means that the support @fcan safely be assumed disjoint
with the support of every pre-existing variableRESH also augments the postcondition with the new
goalfa(z) # fa(-), that is, the atom: should not appear in the support of the result that is evéptua
produced by théresh construct. This goal clearly reflects the side conditioneafuction rule 16.

Rule Case describes what can be assumed, and what must be proved, wakereais successfully
matched against a pattepn First, the equatiop = v can be assumed. Second, an extra hypothésis
and an extra goaP’ are derived from the pattegn using either BSTRACTION-PATTERN or OTHER-
PATTERN. Whenp is an abstraction patterix;)z, H' states that; can be assumed to be fresh and
P’ states that;; must not appear in the result of evaluatingust as ifz; wasfresh-bound. Wherp is
another pattern form#’ and P’ are empty. (The symbet means “is of the form”.)

Rule ABSURD emits a proof obligation that requires the current hypdthiesbe inconsistent. This
ensures that thebsurd statement is unreachable.

Rules NEXT and RAIL state that the exceptionsxt andfail can be used in an arbitrary context, with
no proof obligation whatsoever. RulerY requires both branches to satisfy the Hoare triple. The fact
that the second branch is executed only if the first brandesaéxt is not reflected in the current proof
system. When thery construct is used to encode surface-lexsgk constructs, this means that each
branch of acase construct is analyzed in isolation, without regard for tlagt@rns that guard previous
branches.

Rule IF augmentsH, in each branch, with a constraint that reflects the outcofitbeodynamic
test. Because; andxz, have typeatom, fa(z) # fa(xs) is equivalent to, and can be used instead of,
fa(zy) # fa(z2), a disequation that the constraint language is not diredtly to express.

Rule LETWHERE uses\z.C', whereC' is supplied by the user, as a postconditiondgrand makes
C Afa(x) C fa(A) a new hypothesis for the continuaties. Within es, nothing else is known about
x. Thus, an appropriate choice 6fis important. As noted earlier, | do not attempinder a strongest
postcondition for; .

Rule CaLL emits two proof obligations. One checks thf& precondition is satisfied by the actual
argument. The other checks that the postconditiBrof the call statement is implied b§/s postcon-
dition. In the second premise, | use the notatido- P, = P, whereH is a constraint and’, , P, are
predicates, to denote the fact that, under hypothEsigredicateP; is stronger tharP,. This can also
be writtenH I+ Vz. P (x) = Py(x), or, equivalently A Py(x) IF Py(x), for a freshe.

Function definitions Rule DeF states that the body of a function must be checked under dtopr
dition C; and postconditiorC; that were provided by the user. It also defines the notatipns f)”
and “post(f)” used in rule Q\LL. One interesting point is thalbst(f) contains not onlyCs, but also
fa(ze) C fa(z1). This means that, at every call site, the support of the resul be assumed to be a
subset of the support of the argument. This assumption ctiioefsee”. It is, in fact, a consequence of
the fact that toplevel functions must have empty suppois. jlistified by Lemma 4.4.

Judgements about function definitions take the forrfil. The entire program is accepted by the
proof system if and only if every single function definitian i

16

Stacks and configurations In order to establish the soundness of the proof systemydtera must
be extended to stacks and configurations. This is done ir€&§uThe judgemerit S { P} states that
the stackS expects a result that satisfies the predidate

In these rules and in the soundness proof, | use constraetsnix syntactic elements (values) and
semantic elements (semantic values). For instance, mieFRESH states that the stagls; a) expects
aresultthatis fresh for the atoin | also view a stacl§' as a constraint, obtained as the conjunction of all
equations of the form = w found within S. For instance, in the last premise of rulekSLET-LEFT,
the precondition under whichis checked is5 A C.

4.2 Soundness

Lemma 4.1 (Precondition Strengthening) H' I+ H andA - {H} e {P}implyA+ {H'}e{P}. <
Proof. By a straightforward induction over the derivationdft- {H} e {P}. O
Lemma 4.2 (Postcondition Weakening)H |- P = P'andA + {H}e{P}implyAt+ {H}e{P'}.c
Proof. By a straightforward induction over the derivationdft- {H} e {P}. O
Lemma 4.3 (Environment Widening) A’ D AandA - {H}e{P} implyA'+ {H}e{P}. o

Proof. By a straightforward induction over the derivationdf- { H} e { P}. In case RESH, note that
wideningA leads to strengthening the constraihi\ fa(z) #fa(A), so that applying Lemma 4.1 to the
second premise, in conjunction with the induction hypathgselds the result. O

The following lemma states that, if an expressiois accepted at all by the proof system, then the
system is in fact sufficiently strong to prove that the atohad appear free in the result of evaluating
must also appear free in the initial evaluation environmbnéther words, evaluating a provably correct
expressiore does not cause any new atoms to appear.

Lemma 4.4 (No Atoms Made Up) A+ {H} e {P} impliesA - {H} e{P Afa(-) C fa(A)}. o

Proof. By induction over the derivation ak - {H} e { P}. | adopt the notations of Figure 5. | exploit
the implicit hypothesis that the free variablesedbrm a subset of\.

o CaseVALUE. One first shows that, when the free variables &rm a subset of\, the constraint
fa(v) C fa(A) is valid, that is, satisfied by every valuation. The proof lustfact is by structural
induction overv, and is immediate. As a result of this factaMUE’s premiseH I P(v) implies
H - P(v) Afa(v) C fa(A). By applying \ALUE, we getA = {H} v {P Afa(-) C fa(A)}.

o CaseCASE. As above, the constraifd(v) C fa(A) is valid. LetA’ stand for(A, dom(p)). Then,
applying the induction hypothesis toaGE's third premise yields

A F{HANH Np=uvte{PAP Afa() Cfa(A)}

We will now show that, undey = v, the predicaté®’ A fa(-) C fa(A’) entailsfa(-) C fa(A). To do so,
we consider two sub-cases.

Sub-case = (x1) z2. By inverting ABSTRACTION-PATTERN, we find thatP’ isfa(z;) #fa(-). As
a result, the predicate

P’ Nfa(-) C fa(A’)
can be written
fa(zq) # fa(-) Afa() Cfa(A, zq, z2)
which is equivalent to
fa() - fa(A, wg) \ fa(:z:l)

Furthermore, the constraipt = v entailsfa(z2) \ fa(z;) = fa(v), so that, undep = v, the above
predicate entails
fa(-) C fa(A) U fa(v)

which is equivalent to
fa(-) C fa(A)

17

This ends the first sub-case.

Sub-case # (x1) zo. A case analysis overshows thap = v entailsfa(dom(p)) = fa(v), whence
fa(A’) = fa(A). As aresult, undes = v, the predicatéa(-) C fa(A’) entailsfa(-) C fa(A). This ends
the second sub-case.

We now apply Lemma 4.2, which yields

AN'F{HANH Ap=v}e{P AP Nfa(-) Cfa(A)}
There only remains to applyA3E to conclude
AF {H}case p=vthene{P Afa(-) C fa(A)}

o CasesABSURD, NEXT, FAIL. Immediate.

o CasesTRY, IF. Apply the induction hypothesis and conclude.

o CaseFRESH Analogous to the first sub-case of casesE.

o CaseLETWHERE. Applying the induction hypothesis to the second premisédgi

A,z {HAC Afa(z) C fa(A)} e {P A fa() C fa(A, 2)}

It is clear thatfa(xz) C fa(A) entailsfa(A, x) = fa(A), so, by applying Lemma 4.2 to the above, we
get:
A,z {HANC Nfa(z) Cfa(A)}es {P Afa(:) C fa(A)}

By applying LETWHERE, we conclude:
A+ {H}let z where C = e; in ey {P Afa(-) C fa(A)}
o CaseCALL. Let the definition of the functiorf be
fun f(zq where C1) : o where Cy = ¢
Then, by inverting EF, we find
post(f) = Ax1,22).(Co Afa(ze) C fa(zy))

which means thatost(f)(v, -) entailsfa(-) C fa(v). As in previous cases, the constrémt) C fa(A)
is valid, sopost(f)(v, -) entailsfa(-) C fa(A). By applying GLL, we conclude:

AF{H} f(v){P Afa(-) Cfa(A)} O

The combination of the type system and proof system is soltidraspect to the operational se-
mantics. This is proven via standard subject reduction andrpss results. A configuration valid
when it is accepted by the type system and proof system.

Theorem 4.5 (Subject Reduction)A valid configuration can reduce only to a valid configuration
That is, ¢; ok ande; — ¢ imply F ¢ ok. o

Proof. By cases over the reductian — c¢,. | refer to the rule numbers in Figure 2 and use the
notations in that figure. In every cask stands forom(S).

o Case(1). By inverting ®NF-ExPR and VALUE, we get- S{P} andS |- P(v). The latter
implies S I+ P(w), wherew = S(v). By applying \ALUE and @NF-VAL, we find S/w ok.
o Case(3). By inverting ®NF-EXPR, CASE, and OrHER-PATTERN, we get
FS{P}
x1,xo fresh forA, v, P
A,xy, w0 B {S A (21,29) =v}e{P}

Due to the hypothesi§(v) = (w;,ws), and to the fact that; andz, are fresh forA andwv, the
constraintS A (z1, z2) = v is equivalent toS; x; = wy; 22 = ws. Thus, by Lemma 4.1, we have

A'F {8 e {P)

18

where A’ stands forA, z1, 25 and S’ stands forS;z; = wi;x2 = we. Furthermore, thanks to the
hypothesis- S { P} and to the fact that; andz, are fresh forP, we have

S {P}

By applying GONF-EXPR, we finally obtain- S’/e ok.
o Caseq?2), (4), (5). Analogous to case (3).
o Case(6). Analogous to a combination of cases (3) and (11).
o Case(7). By inverting G®NF-ExpPR and TRy, we get

FS{P}
A {H}e {P}
A {H}ex {P}

By applying STk-TRY and GNF-EXPR, we obtain- (S;e2)/eq ok.
o Case(8). By inverting @NF-ExPR and SK-TRY, we get

- S{P}
AF {H}e{P}

By applying GONF-EXPR, we obtain- S/e ok.
o Case(9). By inverting @NF-EXPR, we get

= (S F){P}
By inverting one of $K-FRESH, STK-LET-LEFT, or STK-LET-RIGHT, we get
FS{P'}
for some predicaté’. Now, by applying NexT, we have
A+ {S}next{P'}

Finally, by applying ®NF-EXPR, we obtain- S/next ok.
o Case(10). Analogous to case (9).
o Case(11). By inverting @NF-EXPR and FRESH, we get

FS{P}
x fresh forA, P
Az {SAfa(z) #fa(A)}e{P Afa(z) #fa(-)}

Let S’ stand forS; a; x = a. Becauser is fresh forA, we have
S I+ S

Becauser is fresh forS, we have
x=al-fa(z) # fa(A)

Furthermore, we have
x=alfa(z)#fa(-) = a#fa(")

Thus, by applying Lemma 4.1 and Lemma 4.2, we obtain
Az {S e{P ANa#fa()}
Besides, by applying & -FRESHand SK-LET-RIGHT, we find
FS'{PAa#fa()}

Finally, by applying @NF-EXPR, we obtain- S’/e ok.

19

o Case(12). By inverting ®@NF-ExPR and IF, we get
FS{P}
AF{SAfa(x;) =fa(xqe)} e {P}
Thanks to the hypothesé§x,) = a;, S(z2) = as, anda; = as, we have
S I+ fa(xy) = fa(zq)

Thus, by Lemma 4.1, we have
AF{S}e {P}
By applying GONF-EXPR, we finally obtain- S/e; ok.
o Case(13). Analogous to case (12).
o Case(14). By inverting @WNF-ExXPR and LETWHERE, we get

FS{P}
x fresh forA, P
AF{S}te {\z.C}
Az E{SACANfa(z) Cfa(A)} ey {P}

By applying S'k-LET-LEFT, we obtain
F S {(\z.C) Afa(-) C fa(A)}

whereS’ stands forS; z.e. Note thatA = dom(S) = dom(S’). Furthermore, because the stacks
andS’ give rise to the same constraint, we have

A+ {S"}er {\x.C}
By Lemma 4.4, this implies
AR {S}er {(\z.C) A (fa() C fa(A))}
By applying GONF-EXPR, we finally obtain- S’/e; ok.
o Case(15). By inverting ®@NF-ExPR and CALL, we get
FS{P}

S Ik pre(f)(v)
S I+ post(f)(v,:) = P

By inverting DeF, we get

T - {Cl} € {>\$202}
pre(f) = Az1.Ch
post(f) = Ax1,22).(Co Afa(ze) C fa(zy))
Without loss of generality, we pick; fresh forA, v, P. Let S’ stand forS;x; = S(v). By applying

STK-LET-RIGHT, we obtain
S {P}

Becauser; is fresh forv, we haveS’(v) = S(v), which impliesS” I+ z; = v. Furthermore, because
x1 is fresh forA, we haveS’ I+ S. As a result, we have
S'FSAzy =w
IFpre(f)(v) Az =v
I pre(f)(z1)
=C

20

Hence, by Lemma 4.1, we have
X F {S/} e {)\.@202}

By Lemma 4.4, this implies
T F {S’}e {)\$2(CQ A fa(IL'Q) - fa($1))}
that is,
z1 - {8} e{post(f)(z1,)}
Again, underS’, z; andv coincide, so this can be written:
1 F {8} e{post(f)(v,)}
By Lemma 4.2 and Lemma 4.3, this implies
Az E{S"}e{P}
By applying GONF-EXPR, we finally obtain- S’/e ok.
o Case(16). By inverting WNF-VAL and Sk-FRESH, we get
FS{P}
Sl (P Aa#falr))(w)

In particular, we have

S I P(w)
By applying GONF-VAL, we obtain- S/w ok.

o Case(17). By inverting ®@NF-VAL and Sk-LET-LEFT, we get
x fresh forA, P
FS{P}
A,z {SAC}e{P}
S (Az.C)(w)

The last fact above implies
S IFC

whereS’ stands forS; x = w. Furthermore, becauseis fresh forA, we have
S+ S
By Lemma 4.1, these imply
Azt {S'}e{P}

By applying SK-LET-RIGHT, we obtain
S {P}
By applying @NF-EXxPR, we finally get- S’/e ok.
o Case(18). By inverting WNF-VAL and SK-LET-RIGHT, we get
x fresh for P
FS{P}
S;z=w'IF P(w)
The first and last of these imply
S I P(w)
By applying @NF-VAL, we get- S/w ok.
o Case(19). By inverting WNF-VAL and SK-TRY, we get
FS{P}
S;elk P(w)
The last of these implies
S I P(w)
By applying @NF-VAL, we get- S/w ok.

21

Theorem 4.6 (Progress)A valid, irreducible configuration is a result. o

Proof. By Theorem 2.3, only two cases need be examined and ruled out.

o CaseS/absurd. By inverting CONF-ExPR and ABSURD, we getS I+ false Yet, a stackS, when
viewed as a constraint, is a satisfiable constraint, sthisats own satisfying valuation. A contradiction
follows.

o CaseS;a/w, wherea occurs free inw. By inverting CONF-VAL and SK-FRESH, we get, in
particular:

Sl (PAa#fa())(w)

This implies that the ground constraint# fa(w) is valid, that is, is fresh forw. This contradicts our
hypothesis that occurs free inw. O

Corollary 4.7 (Soundness)A valid configuration cannot go wrong. o

Proof. By Theorem 2.2 and Theorem 4.5, a valid configuration canaeduly to a valid configuration.
By Theorem 4.6, a valid, irreducible configuration is a restidgether, these facts imply that a reduction
sequence out of a valid configuration must either divergeooverge to a result. In other words, such a
sequence cannot go wrong, that is, lead to an irreduciblégeoation that is not a result. O

5 Extensions

I now informally present @ml-style abstractions and generalized algebraic datsstygkich, for the
sake of simplicity, | omitted in the formal presentation lo¢ tproof system.

5.1 Caml-style abstractions

Presentation | have advocated elsewhere [16] that FreshML's binary abstn construct{z) e is
too limited for many practical uses. Fresh Objective Camisre general construge;) e; is also
inconvenient, because it requires structuring every abstm as gair whose left-hand componeat
holdsall binding occurrences of atoms (aoklythem) and whose right-hand componentorresponds
to the scope of the abstraction. This construct cannot egpmech typical idioms as lists of bindings,
environments, etc. For this reasony@l [16] offers a richer binding specification language, whiure
FreshML can adopt. In principle, the syntax of values become

vu=z]|()] (v,v)| Kv| (v)|innerv | outerv

In my prototype implementation, the angle bracketsas well as thénner andouter keywords appear
only in algebraic data type declarations, and become iitlgliattached to data constructors. This
allows omitting them in the actual syntax of values.

Two kinds of values are distinguished, called “expressiamsl “patterns” in [16]. (Better termi-
nology would be needed.) Inside the former, an occurrenem @tom is regarded adra@e occurrence.
Inside the latter, an occurrence of an atom is interpretedaslingoccurrence. The abstraction former
(-), which is now unary, expects a “pattern” and constructs apression”. Conversely, the keywords
inner and outer expect an “expression” and construct a “pattern”. They esaovend an enclosing
abstraction, that is, they mean: “as far as the current @aigin is concerned, there are no binding
occurrences of atoms below this point”. In additidéimer (resp.outer) indicates that the value that
follows lieswithin (resp.outsidg the scope of the abstraction.

Due to space constraints, it is impossible to repeat heré exjplanation of Giml’s binding speci-
fication language. The reader is referred to the existingipg®] as well as to the examples contained
in the present papet®). For instance, the definition of the data construtmon line 3 of Figure 8
illustrates the @ml idiom for an abstraction that would be expressible in Rk#ls. The definition of
the data constructdr (line 7), together with the definition of the “pattern” typav (line 14), shows
how to define an abstraction that binds a statically unknoumbrer of names. More explanations are
provided ing6.

22

fa((v)) — outer(v) U (inner(v) \ boundw))

for f € {fa, inner, outer, bound,
f0)—0
f((v1,v2)) = f(o1) U f(v2)
f(Kv) — f(v)

for f € {inner, outer, bound,
f({v)) is undefined

(v)
(v)
(v)

fa(innerv) — fa
fa(outerv) — fa
inner(innerv) — fal
inner(outerv) — 0
outer(innerv) — ()
outer(outer v) — fa
boundinnerv) — 0
boundouterv) — 0

(v)

Figure 7: Reducing applications of set functions to norialdes

Changes to Pure FreshML As far as Pure FreshML is concerned, the introduction@fiCs binding
specification language has relatively little impact. | fecin the following, on the changes made to the
decision procedure and proof system.

The introduction of a richer binding specification languaffects the way in which the support of
a value is computed. In particular, the support of an abstrac¢v) satisfies the equation:

fa((v)) = outer(v) U (inner(v) \ boundv))

Here,v is a value of “pattern” type. Its support is computed in teohithree auxiliary functions, whose
informal meaning is as followsnner(v) (resp.outer(v)) is the combined support of the sub-values of
that appear below anner (resp.outer) keyword, whileboundv) is the set of atoms that have a binding
occurrence in (not below aninner or outer keyword).

The syntax of set expressiorf8(1) is extended to includener(v), outer(v), andboundv) for all
valuesv of “pattern” type, whilefa remains available at all types.

The simplification rules that define the meanindasdire modified so as to reflect the above equation,
and supplemented with new simplification rules ifaner, outer, andbound All updated rules appear
in Figure 7.

The technique that was used to eliminate applicatioria tuf variables is extended to also deal with
applications obuter, inner, andbound Again, the type of the variable influences this step. Inipaldr,
if = has typeatom, then bothinner(x) andouter(z) are empty, anthoundx) equalsfa(z). As a more
subtle example, it has typeenvas defined on line 14 of Figure 8, themer(x) must be empty.

The universal lawf (z) C fa(x), wheref is any set function (here, one iminer, outer, andbound
is reflected by introducing an explicit constraint on thevsetables that stand fof(x) andfa(z).

The proof rules are almost unchanged. The only notable &hiarig rule ABSTRACTION-PATTERN
(Figure 5), which becomes:

ABSTRACTION-PATTERN’

A+ {boundz) # fa(A)} (x) {boundx) # fa(-) }

In short, the sefa(x1) of ABSTRACTION-PATTERN, which denotes a single atom, is replaced with the
setboundp), which possibly denotes zero, one, or more atoms. This teflee fact that an abstraction
now binds a set of atoms at once.

5.2 Generalized algebraic data types

Presentation So far, | have used traditional algebraic data types, whereyalata constructor carries
a signature of the form — ¢ (§2.3). In practice, it is sometimes useful to attasisertionsalso known

23

asguards with data constructors. This is done by letting every datastructorK” carry a signature of
the more general form:
(x : TwhereC) — §

Here, the identifier is bound in the constrairdt'. In type-theoretic terms, the data construdionow
carries a dependent pair of a value of typeeferred to as;, and a proof (not represented at runtime,
of course) thatr satisfies the constrainf. For example, the typeontext(line 8 of Figure 9) is a
generalized algebraic data type. Its definition is explaifoether on §6.2).

Changes to Pure FreshML The changes to the proof system are simple. An applicatiali ¢ a
value v now gives rise to the proof obligatiod I+ [z — v]C, whereH is the current hypothesis.
Conversely, matching against the patt&mp augments? with the new conjunciz — p|C.

There is a slight catch, though. The semantics of FreshMtatdis that, when an abstraction is
deconstructed via pattern matching, its bound atoms alaeaegwith fresh atoms (see reduction rule 6).
If, because of this renaming, the propettywas broken, then the proof system would be unsound.

Could such a thing happen? In fact, not wh&rhas a single free variable, as above. It is not
difficult to prove that, if a predicatax.C is true of a valuey, then it is also true of any renaming
of v. Onecan get into trouble, however, when one allows guards to refemtitiple variables, to
which distinct renamings could be applied. For instance, my prototype @mphtation allows data
constructors to carry multiple arguments, some of whichtmnested inside abstractions, so one might
attempt to write:

type dangerous=
| Danger of x: atomx (y: atom) where free(x) = free(y)

This is meaningless. Matching against the patf@anger(z, y) leavest unmodified but renamesto a
fresh atom, so the property thatqualsy cannot possibly be preserved.

For this reason, such a declaration must be ruled out. | hetvemmalized how this is done, but the
informal rule is simple: a guard must not mix variables thagioate in distinct abstractions.

6 lllustration

I now discuss two small but non-trivial example programg Hra accepted by the proof system: nor-
malization by evaluation (Figure 8) and conversiomtmormal form (Figure 9).

The concrete syntax is that of my prototype implementatids.explained earlier§.1), what is
shown here isurfacesyntax. It is translated down to Pure FreshML before beirsg@a on to the proof
system. The details of the translation are omitted.

The concrete syntax uses the keywirek for fa.

6.1 Normalization by evaluation

| first explain how Shinwelkt al’s benchmark [23] is adapted to Pure FreshML. There are taa
changes, which | now review.

Simulating first-class functions First, because my proof system does not yet have first-clags f
tions, | have defunctionalized [18] the code. That is, | heyfdaced every first-class function with a
closure—a data structure formed of a tag and a tuple of the functime&s variables.

Here, the effect of defunctionalization is that the datastarctorL carries data—a triple of an
environment, an atom, and a term—instead of a first-claggifum These three components correspond
to the three free variables of the function that was carrigdl in the original code [23, figure 7, line
27]. Where a first-class function was applied in the origawale [23, figure 7, lines 16 and 30], explicit
use is made of the closure—which boils down to a recursiiea@alvals(lines 22 and 51).

In order to simplify things a little, | have replaced the typét — sem([23, figure 7, line 8] with
justsem This affects the termination of the algorithm, but makeseasially no difference as far as
proof obligations are concerned. Being faithful to the imréd) code would have required introducing
one more data type and one more auxiliary function, with rdagegic gain.

24

35
36

37

57

60

61

type lam =
| Var of atom
| Lam of (atom x
| App of lam x lam

type sem=

inner lam)

| L of (envx atomx inner lam)

| N of neu

type neu =
| V of atom
| A of neux sem

type env binds =
| ENil
| EConsof envx a

fun reify accepts s
case s of
| L (env, y, t) —

fresh x in

Lam (x, reify
| N (n) —

reifyn (n)
end

fun reifyn accepts n
case n of
| V (x) —
Var (x)
| A(n, d)—
App (reifyn (n
end

tom x outer sem

produces t =

(evals (ECons (env, y, N (V (x))), t)))

produces t =

), reify (d))

fun evals accepts env, t produces v
where free(v) C outer(env) U (free(t) \ bound(env)) =

case t of
| Var (x) —
case env of
| ENil —
N (V (x))
| ECons (tail ,

y, V) —

if x=y then v
else evals (tail , t) end

end
| Lam (x, t) —
L (env, x, t)
| App (t1, t2) —

case evals (env, t1) of

| L (cenv, x,

t) —

evals (ECons (cenv, x, evals (env, t2)), t)

| N (n) —

N (A (n, evals (env, t2)))

end
end

fun eval accepts t produces s =

evals (ENil, t)

fun normalize accept
reify (eval (t))

s t produces u =

Figure 8: A sample program: normalization by evaluation
25

Specifying the binding structure of environments and clostes Second, | have made essential use
of Caml’s “binding specification” language. The definition of ttygpe lam is identical to Shinwelkt
al.'s, modulo differences in notation. The key novelty is in tedinition of the typeeny, which | have
made a “pattern type”, in &ml parlance [16]—this is indicated by th®nds keyword on line 14 of
Figure 8. This means that, in an environment of the form

env= ECong...ECOngENIl, x;,vy) ..., Xu, Vy,)

the atoms«y, ..., x, are considered asinding occurrencesThus, by definitionboundenv) denotes
the set of atomgx, . .., X, }, which one would usually refer to as tdemainof the environment.

According to theouter keyword in the definition oECons(line 16), the semantic values, . . ., v,
are considered to lieutsidethe scope of these atoms. Thaster(eny) denotes the set of atorfegv;) U
... Ufa(v,,), which one might refer to as thmageof the environment.

What is the scope of the atorss, . . ., x,,? According to thenner keyword in the definition of.
(line 7), within a closure of the form

v =L(enyxt)

the atoms irboundeny), as well as the atom, are considered bound within thetermt. In particular,
this implies:
fa(v) = outerfeny U (fa(t) \ (boundeny) U {x}))

That is, the support of the closuvencludes thémageof its environmeneny, as well as the atoms that
appear free in its bodyand are neither in théomainof envnor the formal argument

This explains why the proof obligation associated with teeahstruction of.amon line 46 suc-
ceeds. Deconstructingamyields a “fresh” atonx, which one must prove does not appear in the support
of the right-hand sid&(eny, x, t). The fact thak is “fresh” means, in particular, thatis not in the sup-
port of eny which by definition includesuter(eny). By exploiting the above displayed equation, one
finds thatx is not in the support of (env x,t), as desired. This fact is proved automatically by the
conservative decision procedures@f

The proof obligation on line 46 is interesting because itegponds, in part, to the obligation that
FreshML 2000 was not able to automatically discharge [28r&d, lines 26—27]. By declaring that the
data constructok carries an abstraction, | have been able to get away withebergtruction of.am
Of course, as a result, new proof obligations appear wheteigedeconstructed (lines 20 and 50). Both
of these require exploiting a non-trivial propertyefals which | now discuss.

Specifyingevals’ behavior with respect to support The functionevalsexpects a pair of an environ-
mentenvand a termt, and evaluateswithin the context ofenv. As one might expect, any atom that
appears in the support bés well as in thelomainof envis substituted out—which means thateifals
produces a result, then (line 36):

fa(v) C outerfeny) U (fa(t) \ boundenv))

This property is not automatically inferred by the systeris-& loop invariant—so it has to be explicitly
provided. Then, it is easily checked.

An alternative way of providing this information to the pfaystem would be to havevalsaccept
anabstractionof type (envx inner lam), instead of a pair of typenvx lam. Then, no explicit postcon-
dition would be required: the supporte¥als result would be simply the support of its argument. This
alternative style can seem attractive, but is less effidfeaibstractions are blindly “freshened” when
deconstructed. | come back to this issug8n

This property is easily proved correct. Becaasalsis recursive, the proof is “by induction"—that
is, the property is exploited in its own proof. This might segurprising, because there is no guarantee
thatevalsterminates. This approach is sound, because the properpeaigial correctness assertion: it
is a statement about the resultesals should it terminate.

6.2 Conversion toA-normal form

Figure 9 defines the abstract syntax of-galculus equipped witlet andif constructs and gives an
algorithm that converts arbitrary terms #enormal form, as defined by Flanaganal. [5]. A-normal

26

1 type term =

2 | Var of atom

3 | Lambdaof (atomx inner term)

4 | App of term x term

5 | Let of (atomx outer term x inner term)
6 | If of term x term x term

7

8

9

type contextbinds =

| CEmpty
10 | CLet of x: atomx inner t: term x c: context
11 where free(t) # free(x) U bound(c)
12 | CComposeof cl: contextx c2: context
13 where inner(cl) # bound(c2)

type closure =
16 | Clo of (contextx inner term)

i
o

18 fun fill accepts clo produces u =

19 let Clo (c, t) = clo in

20 case ¢ of

21 | CEmpty—

22 t

23 | CLet (x, t1, c2) —

2 Let (x, t1, fill (Clo (c2, t)))

25 | CCompose(cl, c2) —

26 fill (Clo (c1, fill (Clo (c2, t))))
27 end

28

29 fun norm accepts t produces u =

30 fill (split (t, false))

31

2 fun split accepts t, modeproduces clo =
33 case t of

34 | Var (-) —

35 Clo (CEmpty t)

36 | Lambda (x, t) —

37 Clo (CEmpty Lambda (x, norm (t)))

38 | App (11, t2) —

39 let Clo (c1, ul) = split (t1, true) in

0 let Clo (c2, u2) = split (t2, true) in

2 let clo = Clo (CCompose(cl, c2), App (ul, u2)) in
a2 valueify (clo, modg

43 | Let (x, t1, t2) —

44 let Clo (cl, ul) = split (t1, false) in

45 let Clo (c2, u2) = split (t2, modg in

46 Clo (CCompose(cl, CLet (x, ul, c2)), u2)

47 | If (t1, t2, t3) —

48 let Clo (c1, ul) = split (t1, true) in

49 let clo = Clo (c1, If (ul, norm (t2), norm (t3))) in
50 valueify (clo, modg

51 end

s3 fun valueify accepts clo, mode produces clo =

54 if mode then

55 let Clo (c, t) = clo in

56 fresh x in

57 Clo (CCompose(c, CLet (x, t, CEmpty), Var (x))
58 else

59 clo

60 end

Figure 9: A sample program: conversiondenormal form

27

form requires operators of applications, operands of egfiins, and conditions aff constructs to be
values, and forbids nesting &ft constructs towards the left.

Flanaganret al. provide a rather subtle conversion algorithm, expressecbirtinuation-passing
style. | was surprised to find that this algorithm, once defiomalized and translated to the input
language of my prototype implementation, requires onlglgiratom abstractions, as opposed ta@-
style abstractions, and gives rise to only a handful of padmifgations, all of which are trivial. This
algorithm is probably expressible in FreshML 2000 [15].

In order to make things more interesting, | present a diffeedgorithm, expressed in direct style
(Figure 9). | would say that this algorithm is conceptuallgrmstraightforward than Flanagahal's—
there are no continuations, no first-class functions, aumtetfonalized versions thereof. Yet, it requires
advanced use of &nl-style abstractions and of generalized algebraic datesyand gives rise to 17
proof obligations, many of which are non-trivial. This ischese the algorithm makes explicit use of
contexts the central functionsplit, produces a pair of a context—a sequenckoflefinitions that are
being floated out—and a residual term. It is interesting dmadrguably more natural algorithm should
require a significantly more powerful proof system!

Contexts The abstract syntax of contexts is simple. It would be wmittn paper, as follows:
cu=[]|letx=tinc|c[Co]
Intuitively, a context is just an ordered list of bindingstbé form
let x; =ty in ...let X, =t, in[]

In the following, | refer to the sefxy, ..., X, } as thedomainof such a context. In the code, things will
be set up so that the domainois referred to aboundc).

The first two productions in the above grammar would be sefiicio generate all lists of bindings.
The third production, which denotes list concatenatiompisceptually redundant, but allows constant
time composition of contexts.

The termc|t] obtained by filling context with termt would be defined, on paper, as follows:

[t =t
(Iet X=1tyin C)[tg] =letX=1t; in C[tg]
(Cle])[t] = cieo[t]]

This corresponds to functidill (line 18). Context filling is, by design, @pturingoperation: any atom
that occurs free inand is in the domain af becomes bound in the terdft]. It is important to note that
the atoms that form the domain ofoccurfreein c, that is, they are members f#(c). They become
boundonly whenc is filled with a term.

Representing closures Several functionsfil, split, andvalueify) accept or return pairs of a context
and a termt, wheret is to be viewed as “within the contegt. One cannot fuse the two by forming the
termc[t] right away because the inductive definitionsplit requires individual access toandt. They
are eventually fused wherorm, the algorithm’s main entry point, invoké&# (line 30).

What does it mean farto be viewed as “within the context? The answer is, even though one
has not yet filled the hole and formeft], onepromiseso do so in the future, so that the atoms in the
domain ofc canbe considered bound in the péd; t).

| formalize this intuition by wrapping andt together in aclosure(line 15), that is, a @ml-style
abstraction, where the atoms in the domaiic efe declared to be bound within

Representing contexts Because a context defines a set of atoms that are bound blptheeabstrac-
tion, the typecontextmust be a “pattern” type, in @nl parlance [16]. This is indicated by theénds
keyword on line 8. The three data constructor declaration€ Empty CLet andCComposeeflect the
abstract syntax of contexts that was given earlier. Two tnioial aspects, which | now explain, are the
use of thenner keyword (line 10) and of a guard (lines 11 and 13).

Sincetermis a Caml “expression” type, whileontextis a “pattern” type, théermcomponent in the
declaration ofCLet must be preceded with one of threr or outer keywords [16], so as to indicate

28

whether this term liegsideor outsidethe scope of the abstractions in which contexts particiretee,
closures).
Which of the two keywords is appropriate here? Suppose Iltnaetghe closure

clo = Clo(c, t)
wherec is a context of the form
let x; =ty in ...let X, =1, in]

Within this closure, should the termis . . ., t,, lie insideor outsideof the scope of the atoms, . .., X, ?
Aha, that’s a trick question. One answerngjther Considering how thé&t forms are nested, eath
should lie within the scope dfx;, ..., %;_1}.

If neither keyword is appropriate, are we out of luck? sn@’s binding specification language too
crude for this application? No—there is a way out. | useitimer keyword, thugpretendingthat each
t; lies within the scope ofxy, ..., x,}. Then, | add a side condition (line 11) stating thatontains no
occurrence of the atoms, ..., X, }. The end effect is exactly what was needed! The side comditio
carried byCComposé€line 13) serves the same purpose.

| don’'t know how general this trick really is. | believe it islige interesting, and could also be
useful in the setting of a proof assistant, should one attémmechanize, in a nominal style, proofs
that involve nested contexts.

The algorithm Once appropriate definitions of the typesntextand closureare made, the code is
straightforward. In shorfjll fills a contextc with a termt, producing a termnormaccepts a term and
produces itsA-normal form. split accepts a pair of a terts and a Boolean flagnodeand produces
a closureClo(cs, t2) such that; is semantically equivalent tc;[t2] and, if modeis true, thent, is a
value. valueifyaccepts a pair of a closu@o(c;,t;) and a Boolean flaghodeand produces a closure
Clo(cs, t3) such thatcy [t;] is semantically equivalent to,[to] and, if modeis true, thent, is a value.
If modeis true, valueifydefinest, to be a fresh variablg and floats the bindinglét x = t; in []” up
into the context (lines 56 and 57). It is essential to headeieifyreturn a closure, as opposed to a pair
of a context and a term. Otherwise, the proof system woulkttiiatx escapes the scope of thresh
construct that created it.

The code gives rise to 17 proof obligations, all of which anecgessfully and automatically dis-
charged.

It is remarkable that there are no visible assertions in teec Of course, this is an illusion, since
the numerous explicit uses 6lo are really annotations.

Introducing an error Imagine that, on line 46, the programmer is confused anckgrit
Clo (CCompose(cl, CCompose(c2, CLet (x, ul, CEmpty))), u2)

That is, she constructs the contegfc2[let x = ulin []]] instead ofc1[let x = ulin c2].
This incorrect program is rejected. The current prototypplémentation produces the following
error message:

File "anf—direct.fml”, line 46, characters25-60:
| am unable to prove that the following hypotheses
inner(cl) C free(cl)
bound(cl) C free(cl)
bound(c2) C free(c2)
inner(c2) C free(c2)
free(?closure_1) = (inner(c2) U free(u2)) \ bound(c2)
free(?closure) = (free(ul) U inner(cl)) \ bound(cl)
free(t) = free(tl) U free(t2) \ free(x)
bound(c2) # free(x) U free(t) U free(tl) U free(t2)
U free(cl) U free(ul) U free(?closure)
U free(?closure._1)
free(?closure_1) C free(t2)
bound(cl) # free(x) U free(t) U free(tl) U free(t2)
U free(?closure)

29

free(?closure) C free(tl)

free(x) # free(t)

entail the goal

inner(c2) # free(x)

The reason why | am attempting to prove this assertion.is
File "anf-direct.fml”, line 46, characters 25-60:

It is part of the invariant for data constructor CCompose

The list of hypotheses is rather difficult to decipher. (Tlenes?closureand ?closure_1 stand for

the results of the two recursive callsgplit. They are generated during the translation of the surface
language down to the kernel language described in this pafiee proof system complains that, under
a certain set of hypotheses, it cannot proweer (c2) # free (x). (This proof obligation corresponds
to the guard of the right-handComposg This means that the atorcould appear free in the context
c2. This is true:c2was constructed out @2, which can contain free occurrencesxof~or this reason,
c2[let x=ulin []] is not a well-formed context.

The quality of this error message could hopefully be impdov&he point, for now, is that this
subtle programming error, which a standard type system dvoat have caught, is detected by the
proof system.

Note that the setfree (modd, outer (c1), outer (c2), etc. are not mentioned in any of the hypotheses.
By examining the types ahode c1, andc2, the system can tell that these sets are empty. (This was
discussed i1§3.3.) This knowledge can be necessary for the proof obtigatio go through, and helps
reduce visual clutter.

7 Related work

This paper was inspired by Pitts and Gabbay’s work on stétéshness inference” for FreshML [15].
Pitts and Gabbay'’s algorithm attemptsitder freshness assertions about values and expressions, or,
equivalently, to infer an approximation of the support ofues and expressions. The proof system
presented in this paper is oriented purely towactscking It does not attempt to do any kind of
inference besides the simple type inference performed dwtiderlying type system. For this reason,
explicit assertions must sometimes be providedeatonstructs. | did initially attempt to infer an
approximation of the support of values and expressions, fowind that this approach was much more
complex and not worth the trouble.

The design of a dependent type system for an impure prograghntanguage was pioneered by
Xi [28]. The key insight that constraints can be dependeiy on values, as opposed to arbitrary
computations, is exploited here.

PaSali¢ and Linger [13] exploit the programming languélgeega to define a data type that rep-
resents the abstract syntax of an object language, exgrésse Bruijn notation. The data type is
parameterized in a way that guarantees that out-of-randudp indices cannot be constructed. The
syntax of the object language includes non-trivial bindstigictures (patterns). Donnelly and Xi [4]
explore a similar approach in the programming language Ah®se are interesting ideas, but | believe
that the nominal programming style supported by FreshML @gsematural and appealing than a de
Bruijn-based approach.

Schirmannet al’s V-calculus [19] is a core meta-programming language whejecttevel terms
are encoded using higher-order abstract syntax. Therecmbject-level names: both object-level
and meta-level abstractions bind meta-variables. Olgeet-substitution is application of object-level
abstractions. A type system guarantees that meta-vasighlenot escape their scope—which, in this
case, also means that object-level terms are lexically-fwathed. It is quite different from the proof
system presented in this paper. The construct introduces a new meta-variableand at the same
time requires the result of evaluatimrgo depend only on meta-variables that were bound priat.to
This requirement is encoded via stacks of typing contextisvéma “box” type constructor that prevents
exploiting the topmost context. This is quite impressivg, Bgain, | find nominal encodings much more
direct than higher-order abstract syntax encodings. Tiee po pay for the simpler, nominal approach
is the need to hand-code substitution functions, or to aaxplicit environments around.

MetaOCaml relies on environment classifiers [24] to tell ebhcode fragments are closed. An
environment classifier is a type variable that abstracts afseames. The code type constructor is pa-
rameterized with an environment classifier. This allowstjipe system to keep track, in a conservative

30

way, of which names appear free in a code fragment. Closed fragments are recognized by the
fact that they are polymorphic in their environment classifiThis approach seems coarser than that
followed in the present paper, but lends itself better tetyerence techniques [2].

Nanevski’'s calculus®™ [12] is inspired by FreshML, and, like Pure FreshML, proddestatic dis-
cipline for enforcing purity. This is done by explicitly keiag track of the support of every value, and
exploiting this information to ensure that freshly-creat@ames do not escape. An important difference
betweenv™ and Pure FreshML is that" lets thetype systencarry the support information, by pa-
rameterizing the “code” type constructor with a set of namdsle Pure FreshML relies on a separate
proof systenand requires no changes to the type system. | believe thidtteeapproach is lighter (for
instance, Nanevski's “support polymorphism” comes foefreere) and potentially more expressive,
because constraints can express properties other thaoxapptions of the support of certain values.
Another design difference is that' is ahomogeneous, multi-levefaged programming language, while
FreshML is éheterogeneousmeta-programming language. This means, for instancelNnagvski does
not distinguish between meta-levelabstraction and object-level name abstraction.

Kim, Yi, and Calcagno [9] present a meta-programming lagguequipped with a type system
that uses rows to keep track of the free names of each codadratg The language is not hygienic,
however—a code fragment can refer to the nandeifi a context where no such name was ever intro-
duced.

A line of works by Jacksoet al. [8, 26, 3] rely on a SAT solver to detect bugs in software. Aténi
approximation of the procedure’s behavior is encoded asmaula in first-order relational logic. It is
then conjoined with the procedure’s precondition and withriegation of the procedure’s postcondition,
so as to look for executions that violate the procedure’sifipation. The resulting formula in first-order
relational logic is translated down, under a finite boundhangize of its models, to propositional logic,
and handed to a SAT solver. This approach appears effedtifiledéng bugs, but cannot prove their
absence.

8 Future work

Many features must be added in order to turn Pure FreshMlairgalistic meta-programming language.
Here are a few:

e First-class functionsl am confident that first-class functions can be introducitidout difficulty.
This requires extending the grammar of types with functigres, carrying a precondition and
a postcondition. Furthermore, Pitts and Gabbay [15] reethtkat the support of a function is
a subset of the combined support of its free variables. Thsaximation can be exploited to
conservatively eliminate applicationsfafto A\-abstractions.

e Mutable state Shared, modifiable references offer new ways for atoms ¢apestheir scope.
Calcagncet al.[1] attack the problem in the setting of MetaML and offer asiain that requires
references to contaiclosedcode fragments. An analogous restriction—to require egfegs to
contain values oémpty support-would be easy to enforce in Pure FreshML, via proof obliga-
tions.

e ExceptionsTheir addition should be unproblematic, provided thargd#enction declares which
exceptions it can raise and (if necessary) provides podttions for exceptional exits.

e Primitive operations The language should provide sets of atoms, maps over agtms,The
proof system should keep precise track of all operations thvse data structures.

e Multiple sorts of atoms Distinguishing multiple sorts of atoms is easy [16], usedind, in the
setting of Pure FreshML, provides extra freshness assongpfor free: two atoms of distinct
sorts are automatically known to be fresh for one another.

e Polymorphism Type polymorphism, sort polymorphism, and parameteragdbraic data types
are important features that | have left aside until now. Thembination with @ml-style alge-
braic data types could raise non-trivial issues.

e Non-linear patternsAs noted by Pitts and Gabbay [1f&.2], non-linear patterns sometimes offer
an elegant way of avoiding an explicit renaming. It would biesting to extend the dynamic
semantics and the proof system with direct support for them.

31

e Safe non-freshenind@’he nominal approach to abstract syntax has been criti¢aédts runtime

cost. Fresheningthat is, automatically replacing an abstraction’s boutoans with fresh atoms
when that abstraction is inspected, is expensive. Furthiernit can be unnecessary: sometimes,
there simply is no risk of inadvertent capture. | believet tha&ure FreshML compiler could
detect many such situations and produce efficient code (Hpmpging no freshening) without
sacrificing safety.

Typed abstract syntaxt is well-known that generalized algebraic data typed g2@w reflecting
the typing rules of a simply-typed object language into tregadanguage. Combining this tech-
nigue with Pure FreshML would lead to a meta-programmingu@age that can only construct
lexically well-formedandwell-typedobject program fragments.

A mid-term goal is to design a realistic meta-programminggleage on top of Pure FreshML. In
order to ensure interoperability with existing librarigsyould be compiled down to Objective Caml,
using some of the techniques developed fan@ [16].

References

(1]
(2]
(3]
[4]
[5]
[6]
[7]

(8]

[9]
[10]
[11]
[12]
[13]
[14]
[15]
[16]

[17]
(18]

[19]
[20]
[21]

[22]

C. Calcagno, E. Moggi, and T. Sheard. Closed types foffaisgperative MetaML.Journal of Functional
Programming 13(3):545-571, May 2003.

C. Calcagno, E. Moggi, and W. Taha. ML-like inference @dassifiers. InEuropean Symposium on Pro-
gramming (ESOR)olume 2986 of_ecture Notes in Computer Scienpages 79-93. Springer Verlag, 2004.
G. Dennis, F. Change, and D. Jackson. Modular verificatibcode with SAT. Innternational Symposium
on Software Testing and Analysis (ISSTA)y 2006.

K. Donnelly and H. Xi. Combining higher-order abstraghtax with first-order abstract syntax in ATS. In
ACM Workshop on Mechanized Reasoning about Languages aritib\é Binding pages 58-63, 2005.

C. Flanagan, A. Sabry, B. F. Duba, and M. Felleisen. Tteerese of compiling with continuations. ACM
Conference on Programming Language Design and Implementé®LDI), pages 237-247, 1993.

M. J. Gabbay and A. M. Pitts. A new approach to abstractasywith variable binding.Formal Aspects of
Computing 13(3-5):341-363, July 2002.

K. Honda and N. Yoshida. A compositional logic for polyrpbic higher-order functions. Imternational
ACM Conference on Principles and Practice of Declarativedamming (PPDP)pages 191-202, Aug.
2004.

D. Jackson and M. Vaziri. Finding bugs with a constraioliver. InInternational Symposium on Software
Testing and Analysis (ISSTA§ug. 2000.

1.-S. Kim, K. Yi, and C. Calcagno. A polymorphic modal tysystem for Lisp-like multi-staged languages.
In ACM Symposium on Principles of Programming Languages (BQftlges 257—-268, 2006.

K. Marriott and M. Odersky. Negative Boolean consttainTechnical Report 94/203, Monash University,
Aug. 1994.

M. W. Moskewicz, C. F. Madigan, Y. Zhao, L. Zhang, and SalM. Chaff: Engineering an efficient SAT
solver. InDesign Automation Conference (DAQuly 2001.

A. Nanevski. Meta-programming with names and necgs$échnical Report CMU-CS-02-123R, School of
Computer Science, Carnegie Mellon University, Nov. 2002.

Pa3alic and N. Linger. Meta-programming with typdgjext-language representations. liternational
Conference on Generative Programming and Component Eegimge(GPCE) pages 136-167, Oct. 2004.
A. M. Pitts. Alpha-structural recursion and inductialournal of the ACM53:459-506, 2006.

A. M. Pitts and M. J. Gabbay. A metalanguage for prograngmwith bound names modulo renaming. In
International Conference on Mathematics of Program Cansgtton (MPC) volume 1837 of_ecture Notes
in Computer Scienggages 230-255. Springer Verlag, 2000.

F. Pottier. An overview of @ml. In ACM Workshop on MLvolume 148(2) oElectronic Notes in Theoretical
Computer Sciencgages 27-52, Mar. 2006.

F. Pottier. Prototype implementation of Pure FreshNkn. 2007.

J. C. Reynolds. Definitional interpreters for higheder programming languagesligher-Order and Sym-
bolic Computation11(4):363—397, Dec. 1998.

C. Schirmann, A. Poswolsky, and J. Sarnat. TWiecalculus: Functional programming with higher-order
encodings. Technical Report YALEU/DCS/TR-1272, Yale Wmsity, Nov. 2004.

T. Sheard. Using MetaML: A staged programming langudgé@dvanced Functional Programmingolume
1608 ofLecture Notes in Computer Scienpages 207—239. Springer Verlag, Sept. 1998.

M. R. Shinwell. Fresh O’Caml: nominal abstract syntax the masses. I1ACM Workshop on MLSept.
2005.

M. R. Shinwell and A. M. Pitts. On a monadic semantics fi@shness. Theoretical Computer Science
342:28-55, 2005.

32

[23] M. R. Shinwell, A. M. Pitts, and M. J. Gabbay. FreshMLpBramming with binders made simple. ACM
International Conference on Functional Programming (IQFpPages 263-274, Aug. 2003.

[24] W. Taha and M. F. Nielsen. Environment classifiers. ABM Symposium on Principles of Programming
Languages (POPL pages 26—37, Jan. 2003.

[25] C. Urban, A. Pitts, and M. Gabbay. Nominal unificatidieoretical Computer Sciencg23:473-497, 2004.

[26] M. Vaziri and D. Jackson. Checking heap-manipulatingcpdures with a constraint solver. International
Conference on Tools and Algorithms for Construction andlysis of Systems (TACAS)lume 2619 of
Lecture Notes in Computer Scien&pringer Verlag, Apr. 2003.

[27] A. K. Wright and M. Felleisen. A syntactic approach t@éysoundnessinformation and Computatign
115(1):38-94, Nov. 1994.

[28] H. Xi. Dependent Types in Practical ProgrammirighD thesis, Carnegie Mellon University, Dec. 1998.

[29] H. Xi, C. Chen, and G. Chen. Guarded recursive datatgpsteuctors. IANCM Symposium on Principles of
Programming Languages (POPLlpages 224-235, Jan. 2003.

33

