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Abstra
t

This paper o�ers a theoreti
al study of 
onstraint simpli�
ation, a fundamental

issue for the designer of a pra
ti
al type inferen
e system with subtyping.

In the simpler 
ase where 
onstraints are equations, a simple isomorphism between


onstrained type s
hemes and �nite state automata yields a 
omplete 
onstraint sim-

pli�
ation method. Using it as a guide for the intuition, we move on to the 
ase of

subtyping, and des
ribe several simpli�
ation algorithms. Although no longer 
om-

plete, they are 
on
eptually simple, eÆ
ient, and very e�e
tive in pra
ti
e.

Overall, this paper gives a 
on
ise theoreti
al a

ount of the te
hniques found at the


ore of our type inferen
e system. Our study is restri
ted to the 
ase where 
onstraints

are interpreted in a non-stru
tural latti
e of regular terms. Nevertheless, we highlight

a small number of general ideas, whi
h explain our algorithms at a high level and may

be appli
able to a variety of other systems.

1 Introdu
tion

1.1 Subtyping and type inferen
e

In a typed programming language, a fun
tion appli
ation (e

1

e

2

) is legal if and only if there

exists a type �

2

whi
h is both a valid type for the argument e

2

and a valid domain type for

the fun
tion e

1

.

In the simply-typed �-
al
ulus, the set of all valid types of a given (un-annotated) ex-

pression e has a very regular stru
ture: it is either empty, or exa
tly the set of all substi-

tution instan
es of a most general type � . Then, inferring the (most general) type of an

expression redu
es to solving a set of equations between types [Wan87℄. The addition of

let-polymorphism, as done in ML [Mil78℄, essentially preserves this fa
t.

These systems have type instantiation as their only notion of type 
ompatibility. In

parti
ular, they view any two ground types as in
ompatible unless they are equal. For

instan
e, assume ma
hine integers and 
oating-point numbers are des
ribed by two base

types, namely int and real. Then, the appli
ation (fa
t x) is illegal if fa
t and x have

(most general) types int ! int and real, respe
tively. This is a good point, sin
e it is


ertainly a programming error. On the other hand, if log and n have (most general) types

real ! real and int, respe
tively, then the appli
ation (log n) is deemed illegal as well.

Yet, be
ause integers are mathemati
ally a subset of reals, one may a
tually wish for this

term to be a

epted.

To over
ome this limitation, Mit
hell [Mit84℄ suggests enri
hing these type systems with

subtyping. This involves introdu
ing a partial order � on types, together with a new typing

�
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rule, stating that if � � �

0

holds (read: if � is a subtype of �

0

) then every expression of

type � has type �

0

as well. For instan
e, 
hoosing the stri
t ordering int < real 
auses

(fa
t x) to remain ill-typed, while (log n) be
omes well-typed, be
ause n : int now implies

n : real. Subtyping is not, in general, limited to base types: Cardelli [Car88℄ equips re
ord

types with a natural subtyping relation, allowing information about any number of �elds to

be dis
arded. In addition to its intrinsi
 interest, su
h a system provides a possible basis

for the study of obje
t-oriented languages.

Systems equipped with subtyping have a 
ombination of type instantiation and subtyping

as their notion of type 
ompatibility. As a result, the type inferen
e problem no longer

redu
es to solving a set of equations. Instead, it requires solving a set of inequalities,

usually 
alled 
onstraints [Mit84, Pal95℄. This pro
ess is theoreti
ally straightforward, but


ostly, be
ause the eÆ
ient uni�
ation algorithms developed to solve equations [JK90℄ 
an

no longer be used.

Why, then, should we wish to perform type inferen
e? Would it not be suÆ
ient to

require the programmer to supply type annotations, and merely 
he
k their 
onsisten
y?

Let us give two reasons why type inferen
e is useful. First, it frees the programmer from the

burden of de
laring the type of every program variable|a tedious task in many widespread

languages|and allows him to naturally write polymorphi
 
ode. Se
ond, type inferen
e

may be viewed as a simple way of des
ribing program analyses [PO95℄, whose results may

be used, for instan
e, to drive 
ompiler optimizations.

1.2 Simpli�
ation

Our aim, then, is to study the type inferen
e problem in the presen
e of subtyping, and to


ompare it with the original problem, where subtyping is redu
ed to equality.

The 
onstraint system to be solved is the same in both 
ases; its size is linear in the

program size. (Though let-polymorphism may, in fa
t, 
ause it to grow exponentially, it

is an a

epted fa
t that it \usually" does not.) However, while equations 
an be solved

in quasi-linear time, solving inequalities between (non-atomi
) terms typi
ally requires (at

least) 
ubi
-time algorithms [AW93, Pal95, MR00℄. Thus, an eÆ
ien
y problem appears.

Every uni�
ation problem admits a most general solution. Thus, in the absen
e of

subtyping, every program has a most general type. It is often 
ompa
t and easily intelligible.

On the other hand, many 
lasses of subtyping problems do not have most general solutions.

Then, des
ribing the set of all valid types of a given program requires printing the 
onstraint

system itself, whi
h often involves many auxiliary type variables. Thus, a readability issue

also arises.

To address these problems, it seems ne
essary to simplify systems of subtyping 
on-

straints, i.e. to redu
e them to smaller, equivalent systems. This topi
 has re
eived 
ontinued

attention in the past few years [Aik94, AF96, AWP96, FFSA98, AFFS98, F�ah99, EST95a,

TS96, FF96, FF97, Fla97, Pot96, Pot98a, Pot98b, Pot98
℄. Indeed, designing a reasonable

simpli�
ation algorithm is not easy. It must be 
orre
t and eÆ
ient. Ideally, it should also

be 
omplete, i.e. produ
e optimal results. Unfortunately, a
hieving 
ompleteness involves

solving the 
onstraint entailment problem, whi
h may be mu
h more 
omplex than 
on-

straint solving. In our framework, for instan
e, entailment has been shown PSPACE-hard,

but its de
idability is still unsettled [HR98, NP99℄. For this reason, pra
ti
al 
onstraint

simpli�
ation algorithms are often in
omplete.

1.3 Choi
es

De�ning a type system with subtyping involves two main 
hoi
es. First, one must 
hoose

a 
onstraint logi
, i.e. de�ne a 
onstraint language and its interpretation within a model.
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Se
ond, one must de�ne a set of typing rules. Be
ause typing judgements involve 
onstraints,

the rules redu
e the typing problem to a series of assertions expressed within the 
onstraint

logi
. These two 
hoi
es are mostly orthogonal, as pointed out by [OSW99℄.

As far as the �rst 
hoi
e is 
on
erned, the array of possibilities is extremely wide. The

model may have 
ovariant type 
onstru
tors only, or it may have 
ontravariant 
onstru
tors

as well. (In the former 
ase, 
onstraint systems may have smallest solutions.) It may or may

not have re
ursive types. (If present, they may give smoother mathemati
al properties to

the model, leading to simpler algorithms.) The model, equipped with the subtype ordering,

may or may not form a latti
e. (If it does, then more aggressive simpli�
ations be
ome

valid.) Types may be interpreted as ideals [MPS86℄ or as terms. (The former interpretation

assigns more pre
ise meanings to union and interse
tion types. On the other hand, it may

be more 
omplex; axioms su
h as ? = 
(?), where 
 is any unary stri
t type 
onstru
tor,

make 
onstraint solving more diÆ
ult.) When types are interpreted as terms, subtyping

may be atomi
 (i.e. only 
onstant type 
onstru
tors may be 
omparable), stru
tural (i.e.

only type 
onstru
tors of identi
al arity may be 
omparable), or non-stru
tural (even type


onstru
tors with di�erent arities may be 
omparable). Constraints may be interpreted

within a �xed model, or within a family thereof. (If the former, then deeper simpli�
ations

are usually possible. On the other hand, user-extensible subtype hierar
hies require the

latter.)

Changes in the 
onstraint logi
 greatly a�e
t the 
omplexity of the resolution and en-

tailment problems (as well as the formulation of the 
orresponding algorithms). For this

reason, we will fo
us on a single 
ase, while hoping that (some of) our methods may be

appli
able to (some) other logi
s. More spe
i�
ally, we 
hoose to interpret types in the �xed

model of all regular terms generated by ?, ! and >, with arities 0, 2 and 0, respe
tively.

Subtyping is interpreted in the model by ordering these 
onstru
tors as given and viewing!

as a 
ontra/
o-variant type 
onstru
tor. This yields a non-stru
tural subtyping relationship,

whi
h forms a latti
e. Although this 
ase may seem very simple, generalizing it to more

elaborate non-stru
tural term latti
es is straightforward (see e.g. [Pot00a℄) and requires no

fundamental 
hanges to the theory or to the algorithms.

The se
ond 
hoi
e de�nitely has less impa
t on the system as a whole. Although many

variants have appeared in the literature, most of them are very 
lose in spirit. The idea is

to extend the Hindley-Milner type dis
ipline [Mil78℄ with 
onstraints, while keeping let-

polymorphism. Perhaps the most elegant formal exposition of this idea is the system HM(X)

by Odersky, Sulzmann et al. [OSW99, SMZ99℄. Here, however, we will use a set of typing

rules inspired by Trifonov and Smith [TS96℄, with a few te
hni
al modi�
ations to the type

inferen
e rules. This somewhat un
ommon presentation allows us to deal with 
losed (i.e.

fully universally quanti�ed) type s
hemes only, making a formal des
ription of 
onstraint

simpli�
ation|the 
entral topi
 of the present paper|easier.

1.4 Overview

In this paper, we present a type inferen
e system with subtyping, designed with 
onstraint

simpli�
ation in mind. Its inferen
e rules are written so as to generate amenable 
onstraint

systems. We des
ribe three simpli�
ation algorithms, designed to be used in 
ombination

with one another; they are simple, eÆ
ient and e�e
tive. We emphasize the parallel between

the 
ase of equality and that of subtyping, and show that these algorithms are based, in

both 
ases, on the same broad ideas. In fa
t, in the 
ase of equality, their 
ombination

yields a 
omplete simpli�
ation strategy. Although it is no longer 
omplete in the 
ase of

subtyping, we believe it produ
es good results in pra
ti
e.

This paper is laid out as follows. Se
tion 2 introdu
es the ne
essary theoreti
al ba
k-

ground, namely a set of ground types ordered by subtyping, a 
ore language, a set of typing
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rules, and an equivalent set of type inferen
e rules. The type inferen
e rules des
ribe a

deterministi
 algorithm, whi
h maps an expression to a 
onstrained type s
heme. The 
on-

straints thus generated may be viewed, at will, as equations or as subtyping 
onstraints.

In the former 
ase, we obtain a type inferen
e system 
lose to that of ML; in the latter,

a system equipped with the full power of subtyping. Se
tion 3 studies the simpler one,

and suggests a 
omplete simpli�
ation method by borrowing 
on
epts from automata the-

ory. This se
tion should help the reader form general intuitions about the stru
ture and

behavior of 
onstraints. We hope these ideas are appli
able in other 
ontexts; in parti
ular,

they may be transferred to our more 
omplex system, whi
h is the topi
 of se
tion 4. In

this se
tion, whi
h forms the theoreti
al body of the paper, we formally des
ribe and prove

several 
onstraint simpli�
ation algorithms, based on the same ideas. Se
tion 5 shows these

algorithms at work on a simple example. Se
tion 6 reviews related work.

This paper borrows ideas from several existing works. One of its novel aspe
ts is their

seamless integration: we des
ribe a 
lean, simple theory, whi
h leads dire
tly to an eÆ
ient

implementation [Pot00b℄. Another 
ontribution is in the area of presentation. First, thanks

to a 
arefully thought-out mathemati
al layout, we are able to present our formal results

with almost no auxiliary steps, and with substantially smaller proofs than in earlier works.

Se
ond, we highlight the similarity of our methods with those appli
able in the 
ase of

equality 
onstraints; by doing so, we hope to help the reader grasp the essential ideas behind

our algorithms. Thus, this paper may 
onstitute a good introdu
tion to the theoreti
al issues

behind 
onstraint-based type inferen
e.

Before beginning our te
hni
al exposition, let us re
all that the fo
us of this paper is

on 
onstraint simpli�
ation. Be
ause of this de
ision, several issues related to the design

of a 
onstraint-based type inferen
e system have been left aside. Among them, one may

mention 
ertain fundamental theoreti
al results, su
h as type safety; various implementa-

tion 
on
erns, in
luding eÆ
ien
y measurements; extensions of the 
ore language ne
essary

to obtain a full-blown programming language; et
. These issues are dis
ussed at length

in [Pot98
, Pot98b℄. Lastly, we do not address the issue of entailment, i.e. we do not

attempt to give an algorithm to de
ide whether two given type s
hemes are in the sub-

sumption relation. Indeed, we do not have a need for su
h an algorithm, be
ause all of

the simpli�
ation algorithms presented in this paper provably preserve the meaning of their

input. Nevertheless, the entailment problem is 
losely linked to the issue of 
onstraint

simpli�
ation; we refer the interested reader to [AC93, KPS93, Pot98
, HR98, NP99℄.

2 A 
onstraint-based type inferen
e system

2.1 Ground types

Ground types are the regular trees built with the elementary 
onstru
tors?, > and!. They

are the simplest kind of types, sin
e they are (possibly re
ursive) types without variables.

They are monomorphi
; polymorphism shall be introdu
ed later by 
onsidering type s
hemes

whi
h denote sets of ground types.

De�nition 1 Let the ground signature �

g


onsist of ? and > with arity 0 and ! with

arity 2. A path p is a �nite string of 0's and 1's, i.e. an element of f0; 1g

�

. � denotes

the empty path. The length of a path p is denoted by j p j. Its parity �(p) is the number of

0's it 
ontains, taken modulo 2. A ground tree � is a partial fun
tion from paths into �

g

,

whose domain is non-empty and pre�x-
losed, and su
h that �(p0) and �(p1) are de�ned

i� �(p) = !. Given p 2 dom(�), the subtree of � rooted at p, written �

jp

, is the tree

q 7! �(pq). A tree is �nite i� its domain is �nite. A tree is regular i� it has a �nite number

of subtrees. A ground type is a regular ground tree. We denote the set of ground types by
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T. ? (resp. >) stands for the tree � su
h that dom(�) = f�g and �(�) = ? (resp. >). If

�

0

and �

1

are trees, �

0

! �

1

stands for the tree � de�ned by �(�) = !, �(0p) = �

0

(p) and

�(1p) = �

1

(p).

The set of ground types is equipped with a partial order, 
alled subtyping.

De�nition 2 A family of orderings over ground types is de�ned indu
tively as follows.

First, �

0

is uniformly true. Se
ond, for any k 2 N

+

, � �

k+1

�

0

holds i� at least one of the

following is true:

� � = ?;

� �

0

= >;

� 9�

0

�

1

�

0

0

�

0

1

� = �

0

! �

1

, �

0

= �

0

0

! �

0

1

, �

0

0

�

k

�

0

and �

1

�

k

�

0

1

.

Subtyping, denoted by �, is the interse
tion of these orderings.

(T;�) forms a latti
e. Its operators t and u 
an be de�ned in several ways, e.g. using

automata produ
ts, �nite approximations or a �x-point theorem. But their de�nition is of

little interest in itself, and we shall be 
ontent with the following 
hara
terization.

Theorem 1 The set of ground types T, equipped with the subtyping relation, is a latti
e.

We denote its least upper bound and greatest lower bound operators by t and u, respe
-

tively. These operators are of 
ourse asso
iative and 
ommutative. In addition, they are


hara
terized by the following identities:

? t � = � ? u � = ?

> t � = > > u � = �

(�

1

! �

2

) t (�

0

1

! �

0

2

) = (�

1

u �

0

1

)! (�

2

t �

0

2

)

(�

1

! �

2

) u (�

0

1

! �

0

2

) = (�

1

t �

0

1

)! (�

2

u �

0

2

)

2.2 Types

We will soon des
ribe our type system, whi
h is a logi
 for deriving typing judgments about

programs. We wish the system to enjoy most general typings: so, informally speaking, the

set of a program's ground types should be expressible with a single typing judgment. That

is, a possibly in�nite set of possibly in�nite ground types should be des
ribed by a single

logi
al assertion|whi
h must be �nite. To allow this, we now introdu
e types, whi
h may


ontain type variables. Using re
ursive 
onstraints on variables, any given ground type 
an

be �nitely des
ribed; in addition, quanti�
ation over type variables allows giving a �nite

des
ription of 
ertain in�nite sets of ground types. To sum up, type variables serve two

di�erent purposes: they en
ode re
ursive stru
ture, and they allow polymorphism.

De�nition 3 Let V be a denumerable set of type variables, denoted by �, �, et
. The set

of types, denoted by T , is de�ned by

� ::= � j ? j > j � ! �

A type is said to be 
onstru
ted i� it is not a variable.

De�nition 4 A ground substitution is a total mapping from type variables to ground types.

A renaming is a bije
tion between two subsets of V. Ground substitutions and renamings

are straightforwardly extended to types.
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De�nition 5 The sets of positive and negative free variables of a type � , respe
tively

denoted by fv

+

(�) and fv

�

(�), are de�ned by

fv

+

(�) = f�g fv

�

(�) = ?

fv

+

(?) = ? fv

�

(?) = ?

fv

+

(>) = ? fv

�

(>) = ?

fv

+

(�

0

! �

1

) = fv

�

(�

0

) [ fv

+

(�

1

) fv

�

(�

0

! �

1

) = fv

+

(�

0

) [ fv

�

(�

1

)

The set of free variables of � , denoted by fv(�), is de�ned by

fv(�) = fv

+

(�) [ fv

�

(�)

2.3 Constrained type s
hemes

Like that of ML, our type system o�ers let-polymorphism. Thus, typing judgments asso-


iate programs not merely with types, but with type s
hemes.

A 
onstrained type s
heme is essentially a type|its body|where variables are allowed

to assume arbitrary values, within the limits of 
ertain 
onstraints. Hen
e, a type s
heme

represents a set of ground types, whi
h is obtained|roughly speaking|by applying all

solutions of the 
onstraints to the body.

Constraint-based type systems have appeared in order to deal with subtyping assump-

tions in typing judgments. However, they 
an also des
ribe 
lassi
 equality-based systems,

su
h as ML itself. For this reason, we will give two variants of our type system: one where


onstraints are to be interpreted as equations, and one where they truly denote subtyping

relationships. The former is of 
ourse simpler, but still interesting, be
ause it presents many


ommon points with the latter, espe
ially in the area of 
onstraint simpli�
ation, where the

same broad 
on
epts apply. Studying it �rst will allow us to identify methods whi
h gener-

ally apply to all 
onstraint-based systems, as opposed to those spe
i�
 to our interpretation

of subtyping.

However, even in the simpler 
ase, our system exhibits a signi�
ant departure from

ML, be
ause, following Trifonov and Smith [TS96℄, we 
hoose a formulation where all type

s
hemes are 
losed, i.e. with no free type variables.

This de
ision gives rise to a system where type s
hemes are stand-alone: their meaning

does not depend on any external assumptions. (De�ning the denotation of a type s
heme

with free type variables would require supplying an assignment of ground types to these free

variables.) It also removes the need to maintain a global 
onstraint set, 
onstraining those

variables whi
h are free in the environment, sin
e there are none. Furthermore, we will

noti
e that two distin
t bran
hes of a type inferen
e derivation now share no type variables.

These properties lead to a simpli�
ation, and a better understanding, of the theory, as well

as to a more straightforward implementation.

In ML, it is in
orre
t to generalize over a type variable if it appears free in the envi-

ronment. So, how 
an we hope to be able to universally quantify over all variables? The

solution is to move the environment into the type s
heme itself. This presentation is known

as �-lifting, for it essentially amounts to pretending that we are dealing solely with 
losed

program terms. Its fun
tioning will be detailed by the typing rules (see se
tion 2.4). More

pre
isely, information 
on
erning let-bound variables remains stored inside an external en-

vironment, while information about �-bound variables appears in a 
ontext whi
h is part of

type s
hemes.

De�nition 6 Assume an ordering � on ground types, whi
h 
an be 
hosen to be = or �.

The forth
oming de�nitions depend on the 
hoi
e on �, so we end up de�ning two variants

of the type system, based either on equality or on subtyping.
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De�nition 7 Assume a denumerable set of �-identi�ers, denoted by x, y, ...

De�nition 8 A ground 
ontext is a �nite map from �-identi�ers to ground types. The

ordering � is extended to ground 
ontexts as follows:

A �A

0

() 8x 2 dom(A

0

) x 2 dom(A) ^ A(x) �A

0

(x)

A ground 
type is a pair of a ground 
ontext A and a ground type � , written A ) � . The

ordering � is extended to ground 
types by setting

(A) �) � (A

0

) �

0

) () (A

0

�A) ^ (� � �

0

)

De�nition 9 A 
ontext A is a �nite map from �-identi�ers to types. If x 62 dom(A), then

A[x 7! � ℄ is the 
ontext whi
h extends A by mapping x to � . if x 2 dom(A), then Anx is the


ontext whi
h is unde�ned at x and whi
h 
oin
ides with A elsewhere. A 
type is a pair of a


ontext A and a type � , written A) � . Ground substitutions are extended straightforwardly

to 
ontexts and 
types.

De�nition 10 A 
onstraint is a pair of types, written � � �

0

. A ground substitution � is a

solution of it i� �(�) � �(�

0

); we then write � ` � � �

0

. When � stands for �, we say � is

a k-solution of � � �

0

i� �(�) �

k

�(�

0

); we then write � `

k

� � �

0

. We write � ` C (resp.

� `

k

C) when � ` 
 (resp. � `

k


) holds for all 
 2 C.

De�nition 11 Type s
hemes are de�ned by

� ::= A) � j C

where A denotes a 
ontext, � a type and C a 
onstraint set. (The symbol j should be

interpreted here as a literal, not as a 
hoi
e.) Let fv(�) stand for the set of all type variables

whi
h appear in A, � or C. The order of � is j fv(�) j.

Intuitively speaking, all variables of a type s
heme are to be 
onsidered as universally quan-

ti�ed. However, we shall not write any quanti�ers expli
itly. Formally speaking, no impli
it

�-
onversion is allowed on type s
hemes; �-
onversion shall be dealt with expli
itly. This

de
ision allows a rigorous des
ription of the way fresh variables and renamings are handled.

We now de�ne the denotation of a type s
heme as a set of ground 
types.

De�nition 12 The denotation J�K of a type s
heme � is the union of the �-upper 
ones

generated by its ground instan
es. That is,

JA) � j CK = fA

0

) �

0

; 9� ` C �(A) �) �A

0

) �

0

g

Informally speaking, a type s
heme is simply a way of des
ribing a set of ground 
types.

Thus, its denotation is pre
isely this set, i.e. the set of ground 
types whi
h the program

would re
eive in a system without polymorphism. Sin
e subtyping allows weakening a

program's ground 
type, it is natural for a s
heme's denotation to be upward 
losed, hen
e

the use of upper 
ones in its de�nition. It is now 
lear that a type s
heme is more general

than another one i� it represents a larger set of ground 
types; thus, subsumption between

type s
hemes is de�ned as set-theoreti
 in
lusion of their denotations, as follows.

De�nition 13 Given two type s
hemes �

1

and �

2

, the former is said to be more general

than the latter i� J�

1

K � J�

2

K; we shall then write �

1

4 �

2

. In other words, �

1

is more

general than �

2

i� for any ground instan
e of �

2

, there exists a ground instan
e of �

1

whi
h

is smaller with respe
t to �. Formally,

(A

1

) �

1

j C

1

) 4 (A

2

) �

2

j C

2

)

7



is thus equivalent to

8�

2

` C

2

9�

1

` C

1

�

1

(A

1

) �

1

) � �

2

(A

2

) �

2

)

We write �

1

� �

2

when �

1

4 �

2

and �

2

4 �

1

.

The relation 4 was introdu
ed in [TS96℄, where it is written �

8

.

2.4 Typing rules

The language we are interested in is 
ore ML, that is, a �-
al
ulus equipped with a let


onstru
t. For the sake of simpli
ity, we separate �-bound identi�ers from let-bound ones,

by pla
ing them in two distin
t synta
ti
 
lasses.

De�nition 14 Assume given a denumerable set of let-identi�ers, denoted by X, Y , ...

Expressions are de�ned by

e ::= x j �x:e j e e j X j letX = e in e

De�nition 15 Environments are de�ned by

� ::= ? j �;X : �

Environment a

ess is de�ned, as usual, by

(�;X : �)(X) = � (�;Y : �)(X) = �(X) when X 6= Y

Note that environments 
ontain information about let-bound variables only. Asso
iating

types to �-bound variables is done inside type s
hemes, as shown by the typing rules given

in �gure 1.

De�nition 16 An expression e is well typed in an environment � i� there exists a type

s
heme �, whose denotation is non-empty, su
h that � ` e : �.

Re
all that the denotation of a type s
heme A) � j C is non-empty if and only if C admits

a solution. Thus, to determine whether a program is well-typed, one must not only build a

typing derivation, but also make sure that it yields a solvable 
onstraint set.

Also, re
all that the relation 4, as well as the notion of denotation, depend on our 
hoi
e

of �. So, there are two variants of this type system, one based on equality, the other based

on subtyping.

In this system, one rule is devoted to ea
h synta
ti
 
onstru
t; in addition, rule (Sub),


alled the subsumption rule, allows reformulating the type s
heme at any point, with great


exibility. It allows arbitrary �-
onversions, as well as simpli�
ations of the 
onstraint

system.

These rules aim at simpli
ity. Still, we expe
t the unfamiliar reader to wonder why


ontexts are made part of type s
hemes. Let us explain. Contexts are part of the �-

lifting me
hanism, whi
h allows us to emulate the behavior of ML, while using universally

quanti�ed variables ex
lusively. But how 
an we express \monomorphi
" types, sin
e all

variables must be universally quanti�ed? Here is an example. Consider the expression

�x:letY = x in �f:(f Y Y )

Let us type this expression in ML. Y 's type is a monomorphi
 variable �. So, the two uses

of Y do not involve any instantiation, and the expression's type is � ! (� ! � ! �) ! �.

In our system, on the 
ontrary, Y 's type is (x : �) ) �, a

ording to rule (Var). Here,

8



A(x) = �

� ` x : A) � j C

(Var)

� ` e : A[x 7! � ℄) �

0

j C

� ` �x:e : A) � ! �

0

j C

(Abs)

� ` e

1

: A) �

2

! � j C � ` e

2

: A) �

2

j C

� ` e

1

e

2

: A) � j C

(App)

�(X) = �

� ` X : �

(LetVar)

� ` e

1

: �

1

�;X : �

1

` e

2

: �

2

� ` letX = e

1

in e

2

: �

2

(Let)

� ` e : � � 4 �

0

� ` e : �

0

(Sub)

Figure 1: Typing rules

� is (impli
itly) universally quanti�ed. So, if one were free to use rule (Sub) to perform

renamings, the two uses of Y 
ould yield two distin
t s
hemes (x : �)) � and (x : 
)) 
.

However, the typing rule for fun
tion appli
ation requires that its two bran
hes share the

same 
ontext. So, ne
essarily, � and 
 must be the same variable, and the sub-expression

�f:(f Y Y ) has type (x : �) ) (� ! � ! �) ! �. On
e the �-abstra
tion is performed,

the whole expression re
eives type � ! (� ! � ! �) ! �, as expe
ted. To sum up, all

variables whi
h appear in the 
ontext a
tually have monomorphi
 behavior; this is 
aused by

a sharing 
onstraint on 
ontexts, whi
h is enfor
ed whenever two bran
hes of the derivation

are brought together. So, we are able to do away with the notion of unquanti�ed type

variable; nonetheless, the system is 
orre
t, as stated below.

Statement 1 Let e be an expression satisfying the following two 
onditions:

� ea
h �-identi�er is bound at most on
e within e;

� if letX = e

1

in e

2

is a sub-expression of e, then X appears free within e

2

.

Assume e to be well-typed in the empty environment. Then e is safe with respe
t to a


all-by-value semanti
s of the language.

The above two 
onditions are te
hni
al. The �rst one is made ne
essary by the way we \lift"

�-binders through let binders; the se
ond one is required to make rule (Let) safe with

respe
t to a 
all-by-value semanti
s [TS96℄. They are not restri
tive, sin
e any expression


an be rewritten, without altering its semanti
s, so as to satisfy them. Indeed, to satisfy the

�rst 
ondition, an appropriate renaming of �-bound variables shall do; to ful�ll the se
ond

one, it suÆ
es to repla
e the 
onstru
t letX = e

1

in e

2

with letX = e

1

in (� :e

2

)X

whenever X does not appear free in e

2

.
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�; � 62 F

[F ℄ � `

I

x : [F [ f�; �g℄ (x 7! �)) � j f� � �g

(Var

i

)

[F ℄ � `

I

e : [F

0

℄ A) �

0

j C A(x) = � � 62 F

0

[F ℄ � `

I

�x:e : [F

0

[ f�g℄ (A n x)) � j C [ f� ! �

0

� �g

(Abs

i

)

[F ℄ � `

I

e : [F

0

℄ A) �

0

j C x 62 dom(A) �; � 62 F

0

[F ℄ � `

I

�x:e : [F

0

[ f�; �g℄ A) � j C [ f� ! �

0

� �g

(Abs'

i

)

[F ℄ � `

I

e

1

: [F

0

℄ A

1

) �

1

j C

1

[F

0

℄ � `

I

e

2

: [F

00

℄ A

2

) �

2

j C

2

[F

00

℄ A

1

^A

2

= [F

000

℄ A j C

m

�; � 62 F

000

C = C

1

[ C

2

[ C

m

[ f� � �; �

1

� �

2

! �g

[F ℄ � `

I

e

1

e

2

: [F

000

[ f�; �g℄ A) � j C

(App

i

)

�(X) = � � renaming of � rng(�) \ F = ?

[F ℄ � `

I

X : [F [ rng(�)℄ �(�)

(LetVar

i

)

[F ℄ � `

I

e

1

: [F

0

℄ �

1

[F

0

℄ �;X : �

1

`

I

e

2

: [F

00

℄ �

2

[F ℄ � `

I

letX = e

1

in e

2

: [F

00

℄ �

2

(Let

i

)

Figure 2: Type inferen
e rules

The reader may point out that these 
onditions are not preserved by redu
tion, whi
h

poses a problem when attempting to express a subje
t redu
tion property. However, we shall

not attempt to prove statement 1 in this paper, be
ause we 
hoose to fo
us on the issue

of 
onstraint simpli�
ation. We remove these 
onditions and give a full subje
t redu
tion

proof|for the 
ase where � stands for the subtyping relation|in [Pot98b, Pot98
℄. Doing so

requires a more 
omplex formulation of the type system, whi
h is why we 
hoose simpli
ity

here.

Lastly, one may noti
e that safety|with respe
t to any semanti
s|
omes for free in

the pure �-
al
ulus, sin
e there are no possible exe
ution errors. However, the safety proof

given in [Pot98b, Pot98
℄ is not based on this remark, and 
an be extended to more 
omplex


al
uli.

2.5 Type inferen
e rules

The typing rules introdu
ed above 
annot be dire
tly used to infer an expression's type.

First, they are not syntax dire
ted, be
ause of rule (Sub). Se
ond, rule (App) pla
es

sharing 
onstraints on its premises: A, �

2

and C appear in both premises. So, we now

de�ne a set of type inferen
e rules, whi
h spe
ify a type re
onstru
tion algorithm; they are

given in �gure 2. The main di�eren
e with the typing rules is the disappearan
e of the

subtyping rule, whi
h has been built into the appli
ation rule. (The \[F ℄" annotations,

although noisy, are trivial; they allow an expli
it treatment of fresh variables.)

Rule (App

i

) uses the following de�nition, whi
h des
ribes how 
ontexts are brought

10



together whenever two bran
hes of the derivation meet.

De�nition 17 The assertion [F ℄ A

1

^ A

2

= [F

0

℄ A j C stands, by de�nition, for the

following 
onjun
tion:

� dom(A) = dom(A

1

) [ dom(A

2

);

� 8x 2 dom(A

1

) \ dom(A

2

) A(x) 2 V n F ;

� 8x 2 dom(A

1

) n dom(A

2

) A(x) = A

1

(x);

� 8x 2 dom(A

2

) n dom(A

1

) A(x) = A

2

(x);

� F

0

= F [ fA(x) ; x 2 dom(A

1

) \ dom(A

2

)g;

� C = fA(x) �A

i

(x) ; x 2 dom(A

1

) \ dom(A

2

); i 2 f1; 2gg.

Informally speaking, we say that A is themeet of the two 
ontextsA

1

and A

2

. It is essentially

the least demanding 
ontext whi
h guarantees that both A

1

's and A

2

's expe
tations about

the expression's runtime environment are ful�lled.

The type inferen
e rules are sound and 
omplete with respe
t to the typing rules|that

is, they infer a most general type s
heme for the expression at hand.

Statement 2 The type inferen
e rules are 
orre
t with respe
t to the typing rules; that is,

[F ℄ � `

I

e : [F

0

℄ � implies � ` e : �.

Statement 3 The type inferen
e rules are 
omplete with respe
t to the typing rules. That

is, if � ` e : � then, for any �nite F � V, there exists a �nite F

0

� V and a type s
heme

�

0

4 � su
h that [F ℄ � `

I

e : [F

0

℄ �

0

. Furthermore, �

0

is uniquely determined, up to a

renaming, by � and e.

These rules are very 
lose, in spirit, to those of Trifonov and Smith [TS96℄. However, we

have brought a few subtle, but important modi�
ations, so as to produ
e type s
hemes

whi
h satisfy a 
ouple of interesting properties. First, any su
h s
heme is made up of small

terms only. Se
ond, when � stands for the subtyping relationship, the s
heme 
ontains no

bipolar variables. Both properties shall be used throughout the paper to simplify statements

and proofs. We prove the former here; the latter is introdu
ed in se
tion 4.2.

De�nition 18 A small term is a type term of the form ?, > or �

0

! �

1

, i.e. a term

whose stri
t sub-terms are type variables. A type s
heme A ) � j C is made up of small

terms i� it satis�es the following 
onditions:

� for all x 2 dom(A), A(x) is a type variable;

� � is a type variable;

� for all (� � �

0

) 2 C, either � and �

0

are type variables, or one is a variable and the

other is a small term.

Theorem 2 If [�℄ F `

I

e : [F

0

℄ �, then � is made up of small terms.

Proof. Straightforward indu
tion on the stru
ture of the type inferen
e derivation. 2

The small terms property allows reasoning about sharing between sub-terms, and is a key

requirement in our formulation of minimization (see se
tion 4.5). It is already to be found,

for instan
e, in the theory of uni�
ation [Hue76℄. Among works more 
losely related to ours,

Aiken and Wimmers [AW92℄ and Palsberg [Pal95℄ use a similar 
onvention.
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3 Simplifying equality 
onstraints

We are done introdu
ing our type inferen
e system, whi
h spe
i�es how to asso
iate a


onstrained type s
heme with a given program. We shall now fo
us our attention onto the

main issue of interest here: how to simplify an inferred type s
heme, without a�e
ting its

meaning. We begin, in this se
tion, with the simpler 
ase where � is 
hosen to be =, i.e.

where 
onstraints are equations.

In 
ommon presentations of equality-based type systems, no equations appear; instead,

their most general uni�ers are 
omputed dire
tly. Here, however, we expli
itly deal with

equality 
onstraints, so as to highlight the similarity with the more 
omplex 
ase of subtyping


onstraints.

In this se
tion, and in this se
tion only, we 
hoose to deal with simpli�ed type s
hemes,

of the form � j C. We shall not 
on
ern ourselves with 
ontexts, be
ause their presen
e does

not add any diÆ
ulty to the simpli�
ation issue.

3.1 Preliminaries

Let us begin with a few straightforward fa
ts 
on
erning term automata [KPS93℄.

De�nition 19 A term automaton is a tuple A = (Q; q

0

; Æ; l) where:

� Q is a �nite set of states,

� q

0

2 Q is the start state,

� Æ : Q� f0; 1g ! Q is a (partial) transition fun
tion,

� l : Q! �

g

[ V is a labeling fun
tion,

su
h that for any state q 2 Q and for any i 2 f0; 1g, Æ(q; i) is de�ned i� l(q) =!.

A state q 2 Q is said to be free i� its label is a variable, i.e. l(q) 2 V. The order of A

is the number of its states, i.e. jQ j.

A term automaton is essentially a way of representing a type term, possibly re
ursive and

possibly with free type variables. Su
h a representation is more 
ompa
t than a 
lassi
 tree

representation, be
ause of its ability to express sharing between nodes.

De�nition 20 Let A = (Q; q

0

; Æ; l) be a term automaton. Extend Æ to a partial fun
tion

^

Æ : Q � f0; 1g

�

! Q. Then, A des
ribes a fun
tion �

A

from paths into �

g

[ V, de�ned by

p 7! l(

^

Æ(q

0

; p)).

Rather than viewing an automaton as a type term, possibly 
ontaining type variables, we


an also 
hoose to view it as a set of ground types.

De�nition 21 Let A be a term automaton. The ground instan
e of A through a ground

substitution � is the ground type � de�ned as follows: for all paths p,

� if �

A

(p) 2 �

g

, then �(p) = �

A

(p);

� if �

A

(p) is a type variable � 2 V, then �

jp

= �(�).

The denotation of a term automaton A is the set of its ground instan
es.

Statement 4 A term automaton's denotation is non-empty.

Statement 5 Two term automata A and B have the same denotation i� �

A

and �

B

are

equal up to a renaming of variables.
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0

(Fuse)
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(De
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(De
ompose

?

)

e = �
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0

�
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1

(De
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!

)

Figure 3: Solving multi-equations

3.2 Simplifying multi-equations

The type inferen
e algorithm generates equations. However, it is best to introdu
e a more

general notion of multi-equation, as is often done in works on uni�
ation [Hue76, JK90,

R�em92℄.

De�nition 22 A multi-equation is a set of terms f�

1

; : : : ; �

n

g, written �

1

= � � � = �

n

. An

equality 
onstraint �

1

= �

2


an be viewed as a multi-equation. The notion of solution is

extended straightforwardly to multi-equations and to sets thereof. A multi-equation is made

up of small terms i� all of its members are variables or small terms.

In order to determine that a program is well-typed, we need to make sure that its asso-


iated type s
heme has a non-empty denotation, i.e. that its 
onstraint set has a solution.

This is done by applying a set of rewriting rules to the multi-equation set, as follows.

Theorem 3 Consider a type s
heme � = �

0

j C, where C is a multi-equation set, made

up of small terms. Rewrite C a

ording to the rules of �gure 3, until none applies; let C

0

denote the result of this pro
ess. Then, C

0

is also made up of small terms, and has the same

solutions as C. Furthermore,

� if C

0


ontains at least one multi-equation of the form e = � = �

0

, where neither � nor

�

0

are variables, then J�K is empty;

� otherwise, C

0

is said to be in 
anoni
al form. It 
an easily be viewed as a term

automaton, whose order equals that of �, and whose denotation 
oin
ides with J�K.

As a 
orollary, J�K is non-empty.

Proof. With an appropriate de�nition of weight (e.g. give weight 1 to variables, ? and >,

and weight 2 to the ! symbol), it is easy to verify that ea
h rewriting rule 
auses the total

weight of the multi-equation set to de
rease. Hen
e, the pro
ess must terminate. Ea
h

rewriting rule obviously preserves the solution spa
e, as well as the small terms property.

Assume C

0


ontains a multi-equation with two non-variable terms. Then, these terms

must have in
ompatible head 
onstru
tors, be
ause none of the de
omposition rules in �g-

ure 3 applies. So, C

0

has no solution. On the other hand, assume C

0

is in 
anoni
al form;
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then, ea
h multi-equation 
ontains at most one non-variable term. Additionally, be
ause

rule (Fuse) no longer applies, ea
h variable appears in at most one multi-equation. In

ea
h multi-equation, 
hoose a unique representative, equal to its non-variable term when

it has one, and to an arbitrary member otherwise. For ea
h � 2 fv(�), let repr(�) denote

the representative of �'s multi-equation, if � appears in some multi-equation, and � itself

otherwise. De�ne a term automaton A = (Q; q

0

; Æ; l) as follows:

� Q = fv(�);

� q

0

= �

0

;

� for i 2 f0; 1g, Æ(�; i) = �

i

when repr(�) = �

0

! �

1

;

� l(�) = repr(�)(�).

It is straightforward to verify that the ground instan
es of this automaton are exa
tly those

of �; hen
e, its denotation 
oin
ides with J�K. The non-emptiness result stems from state-

ment 4. 2

Theorem 3 yields an algorithm to determine whether a type s
heme has a non-empty

denotation; this makes type inferen
e de
idable. However, it also shows that a 
anoni
al

type s
heme 
an be viewed as a term automaton; we now establish the 
onverse, showing

that the two notions are equivalent.

Theorem 4 Let A be a term automaton. Then, there exists a 
anoni
al type s
heme �, of

the same order, whose denotation 
oin
ides with A's.

Proof. Assume A = (Q; q

0

; Æ; l). Choose some inje
tive map q 2 Q 7! �

q

2 V . De�ne a

multi-equation set C by

� for ea
h � 2 rng(l), f�

q

; l(q) = �g 2 C;

� for ea
h q 2 Q su
h that l(q) = ?, f�

q

;?g 2 C;

� for ea
h q 2 Q su
h that l(q) = >, f�

q

;>g 2 C;

� for ea
h q 2 Q su
h that l(q) =!, f�

q

; �

Æ(q;0)

! �

Æ(q;1)

g 2 C.

De�ne � = �

q

0

j C. It is straightforward to verify that J�K 
oin
ides with A's denotation.

2

The equivalen
e between 
anoni
al type s
hemes and term automata gives rise to an essen-

tial idea: the well-known minimization pro
edure for �nite-state automata 
arries over to


anoni
al type s
hemes.

Theorem 5 Let � be a 
anoni
al type s
heme. Among the 
anoni
al type s
hemes equivalent

to �, there is one of minimal order, whi
h 
an be 
omputed in time O(n logn), where n is

the order of �.

Proof. Thanks to theorems 3 and 4, we 
an state the problem in terms of automata. Given

an automaton A, of order n, we must 
ompute an automaton B, whose denotation equals

that of A, and whi
h is minimal for this property. A

ording to statement 5, we 
an

equivalently require �

A

= �

B

. Hen
e, the problem simply 
onsists in minimizing the labeled

�nite state automaton A, whi
h 
an be done in time O(n logn) [Hop71℄. 2
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Thus, it is possible to minimize the number of variables of a type s
heme|whi
h we adopt as

a measure of its 
omplexity|in quasi-linear time. Figures 4 to 7 illustrate this pro
edure.

Our starting point is a type s
heme whose multi-equation set has been put in 
anoni
al

form after the rules of �gure 3. Theorem 3 allows us to view it as an automaton (�gure 5),

whi
h we then minimize. Minimization is a well-known, two-step pro
ess: �rst eliminate

any states not rea
hable from the start state, then merge equivalent states. In broad terms,

two states are equivalent if their labels are equal and if they 
arry transitions, with equal

labels, whose end states are in turn equivalent. This pro
ess yields the automaton shown

in �gure 6. Finally, theorem 4 allows us to turn this automaton ba
k into a type s
heme.

Of 
ourse, thinking in terms of automata allows a simple explanation of the pro
ess, but

isn't mandatory; the minimization pro
edure 
an be des
ribed dire
tly in terms of multi-

equations, if one so wishes.

How does this pro
edure 
ompare to the usual resolution pro
ess used in ML type infer-

en
e? An ML type 
he
ker 
omputes the most general solution of the equation set, using

uni�
ation. This essentially amounts to putting the type s
heme in 
anoni
al form, by

applying the rules of �gure 3, then merging all members of a single multi-equation. Our

algorithm goes one step further, sin
e variables belonging to di�erent multi-equations 
an

also be merged, provided they stand for equivalent states of the automaton. In fa
t, our

simpli�
ation pro
edure is 
omplete|it yields a type s
heme with a minimal number of

variables. Sin
e our s
hemes are made up of small terms, this is a meaningful measure of

their 
omplexity.

Theoreti
ally speaking, our de
ision of working with small terms allows us to easily

highlight the isomorphism between type s
hemes and term automata. More intuitively, one

might say that breaking a large type term down into a series of small terms, linked together

by equations, essentially amounts to labelling ea
h node of the original term with a type

variable. Identifying variables is then tantamount to sharing nodes in the original type term,

thus yielding a more 
ompa
t representation. Of 
ourse, a user is likely to prefer a more

readable representation, with fewer variables and larger terms; it is easy to revert to su
h a

representation for display purposes. (For instan
e, the type s
heme of �gure 7 
an be printed

as �

2

! > ! >.) This is already the 
ase in typi
al ML implementations, where types

are internally represented by dire
ted a
y
li
 graphs, but printed as trees. It is important

to 
arefully distinguish the two representations, sin
e the latter is typi
ally exponentially

larger. In other words, an internal representation must favor eÆ
ien
y; 
onverting to an

external representation, whi
h o�ers better readability, must be delayed until the result is

ready for the user to be seen.

To 
on
lude, we have studied a 
omplete simpli�
ation pro
edure for 
onstrained type

s
hemes, in the 
ase where 
onstraints are equations. It 
onsists of three main steps: putting

the 
onstraints in 
anoni
al form, eliminating unrea
hable variables, and merging equivalent

variables. We shall now move on to the 
ase of subtyping, and dis
over that, although details

be
ome more 
omplex, the same broad ideas apply.

4 Simplifying subtyping 
onstraints

4.1 Solving 
onstraints

As in se
tion 3, our �rst task is to �nd an algorithm to de
ide whether a given 
onstraint set

has a solution. Indeed, doing so is required to determine whether a program is well-typed.

Our goal, in this se
tion, is to des
ribe su
h an algorithm.

We begin with a fundamental te
hni
al result, whi
h des
ribes a weak, suÆ
ient 
on-

dition for a 
onstraint set to have a solution. It will form the basis for the proof of the


onstraint solving algorithm. We prove a fairly powerful version of this result, allowing
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ground 
onstants to appear in 
onstraints. (Sin
e ground types may be in�nite, writing

down these extended 
onstraints would require some �nite representation; however, we will

not need to do so.) Thanks to this generalization, this result also forms the basis for the

proof of the garbage 
olle
tion algorithm (see se
tion 4.3).

De�nition 23 A 
onstraint set with ground 
onstants is a set C of subtyping 
onstraints

of the form � � �

0

, where � and �

0

are either two variables, one variable and a small term,

or one variable and a ground type. De�ne the assertion C 


+1

� � �

0

to mean

8k � 0 8� `

k

C � `

k+1

� � �

0

De�ne C

#

(�) = f� ; � 62 V ^ � � � 2 Cg and C

"

(�) = f� ; � 62 V ^ � � � 2 Cg. C is said

to be weakly 
losed i� the following 
onditions are met:

1. � � � 2 C and � � 
 2 C imply � � 
 2 C;

2. � � � 2 C and � 2 C

#

(�) imply 9�

0

2 C

#

(�) C 


+1

� � �

0

;

3. � � � 2 C and �

0

2 C

"

(�) imply 9� 2 C

"

(�) C 


+1

� � �

0

;

4. � 2 C

#

(�) and �

0

2 C

"

(�) imply C 


+1

� � �

0

.

Theorem 6 Let C be a 
onstraint set with ground 
onstants. If C is weakly 
losed, then C

has a solution.

Proof. Note that this proof only uses 
onditions 2 and 4 of de�nition 23. The other 
ondi-

tions shall be required by further theorems, su
h as theorem 11.

Let V = fv(C). Consider the set T

V

of ground substitutions of domain V . We de�ne a

map S from T

V

into itself by

� 7!

�

� 7!

G

�2C

#

(�)

�(�)

�

Assuming T

V

is viewed as a metri
 spa
e, equipped with the usual distan
e between (tuples

of) in�nite trees [Cou83℄, it is easy to verify that S is

1

2

-
ontra
tive. Thus, it has a unique

�x-point �.

We shall now verify that � is a solution of C. This is done by proving that it is a k-

solution of C, for all k � 0, by indu
tion over k. The base 
ase is immediate, sin
e �

0

is

uniformly true (see de�nition 2). It remains to prove, assuming � `

k

C, that � `

k+1

C.

Consider a 
onstraint of the form � � � 2 C. Be
ause C satis�es 
ondition 2 of

de�nition 23, we have 8� 2 C

#

(�) 9�

0

2 C

#

(�) C 


+1

� � �

0

. Sin
e � `

k

C, this implies

8� 2 C

#

(�) 9�

0

2 C

#

(�) �(�) �

k+1

�(�

0

), whi
h in turn entails (

F

�2C

#

(�)

�(�)) �

k+1

(

F

�

0

2C

#

(�)

�(�

0

)). This statement is none other than �(�) �

k+1

�(�).

Next, 
onsider a 
onstraint of the form � � � 2 C, where � 62 V . Then, � 2 C

#

(�). So,

by de�nition of �, �(�) � �(�). In parti
ular, �(�) �

k+1

�(�).

Finally, 
onsider a 
onstraint of the form � � �

0

2 C, where �

0

62 V . Then, �

0

2 C

"

(�).

Pi
k some � 2 C

#

(�). Then, 
ondition 4 of de�nition 23, together with our indu
tion

hypothesis, yield � `

k+1

� � �

0

, i.e. �(�) �

k+1

�(�

0

). Sin
e this holds for all � 2 C

#

(�), we

also have (

F

�2C

#

(�)

�(�)) �

k+1

�(�

0

), i.e. �(�) �

k+1

�(�

0

). This 
on
ludes the proof. 2

Theorem 6 is a ni
e tool to exhibit solutions of a 
onstraint set. However, it is not 
lear,

given an arbitrary 
onstraint set, how it 
an be put in weakly 
losed form. So, we shall now

de�ne a stronger, but simpler, notion of 
losure, whi
h 
an be 
omputed more easily. This

is the notion originally proposed by Eifrig, Smith and Trifonov [EST95b℄.
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De�nition 24 The partial fun
tion sub
, de�ned as follows, breaks a 
onstraint whose mem-

bers are variables or small terms down into a set of equivalent 
onstraints:

sub
(� � �) = f� � �g sub
(� � � ) = f� � �g

sub
(? � �) = ? sub
(� � >) = ?

sub
(�

0

! �

1

� �

0

0

! �

0

1

) = f�

0

0

� �

0

; �

1

� �

0

1

g

De�nition 25 Let C be a 
onstraint set, made up of small terms. C is said to be 
losed

i� whenever f� � �; � � �

0

g � C, sub
(� � �

0

) is de�ned and in
luded in C. From now

on, a type s
heme A) � j C is said to be 
losed i� C is 
losed.

In plain words, the above de�nition means that a 
onstraint set is 
losed i� it is stable

through a 
ombination of transitivity and stru
tural de
omposition. Let us now verify, as

announ
ed, that 
losure entails weak 
losure; whi
h means, 
onsidering theorem 6, that any


losed 
onstraint set admits a solution.

Theorem 7 Any 
losed 
onstraint set C is weakly 
losed.

Proof. It is 
lear that C satis�es 
ondition 1 of de�nition 23.

Assume � � � 2 C. Let � 2 C

#

(�). Be
ause C is 
losed, sub
(� � �) = f� � �g � C.

So, � 2 C

#

(�). This is suÆ
ient to establish 
ondition 2 of de�nition 23; just pi
k �

0

= � .

Symmetri
ally, 
ondition 3 is satis�ed.

Now, assume � 2 C

#

(�) and �

0

2 C

"

(�). Be
ause C is 
losed, sub
(� � �

0

) is de�ned

and part of C. Thus, any k-solution of C is, in parti
ular, a k-solution of sub
(� � �

0

).

Moreover, 
onsidering the de�nition of sub
, it is easy to verify that any k-solution of

sub
(� � �

0

) is a (k + 1)-solution of � � �

0

. Condition 4 of de�nition 23 ensues. 2

To 
on
lude this se
tion, we present an algorithm whi
h puts a given 
onstraint set in 
losed

form, if it has a solution, and fails otherwise. This algorithm is used to determine whether

a given program is well-typed. Its bad 
omplexity: O(n

3

), as well as the size of its output:

O(n

2

), are among the main reasons why 
onstraint simpli�
ation is required.

Theorem 8 Let C be a 
onstraint set, made up of small terms. Let C

2

denote

C [

�

[

f���;���

0

g�C

sub
(� � �

0

)

�

If the sequen
e C;C

2

; C

4

; : : : is in�nite, then it rea
hes a �x-point C

1

, whi
h is the smallest


losed 
onstraint set 
ontaining C; its solution spa
e is equal to C's and non-empty. (C

1

is 
alled the 
losure of C.) Otherwise, C has no solution.

Proof. For an arbitrary C, it is 
lear that C

2

is equivalent to C if it is de�ned, and that

C has no solution otherwise (i.e. if sub
 is applied outside of its domain). Thus, if some

element of the sequen
e is unde�ned, then C has no solution. Otherwise, the sequen
e must

rea
h a �x-point C

1

, be
ause any newly 
reated 
onstraint involves existing terms, and

there is only a �nite number of su
h 
onstraints. It is 
lear that C

1

is the smallest 
losed

set 
ontaining C. A

ording to theorem 7, C

1

is also weakly 
losed; by theorem 6, it admits

a solution. 2

While building a type inferen
e derivation, we wish to make sure, at every step, that the

expression at hand is well-typed, so as to dete
t errors as soon as possible. So, we must main-

tain our 
onstraint sets in 
losed form. This may be done in
rementally, taking advantage

of the fa
t that ea
h type inferen
e rule adds a few fresh 
onstraints to a 
losed 
onstraint

set; an in
remental algorithm is des
ribed in [Pot98
, Pot98b℄. Of 
ourse, if we use su
h

an algorithm, then our simpli�
ation algorithms must preserve the 
losure property; this

ensures that we may perform simpli�
ations transparently at any point.
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4.2 Polarities

If � is the type s
heme asso
iated to an expression e, it would be interesting to distinguish

the type variables of � whi
h represent an input (i.e. some data expe
ted by the expression

e) from those whi
h represent an output (i.e. some result supplied by e). We shall annotate

ea
h type variable with a � sign in the former 
ase, and with a + sign in the latter 
ase.

Of 
ourse, it is possible for a variable to 
arry both signs at on
e; we 
all su
h a variable

bipolar. Some variables, on the other hand, 
arry no sign at all; we 
all those neutral. Thus,

we shall asso
iate a pair of Boolean 
ags, whi
h we 
all polarity, to ea
h variable. This

information will serve to guide all of our simpli�
ation algorithms.

De�nition 26 Consider a weakly 
losed type s
heme � = (A ) � j C), made up of small

terms. The set of positive variables of �, and the set of negative variables of �, respe
tively

denoted by fv

+

(�) and fv

�

(�), are the smallest subsets P and N of fv(�) su
h that

� � 2 P

� rng(A) � N

� 8� 2 P fv

+

(C

#

(�)) � P ^ fv

�

(C

#

(�)) � N

� 8� 2 N fv

+

(C

"

(�)) � N ^ fv

�

(C

"

(�)) � P

Polarities may be easily 
omputed as a smallest �x-point. The time required is linear in

the size of the 
onstraint set. Indeed, visiting a variable's 
onstru
ted lower (resp. upper)

bounds has to be done at most on
e, namely when the variable �rst be
omes positive (resp.

negative). Thus, ea
h 
onstraint is traversed at most on
e; when
e the result.

Trifonov and Smith [TS96℄ introdu
ed polarities as a re�nement of our notion of rea
h-

ability [Pot96℄, whi
h would only dete
t neutral variables, and used them to drive garbage


olle
tion (see se
tion 4.3). However, they did not mention 
ertain useful properties of

polarities, whi
h we shall now des
ribe.

Intuitively speaking, ea
h positive variable of � represents a pie
e of data 
omputed by

e and a

essible as a part of its result. Assume e is pla
ed inside a 
ontext C, yielding

an expression C[e℄ whose asso
iated s
heme is �

0

. C[e℄'s result might still 
ontain some

parts of e's result, meaning that the 
orresponding variables are still positive in �

0

; others

may have been dropped, meaning that the 
orresponding variables are no longer positive

in �

0

. However, any value 
omputed by e, but ina

essible through its result, obviously

remains ina

essible through C[e℄'s result; whi
h means that any variables not positive in �


annot be
ome positive in �

0

. An analogous property holds for negative variables. In other

words, polarities de
rease as one walks down a type inferen
e derivation. This property is

formalized by the following theorem.

Theorem 9 Consider an instan
e of one of the type inferen
e rules of �gure 2, whose

output is a type s
heme �. Pi
k some � 2 fv(�), and assume � also appears in �

0

, where �

0

is one of the rule's premises. Then, � 2 fv

+

(�) (resp. fv

�

(�)) implies � 2 fv

+

(�

0

) (resp.

fv

�

(�

0

)).

Proof. The only non-trivial 
ase is that of rule (App

i

). We use the notations of �gure 2.

For i 2 f1; 2g, let �

i

= (A

i

) �

i

j C

i

); assume C

i

is 
losed. De�ne

P = fv

+

(�

1

) [ fv

+

(�

2

) [ f�g

N = fv

�

(�

1

) [ fv

�

(�

2

) [ f�g [ fv(A)

We wish to show that P and N are 
onservative approximations of the polarities in �, i.e.

that they satisfy the re
ursive equations of de�nition 26. However, re
all that 
omputing
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polarities requires the 
onstraint set to be 
losed. Thus, these equations must be applied

to C

1

, not to C itself; we need some information about C

1

in order to prove that the

equations hold.

Let the assertion �

+

stand for the 
onjun
tion fv

+

(�) � P ^ fv

�

(�) � N . (The assertion

�

�

is de�ned symmetri
ally.) Noti
e that C

1

[C

2

is 
losed, be
ause these sets have disjoint

domains. Let us 
all \new" the 
onstraints in C

m

[ f� � �; �

1

� �

2

! �g, as well as any


onstraints arising from the subsequent 
losure 
omputation. It is straightforward to verify

that whenever a small term � appears on the left-hand (resp. right-hand) side of a new


onstraint, then �

+

(resp. �

�

) holds.

This guarantees that the equations of de�nition 26, applied to A) � j C

1

, are satis�ed

by P and N . Be
ause fv

+

(�) and fv

�

(�) are the smallest solutions of these equations, we

have fv

+

(�) � P and fv

�

(�) � N . In parti
ular, fv

+

(�) \ fv(�

i

) � fv

+

(�

i

) and fv

�

(�) \

fv(�

i

) � fv

�

(�

i

); whi
h is the desired result. 2

Theorem 9 guarantees that a variable's polarity de
reases during its lifetime. As a 
orollary,

if the type inferen
e rules are written so as to never 
ause a fresh variable to be bipolar|and

so they are|then no bipolar variables 
an ever appear in a type inferen
e derivation.

Theorem 10 Assume [F ℄ � `

I

e : [F

0

℄ �. If none of the �(X), for X 2 dom(�), 
ontains

a bipolar variable, then neither does �.

Proof. First, we 
he
k that whenever a fresh variable is 
reated by one of the type inferen
e

rules, it is not bipolar. Consider, for instan
e, rule (Var

i

). It 
reates two variables � and

�. The former appears in the 
ontext of the type s
heme, while the latter appears in its

body. Hen
e, � is negative, and � is positive. A

ording to de�nition 26, polarities 
an

only travel from a variable to a small term, so the 
onstraint � � � does not 
ause � (resp.

�) to be
ome positive (resp. negative). Note, on the other hand, that in the type s
heme

(x 7! 
)) 
, 
 is bipolar; splitting 
 into two variables � and �, linked by a 
onstraint, is

the te
hni
al tri
k whi
h allows us not to 
reate any bipolar variables. Rule (App

i

) 
ontains

a similar tri
k.

Se
ond, theorem 9 tells us that if a variable is bipolar at a 
ertain point, then it must

have been so sin
e the moment it was 
reated. A

ording to the previous paragraph, this is

impossible; when
e the result. 2

This result is used to simplify various de�nitions and proofs, in parti
ular 
on
erning garbage


olle
tion and 
anonization. Of 
ourse, we will need to prove that our simpli�
ation algo-

rithms also 
ause polarities to de
rease, so we 
an perform simpli�
ations at any point

without breaking this property.

4.3 Garbage 
olle
tion

Computing the 
losure of a 
onstraint set typi
ally yields a large number of 
onstraints.

Many of them are useful as intermediate steps of the 
losure 
omputation, but are no

longer essential on
e it is over. More pre
isely, we shall now show that the only meaningful


onstraints in a 
losed s
heme A) � j C are the following:

� those whi
h link a positive (resp. negative) variable � to an element of C

#

(�) (resp.

C

"

(�))|they give information about the stru
ture of a pie
e of data supplied (resp.

expe
ted) by the expression;

� those whi
h link a negative variable to a positive one|they represent a possible 
ow

of data from one of the expression's inputs to one of its outputs.
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Any other 
onstraints are super
uous, i.e. do not a�e
t the s
heme's denotation. Thus,

we 
an simply forget about them; this pro
ess, proposed by Trifonov and Smith [TS96℄, is


alled garbage 
olle
tion. Note that all neutral variables are dis
arded; in our analogy with

se
tion 3, garbage 
olle
tion 
orresponds to the removal of unrea
hable nodes in a �nite

automaton. It does more than that, however, sin
e it also removes 
ertain edges between

rea
hable nodes.

De�nition 27 Consider � as in de�nition 26. The image of � through garbage 
olle
tion,

denoted by GC(�), is the type s
heme A ) � j D, where D is a subset of C de�ned as

follows:

� � � � 2 D i� � � � 2 C, � 2 fv

�

(�) and � 2 fv

+

(�);

� D

#

(�) equals C

#

(�) if � 2 fv

+

(�), and ? otherwise;

� D

"

(�) equals C

"

(�) if � 2 fv

�

(�), and ? otherwise.

Theorem 11 Consider � as in de�nition 27. Then � � GC(�).

Proof. Write �

0

= GC(�). Sin
e �

0

has fewer 
onstraints, it is 
lear that �

0

4 �. So, we

need to prove � 4 �

0

. A

ording to de�nition 13, this is equivalent to

8�

0

` D 9� ` C �(A) �) � �

0

(A) �)

Pi
k some �

0

` D. We now wish to prove that the following 
onstraint set with ground


onstants (see de�nition 23) admits a solution:

C [ f� � �

0

(�)g [ f�

0

(A(x)) � A(x) ; x 2 dom(A)g

We shall do so by proving that the following 
onstraint set|whi
h 
ontains the previous

one, a

ording to de�nition 26|is weakly 
losed:

C [ f�

0

(�) � � ; � 2 fv

�

(�) ^ � � � 2 C

r

g

[ f� � �

0

(�) ; � 2 fv

+

(�) ^ � � � 2 C

r

g

(where C

r

denotes the re
exive 
losure of C, i.e. � � � 2 C

r

i� � = � or � � � 2 C). Let

E denote this set.

Be
ause C satis�es 
ondition 1 of de�nition 23, so does E. Using the same property, it

is easy to 
he
k that E satis�es 
onditions 2 and 3. There remains to 
he
k 
ondition 4.

Assume � 2 E

#

(�) and �

0

2 E

"

(�). Four 
ases arise, depending on whether � and �

0

are

small terms or ground terms:

� Both � and �

0

are small terms. Then, � 2 C

#

(�) and �

0

2 C

"

(�). The result is

immediate, 
onsidering C meets 
ondition 4.

� Both � and �

0

are ground terms. Then, a

ording to the de�nition of E, � is equal to

�

0

(�), for some � 2 fv

�

(�) su
h that � � � 2 C

r

. Symmetri
ally, �

0

is of the form

�

0

(�

0

), for some �

0

2 fv

+

(�) su
h that � � �

0

2 C

r

. Be
ause C satis�es 
ondition 1

of de�nition 23, � � �

0

2 C

r

. If � = �

0

, then � = �

0

and the result is immediate. So,

we 
an assume � � �

0

2 C. Sin
e � 2 fv

�

(�) and �

0

2 fv

+

(�), de�nition 27 spe
i�es

that � � �

0

2 D. Sin
e �

0

` D, �

0

(�) � �

0

(�

0

); that is, � � �

0

holds.

� � is a small term and �

0

is a ground term. As before, �

0

is of the form �

0

(�

0

), for some

�

0

2 fv

+

(�) su
h that � � �

0

2 C

r

. On the other hand, we must have � 2 C

#

(�). If

� � �

0

2 C, 
onsidering that C satis�es 
ondition 2 of de�nition 23, there exists a small
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term �

00

2 C

#

(�

0

) su
h that C 


+1

� � �

00

. If, on the other hand, � = �

0

, then the

same holds (simply pi
k �

00

= �). Pi
k some � `

k

E. We then have �(�) �

k+1

�(�

00

).

Furthermore, be
ause �

0

2 fv

+

(�), de�nition 27 spe
i�es that �

00

2 D

#

(�

0

). Sin
e

�

0

` D, this entails �

0

(�

00

) � �

0

(�

0

). Now, we need to reason by 
ases on the stru
ture

of �

00

:

{ Assume �

00

is of the form Æ

0

! Æ

1

. Sin
e �

0

2 fv

+

(�), de�nition 26 spe
i�es that

Æ

1

2 fv

+

(�) and Æ

0

2 fv

�

(�). A

ording to the de�nition of E, Æ

1

� �

0

(Æ

1

) 2 E.

Sin
e � `

k

E, this implies �(Æ

1

) �

k

�

0

(Æ

1

). Symmetri
ally, �

0

(Æ

0

) �

k

�(Æ

0

). As a


onsequen
e, �(Æ

0

! Æ

1

) �

k+1

�

0

(Æ

0

! Æ

1

). In other words, �(�

00

) �

k+1

�

0

(�

00

).

{ Assume �

00

is equal to ? or >. Then, the same holds, i.e. �(�

00

) �

k+1

�

0

(�

00

).

We 
an now 
ombine, by transitivity, the three results obtained above:

�(�) �

k+1

�(�

00

) �

k+1

�

0

(�

00

) � �

0

(�

0

)

This implies �(�) �

k+1

�

0

(�

0

). That is, � `

k+1

� � �

0

, whi
h is the desired result.

� The last 
ase is symmetri
al to the previous one. 2

It is easy to 
he
k that garbage 
olle
tion preserves polarities. Furthermore, provided

bipolar variables are disallowed, its output is 
losed, as stated below. This important remark

was missing from [TS96℄.

Theorem 12 Consider � as in de�nition 27. If fv

+

(�)\fv

�

(�) = ?, then GC(�) is 
losed.

Proof. Write GC(�) = A ) � j D, as in de�nition 27. As per de�nition 25, assume

f� � �; � � �

0

g � D. Then, � 2 fv

+

(�), be
ause it appears on the right-hand side of a


onstraint in D. Symmetri
ally, � 2 fv

�

(�). This is impossible, by hypothesis, so D is

(va
uously) 
losed. 2

4.4 Canonization

In se
tion 3, in order to view a multi-equation system as a �nite state automaton, we required

it to be in 
anoni
al form, i.e. to equate ea
h variable with at most one non-variable term.

Similarly, in the 
ase of subtyping, we say that a 
onstraint set is in 
anoni
al form i�

ea
h variable has exa
tly one non-variable lower (resp. upper) bound. We shall require

this property before we attempt to minimize 
onstraint sets. In this se
tion, we give an

algorithm, 
alled 
anonization, whi
h 
omputes a 
anoni
al form of an arbitrary 
onstraint

set.

De�nition 28 Let � = A ) � j C be a type s
heme, made up of small terms, 
ontaining

no bipolar variables, su
h that � = GC(�).

Let V (resp. W ) range over non-empty subsets of fv

�

(�) (resp. fv

+

(�)). For ea
h

su
h V (resp. W ) of 
ardinality greater than 1, pi
k a fresh variable 


V

(resp. �

W

). (By

fresh variables, we mean that these variables are pairwise distin
t, and distin
t from �'s

variables.) De�ne the rewriting fun
tion r

�

(resp. r

+

) a

ording to �gure 8. The �rst two

lines de�ne r

�

(resp. r

+

) on non-empty sets of negative (resp. positive) variables; they are

then extended to sets of negative (resp. positive) small terms.

The image of � through 
anonization, denoted by Can(�), is A ) � j D, where the


onstraint set D is given by �gure 9. It is 
lear that Can(�) is in 
anoni
al form.
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r

+

(f�g) = � r

�

(f�g) = �

r

+

(W ) = �

W

when jW j > 1 r

�

(V ) = 


V

when jV j > 1

r

+

(f?g [ S) = r

+

(S) r

�

(f>g [ S) = r

�

(S)

r

+

(f>g [ S) = > r

�

(f?g [ S) = ?

r

+

(?) = ? r

�

(?) = >

r

+

(f�

1

! �

1

; : : : ; �

n

! �

n

g) = r

�

(f�

1

; : : : ; �

n

g)! r

+

(f�

1

; : : : ; �

n

g)

r

�

(f�

1

! �

1

; : : : ; �

n

! �

n

g) = r

+

(f�

1

; : : : ; �

n

g)! r

�

(f�

1

; : : : ; �

n

g)

Figure 8: De�nition of the rewriting fun
tions

r

�

(V ) � r

+

(W ) 2 D i� 9� 2 V 9� 2 W � � � 2 C

D

#

(�) = fr

+

(C

#

(�))g D

"

(�) = fr

�

(C

"

(�))g

D

#

(


V

) = f?g D

"

(�

W

) = f>g

D

#

(�

W

) = fr

+

(

[

�2W

C

#

(�))g D

"

(


V

) = fr

�

(

[

�2V

C

"

(�))g

Figure 9: Canonization
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The basi
 idea behind 
anonization is simple: introdu
e fresh variables to stand for least

upper bounds and greatest lower bounds of existing variables. For instan
e, \� t �" may

be represented by a fresh variable �

f�;�g

, together with the 
onstraints � � �

f�;�g

and

� � �

f�;�g

. A straightforward de�nition of 
anonization, based on this prin
iple, is given

by Trifonov and Smith [TS96℄. However, it involves intermediate 
losure 
omputations,

whi
h generate many super
uous 
onstraints. For instan
e, � and � above must be pos-

itive, be
ause the least upper bound expressions whi
h arise during 
anonization always

involve positive variables. Sin
e there are no bipolar variables, � and � 
annot be negative.

So, the fresh 
onstraints � � �

f�;�g

and � � �

f�;�g

shall be removed by the next garbage


olle
tion pass. In between, though, these 
onstraints will take part in a 
losure 
omputa-

tion, and their transitive 
onsequen
es may survive garbage 
olle
tion. Rather than going

through the pro
ess of adding super
uous 
onstraints as part of 
anonization, performing a


losure 
omputation, and then eliminating them, we give a more detailed des
ription of 
an-

onization, whose output is provably 
losed, and whi
h does not generate these unne
essary


onstraints, thus saving time.

For the sake of simpli
ity, our de�nition 
reates an exponential number of fresh variables.

Of 
ourse, an implementation shall 
reate a fresh 


V

or �

W

only on demand, i.e. when it

appears in the 
onstru
ted bound of an existing variable|whi
h may be an original variable

�, or may itself be a 
 or a �.

Considering our strong hypotheses on �, it is easy to prove that Can(�) is 
losed. Further-

more, we may prove that existing variables see their polarity de
rease during 
anonization.

These results mean that we may apply 
anonization transparently at any point of the type

inferen
e pro
ess, while still performing in
remental 
losure 
omputations, and relying on

the assumption that no bipolar variables exist. They are proved below.

Theorem 13 Consider � as in de�nition 28. Then, Can(�) is 
losed. Furthermore,

fv

+

(Can(�)) � f�

W

g [ fv

+

(�)

fv

�

(Can(�)) � f


V

g [ fv

�

(�)

As a 
orollary, there are no bipolar variables in Can(�).

Proof. We �rst verify that two 
onstraints of D involving variables 
an never be 
ombined

by transitivity. It suÆ
es to noti
e that r

�

(V ) 
an never be equal to r

+

(W ), be
ause the

former is of the form 


V

or � 2 fv

�

(�), while the latter is of the form �

W

or � 2 fv

+

(�).

Sin
e � has no bipolar variables, fv

+

(�) \ fv

�

(�) = ?.

To fully verify the requirement of de�nition 25, it essentially suÆ
es to further noti
e

that � = GC(�). This implies that for all � 2 fv

+

(�) (resp. � 2 fv

�

(�)), C

"

(�) (resp.

C

#

(�)) is empty; whi
h implies D

"

(�) = f>g (resp. D

#

(�) = f?g). The desired property

follows easily; thus, Can(�) is 
losed.

This result allows us to 
ompute polarities. We verify that f�

W

g [ fv

+

(�) and f


V

g [

fv

�

(�) satisfy the �x-point equations of de�nition 26, applied to Can(�). To do so, it suÆ
es

to noti
e that a �

W

never appears in negative (resp. positive) position in a non-variable

lower (resp. upper) bound|a symmetri
 result holds of 


V

|and that any � 2 fv(�) appears

in fewer positions than in C. 2

We are now ready to prove the 
orre
tness of the 
anonization algorithm.

Theorem 14 Consider � as in de�nition 28. Then � � Can(�).

Proof. Let us use the notations of de�nition 28. We �rst show that Can(�) 4 �, i.e.

8� ` C 9�

0

` D �

0

(A) �) � �(A) �)
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Pi
k some � ` C. De�ne �

0

by

�

0

(�) = �(�) �

0

(


V

) =

l

�2V

�(�) �

0

(�

W

) =

G

�2W

�(�)

One easily 
he
ks that, for any W , �

0

(r

+

(W )) =

F

�2W

�(�). Similarly, �

0

(r

�

(V )) =

d

�2V

�(�). It is then straightforward to extend these results to sets of small terms, rather

than sets of variables. Finally, using these results, it is a matter of routine to as
ertain that

�

0

satis�es D.

The other dire
tion of the proof is slightly more diÆ
ult, be
ause, as we explained before,

our de�nition of 
anonization 
ontains a built-in garbage 
olle
tion step. We introdu
e an

intermediate type s
heme �

0

= A) � j E, where E is de�ned by

E = D [ f� � �

W

; � 2 Wg [ f


V

� � ; � 2 V g

First, let us show that � 4 �

0

, i.e.

8� ` E 9�

0

` C �

0

(A) �) � �(A) �)

It is suÆ
ient to prove that E entails C, i.e. 8� ` E � ` C. Pi
k some � ` E. It is 
lear

that for any W , (

F

�2W

�(�)) � �(r

+

(W )). A symmetri
 result holds of any set of negative

variables V . As above, these results 
an be transferred to sets of small terms. Using them,

it is easy to 
he
k that any solution of E also satis�es C.

There remains to prove that �

0

4 Can(�). We shall do so by noti
ing that the 
onstraints

in E nD are super
uous, a

ording to garbage 
olle
tion. The result shall then follow from

theorem 11. Our �rst obje
tive is to prove that E is weakly 
losed, whi
h entitles us to

apply garbage 
olle
tion to �

0

.

First, we 
he
k that E satis�es 
ondition 1 of de�nition 23. Consider two 
onstraints

f' �  ;  � �g � E. If both appear in D, then so does ' � �, be
ause D is 
losed. Besides,

at least one of them must appear in D, be
ause otherwise they would be of the form 


V

� �

and � � �

W

, whi
h would require � to be bipolar. So, let us assume ' �  2 D and

 � � 62 D. (The other 
ase is symmetri
.) Then, the latter is of the form � � �

W

, where

� 2 W . Thus, the former must be of the form r

�

(V ) � �, where � � � 2 C for some

� 2 V . These properties are enough to guarantee that r

�

(V ) � �

W

2 D. Hen
e, E satis�es


ondition 1 of de�nition 23.

Then, we 
he
k that E satis�es 
ondition 2 of de�nition 23. Be
ause D is 
losed, it

suÆ
es to verify that whenever � 2W and � 2 E

#

(�), there exists some �

0

2 E

#

(�

W

) su
h

that E 


+1

� � �

0

. In other words, any k-solution � of E must satisfy �(r

+

(C

#

(�))) �

k+1

�(r

+

(

S

�2W

C

#

(�))). Be
ause � 2 W , C

#

(�) is a subset of

S

�2W

C

#

(�). Thus, what we

need to prove is a monotoni
ity property of r

+

; it is easy to prove it in the 
ase of variables

�rst, and to transfer it to the 
ase of small terms.

By symmetry, E also satis�es 
ondition 3 of de�nition 23. Finally, be
ause D is 
losed,

it satis�es 
ondition 4 of de�nition 23, and so does E. We have veri�ed that E is weakly


losed. Thus, a

ording to theorem 11, we may throw away some of �

0

's 
onstraints, as

allowed by its polarities, and obtain an equivalent type s
heme.

Consider a 
onstraint of the form � � �

W

, where � 2 W . � 2 W implies � 2 fv

+

(�);

sin
e polarities de
rease during 
anonization, � 62 fv

�

(Can(�)). Furthermore, 
onstraints

between variables do not a�e
t the polarity 
omputation, so �

0

and Can(�) have the same

polarities. This implies � 62 fv

�

(�

0

). Sin
e � is not negative in �

0

, the 
onstraint � � �

W

may be thrown away without a�e
ting �

0

's denotation. The same is true of 
onstraints

of the form 


V

� �, where � 2 V . It follows that all 
onstraints in E n D are a
tually

super
uous, and �

0

� Can(�). This 
on
ludes the proof. 2
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4.5 Minimization

The simpli�
ation method developed in se
tion 3 is based on the minimization of �nite

automata, whi
h 
onsists of two steps: eliminate any unrea
hable states, then identify

all states whi
h re
ognize the same language. In the 
ase of subtyping, the �rst step is

performed by garbage 
olle
tion, whi
h dis
ards super
uous variables and 
onstraints. It is

also possible to design an algorithm in 
harge of performing the se
ond step, as suggested

by Flanagan and Felleisen [FF96, FF97, Fla97℄. We now present this algorithm, adapted

to our system, and name it minimization. It dete
ts equivalent variables, using a method

reminis
ent of the way equivalent states of a �nite automaton are found, and then merges

them. We begin with the de�nition of the 
riterion whi
h allows 
onsidering 
ertain variables

as equivalent.

De�nition 29 Let V be a set of type variables. Any equivalen
e relation � on V is extended

to the set of small terms whose variables are in V :

? � ? > � >

�

0

! �

1

� �

0

! �

1

() (�

0

� �

0

) ^ (�

1

� �

1

)

De�nition 30 Let C be a 
onstraint set. For � 2 fv(C), de�ne

pred

C

(�) = f� ; � � � 2 Cg

su



C

(�) = f� ; � � � 2 Cg

De�nition 31 Let � = A ) � j C be a type s
heme in 
anoni
al form, made up of small

terms, 
ontaining no bipolar variables, su
h that � = GC(�). For any � 2 fv(�), C

#

(�)

(resp. C

"

(�)) is a singleton; so, by abuse of language, we shall use the same notation to

refer to its unique element.

An equivalen
e relation �, of domain fv(�), is 
ompatible with � i� � � � implies all

of the following:

1. f�; �g � fv

+

(�) or f�; �g � fv

�

(�);

2. pred

C

(�) = pred

C

(�) and su



C

(�) = su



C

(�);

3. C

#

(�) � C

#

(�) and C

"

(�) � C

"

(�).

We now prove that the above 
onditions are indeed suÆ
ient to ensure 
orre
tness, i.e. if

we identify the variables of a type s
heme a

ording to a 
ompatible equivalen
e relation,

then we obtain an equivalent type s
heme.

De�nition 32 Consider � as in de�nition 31; let � be a partition 
ompatible with �. The

quotient

�

=

�

is de�ned|up to a renaming|as �(�), where � is any mapping of fv(�) into

V su
h that

8�; � 2 fv(�) � � � () �(�) = �(�)

Theorem 15 Consider � and � as in de�nition 32. Then,

�

=

�

� �.

Proof. The assertion � 4

�

=

�


learly holds, be
ause the latter is the image of the former

through the substitution �. Conversely, let us show that

�

=

�

4 �. Let � be a solution of C.

We need to exhibit a solution �

0

of �(C) su
h that �

0

(�(A) �)) � �(A) �).

Consider an equivalen
e 
lass of �. Be
ause of 
ondition 1 of de�nition 31, it must be

either a subset of fv

+

(�), or a subset of fv

�

(�). We denote it by V (resp. W ) in the former
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(resp. latter) 
ase. We denote the image of its elements through � by '

V

(resp. '

W

).

De�ne �

0

by

�

0

('

V

) =

G

�2V

�(�) �

0

('

W

) =

l

�2W

�(�)

We remark that for any � 2 fv

+

(�), �

0

(�(�)) � �(�) holds; symmetri
ally, for any � 2

fv

�

(�), we have �(�) � �

0

(�(�)).

Let us now verify that �

0

is a solution of �(C). We begin by 
he
king that any 
onstraint

between variables is satis�ed. Su
h a 
onstraint is ne
essarily of the form '

V

� '

W

;

furthermore, be
ause of 
ondition 2 of de�nition 31, we have

8� 2 V 8� 2W � � � 2 C

Be
ause � satis�es C, this implies

8� 2 V 8� 2W �(�) � �(�)

whi
h, 
onsidering the de�nition of �

0

, is exa
tly �

0

('

V

) � �

0

('

W

).

We then 
he
k that any 
onstraint between a variable and a small term is satis�ed. Su
h

a 
onstraint may be written �(C

#

(�)) � �(�)|the other 
ase is symmetri
. If � 2 fv

�

(�),

this is immediate, be
ause C

#

(�) = ?. Assume � 2 fv

+

(�). A

ording to the de�nition of

�

0

, our goal 
an then be written

8�

0

� � �

0

(�(C

#

(�))) � �(�

0

)

Assume �

0

� �. Thanks to 
ondition 3 of de�nition 31, we have C

#

(�

0

) � C

#

(�), so these

terms have the same image through �. Additionally, be
ause � satis�es C, �(C

#

(�

0

)) � �(�

0

)

holds. So, it suÆ
es to prove

�

0

(�(C

#

(�

0

))) � �(C

#

(�

0

))

whi
h is a straightforward 
onsequen
e of our above remarks 
on
erning �

0

.

There only remains to verify that �

0

(�(A ) �)) � �(A ) �), whi
h is again a dire
t


onsequen
e of said remarks. 2

To obtain an algorithm, there remains to show, given a type s
heme �, how to 
ompute an

equivalen
e relation 
ompatible with �. Of 
ourse, we wish to identify as many variables as

possible, so we wish to 
ompute the 
oarsest su
h relation.

Theorem 16 Consider � as in de�nition 31. Then, there exists a 
oarsest equivalen
e

relation 
ompatible with �. It 
an be 
omputed in time O(dn logn), where n = j fv(�) j, and

d is the degree of the graph f(�; �) ; � � � 2 Cg.

Proof. If � is a small term, let head(�) 2 �

g

denote its head 
onstru
tor. To ea
h � 2 fv(�),

asso
iate a key, as follows:

key(�) = (1; pred

C

(�); head(C

#

(�))) if � 2 fv

+

(�)

key(�) = (0; su



C

(�); head(C

"

(�))) if � 2 fv

�

(�)

De�ne � �

key

� to mean key(�) = key(�). Furthermore, for i 2 f0; 1g, de�ne a partial

fun
tion Æ

i

from fv(�) into itself by

Æ

i

(�) = �

i

if � 2 fv

+

(�) and C

#

(�) = �

0

! �

1

Æ

i

(�) = �

i

if � 2 fv

�

(�) and C

"

(�) = �

0

! �

1
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Then, it is not diÆ
ult to see that an equivalen
e relation � is 
ompatible with � i� it is

�ner than �

key

and stable with respe
t to Æ

0

and Æ

1

. (An equivalen
e relation � is stable

with respe
t to a fun
tion f i� for every 
lass B of �, either f is unde�ned on all of B, or

f is de�ned on all of B and f(B) lies entirely within some 
lass B

0

.)

So, the problem is now to �nd the 
oarsest re�nement of a given partition whi
h is

stable with respe
t to a �nite number of given fun
tions. Indeed, su
h a re�nement exists;

Hop
roft [Hop71℄ gives an O(n logn) algorithm to 
ompute it.

There remains to 
he
k how mu
h time is ne
essary to 
ompute �

key

, Æ

0

and Æ

1

. �

key


an be obtained by building a list of all variables in fv(�), sorting it a

ording to their keys,

and then walking the list, taking advantage of the fa
t that variables related by �

key

must

be adja
ent in the sorted list. Comparing two keys takes time O(d), be
ause prede
essor

or su

essor sets of 
ardinality up to d have to be 
ompared; so, the whole operation takes

time O(dn logn). Building Æ

0

and Æ

1


an be done in time O(n). 2

It is straightforward to 
he
k that minimization preserves polarities, as well as the 
losure

property.

In the 
ase of equality 
onstraints, minimization was an optimal simpli�
ation method,

as shown by theorem 5. Here, though, 
ompleteness is lost, be
ause the 
riterion we use

to dete
t equivalent variables is too 
oarse, as shown by the following example. Let F be

a 
ovariant type operator, distin
t from the identity. (For instan
e, take F (�) = > ! �.)

Consider the type s
heme

�

�

! �

�

! 


+

j f�

�

� F �

�

; �

�

� F �

�

; F 


+

� 


+

; �

�

� 


+

g

Here, � and � 
annot be in the same 
lass. If they were, then the presen
e of the 
onstraint

� � 
 would require � � 
 to be also present, whi
h is not the 
ase. However, the 
onstraint

� � 
 is super
uous, be
ause it is implied by the other 
onstraints. (Indeed, � � F � and

F 
 � 
 entail � � 
.) If a 
omplete axiomatization of entailment were known, it might

be possible to use it to determine that � and � are equivalent. However, in its absen
e, we

are left with an in
omplete minimization algorithm, whi
h relies on a synta
ti
 
riterion,

namely the presen
e of the 
onstraint � � 
, rather than on a semanti
 one, namely the

fa
t that this relationship is implied by the 
onstraint set.

Although situations similar to the above one do sometimes arise in pra
ti
e, experien
e

shows that minimization often produ
es an optimal result. So, this theoreti
al problem is

not a pra
ti
al issue; on the 
ontrary, the 
riterion's simpli
ity is the key to the algorithm's

eÆ
ien
y.

5 Example

Our theoreti
al des
ription is over; we now wish to show our algorithms at work on a simple

example. Consider the expression �(x; y):
hoose (x; y) or (y; x). (We assume the language

is extended with pairs, pair patterns, and a non-deterministi
 
hoi
e 
onstru
t 
hoose.) We

will �rst 
ompute a type s
heme for this expression, by building a type inferen
e derivation,

then simplify it. (In a real implementation, simpli�
ations may be applied at any point

of the derivation; it is desirable to do so at least at every let node, to avoid moving an

unsimpli�ed type s
heme into the environment.)

A

ording to rule (Var

i

), the �rst o

urren
e of x re
eives type (x 7! v

1

)) v

2

, together

with the 
onstraint v

1

� v

2

. Similarly, the �rst o

urren
e of y re
eives type (y 7! v

3

)) v

4

,

where v

3

� v

4

. The pair 
onstru
tion rule, like the appli
ation rule, 
omputes a meet of the

two 
ontexts, so (x; y) is assigned type (x 7! v

1

; y 7! v

3

)) v

5

, where v

2

� v

4

� v

5

is added

to the above 
onstraints.
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Figure 10: The initial 
onstraints
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Figure 11: After 
losure
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Figure 12: After garbage 
olle
tion
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Figure 13: After 
anonization
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Figure 14: After a se
ond pass of garbage 
olle
tion
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Figure 15: After minimization
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�
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� v

�

16

! v

�

16
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�
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Figure 16: After pretty-printing

Similarly, the pair (y; x) re
eives type (x 7! v

6

; y 7! v

8

) ) v

10

, where v

6

� v

7

; v

8

�

v

9

; v

9

� v

7

� v

10

.

The inferen
e rule for the 
hoose 
onstru
t again 
omputes a meet of the 
ontexts, and

merges the two result types. We obtain (x 7! v

11

; y 7! v

12

)) v

13

, with the new 
onstraints

v

11

� v

1

; v

11

� v

6

; v

12

� v

3

; v

12

� v

8

; v

5

� v

13

; v

10

� v

13

.

Finally, rule (Abs

i

), extended to deal with pair patterns, removes the 
ontext entries

for x and y and uses them to build a fun
tion type. We �nally obtain type v

15

, with fresh


onstraints v

14

� v

11

� v

12

; v

14

! v

13

� v

15

. The 
onstraints obtained so far are grouped

in �gure 10.

We must now 
ompute the 
losure of this 
onstraint set, to ensure that the expression

is well-typed. This adds the 
onstraints v

11

� v

2

; v

11

� v

7

; v

12

� v

4

; v

12

� v

9

; v

2

� v

4

�

v

13

; v

9

� v

7

� v

13

. No in
onsisten
y is found, so the expression is type-
orre
t; however, we

now wish to simplify this type s
heme.

Sin
e the 
onstraint set is 
losed, we may 
ompute the polarity of ea
h variable. The

result is shown graphi
ally in �gure 11. Dashed edges represent subtyping relationships be-

tween variables. Solid edges link ea
h variable v to the variables of its relevant 
onstru
ted

bounds, i.e. its 
onstru
ted lower (resp. upper) bounds, when v is positive (resp. negative).

Solid edges are labeled by 0, 1, l or r, to indi
ate domain, range, left 
omponent, and right


omponent, respe
tively. Nodes are labeled with the head 
onstru
tor(s) of their relevant


onstru
ted bounds. Thus, by using polarities to identify relevant bounds|whi
h, in gen-

eral, simpli�es the �gure|we obtain a graphi
al presentation similar to that of se
tion 3.

There are two main di�eren
es: �rst, the presen
e of subtyping edges; se
ond, the fa
t that

a variable may, at this point, have several relevant 
onstru
ted bounds.

Sin
e polarities are known, we may now apply garbage 
olle
tion, to get rid of all super-


uous 
onstraints. All neutral variables, namely v

5

, v

10

, v

1

, v

3

, v

8

and v

6

, disappear. This


orresponds to the intuition|whi
h is quite apparent on �gure 11|that they are intermedi-

ate variables, whi
h be
ome useless after they have played a part in the 
losure 
omputation.

The result of garbage 
olle
tion is shown by �gure 12.
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Things are now 
learer. However, v

13

has two 
onstru
ted lower bounds, namely v

2

� v

4

and v

9

� v

7

, and our minimization algorithm 
an only a
t on 
anoni
al sets, where ea
h

variable has exa
tly one 
onstru
ted bound. (This 
orresponds, informally speaking, to the

fa
t that only deterministi
 automata may be dire
tly minimized.) So, we �rst apply our


anonization algorithm, whose output is shown in �gure 13. It 
reates two fresh variables,

v

16

and v

17

. The former intuitively stands for v

2

t v

9

, while the latter stands for v

4

t v

7

.

Note that v

2

, v

4

, v

9

and v

7

have be
ome neutral as a result of 
anonization. Sin
e

minimization expe
ts its input to be stable by garbage 
olle
tion, we must now run garbage


olle
tion again. Its output appears in �gure 14. (The reader may be surprised to see that

this algorithm has to be applied twi
e during the simpli�
ation pro
ess. In pra
ti
e, this is

not a problem at all, sin
e it is very 
heap. In theory, one may prove that 
anonization does

not require its input to be stable through garbage 
olle
tion, whi
h allows ea
h algorithm

to be run exa
tly on
e. Doing so requires a heavier proof [Pot98b, Pot98
℄.)

A 
hara
teristi
 
on�guration, 
alled a 2-
rown in the literature, is now 
learly apparent.

The minimization algorithm will eliminate it. Indeed, v

16

and v

17


an be identi�ed, be
ause

they have identi
al polarities, prede
essor sets, and 
onstru
ted lower bounds (namely ?).

Symmetri
ally, it is valid to merge v

11

and v

12

. The output of minimization is given by �g-

ure 15.

At this point, the result is 
learly optimal, 
onsidering our two invariants: we 
hose to use

small terms only, and to prohibit bipolar variables. This allowed an easier formulation of our

algorithms and proofs|in parti
ular, expressing minimization requires the �rst invariant,

sin
e there is otherwise no way to reason about sharing between type terms. Thus, we put

the emphasis on eÆ
ien
y. However, the 
omputation is now over, and we wish to display

its result. It is then perfe
tly a

eptable to abandon these restri
tions, in order to enhan
e

readability. We apply a well-known simpli�
ation ta
ti
 [EST95a, AF96, AWP96, Pot96℄,

whi
h 
onsists in repla
ing positive (resp. negative) variables with their lower (resp. upper)

bound, if it is unique. This yields the type s
heme displayed in �gure 16, whi
h is exa
tly

what a programmer familiar with ML would have expe
ted.

It is important to noti
e that the above invariants favor eÆ
ien
y, at the expense of

readability. We 
hoose an eÆ
ient data representation during the whole type inferen
e

pro
ess, and swit
h to a more readable form for display. Trying to a
hieve eÆ
ien
y and

readability at the same time is a design mistake, sin
e these goals put opposite requirements

on the data representation: eÆ
ien
y requires small terms, whi
h allow improving sharing,

while readability favors large terms, whi
h help redu
e the number of variables. This fa
t

has already been pointed out while dis
ussing our previous example, in se
tion 3.

6 Related work

Closest to our work are the papers by Eifrig, Smith and Trifonov [EST95b, EST95a℄. Their


onstraint logi
 is the same as ours; they perform 
onstraint solving using the 
losure algo-

rithm des
ribed in the present paper. Our de�nition of the s
heme subsumption operator

4 
omes from a later paper by Trifonov and Smith [TS96℄, where it is written �

8

. We also

adopt its formulation of the type inferen
e rules, with a few enhan
ements, as explained in

se
tion 2.5. Moreover, this paper introdu
es garbage 
olle
tion, a re�nement of a te
hnique

for dete
ting unrea
hable variables proposed by the present author in [Pot96℄, as well as


anonization. (Its des
ription of 
anonization, however, is less pre
ise, and may involve


losure 
omputations, whereas our de�nition is more detailed and allows proving that the


losure property is preserved.)

Aiken and Wimmers [AW92, AW93℄ also study the problem of 
onstraint-based type

inferen
e, but with a di�erent interpretation of 
onstraints. In our system, ground types
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are regular terms, and subtyping is de�ned expli
itly on terms. Rather, Aiken et al. use the

ideal model [MPS86℄. Ground types are subsets of the model, and subtyping 
oin
ides with

set-theoreti
 in
lusion. In both 
ases, type inferen
e involves 
onstraint solving; however,

in the former 
ase, 
onstraints are written in a dedi
ated formalism, whereas in the latter,

the general theory of set 
onstraints is used. As a result, their system is more expressive,

as shown e.g. by its elaborate treatment of pattern mat
hing [AWL94℄, but more 
omplex.

Its initial implementation [Aik94℄ 
ontained unpublished simpli�
ation algorithms. More

re
ent works by Aiken, F�ahndri
h et al. [AF96, FFSA98, AFFS98, F�ah99℄ des
ribe various

simpli�
ation te
hniques, many of whi
h share 
ommon ideas with ours.

Flanagan and Felleisen [FF96, FF97, Fla97℄ also manipulate set 
onstraints, in order

to perform set-based analysis. Their system o�ers several 
ommon aspe
ts with ours; in

parti
ular, it provided the inspiration for our minimization algorithm. The main di�eren
e

probably lies in the treatment of fun
tions. Indeed, in our system, a fun
tion's domain is

the type of its formal argument, that is, the type of the obje
ts it is able to handle; so,

the ! 
onstru
tor must be 
ontravariant with respe
t to its �rst argument. In Flanagan

and Felleisen's system, on the 
ontrary, a fun
tion's domain represents its a
tual argument,

that is, the values passed to this fun
tion during the program's exe
ution; so, the \dom"

destru
tor is 
ovariant. Furthermore, the 
onstraint logi
 allows applying this destru
tor to

obje
ts other than fun
tions. These de
isions have advantages: every solvable 
onstraint set

has a smallest solution; entailment is de
idable. On the other hand, solving the 
onstraints

no longer guarantees that the program is 
orre
t; an additional 
he
k be
omes ne
essary.

Hen
e, the theory is signi�
antly modi�ed.

Sulzmann et al. [OSW99, SMZ99℄ propose an abstra
t 
onstraint-based type system,


alled HM(X). Whereas our paper o�ers a 
hoi
e between equality 
onstraints and a spe
i�


kind of subtyping 
onstraints, they go one step further and parameterize their system by an

arbitrary 
onstraint logi
, together with its 
onstraint solving algorithm. Be
ause it does not

use our �-lifting te
hnique, their system is 
loser to the original Hindley-Milner presentation.

As a drawba
k, the simpli�
ation issue is made slightly more 
omplex. First, simpli�
ation

algorithms (and their proofs) must distinguish between the variables whi
h appear free in

the environment and those whi
h do not. Se
ond, the presen
e of free variables makes

implementing generalization and instantiation algorithms quite a subtle task, while it is

trivial in our presentation. Sulzmann et al. do not address simpli�
ation or implementation

issues.

Bourdon
le and Merz [BM96, BM97℄ propose a type system based on 
onstrained type

s
hemes, and apply it to an obje
t-oriented language with multi-methods. After de�ning

a subtyping relation between ground types, they lift it to the level of polymorphi
 type

s
hemes, using a te
hnique identi
al to ours. However, their 
onstraint logi
 di�ers vastly.

On the one hand, subtyping is stru
tural and re
ursive types are absent, whi
h allows

de
omposing any 
onstraint system into one involving atoms (
onstants and variables) only.

On the other hand, their subtyping relation is arbitrary and user-extensible, by 
ontrast

with our �xed latti
e. As a result, di�erent 
onstraint resolution te
hniques are required;

they are studied by Frey [Fre97℄.

Palsberg [Pal95℄ studies the problem of type inferen
e for the 
ore obje
t 
al
ulus of

Abadi and Cardelli [AC94a, AC94b℄. He proposes an algorithm based on the same prin
iple

as that of Eifrig, Smith and Trifonov. However, the two systems exhibit a fundamental

di�eren
e: whereas Eifrig et al.'s ! 
onstru
tor is 
ontravariant with respe
t to its �rst

argument and 
ovariant with respe
t to the se
ond one, Abadi and Cardelli's obje
t types are

invariant ; that is, a subtyping relationship between two obje
t types entails the equality of

their 
ommon 
omponents. As shown by Henglein [Hen97℄, this pe
uliarity allows enhan
ing

the inferen
e algorithm's eÆ
ien
y. However, to simulate fun
tion types in a satisfa
tory

way, Abadi and Cardelli must introdu
e universally and existentially quanti�ed types; in
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doing so, they lose type inferen
e.

M�uller, Niehren and Podelski [NMP97℄ take interest in the stati
 analysis of the language

Oz. The set of ea
h program variable's possible values is approximated by a set of in�nite

terms. On
e again, these sets are related by in
lusion 
onstraints. Moreover, for the program

to be well-typed, the 
onstraints must not merely admit a solution, but one that asso
iates

a non-empty set to ea
h variable. For this reason, M�uller et al. interpret 
onstraints in the

model of non-empty sets of terms. This system presents, in prin
iple, 
ommon points with

those mentioned above, but the details of 
onstraint resolution, entailment and|if it were

attempted|simpli�
ation di�er widely. Also, note that this system only supports 
ovariant

type 
onstru
tors.

Finally, let us mention Fuh and Mishra [FM88, FM89℄, who were pre
ursors in the area

of 
onstraint simpli�
ation. Their work, however, deals with atomi
 
onstraints, as proposed

by Mit
hell [Mit84℄, and is of diminished interest today.

7 Con
lusion

We have given a 
lean, 
omprehensive theoreti
al a

ount of a 
onstraint simpli�
ation

system. This work brings together elements from various sour
es, and introdu
es several

original ideas, so as to build a streamlined framework. We propose a 
ombination of three

simpli�
ation algorithms, whi
h are simple and well-understood, as eviden
ed by the sim-

pli
ity of their proofs. Pra
ti
al experiments [Pot00b℄ show that this 
ombination is eÆ
ient

and e�e
tive, although the problem of designing a 
omplete simpli�
ation method 
urrently

remains open.

The type system studied in this paper is redu
ed to an almost trivial 
ore|in appearan
e.

In fa
t, it is easy to extend it with advan
ed features, su
h as open re
ord and variant

types, referen
e types, et
. Furthermore, the essential ideas behind these algorithms are

very general and should be appli
able to a wide variety of systems|our study of the 
ase of

equality 
onstraints supports this 
laim. In 
on
lusion, we hope for this paper to 
onstitute

a sound theoreti
al basis for the development of 
onstraint-based type inferen
e systems.
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