Simplifying subtyping constraints: a theory

Frangois Pottier*
Francois.Pottier@inria.fr

August 25, 2000

Abstract

This paper offers a theoretical study of constraint simplification, a fundamental
issue for the designer of a practical type inference system with subtyping.

In the simpler case where constraints are equations, a simple isomorphism between
constrained type schemes and finite state automata yields a complete constraint sim-
plification method. Using it as a guide for the intuition, we move on to the case of
subtyping, and describe several simplification algorithms. Although no longer com-
plete, they are conceptually simple, efficient, and very effective in practice.

Overall, this paper gives a concise theoretical account of the techniques found at the
core of our type inference system. Our study is restricted to the case where constraints
are interpreted in a non-structural lattice of regular terms. Nevertheless, we highlight
a small number of general ideas, which explain our algorithms at a high level and may
be applicable to a variety of other systems.

1 Introduction

1.1 Subtyping and type inference

In a typed programming language, a function application (e; e2) is legal if and only if there
exists a type 72 which is both a valid type for the argument e, and a valid domain type for
the function e;.

In the simply-typed A-calculus, the set of all valid types of a given (un-annotated) ex-
pression e has a very regular structure: it is either empty, or exactly the set of all substi-
tution instances of a most general type 7. Then, inferring the (most general) type of an
expression reduces to solving a set of equations between types [Wan87]. The addition of
let-polymorphism, as done in ML [Mil78], essentially preserves this fact.

These systems have type instantiation as their only notion of type compatibility. In
particular, they view any two ground types as incompatible unless they are equal. For
instance, assume machine integers and floating-point numbers are described by two base
types, namely int and real. Then, the application (fact) is illegal if fact and x have
(most general) types int — int and real, respectively. This is a good point, since it is
certainly a programming error. On the other hand, if log and n have (most general) types
real — real and int, respectively, then the application (logn) is deemed illegal as well.
Yet, because integers are mathematically a subset of reals, one may actually wish for this
term to be accepted.

To overcome this limitation, Mitchell [Mit84] suggests enriching these type systems with
subtyping. This involves introducing a partial order < on types, together with a new typing

*Address: INRIA Rocquencourt, BP 105, 78153 Le Chesnay Cedex, France. This paper is to appear in
Information €& Computation.

rule, stating that if 7 < 7’ holds (read: if 7 is a subtype of 7') then every expression of
type T has type 7 as well. For instance, choosing the strict ordering int < real causes
(fact) to remain ill-typed, while (log n) becomes well-typed, because n : int now implies
n : real. Subtyping is not, in general, limited to base types: Cardelli [Car88] equips record
types with a natural subtyping relation, allowing information about any number of fields to
be discarded. In addition to its intrinsic interest, such a system provides a possible basis
for the study of object-oriented languages.

Systems equipped with subtyping have a combination of type instantiation and subtyping
as their notion of type compatibility. As a result, the type inference problem no longer
reduces to solving a set of equations. Instead, it requires solving a set of inequalities,
usually called constraints [Mit84, Pal95]. This process is theoretically straightforward, but
costly, because the efficient unification algorithms developed to solve equations [JK90] can
no longer be used.

Why, then, should we wish to perform type inference? Would it not be sufficient to
require the programmer to supply type annotations, and merely check their consistency?
Let us give two reasons why type inference is useful. First, it frees the programmer from the
burden of declaring the type of every program variable—a tedious task in many widespread
languages—and allows him to naturally write polymorphic code. Second, type inference
may be viewed as a simple way of describing program analyses [PO95], whose results may
be used, for instance, to drive compiler optimizations.

1.2 Simplification

Our aim, then, is to study the type inference problem in the presence of subtyping, and to
compare it with the original problem, where subtyping is reduced to equality.

The constraint system to be solved is the same in both cases; its size is linear in the
program size. (Though let-polymorphism may, in fact, cause it to grow exponentially, it
is an accepted fact that it “usually” does not.) However, while equations can be solved
in quasi-linear time, solving inequalities between (non-atomic) terms typically requires (at
least) cubic-time algorithms [AW93, Pal95, MROO]. Thus, an efficiency problem appears.

Every unification problem admits a most general solution. Thus, in the absence of
subtyping, every program has a most general type. It is often compact and easily intelligible.
On the other hand, many classes of subtyping problems do not have most general solutions.
Then, describing the set of all valid types of a given program requires printing the constraint
system itself, which often involves many auxiliary type variables. Thus, a readability issue
also arises.

To address these problems, it seems necessary to simplify systems of subtyping con-
straints, i.e. to reduce them to smaller, equivalent systems. This topic has received continued
attention in the past few years [Aik94, AF96, AWP96, FFSA98, AFFS98, Fih99, EST95a,
TS96, FF96, FF97, Fla97, Pot96, Pot98a, Pot98b, Pot98c]. Indeed, designing a reasonable
simplification algorithm is not easy. It must be correct and efficient. Ideally, it should also
be complete, i.e. produce optimal results. Unfortunately, achieving completeness involves
solving the constraint entailment problem, which may be much more complex than con-
straint solving. In our framework, for instance, entailment has been shown PSPACE-hard,
but its decidability is still unsettled [HR98, NP99]. For this reason, practical constraint
simplification algorithms are often incomplete.

1.3 Choices

Defining a type system with subtyping involves two main choices. First, one must choose
a constraint logic, i.e. define a constraint language and its interpretation within a model.

Second, one must define a set of typing rules. Because typing judgements involve constraints,
the rules reduce the typing problem to a series of assertions expressed within the constraint
logic. These two choices are mostly orthogonal, as pointed out by [OSW99].

As far as the first choice is concerned, the array of possibilities is extremely wide. The
model may have covariant type constructors only, or it may have contravariant constructors
as well. (In the former case, constraint systems may have smallest solutions.) It may or may
not have recursive types. (If present, they may give smoother mathematical properties to
the model, leading to simpler algorithms.) The model, equipped with the subtype ordering,
may or may not form a lattice. (If it does, then more aggressive simplifications become
valid.) Types may be interpreted as ideals [MPS86] or as terms. (The former interpretation
assigns more precise meanings to union and intersection types. On the other hand, it may
be more complex; axioms such as L = ¢(L), where ¢ is any unary strict type constructor,
make constraint solving more difficult.) When types are interpreted as terms, subtyping
may be atomic (i.e. only constant type constructors may be comparable), structural (i.e.
only type constructors of identical arity may be comparable), or non-structural (even type
constructors with different arities may be comparable). Constraints may be interpreted
within a fixed model, or within a family thereof. (If the former, then deeper simplifications
are usually possible. On the other hand, user-extensible subtype hierarchies require the
latter.)

Changes in the constraint logic greatly affect the complexity of the resolution and en-
tailment problems (as well as the formulation of the corresponding algorithms). For this
reason, we will focus on a single case, while hoping that (some of) our methods may be
applicable to (some) other logics. More specifically, we choose to interpret types in the fixed
model of all regular terms generated by L, — and T, with arities 0, 2 and 0, respectively.
Subtyping is interpreted in the model by ordering these constructors as given and viewing —
as a contra/co-variant type constructor. This yields a non-structural subtyping relationship,
which forms a lattice. Although this case may seem very simple, generalizing it to more
elaborate non-structural term lattices is straightforward (see e.g. [Pot00a]) and requires no
fundamental changes to the theory or to the algorithms.

The second choice definitely has less impact on the system as a whole. Although many
variants have appeared in the literature, most of them are very close in spirit. The idea is
to extend the Hindley-Milner type discipline [Mil78] with constraints, while keeping let-
polymorphism. Perhaps the most elegant formal exposition of this idea is the system HM(X)
by Odersky, Sulzmann et al. [OSW99, SMZ99]. Here, however, we will use a set of typing
rules inspired by Trifonov and Smith [TS96], with a few technical modifications to the type
inference rules. This somewhat uncommon presentation allows us to deal with closed (i.e.
fully universally quantified) type schemes only, making a formal description of constraint
simplification—the central topic of the present paper—easier.

1.4 Overview

In this paper, we present a type inference system with subtyping, designed with constraint
simplification in mind. Its inference rules are written so as to generate amenable constraint
systems. We describe three simplification algorithms, designed to be used in combination
with one another; they are simple, efficient and effective. We emphasize the parallel between
the case of equality and that of subtyping, and show that these algorithms are based, in
both cases, on the same broad ideas. In fact, in the case of equality, their combination
yields a complete simplification strategy. Although it is no longer complete in the case of
subtyping, we believe it produces good results in practice.

This paper is laid out as follows. Section 2 introduces the necessary theoretical back-
ground, namely a set of ground types ordered by subtyping, a core language, a set of typing

rules, and an equivalent set of type inference rules. The type inference rules describe a
deterministic algorithm, which maps an expression to a constrained type scheme. The con-
straints thus generated may be viewed, at will, as equations or as subtyping constraints.
In the former case, we obtain a type inference system close to that of ML; in the latter,
a system equipped with the full power of subtyping. Section 3 studies the simpler one,
and suggests a complete simplification method by borrowing concepts from automata the-
ory. This section should help the reader form general intuitions about the structure and
behavior of constraints. We hope these ideas are applicable in other contexts; in particular,
they may be transferred to our more complex system, which is the topic of section 4. In
this section, which forms the theoretical body of the paper, we formally describe and prove
several constraint simplification algorithms, based on the same ideas. Section 5 shows these
algorithms at work on a simple example. Section 6 reviews related work.

This paper borrows ideas from several existing works. One of its novel aspects is their
seamless integration: we describe a clean, simple theory, which leads directly to an efficient
implementation [Pot0O0b]. Another contribution is in the area of presentation. First, thanks
to a carefully thought-out mathematical layout, we are able to present our formal results
with almost no auxiliary steps, and with substantially smaller proofs than in earlier works.
Second, we highlight the similarity of our methods with those applicable in the case of
equality constraints; by doing so, we hope to help the reader grasp the essential ideas behind
our algorithms. Thus, this paper may constitute a good introduction to the theoretical issues
behind constraint-based type inference.

Before beginning our technical exposition, let us recall that the focus of this paper is
on constraint simplification. Because of this decision, several issues related to the design
of a constraint-based type inference system have been left aside. Among them, one may
mention certain fundamental theoretical results, such as type safety; various implementa-
tion concerns, including efficiency measurements; extensions of the core language necessary
to obtain a full-blown programming language; etc. These issues are discussed at length
in [Pot98c, Pot98b]. Lastly, we do not address the issue of entailment, i.e. we do not
attempt to give an algorithm to decide whether two given type schemes are in the sub-
sumption relation. Indeed, we do not have a need for such an algorithm, because all of
the simplification algorithms presented in this paper provably preserve the meaning of their
input. Nevertheless, the entailment problem is closely linked to the issue of constraint
simplification; we refer the interested reader to [AC93, KPS93, Pot98c, HR98, NP99].

2 A constraint-based type inference system

2.1 Ground types

Ground types are the regular trees built with the elementary constructors L, T and —. They
are the simplest kind of types, since they are (possibly recursive) types without variables.
They are monomorphic; polymorphism shall be introduced later by considering type schemes
which denote sets of ground types.

Definition 1 Let the ground signature X, consist of L and T with arity 0 and — with
arity 2. A path p is a finite string of 0’s and 1’s, i.e. an element of {0,1}*. € denotes
the empty path. The length of a path p is denoted by |p|. Its parity n(p) is the number of
0’s it contains, taken modulo 2. A ground tree 7 is a partial function from paths into ¥,
whose domain is non-empty and prefiz-closed, and such that 7(p0) and 7(pl) are defined
iff T(p) = —. Given p € dom(7), the subtree of 7 rooted at p, written 1),, is the tree
g+ 7(pg). A tree is finite iff its domain is finite. A tree is regular iff it has a finite number
of subtrees. A ground type is a regular ground tree. We denote the set of ground types by

T. L (resp. T) stands for the tree T such that dom(r) = {€} and 7(¢) = L (resp. T). If
To and T1 are trees, 1o — 71 stands for the tree T defined by T(€) = —, 7(0p) = 10(p) and
7(1p) = 1u(p).

The set of ground types is equipped with a partial order, called subtyping.

Definition 2 A family of orderings over ground types is defined inductively as follows.
First, <o is uniformly true. Second, for any k € N*, 7 <p11 7 holds iff at least one of the
following is true:

e T =1;

o 7' =T;

o dromtyr], T=710 2T, T =75 =7, T <k 70 and 7 <y, 79.
Subtyping, denoted by <, is the intersection of these orderings.

(T, <) forms a lattice. Its operators Ll and M can be defined in several ways, e.g. using
automata products, finite approximations or a fix-point theorem. But their definition is of
little interest in itself, and we shall be content with the following characterization.

Theorem 1 The set of ground types T, equipped with the subtyping relation, is a lattice.
We denote its least upper bound and greatest lower bound operators by U and M, respec-
tively. These operators are of course associative and commutative. In addition, they are
characterized by the following identities:

lUr=r lnr=41

TUT=T TNT=r7
(n—=mn)U(o) =mnm) = (U
(n =)0 2> m) =@ Ur) = ()

2.2 Types

We will soon describe our type system, which is a logic for deriving typing judgments about
programs. We wish the system to enjoy most general typings: so, informally speaking, the
set of a program’s ground types should be expressible with a single typing judgment. That
is, a possibly infinite set of possibly infinite ground types should be described by a single
logical assertion—which must be finite. To allow this, we now introduce types, which may
contain type variables. Using recursive constraints on variables, any given ground type can
be finitely described; in addition, quantification over type variables allows giving a finite
description of certain infinite sets of ground types. To sum up, type variables serve two
different purposes: they encode recursive structure, and they allow polymorphism.

Definition 3 Let V be a denumerable set of type variables, denoted by a, 3, etc. The set
of types, denoted by T, is defined by

Ti=al|Ll|T|r—>71
A type is said to be constructed iff it is not a variable.

Definition 4 A ground substitution s a total mapping from type variables to ground types.
A renaming is a bijection between two subsets of V. Ground substitutions and renamings
are straightforwardly extended to types.

Definition 5 The sets of positive and negative free variables of a type T, respectively
denoted by fv7 (1) and fv~ (1), are defined by

fvt(a) ={a} Vi (a) =@
fvt(l) =2 ftv (L) =
tvH(T) =2 v (T) =
vt (o = m) =i (1) Ufvt(n) tv (o = 1) =" (o) Ufv (1)

The set of free variables of T, denoted by fv(r), is defined by

fv(r) = vt (r) Ufv (1)

2.3 Constrained type schemes

Like that of ML, our type system offers let-polymorphism. Thus, typing judgments asso-
ciate programs not merely with types, but with type schemes.

A constrained type scheme is essentially a type—its body—where variables are allowed
to assume arbitrary values, within the limits of certain constraints. Hence, a type scheme
represents a set of ground types, which is obtained—roughly speaking—by applying all
solutions of the constraints to the body.

Constraint-based type systems have appeared in order to deal with subtyping assump-
tions in typing judgments. However, they can also describe classic equality-based systems,
such as ML itself. For this reason, we will give two variants of our type system: one where
constraints are to be interpreted as equations, and one where they truly denote subtyping
relationships. The former is of course simpler, but still interesting, because it presents many
common points with the latter, especially in the area of constraint simplification, where the
same broad concepts apply. Studying it first will allow us to identify methods which gener-
ally apply to all constraint-based systems, as opposed to those specific to our interpretation
of subtyping.

However, even in the simpler case, our system exhibits a significant departure from
ML, because, following Trifonov and Smith [TS96], we choose a formulation where all type
schemes are closed, i.e. with no free type variables.

This decision gives rise to a system where type schemes are stand-alone: their meaning
does not depend on any external assumptions. (Defining the denotation of a type scheme
with free type variables would require supplying an assignment of ground types to these free
variables.) It also removes the need to maintain a global constraint set, constraining those
variables which are free in the environment, since there are none. Furthermore, we will
notice that two distinct branches of a type inference derivation now share no type variables.
These properties lead to a simplification, and a better understanding, of the theory, as well
as to a more straightforward implementation.

In ML, it is incorrect to generalize over a type variable if it appears free in the envi-
ronment. So, how can we hope to be able to universally quantify over all variables? The
solution is to move the environment into the type scheme itself. This presentation is known
as A-lifting, for it essentially amounts to pretending that we are dealing solely with closed
program terms. Its functioning will be detailed by the typing rules (see section 2.4). More
precisely, information concerning let-bound variables remains stored inside an external en-
vironment, while information about A-bound variables appears in a context which is part of
type schemes.

Definition 6 Assume an ordering < on ground types, which can be chosen to be = or <.

The forthcoming definitions depend on the choice on <, so we end up defining two variants
of the type system, based either on equality or on subtyping.

Definition 7 Assume a denumerable set of A-identifiers, denoted by x, vy, ...

Definition 8 A ground context is a finite map from A-identifiers to ground types. The
ordering < is extended to ground contexts as follows:

A<A < Veedom(4A) ze€dom(A)AAlx)<A(x)

A ground ctype is a pair of a ground context A and a ground type T, written A = 1. The
ordering < is extended to ground ctypes by setting

A=) <A =17) = A<AA(r<T)

Definition 9 A context A is a finite map from A-identifiers to types. If x ¢ dom(A), then
Alz — 7] is the context which extends A by mapping x to T. if x € dom(A), then A\ z is the
context which is undefined at © and which coincides with A elsewhere. A ctype is a pair of a
context A and a type T, written A = 7. Ground substitutions are extended straightforwardly
to contexts and ctypes.

Definition 10 A constraint is a pair of types, written 7 <7'. A ground substitution p is a
solution of it iff p(7) < p(7"); we then write p = 7 <7'. When < stands for <, we say p is
a k-solution of 7 < 7' iff p(1) <i p(7'); we then write p by, 7 <7'. We write p = C (resp.
ptr C) when pt ¢ (resp. p by ¢) holds for all c € C.

Definition 11 Type schemes are defined by
cu=A=71|C

where A denotes a context, T a type and C a constraint set. (The symbol | should be
interpreted here as a literal, not as a choice.) Let tv(o) stand for the set of all type variables
which appear in A, T or C. The order of o is |fv(o) |.

Intuitively speaking, all variables of a type scheme are to be considered as universally quan-

tified. However, we shall not write any quantifiers explicitly. Formally speaking, no implicit

a-conversion is allowed on type schemes; a-conversion shall be dealt with explicitly. This

decision allows a rigorous description of the way fresh variables and renamings are handled.
We now define the denotation of a type scheme as a set of ground ctypes.

Definition 12 The denotation [o] of a type scheme o is the union of the <-upper cones
generated by its ground instances. That is,

[A=71|C)l={A"=7;3ptC pA=>1)<A =1}

Informally speaking, a type scheme is simply a way of describing a set of ground ctypes.
Thus, its denotation is precisely this set, i.e. the set of ground ctypes which the program
would receive in a system without polymorphism. Since subtyping allows weakening a
program’s ground ctype, it is natural for a scheme’s denotation to be upward closed, hence
the use of upper cones in its definition. It is now clear that a type scheme is more general
than another one iff it represents a larger set of ground ctypes; thus, subsumption between
type schemes is defined as set-theoretic inclusion of their denotations, as follows.

Definition 13 Given two type schemes o1 and o3, the former is said to be more general
than the latter iff Jo1] D [o2]; we shall then write oy < o2. In other words, oy is more
general than oo iff for any ground instance of o2, there exists a ground instance of o1 which
is smaller with respect to <. Formally,

(Al =T |Cl) < (Az = T2 | Cz)

is thus equivalent to
Vp2 "Cz Elpl "Cl Pl(Al $T1)<p2(A2 ﬁTZ)
We write o1 = 09 when o1 < 02 and 02 < 07.

The relation 5 was introduced in [TS96], where it is written <V.

2.4 Typing rules

The language we are interested in is core ML, that is, a A-calculus equipped with a let
construct. For the sake of simplicity, we separate A-bound identifiers from let-bound ones,
by placing them in two distinct syntactic classes.

Definition 14 Assume given a denumerable set of let-identifiers, denoted by X, Y, ...
Expressions are defined by

ex=z | re|ee| X |letX =ein e
Definition 15 Environments are defined by
=0 |INX:0o
Environment access is defined, as usual, by
;X :0)(X)=0 (Y :0)(X) =T(X) when X #Y

Note that environments contain information about let-bound variables only. Associating
types to A-bound variables is done inside type schemes, as shown by the typing rules given
in figure 1.

Definition 16 An expression e is well typed in an environment I' iff there exists a type
scheme o, whose denotation is non-empty, such that U'-e: 0.

Recall that the denotation of a type scheme A = 7 | C' is non-empty if and only if C' admits
a solution. Thus, to determine whether a program is well-typed, one must not only build a
typing derivation, but also make sure that it yields a solvable constraint set.

Also, recall that the relation <, as well as the notion of denotation, depend on our choice
of <. So, there are two variants of this type system, one based on equality, the other based
on subtyping.

In this system, one rule is devoted to each syntactic construct; in addition, rule (SUB),
called the subsumption rule, allows reformulating the type scheme at any point, with great
flexibility. It allows arbitrary a-conversions, as well as simplifications of the constraint
system.

These rules aim at simplicity. Still, we expect the unfamiliar reader to wonder why
contexts are made part of type schemes. Let us explain. Contexts are part of the A-
lifting mechanism, which allows us to emulate the behavior of ML, while using universally
quantified variables exclusively. But how can we express “monomorphic” types, since all
variables must be universally quantified? Here is an example. Consider the expression

Az.letY =zin Af.(fYY)

Let us type this expression in ML. Y’s type is a monomorphic variable «. So, the two uses
of Y do not involve any instantiation, and the expression’s type is @ — (@ =& a =€) — €.
In our system, on the contrary, Y’s type is (z : a) = a, according to rule (VAR). Here,

Alz) =71
(VAR)
'Fz:A=7|C
Fre:Alz—71]=>7"|C
(ABS)
F'FXte:A=71-7|C
Freg:A=>m—71|C FFey:A=>mn | C
(Arp)
F'keex:A=>71|C
N(X)=0
_ (LETVAR)
'FX:o
I'ke;:o; I'X:o1Fes:oy
(LET)
I'FletX =e;in ey : 09
I'ke:o oo
(Sus)
I'ke:o

Figure 1: Typing rules

« is (implicitly) universally quantified. So, if one were free to use rule (SuB) to perform
renamings, the two uses of Y could yield two distinct schemes (z : f) = 8 and (z : 7) = 7.
However, the typing rule for function application requires that its two branches share the
same context. So, necessarily, # and vy must be the same variable, and the sub-expression
MAfYY) has type (z : 8) = (8 = 8 = €) — €. Once the M\-abstraction is performed,
the whole expression receives type f — (8 — 8 — €) — ¢, as expected. To sum up, all
variables which appear in the context actually have monomorphic behavior; this is caused by
a sharing constraint on contexts, which is enforced whenever two branches of the derivation
are brought together. So, we are able to do away with the notion of unquantified type
variable; nonetheless, the system is correct, as stated below.

Statement 1 Let e be an expression satisfying the following two conditions:
e cach A-identifier is bound at most once within e;
o if let X = €1 1in ey is a sub-expression of e, then X appears free within es.

Assume e to be well-typed in the empty environment. Then e is safe with respect to a
call-by-value semantics of the language.

The above two conditions are technical. The first one is made necessary by the way we “lift”
A-binders through let binders; the second one is required to make rule (LET) safe with
respect to a call-by-value semantics [TS96]. They are not restrictive, since any expression
can be rewritten, without altering its semantics, so as to satisfy them. Indeed, to satisfy the
first condition, an appropriate renaming of A\-bound variables shall do; to fulfill the second
one, it suffices to replace the construct let X = e; in ey with let X = e;in (A_.e2) X
whenever X does not appear free in e,.

a,f¢F
(VARy)
[F]Trra: [FU{a,f}] (x = a) =8| {a<p}
[F]Tkie:[F'|A=7"|C Alz) =71 agF'
(ABsy)
[F1TF Aze: [F'U{a}] (A\z) = a|CU{T > T <a}
[FlTFre:[F'1A=>71"1|C z ¢ dom(A) a,f ¢ F' Aps
[F]T b Aze : [F' U{a, B}] A= a |CU{B = 7' <a) (ABS'D)
[F]Fl—leli[F’]AlﬁT1|Cl
[F,]FI—ISQC[F”] A2=>T2|Cz
[F"MALNAy =[F"] A| Cp
a,ﬂgF!lI
C=C1U02UCmU{Oé<B,T1<T2—>OZ}
(Appy)
[FlTFreiex: [F"U{a,f]A=>B|C
(X)=0 p renaming of o mg(p)NF =0 (LETVaR)
[FIT F X < [F U rng(p)] p(o)
[F]T Fre : [F'] oy [F']T;X :01bres: [F'] oy
(LeTy)
[F]TFylet X =ejin ey : [F"] 0y

Figure 2: Type inference rules

The reader may point out that these conditions are not preserved by reduction, which
poses a problem when attempting to express a subject reduction property. However, we shall
not attempt to prove statement 1 in this paper, because we choose to focus on the issue
of constraint simplification. We remove these conditions and give a full subject reduction
proof—for the case where < stands for the subtyping relation—in [Pot98b, Pot98¢]. Doing so
requires a more complex formulation of the type system, which is why we choose simplicity
here.

Lastly, one may notice that safety—with respect to any semantics—comes for free in
the pure A-calculus, since there are no possible execution errors. However, the safety proof
given in [Pot98b, Pot98c| is not based on this remark, and can be extended to more complex
calculi.

2.5 Type inference rules

The typing rules introduced above cannot be directly used to infer an expression’s type.
First, they are not syntax directed, because of rule (SUB). Second, rule (ApP) places
sharing constraints on its premises: A, 7 and C appear in both premises. So, we now
define a set of type inference rules, which specify a type reconstruction algorithm; they are
given in figure 2. The main difference with the typing rules is the disappearance of the
subtyping rule, which has been built into the application rule. (The “[F]” annotations,
although noisy, are trivial; they allow an explicit treatment of fresh variables.)

Rule (APpp) uses the following definition, which describes how contexts are brought

10

together whenever two branches of the derivation meet.

Definition 17 The assertion [F] A1 AN Ay = [F'] A | C stands, by definition, for the
following conjunction:

e dom(A) = dom(A;) Udom(As);

YV € dom(A;) Ndom(As) A(z) € V\ F;

Vz € dom(A;) \ dom(4y) A(z) = A (2);

Vz € dom(Az) \ dom(4;) A(z) = As();
F'=FU{A(z); = € dom(4;) N dom(A)};

o C={A(x)<Ai(z); x € dom(A;) Ndom(4,),i € {1,2}}.

(x
1)

Informally speaking, we say that A is the meet of the two contexts A; and A,. It is essentially
the least demanding context which guarantees that both A;’s and A,’s expectations about
the expression’s runtime environment are fulfilled.

The type inference rules are sound and complete with respect to the typing rules—that
is, they infer a most general type scheme for the expression at hand.

Statement 2 The type inference rules are correct with respect to the typing rules; that is,
[F]TFre:[F') o impliesTFe:o.

Statement 3 The type inference rules are complete with respect to the typing rules. That
is, if ' b e : o then, for any finite F C V), there exists a finite F' C V and a type scheme
o' 5 o such that [F] T by e : [F'] o'. Furthermore, o' is uniquely determined, up to a
renaming, by ' and e.

These rules are very close, in spirit, to those of Trifonov and Smith [TS96]. However, we
have brought a few subtle, but important modifications, so as to produce type schemes
which satisfy a couple of interesting properties. First, any such scheme is made up of small
terms only. Second, when < stands for the subtyping relationship, the scheme contains no
bipolar variables. Both properties shall be used throughout the paper to simplify statements
and proofs. We prove the former here; the latter is introduced in section 4.2.

Definition 18 A small term is a type term of the form L, T or ay — ai, i.e. a term
whose strict sub-terms are type variables. A type scheme A = 7 | C' is made up of small
terms iff it satisfies the following conditions:

e for all x € dom(A), A(x) is a type variable;
e T is a type variable;

e for all (1 <7") € C, either 7 and 7' are type variables, or one is a variable and the
other is a small term.

Theorem 2 If[['] F ke : [F'] o, then o is made up of small terms.
Proof. Straightforward induction on the structure of the type inference derivation. a

The small terms property allows reasoning about sharing between sub-terms, and is a key
requirement in our formulation of minimization (see section 4.5). It is already to be found,
for instance, in the theory of unification [Hue76]. Among works more closely related to ours,
Aiken and Wimmers [AW92] and Palsberg [Pal95] use a similar convention.

11

3 Simplifying equality constraints

We are done introducing our type inference system, which specifies how to associate a
constrained type scheme with a given program. We shall now focus our attention onto the
main issue of interest here: how to simplify an inferred type scheme, without affecting its
meaning. We begin, in this section, with the simpler case where < is chosen to be =, i.e.
where constraints are equations.

In common presentations of equality-based type systems, no equations appear; instead,
their most general unifiers are computed directly. Here, however, we explicitly deal with
equality constraints, so as to highlight the similarity with the more complex case of subtyping
constraints.

In this section, and in this section only, we choose to deal with simplified type schemes,
of the form 7 | C. We shall not concern ourselves with contexts, because their presence does
not add any difficulty to the simplification issue.

3.1 Preliminaries
Let us begin with a few straightforward facts concerning term automata [KPS93].
Definition 19 A term automaton is a tuple A = (Q,qo,d,1) where:

e () is a finite set of states,

e o € (Q is the start state,

e 0:Q x{0,1} = @ is a (partial) transition function,

e [:(Q — X,UV is a labeling function,

such that for any state ¢ € Q and for any i € {0,1}, d(g,1) is defined iff I(q) = —.
A state q € Q is said to be free iff its label is a variable, i.e. I(q) € V. The order of A
is the number of its states, i.e. | Q) |.

A term automaton is essentially a way of representing a type term, possibly recursive and
possibly with free type variables. Such a representation is more compact than a classic tree
representation, because of its ability to express sharing between nodes.

Definition 20 Let A = (Q,qo,9,l) be a term automaton. Extend & to a partial function
0:Q x{0,1}* = Q. Then, A describes a function T4 from paths into £, UV, defined by

p = 1(0(qo,p)).

Rather than viewing an automaton as a type term, possibly containing type variables, we
can also choose to view it as a set of ground types.

Definition 21 Let A be a term automaton. The ground instance of A through a ground
substitution p is the ground type T defined as follows: for all paths p,

o if T4(p) € Zy, then 7(p) = T4(D);
e if TA(p) is a type variable a € V, then 1), = p(a).
The denotation of a term automaton A is the set of its ground instances.

Statement 4 A term automaton’s denotation is non-empty.

Statement 5 Two term automata A and B have the same denotation iff T4 and T3 are
equal up to a renaming of variables.

12

a=e a=c¢€
(Fusk)
a=e=¢
e=T=T
(DECOMPOSET)
e=T
e=1=1
(DECOMPOSE |)
e=1
e=ay—>ar == A
(DECOMPOSE_,)
e=ay > a=0 w=Hh

Figure 3: Solving multi-equations

3.2 Simplifying multi-equations

The type inference algorithm generates equations. However, it is best to introduce a more
general notion of multi-equation, as is often done in works on unification [Hue76, JK90,
Rém92].

Definition 22 A multi-equation is a set of terms {r1,...,7,}, written 1 = --- =71,. An
equality constraint 1 = T2 can be viewed as a multi-equation. The notion of solution is
extended straightforwardly to multi-equations and to sets thereof. A multi-equation is made
up of small terms iff all of its members are variables or small terms.

In order to determine that a program is well-typed, we need to make sure that its asso-
ciated type scheme has a non-empty denotation, i.e. that its constraint set has a solution.
This is done by applying a set of rewriting rules to the multi-equation set, as follows.

Theorem 3 Consider a type scheme o = ag | C, where C' is a multi-equation set, made
up of small terms. Rewrite C' according to the rules of figure 3, until none applies; let C'
denote the result of this process. Then, C' is also made up of small terms, and has the same
solutions as C. Furthermore,

e if C' contains at least one multi-equation of the form e = T = 7', where neither T nor
7' are variables, then [o] is empty;

e otherwise, C' is said to be in canonical form. It can easily be viewed as a term
automaton, whose order equals that of o, and whose denotation coincides with [o].
As a corollary, [o] is non-empty.

Proof. With an appropriate definition of weight (e.g. give weight 1 to variables, L and T,
and weight 2 to the — symbol), it is easy to verify that each rewriting rule causes the total
weight of the multi-equation set to decrease. Hence, the process must terminate. Each
rewriting rule obviously preserves the solution space, as well as the small terms property.
Assume C' contains a multi-equation with two non-variable terms. Then, these terms
must have incompatible head constructors, because none of the decomposition rules in fig-
ure 3 applies. So, C' has no solution. On the other hand, assume C’ is in canonical form;

13

then, each multi-equation contains at most one non-variable term. Additionally, because
rule (FUSE) no longer applies, each variable appears in at most one multi-equation. In
each multi-equation, choose a unique representative, equal to its non-variable term when
it has one, and to an arbitrary member otherwise. For each a € fv(o), let repr(a) denote
the representative of a’s multi-equation, if o appears in some multi-equation, and « itself
otherwise. Define a term automaton A = (Q, qo, d,!) as follows:

e () =fv(o);

® Jo = G,

e for i € {0,1}, 6(«, i) = a; when repr(a) = ag — ai;
() = repr(a)(e).

It is straightforward to verify that the ground instances of this automaton are exactly those
of o; hence, its denotation coincides with [o]. The non-emptiness result stems from state-
ment 4. a

Theorem 3 yields an algorithm to determine whether a type scheme has a non-empty
denotation; this makes type inference decidable. However, it also shows that a canonical
type scheme can be viewed as a term automaton; we now establish the converse, showing
that the two notions are equivalent.

Theorem 4 Let A be a term automaton. Then, there exists a canonical type scheme o, of
the same order, whose denotation coincides with A’s.

Proof. Assume A = (Q,qo,d,1). Choose some injective map ¢ € Q — a4 € V. Define a
multi-equation set C' by

e for each a € rng(l), {oy; l(g) = a} € C;
e for each ¢ € @ such that I(q) =
(q) =

e for each ¢ € @ such that I(q

1, {ay, L} eC;
T,{ay, T} eC;
e for each ¢ € @ such that I(q) =—, {ag, asg0) = s} € C.

Define 0 = oy, | C. It is straightforward to verify that [o] coincides with A’s denotation.
O

The equivalence between canonical type schemes and term automata gives rise to an essen-
tial idea: the well-known minimization procedure for finite-state automata carries over to
canonical type schemes.

Theorem 5 Let o be a canonical type scheme. Among the canonical type schemes equivalent
to o, there is one of minimal order, which can be computed in time O(nlogn), where n is
the order of .

Proof. Thanks to theorems 3 and 4, we can state the problem in terms of automata. Given
an automaton A4, of order n, we must compute an automaton B, whose denotation equals
that of A, and which is minimal for this property. According to statement 5, we can
equivalently require 74 = 75. Hence, the problem simply consists in minimizing the labeled
finite state automaton .4, which can be done in time O(nlogn) [Hop71]. O

14

Qp = Q1 = Qg — Q3 as =qg = 1

«p where
a3 = 05 — Qg Ay = Oy

Figure 4: A sample type scheme, in canonical form

Figure 6: The minimized automaton

ap = g — Q3 as =T

«g Wwhere
a3 = 5 — Q5

Figure 7: The same, viewed again as a type scheme

15

Thus, it is possible to minimize the number of variables of a type scheme—which we adopt as
a measure of its complexity—in quasi-linear time. Figures 4 to 7 illustrate this procedure.
Our starting point is a type scheme whose multi-equation set has been put in canonical
form after the rules of figure 3. Theorem 3 allows us to view it as an automaton (figure 5),
which we then minimize. Minimization is a well-known, two-step process: first eliminate
any states not reachable from the start state, then merge equivalent states. In broad terms,
two states are equivalent if their labels are equal and if they carry transitions, with equal
labels, whose end states are in turn equivalent. This process yields the automaton shown
in figure 6. Finally, theorem 4 allows us to turn this automaton back into a type scheme.
Of course, thinking in terms of automata allows a simple explanation of the process, but
isn’t mandatory; the minimization procedure can be described directly in terms of multi-
equations, if one so wishes.

How does this procedure compare to the usual resolution process used in ML type infer-
ence? An ML type checker computes the most general solution of the equation set, using
unification. This essentially amounts to putting the type scheme in canonical form, by
applying the rules of figure 3, then merging all members of a single multi-equation. Our
algorithm goes one step further, since variables belonging to different multi-equations can
also be merged, provided they stand for equivalent states of the automaton. In fact, our
simplification procedure is complete—it yields a type scheme with a minimal number of
variables. Since our schemes are made up of small terms, this is a meaningful measure of
their complexity.

Theoretically speaking, our decision of working with small terms allows us to easily
highlight the isomorphism between type schemes and term automata. More intuitively, one
might say that breaking a large type term down into a series of small terms, linked together
by equations, essentially amounts to labelling each node of the original term with a type
variable. Identifying variables is then tantamount to sharing nodes in the original type term,
thus yielding a more compact representation. Of course, a user is likely to prefer a more
readable representation, with fewer variables and larger terms; it is easy to revert to such a
representation for display purposes. (For instance, the type scheme of figure 7 can be printed
as as — T — T.) This is already the case in typical ML implementations, where types
are internally represented by directed acyclic graphs, but printed as trees. It is important
to carefully distinguish the two representations, since the latter is typically exponentially
larger. In other words, an internal representation must favor efficiency; converting to an
external representation, which offers better readability, must be delayed until the result is
ready for the user to be seen.

To conclude, we have studied a complete simplification procedure for constrained type
schemes, in the case where constraints are equations. It consists of three main steps: putting
the constraints in canonical form, eliminating unreachable variables, and merging equivalent
variables. We shall now move on to the case of subtyping, and discover that, although details
become more complex, the same broad ideas apply.

4 Simplifying subtyping constraints

4.1 Solving constraints

As in section 3, our first task is to find an algorithm to decide whether a given constraint set
has a solution. Indeed, doing so is required to determine whether a program is well-typed.
Our goal, in this section, is to describe such an algorithm.

We begin with a fundamental technical result, which describes a weak, sufficient con-
dition for a constraint set to have a solution. It will form the basis for the proof of the
constraint solving algorithm. We prove a fairly powerful version of this result, allowing

16

ground constants to appear in constraints. (Since ground types may be infinite, writing
down these extended constraints would require some finite representation; however, we will
not need to do so.) Thanks to this generalization, this result also forms the basis for the
proof of the garbage collection algorithm (see section 4.3).

Definition 23 A constraint set with ground constants is a set C' of subtyping constraints
of the form T < 7', where 7 and 7' are either two variables, one variable and a small term,
or one variable and a ground type. Define the assertion C -1 7 < 7' to mean

Vk>0 Vpkr C phppa <7

Define C*(a) = {r; 7€ VAT <a€C} and CT(a) ={r; 7€ VAa<T€C} C is said
to be weakly closed iff the following conditions are met:

1. a<pelCand f<~yeC implya<~yeCl;

2. a<BeEC and T € C¥a) imply I € CHB) C It 7 <71
3. a<pBeC and ' € CT(B) imply Ir € CT(a) CIFTLr <7}
4. 7€ CHa) and 7' € CT(a) imply C I+ < 7.

Theorem 6 Let C be a constraint set with ground constants. If C' is weakly closed, then C
has a solution.

Proof. Note that this proof only uses conditions 2 and 4 of definition 23. The other condi-
tions shall be required by further theorems, such as theorem 11.

Let V = fv(C). Consider the set TV of ground substitutions of domain V. We define a
map S from TV into itself by

po(am U o)

TeCH a)

Assuming T" is viewed as a metric space, equipped with the usual distance between (tuples
of) infinite trees [Cou83], it is easy to verify that S is }-contractive. Thus, it has a unique
fix-point p.

We shall now verify that p is a solution of C. This is done by proving that it is a k-
solution of C, for all k£ > 0, by induction over k. The base case is immediate, since <y is
uniformly true (see definition 2). It remains to prove, assuming p F C, that pFrq C.

Consider a constraint of the form a < g € C. Because C satisfies condition 2 of
definition 23, we have V7 € C*+(a) 37" € CH(B) CIF*' 7 < 7'. Since p b O, this implies
Vr e CHa) 3" € CHB) p(1) <py1 p(7'), which in turn entails (Urecia) (7)) k41
(- eci(gy p(7"))- This statement is none other than p(a) <p41 p(B).

Next, consider a constraint of the form 7 < a € C, where 7 € V. Then, 7 € C*(a). So,
by definition of p, p(7) < p(a). In particular, p(7) <gt+1 p(a).

Finally, consider a constraint of the form a < 7' € C, where 7/ € V. Then, 7' € C"(a).
Pick some 7 € C¥(a). Then, condition 4 of definition 23, together with our induction
hypothesis, yield p Fry1 7 < 7/, ie. p(7) <gt1 p(7'). Since this holds for all 7 € C¥(a), we
also have (L, cou(q) P(T)) Skt1 p(7'), Le. p(e) <gq1 p(7'). This concludes the proof. a

Theorem 6 is a nice tool to exhibit solutions of a constraint set. However, it is not clear,
given an arbitrary constraint set, how it can be put in weakly closed form. So, we shall now
define a stronger, but simpler, notion of closure, which can be computed more easily. This
is the notion originally proposed by Eifrig, Smith and Trifonov [EST95b].

17

Definition 24 The partial function subc, defined as follows, breaks a constraint whose mem-
bers are variables or small terms down into a set of equivalent constraints:

subc(a <7) ={a <7} subc(r < a) ={r < a}
subc(L <7)=92 subc(tr < T) =2
subc(ap = a1 < af = o) = {aj < apg,a; < ai}

Definition 25 Let C be a constraint set, made up of small terms. C is said to be closed
iff whenever {T < a,a < 7'} C C, sube(r < 7') is defined and included in C. From now
on, a type scheme A = 7| C is said to be closed iff C is closed.

In plain words, the above definition means that a constraint set is closed iff it is stable
through a combination of transitivity and structural decomposition. Let us now verify, as
announced, that closure entails weak closure; which means, considering theorem 6, that any
closed constraint set admits a solution.

Theorem 7 Any closed constraint set C is weakly closed.

Proof. 1t is clear that C satisfies condition 1 of definition 23.

Assume a < 8 € C. Let 7 € C¥(a). Because C is closed, subc(r <) = {r < 8} C C.
So, T € C¥(B). This is sufficient to establish condition 2 of definition 23; just pick 7/ = .
Symmetrically, condition 3 is satisfied.

Now, assume 7 € C*(a) and 7' € CT(a). Because C is closed, subc(r < 7') is defined
and part of C. Thus, any k-solution of C is, in particular, a k-solution of subc(r < 7').
Moreover, considering the definition of subc, it is easy to verify that any k-solution of
subc(7 < 7') is a (k + 1)-solution of 7 < 7'. Condition 4 of definition 23 ensues. O

To conclude this section, we present an algorithm which puts a given constraint set in closed
form, if it has a solution, and fails otherwise. This algorithm is used to determine whether
a given program is well-typed. Its bad complexity: O(n?), as well as the size of its output:
O(n?), are among the main reasons why constraint simplification is required.

Theorem 8 Let C be a constraint set, made up of small terms. Let C? denote

cu < U subc(r < T'))

{r<a,a<ricc

If the sequence C,C?,C*, ... is infinite, then it reaches a fiz-point C>, which is the smallest
closed constraint set containing C; its solution space is equal to C’s and non-empty. (C'>
is called the closure of C'.) Otherwise, C' has no solution.

Proof. For an arbitrary C, it is clear that C? is equivalent to C if it is defined, and that
C has no solution otherwise (i.e. if subc is applied outside of its domain). Thus, if some
element of the sequence is undefined, then C' has no solution. Otherwise, the sequence must
reach a fix-point C'°°, because any newly created constraint involves existing terms, and
there is only a finite number of such constraints. It is clear that C'™ is the smallest closed
set containing C'. According to theorem 7, C*° is also weakly closed; by theorem 6, it admits
a solution. a

While building a type inference derivation, we wish to make sure, at every step, that the
expression at hand is well-typed, so as to detect errors as soon as possible. So, we must main-
tain our constraint sets in closed form. This may be done incrementally, taking advantage
of the fact that each type inference rule adds a few fresh constraints to a closed constraint
set; an incremental algorithm is described in [Pot98c, Pot98b]. Of course, if we use such
an algorithm, then our simplification algorithms must preserve the closure property; this
ensures that we may perform simplifications transparently at any point.

18

4.2 Polarities

If o is the type scheme associated to an expression e, it would be interesting to distinguish
the type variables of o which represent an input (i.e. some data expected by the expression
e) from those which represent an output (i.e. some result supplied by e). We shall annotate
each type variable with a — sign in the former case, and with a + sign in the latter case.
Of course, it is possible for a variable to carry both signs at once; we call such a variable
bipolar. Some variables, on the other hand, carry no sign at all; we call those neutral. Thus,
we shall associate a pair of Boolean flags, which we call polarity, to each variable. This
information will serve to guide all of our simplification algorithms.

Definition 26 Consider a weakly closed type scheme 0 = (A = €| C), made up of small
terms. The set of positive variables of o, and the set of negative variables of o, respectively
denoted by fv (o) and fv~ (o), are the smallest subsets P and N of fv(o) such that

eccPl

o mg(4) C N

e Vae P fvH(C¥a)) CP Afv (CHa)) TN
e Vae N v (CT(a)) CNAfV (CT(a)) CP

Polarities may be easily computed as a smallest fix-point. The time required is linear in
the size of the constraint set. Indeed, visiting a variable’s constructed lower (resp. upper)
bounds has to be done at most once, namely when the variable first becomes positive (resp.
negative). Thus, each constraint is traversed at most once; whence the result.

Trifonov and Smith [TS96] introduced polarities as a refinement of our notion of reach-
ability [Pot96], which would only detect neutral variables, and used them to drive garbage
collection (see section 4.3). However, they did not mention certain useful properties of
polarities, which we shall now describe.

Intuitively speaking, each positive variable of o represents a piece of data computed by
e and accessible as a part of its result. Assume e is placed inside a context C, yielding
an expression Cle] whose associated scheme is ¢'. Cle]’s result might still contain some
parts of e’s result, meaning that the corresponding variables are still positive in ¢'; others
may have been dropped, meaning that the corresponding variables are no longer positive
in ¢/. However, any value computed by e, but inaccessible through its result, obviously
remains inaccessible through Cle]’s result; which means that any variables not positive in o
cannot become positive in o’. An analogous property holds for negative variables. In other
words, polarities decrease as one walks down a type inference derivation. This property is
formalized by the following theorem.

Theorem 9 Consider an instance of one of the type inference rules of figure 2, whose
output is a type scheme o. Pick some a € fv(0), and assume « also appears in o', where o'
is one of the rule’s premises. Then, a € fv7 (o) (resp. £V (o)) implies a € vt (o) (resp.

fv~ (0")).

Proof. The only non-trivial case is that of rule (Appy). We use the notations of figure 2.
For i € {1,2}, let 0, = (A; = 7; | C;); assume C; is closed. Define

P =1fv"(o)) UfvT(02) U{B}
N =1fv (o1) Ufv (02) U{a}Utv(A)

We wish to show that P and N are conservative approximations of the polarities in o, i.e.
that they satisfy the recursive equations of definition 26. However, recall that computing

19

polarities requires the constraint set to be closed. Thus, these equations must be applied
to C*°, not to C itself; we need some information about C* in order to prove that the
equations hold.

Let the assertion 7+ stand for the conjunction fvt(r) C PAfv™(7) € N. (The assertion
77 is defined symmetrically.) Notice that Cy U C5 is closed, because these sets have disjoint
domains. Let us call “new” the constraints in Cy, U{a < f,71 < 72 = a}, as well as any
constraints arising from the subsequent closure computation. It is straightforward to verify
that whenever a small term 7 appears on the left-hand (resp. right-hand) side of a new
constraint, then 77 (resp. 77) holds.

This guarantees that the equations of definition 26, applied to A = 3 | C*°, are satisfied
by P and N. Because fv1 (o) and fv~ (o) are the smallest solutions of these equations, we
have fv*'(0) C P and fv~ (o) C N. In particular, fv () Nfv(o;) C fv1(o;) and fv~ (o) N
fv(o;) C v~ (0;); which is the desired result. |

Theorem 9 guarantees that a variable’s polarity decreases during its lifetime. As a corollary,
if the type inference rules are written so as to never cause a fresh variable to be bipolar—and
so they are—then no bipolar variables can ever appear in a type inference derivation.

Theorem 10 Assume [F| T Fre: [F'] 0. If none of the T'(X), for X € dom(T'), contains
a bipolar variable, then neither does o.

Proof. First, we check that whenever a fresh variable is created by one of the type inference
rules, it is not bipolar. Consider, for instance, rule (VAR;y). It creates two variables a and
3. The former appears in the context of the type scheme, while the latter appears in its
body. Hence, « is negative, and [is positive. According to definition 26, polarities can
only travel from a variable to a small term, so the constraint o < 8 does not cause a (resp.
B) to become positive (resp. negative). Note, on the other hand, that in the type scheme
(x = 7v) = 7, v is bipolar; splitting v into two variables a and 3, linked by a constraint, is
the technical trick which allows us not to create any bipolar variables. Rule (APPy) contains
a similar trick.

Second, theorem 9 tells us that if a variable is bipolar at a certain point, then it must
have been so since the moment it was created. According to the previous paragraph, this is
impossible; whence the result. |

This result is used to simplify various definitions and proofs, in particular concerning garbage
collection and canonization. Of course, we will need to prove that our simplification algo-
rithms also cause polarities to decrease, so we can perform simplifications at any point
without breaking this property.

4.3 Garbage collection

Computing the closure of a constraint set typically yields a large number of constraints.
Many of them are useful as intermediate steps of the closure computation, but are no
longer essential once it is over. More precisely, we shall now show that the only meaningful
constraints in a closed scheme A = €| C are the following:

e those which link a positive (resp. negative) variable a to an element of C*(«) (resp.
C'(a))—they give information about the structure of a piece of data supplied (resp.
expected) by the expression;

e those which link a negative variable to a positive one—they represent a possible flow
of data from one of the expression’s inputs to one of its outputs.

20

Any other constraints are superfluous, i.e. do not affect the scheme’s denotation. Thus,
we can simply forget about them; this process, proposed by Trifonov and Smith [TS96], is
called garbage collection. Note that all neutral variables are discarded; in our analogy with
section 3, garbage collection corresponds to the removal of unreachable nodes in a finite
automaton. It does more than that, however, since it also removes certain edges between
reachable nodes.

Definition 27 Consider o as in definition 26. The image of o through garbage collection,
denoted by GC(0), is the type scheme A = € | D, where D is a subset of C' defined as
follows:

ea<pBeDifa<BeC,actv (o) and B € vt (o);

e DY(a) equals C*(a) if a € fvT (o), and @ otherwise;

e D'(a) equals CT(a) if a € fv™ (o), and @ otherwise.
Theorem 11 Consider o as in definition 27. Then o = GC(0).

Proof. Write ¢' = GC(¢). Since o' has fewer constraints, it is clear that ¢’ < 0. So, we
need to prove o < ¢'. According to definition 13, this is equivalent to

Vo' =D FpkC p(A=e)<p(A=¢)

Pick some p' = D. We now wish to prove that the following constraint set with ground
constants (see definition 23) admits a solution:

CU{e<p' (O} u{p(Az)) < A(z); © € dom(A)}

We shall do so by proving that the following constraint set—which contains the previous
one, according to definition 26—is weakly closed:

Cu{pB)<a;Befv (0)AB<aeC"}
Ufa<p'(B); Befvi(o)ha<BeC}

(where C" denotes the reflexive closure of C,ie. a < e C"iff a =Fora < B € C). Let
E denote this set.

Because C' satisfies condition 1 of definition 23, so does E. Using the same property, it
is easy to check that E satisfies conditions 2 and 3. There remains to check condition 4.
Assume 7 € E*(a) and 7' € ET(a). Four cases arise, depending on whether 7 and ' are
small terms or ground terms:

e Both 7 and 7' are small terms. Then, 7 € C¥(a) and 7" € CT(a). The result is
immediate, considering C' meets condition 4.

e Both 7 and 7' are ground terms. Then, according to the definition of E, 7 is equal to
P (B), for some B € fv (o) such that 8 < a € C". Symmetrically, 7" is of the form
P ("), for some 3’ € fv' (o) such that o < ' € C". Because C satisfies condition 1
of definition 23, 8 < ' € C". If 3 = ', then 7 = 7" and the result is immediate. So,
we can assume 3 < 3’ € C. Since 8 € fv™ (o) and ' € fv' (o), definition 27 specifies
that 8 < ' € D. Since p' - D, p'(8) < p'(B'); that is, 7 < 7' holds.

e 7 is a small term and 7' is a ground term. As before, 7' is of the form p'(8’), for some
B’ € fvt (o) such that a < B’ € C". On the other hand, we must have 7 € C¥(a). If
a < B' € C, considering that C satisfies condition 2 of definition 23, there exists a small

21

term 7" € C¥(B') such that C IF*1 7 < 7. If, on the other hand, o = f’, then the
same holds (simply pick 7" = 7). Pick some p k- E. We then have p(7) <g41 p(7").
Furthermore, because ' € fv' (o), definition 27 specifies that 7" € D¥(8'). Since
P F D, this entails p'(7"") < p'(B'). Now, we need to reason by cases on the structure
of '

— Assume 7" is of the form dy — ;. Since 3’ € fv' (o), definition 26 specifies that
61 € fvT (o) and & € fv~ (o). According to the definition of E, §; < p'(6;) € E.
Since p F, E, this implies p(d1) <g p'(61). Symmetrically, p'(do) <g p(do). As a
consequence, p(dg — 01) <g+1 p' (0o — 01). In other words, p(7"") <g4+1 p'(7").

— Assume 7"’ is equal to L or T. Then, the same holds, i.e. p(7") <g4+1 p'(7").

We can now combine, by transitivity, the three results obtained above:

p(7) <1 p(7") <ppr p'(77) < P1(B)
This implies p(7) <g+1 p'(8'). That is, p Fr1 7 < 7', which is the desired result.

e The last case is symmetrical to the previous one. |

It is easy to check that garbage collection preserves polarities. Furthermore, provided
bipolar variables are disallowed, its output is closed, as stated below. This important remark
was missing from [TS96].

Theorem 12 Consider o as in definition 27. If fv* (o)Nfv™ (o) = @, then GC(0) is closed.

Proof. Write GC(0) = A = € | D, as in definition 27. As per definition 25, assume
{r < a,a < 7'} C D. Then, a € fv' (o), because it appears on the right-hand side of a
constraint in D. Symmetrically, « € fv™(¢). This is impossible, by hypothesis, so D is
(vacuously) closed. a

4.4 Canonization

In section 3, in order to view a multi-equation system as a finite state automaton, we required
it to be in canonical form, i.e. to equate each variable with at most one non-variable term.
Similarly, in the case of subtyping, we say that a constraint set is in canonical form iff
each variable has exactly one non-variable lower (resp. upper) bound. We shall require
this property before we attempt to minimize constraint sets. In this section, we give an
algorithm, called canonization, which computes a canonical form of an arbitrary constraint
set.

Definition 28 Let 0 = A = € | C be a type scheme, made up of small terms, containing
no bipolar variables, such that o = GC(0).

Let V (resp. W) range over non-empty subsets of fv~ () (resp. tv'(c)). For each
such V' (resp. W) of cardinality greater than 1, pick a fresh variable vy (resp. Aw). (By
fresh variables, we mean that these variables are pairwise distinct, and distinct from o’s
variables.) Define the rewriting function r~ (resp. v+) according to figure 8. The first two
lines define r= (resp. 1) on non-empty sets of negative (resp. positive) variables; they are
then extended to sets of negative (resp. positive) small terms.

The image of o through canonization, denoted by Can(o), is A = € | D, where the
constraint set D is given by figure 9. It is clear that Can(o) is in canonical form.

22

r({a}) =« r~({a}) =@

(W) = Aw when |W | > 1 r~(V) =9y when |V | >1
rf({L}us) =r"(S) rm({TIuS) =r7(5)
rt({TIuS) = r-({LjusS) =1

r(@) =1 r(@)=T

r ({ar = Br,-osan = Bu}) =1 (Hag, ... ,an}) = 77 ({B1, .-, Bn})
r ({oqr = By yan = Bu}) =rt{ag, .. an)) = (B, B0))

Figure 8: Definition of the rewriting functions

r(V)<rtW)eDif JaeV IBeW a<peC

D*(a) = {rt(C*(a))} D'(a) = {r~(CT(a))}
D¢(7v) ={L1} D'(\w) ={T}
—{r UC¢ DTWV) ={r(LJC’T
aceW acV

Figure 9: Canonization

23

The basic idea behind canonization is simple: introduce fresh variables to stand for least
upper bounds and greatest lower bounds of existing variables. For instance, “a U £” may
be represented by a fresh variable A(, 53, together with the constraints a < Ag, 5 and
B < Afa,py- A straightforward definition of canonization, based on this principle, is given
by Trifonov and Smith [TS96]. However, it involves intermediate closure computations,
which generate many superfluous constraints. For instance, a and above must be pos-
itive, because the least upper bound expressions which arise during canonization always
involve positive variables. Since there are no bipolar variables, a and § cannot be negative.
So, the fresh constraints a < Afq 53 and 8 < Ag, 5y shall be removed by the next garbage
collection pass. In between, though, these constraints will take part in a closure computa-
tion, and their transitive consequences may survive garbage collection. Rather than going
through the process of adding superfluous constraints as part of canonization, performing a
closure computation, and then eliminating them, we give a more detailed description of can-
onization, whose output is provably closed, and which does not generate these unnecessary
constraints, thus saving time.

For the sake of simplicity, our definition creates an exponential number of fresh variables.
Of course, an implementation shall create a fresh 1 or Ay only on demand, i.e. when it
appears in the constructed bound of an existing variable—which may be an original variable
a, or may itself be a v or a A.

Considering our strong hypotheses on o, it is easy to prove that Can(o) is closed. Further-
more, we may prove that existing variables see their polarity decrease during canonization.
These results mean that we may apply canonization transparently at any point of the type
inference process, while still performing incremental closure computations, and relying on
the assumption that no bipolar variables exist. They are proved below.

Theorem 13 Consider o as in definition 28. Then, Can(o) is closed. Furthermore,

fvt(Can(o)) C {Aw} U (o)
fv=(Can(c)) C {yv }Uv (o)

As a corollary, there are no bipolar variables in Can(o).

Proof. We first verify that two constraints of D involving variables can never be combined
by transitivity. It suffices to notice that 7~ (V) can never be equal to 7+ (W), because the
former is of the form vy or « € fv~ (o), while the latter is of the form Ay or a € fv' (o).
Since o has no bipolar variables, fv*' (o) Nfv™ () = @.

To fully verify the requirement of definition 25, it essentially suffices to further notice
that o = GC(c). This implies that for all a € fvt (o) (resp. a € fv™ (o)), CT(a) (resp.
C*(a)) is empty; which implies DT(a) = {T} (resp. D*(a) = {L}). The desired property
follows easily; thus, Can(o) is closed.

This result allows us to compute polarities. We verify that {\w} Ufv' (o) and {7y} U
fv™ (o) satisfy the fix-point equations of definition 26, applied to Can(c). To do so, it suffices
to notice that a Ay never appears in negative (resp. positive) position in a non-variable
lower (resp. upper) bound—a symmetric result holds of yy—and that any « € fv(o) appears
in fewer positions than in C'. |

We are now ready to prove the correctness of the canonization algorithm.

Theorem 14 Consider o as in definition 28. Then o ~ Can(o).
Proof. Let us use the notations of definition 28. We first show that Can(o) < o, i.e.

VpC Fp'FD p'(A=¢€) <p(A=¢)

24

Pick some p + C. Define p' by

Pla)=pl@) pwv)=[]r@ oOw)=|] sla)

acV aEW

One easily checks that, for any W, p'(r*(W)) = [,ew p(a). Similarly, p'(r=(V)) =
[oey p(a). It is then straightforward to extend these results to sets of small terms, rather
than sets of variables. Finally, using these results, it is a matter of routine to ascertain that
p' satisfies D.

The other direction of the proof is slightly more difficult, because, as we explained before,
our definition of canonization contains a built-in garbage collection step. We introduce an
intermediate type scheme o/ = A = ¢ | E, where E is defined by

E=DU{a<A\w;aeWlU{yw<a;acV}
First, let us show that o < ¢, i.e.
Vo E F'FC p(A=e) <p(A=e)

It is sufficient to prove that E entails C, i.e. VpF E pF C. Pick some p - E. It is clear
that for any W, (L, p(@)) < p(r*(W)). A symmetric result holds of any set of negative
variables V. As above, these results can be transferred to sets of small terms. Using them,
it is easy to check that any solution of E also satisfies C.

There remains to prove that ¢’ 5 Can(o). We shall do so by noticing that the constraints
in E\ D are superfluous, according to garbage collection. The result shall then follow from
theorem 11. Our first objective is to prove that E is weakly closed, which entitles us to
apply garbage collection to o’.

First, we check that E satisfies condition 1 of definition 23. Consider two constraints
{p <, <&} C E. If both appear in D, then so does ¢ < &, because D is closed. Besides,
at least one of them must appear in D, because otherwise they would be of the form vy < «
and a < Aw, which would require « to be bipolar. So, let us assume ¢ < ¥ € D and
Y < &€& D. (The other case is symmetric.) Then, the latter is of the form a < Ay, where
a € W. Thus, the former must be of the form r— (V) < «, where § < a € C for some
B € V. These properties are enough to guarantee that r— (V) < Ay € D. Hence, E satisfies
condition 1 of definition 23.

Then, we check that E satisfies condition 2 of definition 23. Because D is closed, it
suffices to verify that whenever & € W and 7 € E¥(«), there exists some 7' € E+(\yy) such
that E IFt! 7 < 7. In other words, any k-solution p of E must satisfy p(rT(C*(a))) <g+1
P(rT (Usew C*())). Because a € W, C¥(a) is a subset of Usew C*(B). Thus, what we
need to prove is a monotonicity property of rT; it is easy to prove it in the case of variables
first, and to transfer it to the case of small terms.

By symmetry, E also satisfies condition 3 of definition 23. Finally, because D is closed,
it satisfies condition 4 of definition 23, and so does E. We have verified that E is weakly
closed. Thus, according to theorem 11, we may throw away some of ¢'’s constraints, as
allowed by its polarities, and obtain an equivalent type scheme.

Consider a constraint of the form a < Ay, where o € W. o € W implies a € fv1(0);
since polarities decrease during canonization, a ¢ fv~ (Can(c)). Furthermore, constraints
between variables do not affect the polarity computation, so o' and Can(o) have the same
polarities. This implies a & fv= (0'). Since « is not negative in o', the constraint a < Ay
may be thrown away without affecting o'’s denotation. The same is true of constraints
of the form vy < «, where @ € V. It follows that all constraints in E \ D are actually
superfluous, and ¢’ ~ Can(o). This concludes the proof. a

25

4.5 Minimization

The simplification method developed in section 3 is based on the minimization of finite
automata, which consists of two steps: eliminate any unreachable states, then identify
all states which recognize the same language. In the case of subtyping, the first step is
performed by garbage collection, which discards superfluous variables and constraints. It is
also possible to design an algorithm in charge of performing the second step, as suggested
by Flanagan and Felleisen [FF96, FF97, Fla97]. We now present this algorithm, adapted
to our system, and name it minimization. It detects equivalent variables, using a method
reminiscent of the way equivalent states of a finite automaton are found, and then merges
them. We begin with the definition of the criterion which allows considering certain variables
as equivalent.

Definition 29 Let V be a set of type variables. Any equivalence relation = on 'V is extended
to the set of small terms whose variables are in V :

1 =1 T=T
ap = ap =By = B <= (ao = Bo) A (a1 = B1)

Definition 30 Let C be a constraint set. For a € fv(C), define

predc (o) = {f; B < € C}
succe(a) = {B; a < B e C}

Definition 31 Let 0 = A = € | C be a type scheme in canonical form, made up of small
terms, containing no bipolar variables, such that o = GC(0). For any a € fv(o), CH(a)
(resp. CT(a)) is a singleton; so, by abuse of language, we shall use the same notation to
refer to its unique element.

An equivalence relation =, of domain fv(o), is compatible with o iff « = 8 implies all
of the following:

1. {a, B} C T (0) or {a, B} C v~ (0);
2. predo () = prede(B) and succe(a) = succe (8);
3. CHa) = C¥(B) and CT(a) = CT(B).

We now prove that the above conditions are indeed sufficient to ensure correctness, i.e. if
we identify the variables of a type scheme according to a compatible equivalence relation,
then we obtain an equivalent type scheme.

Definition 32 Consider o as in definition 31; let = be a partition compatible with o. The
quotient 0/= is defined—up to a renaming—as (o), where w is any mapping of fv(o) into
V such that

Va,p € tv(o) a=p < n(a) =)

Theorem 15 Consider o and = as in definition 32. Then, 0/=~ 0.

Proof. The assertion o < /= clearly holds, because the latter is the image of the former
through the substitution 7. Conversely, let us show that /= < 0. Let p be a solution of C.
We need to exhibit a solution p’ of 7(C) such that p'(7(A = €)) < p(4 = ¢€).

Consider an equivalence class of =. Because of condition 1 of definition 31, it must be
either a subset of fv' (o), or a subset of fv™ (¢). We denote it by V (resp. W) in the former

26

(resp. latter) case. We denote the image of its elements through 7 by ¢y (resp. ow)-
Define p’ by

Pov)=|]p@ plew) =[] plc)

acV aeW

We remark that for any a € fv* (o), p'(7(a)) < p() holds; symmetrically, for any a €
v~ (o), we have p(a) < p'(7(«)).

Let us now verify that p' is a solution of 7(C). We begin by checking that any constraint
between variables is satisfied. Such a constraint is necessarily of the form ¢y < ow;
furthermore, because of condition 2 of definition 31, we have

YaeV VgeW a<peC
Because p satisfies C, this implies
VaeV VBeW pla) < p(B)

which, considering the definition of p’, is exactly p'(py) < p'(pw).

We then check that any constraint between a variable and a small term is satisfied. Such
a constraint may be written 7(C*(«)) < m(a)—the other case is symmetric. If « € fv™ (o),
this is immediate, because C*+(a) = L. Assume a € fv1 (o). According to the definition of
p', our goal can then be written

Va'=a p/(r(CHa) < pla)

Assume o' = . Thanks to condition 3 of definition 31, we have C*(a/) = C*(a), so these
terms have the same image through 7. Additionally, because p satisfies C, p(C*+(a')) < p(a')
holds. So, it suffices to prove

P (m(CHa")) < p(CHa))

which is a straightforward consequence of our above remarks concerning p'.
There only remains to verify that p'(7(4 = €)) < p(A = ¢€), which is again a direct
consequence of said remarks. O

To obtain an algorithm, there remains to show, given a type scheme o, how to compute an
equivalence relation compatible with o. Of course, we wish to identify as many variables as
possible, so we wish to compute the coarsest such relation.

Theorem 16 Consider o as in definition 31. Then, there exists a coarsest equivalence
relation compatible with o. It can be computed in time O(dnlogn), where n = |fv(o) |, and
d is the degree of the graph {(a,5); a < € C}.

Proof. If T is a small term, let head(7) € £, denote its head constructor. To each a € fv(o),
associate a key, as follows:

key(a) = (1, predc(a), head(C¥(a))) if a € fvT (o)
key(a) = (0,succe(a), head(CT(a))) if a € fv™ (o)

Define a =yey f to mean key(a) = key(f). Furthermore, for ¢ € {0,1}, define a partial
function d; from fv(o) into itself by

Si(a) = a; if @ € fvT (o) and CH(a) = ap = oy

Si(a) = a; if @ € fv (o) and CT(a) = ap = g

27

Then, it is not difficult to see that an equivalence relation = is compatible with ¢ iff it is
finer than =y, and stable with respect to dp and 1. (An equivalence relation = is stable
with respect to a function f iff for every class B of =, either f is undefined on all of B, or
f is defined on all of B and f(B) lies entirely within some class B'.)

So, the problem is now to find the coarsest refinement of a given partition which is
stable with respect to a finite number of given functions. Indeed, such a refinement exists;
Hopcroft [Hop71] gives an O(nlogn) algorithm to compute it.

There remains to check how much time is necessary to compute =y, dp and d;. =iey
can be obtained by building a list of all variables in fv(o), sorting it according to their keys,
and then walking the list, taking advantage of the fact that variables related by =i, must
be adjacent in the sorted list. Comparing two keys takes time O(d), because predecessor
or successor sets of cardinality up to d have to be compared; so, the whole operation takes
time O(dn logn). Building dyp and §; can be done in time O(n). O

It is straightforward to check that minimization preserves polarities, as well as the closure
property.

In the case of equality constraints, minimization was an optimal simplification method,
as shown by theorem 5. Here, though, completeness is lost, because the criterion we use
to detect equivalent variables is too coarse, as shown by the following example. Let F' be
a covariant type operator, distinct from the identity. (For instance, take F(a) = T — a.)
Consider the type scheme

a” 2B a9t [{am <Fa™,B <FB7,Fy" <yT,a” <yT}

Here, a and 8 cannot be in the same class. If they were, then the presence of the constraint
a < v would require 8 < + to be also present, which is not the case. However, the constraint
a < v is superfluous, because it is implied by the other constraints. (Indeed, o < F « and
F~ < «ventail a < +.) If a complete axiomatization of entailment were known, it might
be possible to use it to determine that o and S are equivalent. However, in its absence, we
are left with an incomplete minimization algorithm, which relies on a syntactic criterion,
namely the presence of the constraint § < ~, rather than on a semantic one, namely the
fact that this relationship is implied by the constraint set.

Although situations similar to the above one do sometimes arise in practice, experience
shows that minimization often produces an optimal result. So, this theoretical problem is
not a practical issue; on the contrary, the criterion’s simplicity is the key to the algorithm’s
efficiency.

5 Example

Our theoretical description is over; we now wish to show our algorithms at work on a simple
example. Consider the expression A\(z,y).choose (z,y) or (y,z). (We assume the language
is extended with pairs, pair patterns, and a non-deterministic choice construct choose.) We
will first compute a type scheme for this expression, by building a type inference derivation,
then simplify it. (In a real implementation, simplifications may be applied at any point
of the derivation; it is desirable to do so at least at every let node, to avoid moving an
unsimplified type scheme into the environment.)

According to rule (VARj), the first occurrence of x receives type (x — v1) = vg, together
with the constraint v; < vy. Similarly, the first occurrence of y receives type (y — vs3) = va,
where vs < vy. The pair construction rule, like the application rule, computes a meet of the
two contexts, so (z,y) is assigned type (z — v1,y — v3) = v5, where v X vq4 < vs is added
to the above constraints.

28

v1 < vy v3 < U4 vz X vg S U3

vg < U7 vg < Vg vg X v7 < U1
vy < U v11 < Vg vz < U3
v12 < Us vs < V13 v1p < V13
v14 < V11 X V12 v14 = V13 < V15

Figure 10: The initial constraints

Figure 12: After garbage collection

29

Figure 13: After canonization

Figure 14: After a second pass of garbage collection

30

Figure 15: After minimization

+ + + +
U1g X U1 —> Ui X Uig

Figure 16: After pretty-printing

Similarly, the pair (y,x) receives type (x — vg,y — vg) = wvip, where vg < v7,vs <
Vg, Vg X U7 S V10-

The inference rule for the choose construct again computes a meet of the contexts, and
merges the two result types. We obtain (z — v11,y + v12) = v13, with the new constraints
v11 < 01,011 < V6,012 S U3,012 < V8, U5 < V13, V10 < V13.

Finally, rule (ABs;), extended to deal with pair patterns, removes the context entries
for x and y and uses them to build a function type. We finally obtain type vy5, with fresh
constraints vi4 < v11 X v12,v14 — U1z < v15. The constraints obtained so far are grouped
in figure 10.

We must now compute the closure of this constraint set, to ensure that the expression
is well-typed. This adds the constraints vi; < ve,v11 < V7,012 < vg,v12 < Vg, V2 X Ug <
V13, V9 X v7 < v13. No inconsistency is found, so the expression is type-correct; however, we
now wish to simplify this type scheme.

Since the constraint set is closed, we may compute the polarity of each variable. The
result is shown graphically in figure 11. Dashed edges represent subtyping relationships be-
tween variables. Solid edges link each variable v to the variables of its relevant constructed
bounds, i.e. its constructed lower (resp. upper) bounds, when v is positive (resp. negative).
Solid edges are labeled by 0, 1, [or r, to indicate domain, range, left component, and right
component, respectively. Nodes are labeled with the head constructor(s) of their relevant
constructed bounds. Thus, by using polarities to identify relevant bounds—which, in gen-
eral, simplifies the figure—we obtain a graphical presentation similar to that of section 3.
There are two main differences: first, the presence of subtyping edges; second, the fact that
a variable may, at this point, have several relevant constructed bounds.

Since polarities are known, we may now apply garbage collection, to get rid of all super-
fluous constraints. All neutral variables, namely vs, vig, v1, v3, vs and vg, disappear. This
corresponds to the intuition—which is quite apparent on figure 11—that they are intermedi-
ate variables, which become useless after they have played a part in the closure computation.
The result of garbage collection is shown by figure 12.

31

Things are now clearer. However, v13 has two constructed lower bounds, namely vy X vy
and vg X v7, and our minimization algorithm can only act on canonical sets, where each
variable has exactly one constructed bound. (This corresponds, informally speaking, to the
fact that only deterministic automata may be directly minimized.) So, we first apply our
canonization algorithm, whose output is shown in figure 13. It creates two fresh variables,
v16 and vi7. The former intuitively stands for vs U vy, while the latter stands for vy U vr.

Note that vs, v4, v9 and v; have become neutral as a result of canonization. Since
minimization expects its input to be stable by garbage collection, we must now run garbage
collection again. Its output appears in figure 14. (The reader may be surprised to see that
this algorithm has to be applied twice during the simplification process. In practice, this is
not a problem at all, since it is very cheap. In theory, one may prove that canonization does
not require its input to be stable through garbage collection, which allows each algorithm
to be run exactly once. Doing so requires a heavier proof [Pot98b, Pot98c].)

A characteristic configuration, called a 2-crown in the literature, is now clearly apparent.
The minimization algorithm will eliminate it. Indeed, v16 and v;7 can be identified, because
they have identical polarities, predecessor sets, and constructed lower bounds (namely).
Symmetrically, it is valid to merge v;; and vi2. The output of minimization is given by fig-
ure 15.

At this point, the result is clearly optimal, considering our two invariants: we chose to use
small terms only, and to prohibit bipolar variables. This allowed an easier formulation of our
algorithms and proofs—in particular, expressing minimization requires the first invariant,
since there is otherwise no way to reason about sharing between type terms. Thus, we put
the emphasis on efficiency. However, the computation is now over, and we wish to display
its result. It is then perfectly acceptable to abandon these restrictions, in order to enhance
readability. We apply a well-known simplification tactic [EST95a, AF96, AWP96, Pot96],
which consists in replacing positive (resp. negative) variables with their lower (resp. upper)
bound, if it is unique. This yields the type scheme displayed in figure 16, which is exactly
what a programmer familiar with ML would have expected.

It is important to notice that the above invariants favor efficiency, at the expense of
readability. We choose an efficient data representation during the whole type inference
process, and switch to a more readable form for display. Trying to achieve efficiency and
readability at the same time is a design mistake, since these goals put opposite requirements
on the data representation: efficiency requires small terms, which allow improving sharing,
while readability favors large terms, which help reduce the number of variables. This fact
has already been pointed out while discussing our previous example, in section 3.

6 Related work

Closest to our work are the papers by Eifrig, Smith and Trifonov [EST95b, EST95a]. Their
constraint logic is the same as ours; they perform constraint solving using the closure algo-
rithm described in the present paper. Our definition of the scheme subsumption operator
< comes from a later paper by Trifonov and Smith [TS96], where it is written <¥. We also
adopt its formulation of the type inference rules, with a few enhancements, as explained in
section 2.5. Moreover, this paper introduces garbage collection, a refinement of a technique
for detecting unreachable variables proposed by the present author in [Pot96], as well as
canonization. (Its description of canonization, however, is less precise, and may involve
closure computations, whereas our definition is more detailed and allows proving that the
closure property is preserved.)

Aiken and Wimmers [AW92, AW93] also study the problem of constraint-based type
inference, but with a different interpretation of constraints. In our system, ground types

32

are regular terms, and subtyping is defined explicitly on terms. Rather, Aiken et al. use the
ideal model [MPS86]. Ground types are subsets of the model, and subtyping coincides with
set-theoretic inclusion. In both cases, type inference involves constraint solving; however,
in the former case, constraints are written in a dedicated formalism, whereas in the latter,
the general theory of set constraints is used. As a result, their system is more expressive,
as shown e.g. by its elaborate treatment of pattern matching [AWL94], but more complex.
Its initial implementation [Aik94] contained unpublished simplification algorithms. More
recent works by Aiken, Fahndrich et al. [AF96, FFSA98, AFFS98, F&h99] describe various
simplification techniques, many of which share common ideas with ours.

Flanagan and Felleisen [FF96, FF97, Fla97] also manipulate set constraints, in order
to perform set-based analysis. Their system offers several common aspects with ours; in
particular, it provided the inspiration for our minimization algorithm. The main difference
probably lies in the treatment of functions. Indeed, in our system, a function’s domain is
the type of its formal argument, that is, the type of the objects it is able to handle; so,
the — constructor must be contravariant with respect to its first argument. In Flanagan
and Felleisen’s system, on the contrary, a function’s domain represents its actual argument,
that is, the values passed to this function during the program’s execution; so, the “dom”
destructor is covariant. Furthermore, the constraint logic allows applying this destructor to
objects other than functions. These decisions have advantages: every solvable constraint set
has a smallest solution; entailment is decidable. On the other hand, solving the constraints
no longer guarantees that the program is correct; an additional check becomes necessary.
Hence, the theory is significantly modified.

Sulzmann et al. [OSW99, SMZ99] propose an abstract constraint-based type system,
called HM(X). Whereas our paper offers a choice between equality constraints and a specific
kind of subtyping constraints, they go one step further and parameterize their system by an
arbitrary constraint logic, together with its constraint solving algorithm. Because it does not
use our A-lifting technique, their system is closer to the original Hindley-Milner presentation.
As a drawback, the simplification issue is made slightly more complex. First, simplification
algorithms (and their proofs) must distinguish between the variables which appear free in
the environment and those which do not. Second, the presence of free variables makes
implementing generalization and instantiation algorithms quite a subtle task, while it is
trivial in our presentation. Sulzmann et al. do not address simplification or implementation
issues.

Bourdoncle and Merz [BM96, BM97] propose a type system based on constrained type
schemes, and apply it to an object-oriented language with multi-methods. After defining
a subtyping relation between ground types, they lift it to the level of polymorphic type
schemes, using a technique identical to ours. However, their constraint logic differs vastly.
On the one hand, subtyping is structural and recursive types are absent, which allows
decomposing any constraint system into one involving atoms (constants and variables) only.
On the other hand, their subtyping relation is arbitrary and user-extensible, by contrast
with our fixed lattice. As a result, different constraint resolution techniques are required;
they are studied by Frey [Fre97].

Palsberg [Pal95] studies the problem of type inference for the core object calculus of
Abadi and Cardelli [AC94a, AC94b]. He proposes an algorithm based on the same principle
as that of Eifrig, Smith and Trifonov. However, the two systems exhibit a fundamental
difference: whereas Eifrig et al.’s — constructor is contravariant with respect to its first
argument and covariant with respect to the second one, Abadi and Cardelli’s object types are
invariant; that is, a subtyping relationship between two object types entails the equality of
their common components. As shown by Henglein [Hen97], this peculiarity allows enhancing
the inference algorithm’s efficiency. However, to simulate function types in a satisfactory
way, Abadi and Cardelli must introduce universally and existentially quantified types; in

33

doing so, they lose type inference.

Miiller, Niehren and Podelski [NMP97] take interest in the static analysis of the language
Oz. The set of each program variable’s possible values is approximated by a set of infinite
terms. Once again, these sets are related by inclusion constraints. Moreover, for the program
to be well-typed, the constraints must not merely admit a solution, but one that associates
a non-empty set to each variable. For this reason, Miiller et al. interpret constraints in the
model of non-empty sets of terms. This system presents, in principle, common points with
those mentioned above, but the details of constraint resolution, entailment and—if it were
attempted—simplification differ widely. Also, note that this system only supports covariant
type constructors.

Finally, let us mention Fuh and Mishra [FM88, FM89], who were precursors in the area
of constraint simplification. Their work, however, deals with atomic constraints, as proposed
by Mitchell [Mit84], and is of diminished interest today.

7 Conclusion

We have given a clean, comprehensive theoretical account of a constraint simplification
system. This work brings together elements from various sources, and introduces several
original ideas, so as to build a streamlined framework. We propose a combination of three
simplification algorithms, which are simple and well-understood, as evidenced by the sim-
plicity of their proofs. Practical experiments [Pot00b] show that this combination is efficient
and effective, although the problem of designing a complete simplification method currently
remains open.

The type system studied in this paper is reduced to an almost trivial core—in appearance.
In fact, it is easy to extend it with advanced features, such as open record and variant
types, reference types, etc. Furthermore, the essential ideas behind these algorithms are
very general and should be applicable to a wide variety of systems—our study of the case of
equality constraints supports this claim. In conclusion, we hope for this paper to constitute
a sound theoretical basis for the development of constraint-based type inference systems.

References

[AC93] Roberto M. Amadio and Luca Cardelli. Subtyping recursive types. ACM Transac-
tions on Programming Languages and Systems, 15(4):575-631, September 1993.
URL: http://research.microsoft.com/Users/luca/Papers/SRT.A4.ps.

[AC94a] Martin Abadi and Luca Cardelli. A theory of primitive objects — untyped and
first-order systems. In Masami Hagiya and John C. Mitchell, editors, Theoretical
Aspects of Computer Software, volume 789 of Lecture Notes in Computer Science,
pages 296-320. Springer-Verlag, April 1994. URL: http://research.microsoft.com/
Users/luca/Papers/PrimObjlstOrder.A4.ps.

[AC94b] Martin Abadi and Luca Cardelli. A theory of primitive objects — second-order
systems. In D. Sannella, editor, Proc. of European Symposium on Program-
ming, volume 788 of Lecture Notes in Computer Science, pages 1-25, New York,
N.Y., 1994. Springer Verlag. URL: http://research.microsoft.com/Users/luca/Papers/
PrimObj2nd0Order.A4.ps.

[AF96] Alexander S. Aiken and Manuel F&hndrich. Making set-constraint based program
analyses scale. Technical Report CSD-96-917, University of California, Berkeley,
September 1996. URL: http://http.cs.berkeley.edu/ manuel/papers/scw96.ps .gz.

34

[AFFS98] Alexander Aiken, Manuel Fahndrich, Jeffrey S. Foster, and Zhendong Su. A

[Aiko4]

[AW92)]

[AW93]

[AWL94]

[AWP96]

[BMYG6]

[BM97]

[Car88|

[Cou83]

[EST95a]

[EST95b]

toolkit for constructing type- and constraint-based program analyses. Lecture
Notes in Computer Science, 1473:76-96, 1998. URL: http://www.cs.berkeley.edu/
“aiken/papers/tic98.ps.

Alexander S. Aiken. The Illyria system, 1994. URL: http://http.cs.berkeley.edu:
80/"aiken/Illyria-demo.html.

Alexander S. Aiken and Edward L. Wimmers. Solving systems of set constraints.
In Andre Scedrov, editor, Proceedings of the 7th Annual IEEE Symposium on
Logic in Computer Science, pages 329-340, Santa Cruz, CA, June 1992. IEEE
Computer Society Press. URL: http://http.cs.berkeley.edu/ aiken/ftp/lics92.ps.

Alexander S. Aiken and Edward L. Wimmers. Type inclusion constraints and
type inference. In Functional Programming & Computer Architecture, pages 31—
41. ACM Press, June 1993. URL: http://http.cs.berkeley.edu/ aiken/ftp/fpcad3.ps.

Alexander S. Aiken, Edward L. Wimmers, and T. K. Lakshman. Soft typing
with conditional types. In Principles of Programming Languages, pages 163-173,
January 1994. URL: http://http.cs.berkeley.edu/ aiken/ftp/popl94.ps.

Alexander S. Aiken, Edward L. Wimmers, and Jens Palsberg. Optimal repre-
sentations of polymorphic types with subtyping. Technical Report CSD-96-909,
University of California, Berkeley, July 1996. URL: http://http.cs.berkeley.edu/
“aiken/ftp/quant.ps.

Francois Bourdoncle and Stephan Merz. On the integration of functional pro-
gramming, class-based object-oriented programming, and multi-methods. Re-
search Report 26, Centre de Mathématiques Appliquées, Ecole des Mines de Paris,
Paris, March 1996. URL: http://www.cma.ensmp.fr/Francois.Bourdoncle/mlsub.ps.Z.

Francois Bourdoncle and Stephan Merz. Type checking higher-order polymorphic
multi-methods. In Conference Record of the 24th Annual ACM Symposium on
Principles of Programming Languages, pages 302-315, Paris, January 1997. ACM.
URL: http://www.cma.ensmp.fr/Francois.Bourdoncle/popl97.ps.Z.

Luca Cardelli. A semantics of multiple inheritance. Information and Computa-
tion, 76(2/3):138-164, February /March 1988. A revised version of the paper that
appeared in the 1984 Semantics of Data Types Symposium, LNCS 173, pages
51-66. URL: http://research.microsoft.com/Users/luca/Papers/Inheritance.A4.ps.

Bruno Courcelle. Fundamental properties of infinite trees. Theoret. Comput. Sci.,
25(2):95-169, March 1983.

Jonathan FEifrig, Scott Smith, and Valery Trifonov. Sound polymorphic type
inference for objects. ACM SIGPLAN Notices, 30(10):169-184, 1995. URL: http:

//www.cs.jhu.edu/~trifonov/papers/sptio.ps.gz.

Jonathan Eifrig, Scott Smith, and Valery Trifonov. Type inference for recursively
constrained types and its application to OOP. In Mathematical Foundations of
Programming Semantics, New Orleans, volume 1 of Electronic Notes in Theoret-
ical Computer Science. Elsevier, 1995. URL: http://www.elsevier.nl/locate/entcs/

volumel.html.

35

[FF96]

[FF97]

[FFSA98]

[Fh99]

[Fla97]

[FMS8]

[FM89]

[Fre97]

[Hen97]

[HopT71]

[HR9S]

[Hue76]

Cormac Flanagan and Matthias Felleisen. Modular and polymorphic set-based
analysis: Theory and practice. Technical Report TR96-266, Rice University,
November 1996. URL: http://www.cs.rice.edu/CS/PLT/Publications/tr96-266.ps.gz.

Cormac Flanagan and Matthias Felleisen. Componential set-based analysis. In
Proceedings of the ACM SIGPLAN ’97 Conference on Programming Language
Design and Implementation, pages 235-248, Las Vegas, Nevada, June 1997. URL:
http://www.cs.rice.edu/CS/PLT/Publications/pldi97-ff.ps.gz.

Manuel Fahndrich, Jeffrey S. Foster, Zhendong Su, and Alexander S. Aiken.
Partial online cycle elimination in inclusion constraint graphs. In Proceedings
of the 1998 Conference on Programming Languages Design and Implementation,
pages 85-96, Montréal, June 1998. URL: http://www.cs.berkeley.edu/ “manuel/papers/
pldio98.ps.

Manuel Fihndrich. BANE: A Library for Scalable Constraint-Based Program
Analysis. PhD thesis, University of California at Berkeley, 1999. URL: nttp:

//research.microsoft.com/ maf/diss.ps.

Cormac Flanagan. Effective Static Debugging via Componential Set-Based Anal-
ysis. PhD thesis, Rice University, May 1997. URL: http://www.cs.rice.edu/CS/PLT/

Publications/thesis-flanagan.ps.gz.

You-Chin Fuh and Prateek Mishra. Type inference with subtypes. In
H. Ganzinger, editor, Proceedings of the European Symposium on Programming,
volume 300 of Lecture Notes in Computer Science, pages 94—-114. Springer Verlag,
1988.

You-Chin Fuh and Prateek Mishra. Polymorphic subtype inference: Closing
the theory-practice gap. In J. Diaz and F. Orejas, editors, Proceedings of the
International Joint Conference on Theory and Practice of Software Development
: Vol. 2, volume 352 of LNCS, pages 167-183, Berlin, March 1989. Springer.

Alexandre Frey. Satisfying subtype inequalities in polynomial space. In Pas-
cal Van Hentenryck, editor, Proceedings of the Fourth International Symposium
on Static Analysis (SAS’97), number 1302 in Lecture Notes in Computer Sci-
ence, pages 265—277, Paris, France, September 1997. Springer Verlag. URL:
http://www.cma.ensmp.fr/Alexandre.Frey/Publications/SAS97.ps.gz.

Fritz Henglein. Breaking through the n® barrier: Faster object type inference.
In Benjamin Pierce, editor, Proc. 4th Int’l Workshop on Foundations of Object-
Oriented Languages (FOOL), Paris, France, January 1997. URL: http://www.cis.

upenn.edu/~bcpierce/fool/henglein.ps.gz.

John E. Hopcroft. An nlogn algorithm for minimizing states in a finite automa-
ton. In Z. Kohavi, editor, Theory of Machines and Computations, pages 189-196.
Academic Press, NY, 1971.

Fritz Henglein and Jakob Rehof. Constraint automata and the complexity of re-
cursive subtype entailment. In 25th International Colloguium on Automata, Lan-
guages, and Programming (ICALP’98), July 1998. URL: http://research.microsoft.
com/“rehof/icalp98.ps.

Gérard Huet. Résolution d’équations dans des langages d’ordre 1, 2, ..., w. PhD
thesis, Université Paris 7, September 1976.

36

[JK90]

[KPS93]

[Mil78]

[Mit84]

[MPS86]

[MROO]

[NMP97]

[NP99]

[OSW99]

[Pal95]

[PO95)

[Pot96]

[Pot98al

Jean-Pierre Jouannaud and Claude Kirchner. Solving equations in abstract al-
gebras: a rule-based survey of unification. Technical Report 561, Université
Paris-Sud, 91405 Orsay, France, April 1990.

Dexter Kozen, Jens Palsberg, and Michael I. Schwartzbach. Efficient recursive
subtyping. In Proceedings POPL ’93, pages 419-428, 1993. URL: ftp://ftp.daimi.
aau.dk/pub/palsberg/papers/popl93.ps.Z.

Robin Milner. A theory of type polymorphism in programming. Journal of
Computer and System Sciences, 17(3):348-375, December 1978.

John C. Mitchell. Coercion and type inference. In 11th Annual ACM Symposium
on Principles of Programming Languages, pages 175185, January 1984.

David B. MacQueen, Gordon D. Plotkin, and Ravi Sethi. An ideal model for
recursive polymorphic types. Information and Control, 71(1-2):95-130, October—
November 1986.

David Melski and Thomas Reps. Interconvertibility of a class of set constraints
and context-free language reachability. Theoretical Computer Science, 248(1-2),
November 2000. URL: http://www.cs.wisc.edu/wpis/papers/tcs_submission98r2.ps.

Joachim Niehren, Martin Miiller, and Andreas Podelski. Inclusion constraints
over non-empty sets of trees. In Max Dauchet, editor, Theory and Practice of
Software Development, International Joint Conference CAAP/FASE/TOOLS,
volume 1214 of Lecture Notes in Computer Science. Springer-Verlag, April 1997.
URL: ftp://ftp.ps.uni-sb.de/pub/papers/ProgrammingSysLab/ines97.ps.Z.

Joachim Niehren and Tim Priesnitz. Characterizing subtype entailment in au-
tomata theory. Technical report, Universitit des Saarlandes, Programming Sys-
tems Lab, 1999. Submitted. URL: http://wuw.ps.uni-sb.de/Papers/abstracts/pauto.
html.

Martin Odersky, Martin Sulzmann, and Martin Wehr. Type inference with
constrained types. Theory and Practice of Object Systems, 5(1), 1999. URL:

http://www.cs.mu.oz.au/"sulzmann/publications/tapos.ps.

Jens Palsberg. Efficient inference of object types. Information and Computation,
123(2):198*209, 1995. URL: http://www.cs.purdue.edu/homes/palsberg/paper/ic95-p.
ps.gz.

Jens Palsberg and Patrick M. O’Keefe. A type system equivalent to flow analy-
sis. In Conference Record of POPL ’95: 22nd Annual ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, San Francisco, Calif.
ACM, January 1995. URL: ftp://ftp.daimi.aau.dk/pub/palsberg/papers/popl95.ps.Z.

Francois Pottier. Simplifying subtyping constraints. In Proceedings of
the 1996 ACM SIGPLAN International Conference on Functional Program-
ming (ICFP’96), pages 122-133, January 1996. URL: http://pauillac.inria.fr/
“fpottier/publis/fpottier-icfp96.ps.gz.

Francois Pottier. A framework for type inference with subtyping. In Proceedings
of the third ACM SIGPLAN International Conference on Functional Program-
ming (ICFP’QS), pages 228-238, September 1998. URL: http://pauillac.inria.fr/
“fpottier/publis/fpottier-icfp98.ps.gz.

37

[Pot98b)]

[Pot98c]

[Pot00a)]

[Pot00b)

[Rém92]

[SMZ99]

[TS96]

[Wan87]

Francois Pottier. Syntheése de types en présence de sous-typage: de la théorie a la
pratiqgue. PhD thesis, Université Paris 7, July 1998. URL: http://pauillac.inria.
fr/~fpottier/publis/these-fpottier.ps.gz.

Francois Pottier. Type inference in the presence of subtyping: from theory to
practice. Technical Report 3483, INRIA, September 1998. URL: ftp://ftp.inria.
fr/INRIA/publication/RR/RR-3483.ps.gz.

Francois Pottier. A 3-part type inference engine. Submitted for journal publica-
tion, May 2000. URL: http://pauillac.inria.fr/ fpottier/publis/fpottier-njc-2000.
ps.gz.

Francgois Pottier. Wallace: an efficient implementation of type inference with
subtyping, February 2000. URL: http://pauillac.inria.fr/ fpottier/wallace/.

Didier Rémy. Extending ML type system with a sorted equational theory.
Technical Report 1766, INRIA, Rocquencourt, BP 105, 78153 Le Chesnay
Cedex, France, 1992. URL: ftp://ftp.inria.fr/INRIA/Projects/cristal/Didier.Remy/
eq-theory-on-types.ps.gz.

Martin Sulzmann, Martin Miiller, and Christoph Zenger. Hindley/Milner style
type systems in constraint form. Research Report ACRC-99-009, University of
South Australia, School of Computer and Information Science, July 1999. URL:

http://www.ps.uni-sb.de/"mmueller/papers/hm-constraints.ps.gz.

Valery Trifonov and Scott Smith. Subtyping constrained types. In Proceedings
of the Third International Static Analysis Symposium, volume 1145 of LNCS,
pages 349-365. SV, September 1996. URL: http://www.cs.jhu.edu/~“trifonov/papers/

subcon.ps.gz.

Mitchell Wand. A simple algorithm and proof for type inference. Fundamenta In-
formaticae, 10:115-122, 1987. URL: ftp://ftp.ccs.neu.edu/pub/people/wand/papers/

fundamenta-87.dvi.

38

