
Type inference and simpli�cation for recursively constrained types

Fran�cois Pottier

1 Introduction

This paper studies type inference for a functional language with subtyping, and focuses on the issue of

simplifying inferred types. It does not attempt to give a fully detailed, formal framework; this shall be the

topic of a forthcoming paper.

The type system itself was devised by Eifrig, Smith and Trifonov [4]. It is based on constrained types, i.e.

types of the form � j C, where � is a regular type expression and C is a set of subtyping constraints of the

form �

1

. �

2

.

The language o�ers polymorphic record (and variant) types, i.e. they are in a non-structural subtyping

relation. For instance, fa : �

a

; b : �

b

g . fa : �

0

a

g if and only if �

a

. �

0

a

; even though type �

b

appears in the �rst

constraint, it is not a�ected by it. This form of subtyping is more complex than usual structural subtyping,

where �

1

. �

2

can hold only if terms �

1

and �

2

have the same shape. Thanks to this subtyping relation, it is

possible to \forget" about the presence of certain �elds of a record. This mechanism can be used as a basis

to encode object-oriented messaging and inheritance.

The type inference algorithm analyzes the program and gathers a set of subtyping constraints; the program

is accepted if this set is consistent. One does not try to actually solve the constraint set.

The main drawback of this system is the huge number of generated constraints: proportional to program

size. For real-world programs, types cannot be understood by humans. So, while the type system is theoret-

ically correct, type simpli�cation is still a prerequisite for practical use. It is vital, given a type, to be able

to reduce it into a smaller, equivalent type.

To this end, we have devised several methods. They are explained in this paper; they are not fully

formalized or detailed here, but examples are given to help understand their design.

2 A quick overview of the type system

The type language is de�ned by �gure 1. The language supports atomic types such as int, bool, etc. but

does not allow subtyping between atomic types. Although it should be possible to support it, it was not

deemed useful enough. Subtyping mainly takes place between records (and, dually, between variants).

The expression language is given by �gure 2. It is a �-calculus with let. While the concrete syntax of our

language has constructs for building and accessing pairs, records and variants, they are not necessary in the

theoretical de�nition of the language. Instead, they can be viewed as a (denumerable) collection of primitive

functions (for instance, pairs can be built using (,) and accessed using fst and snd). Type-checking

takes place in a \built-in" environment containing these primitives, so they are handled in the same way as

variables.

Journ�ees du GDR Programmation.

22, 23 et 24 novembre 1995.

Grenoble.

1

Types:

� ::= � type variable

j A atomic type: bool, int, etc.

j � ! � function type

j � � � product type

j ff

i

: �

i

g

i2I

record type

j [K

i

of �

i

]

i2I

variant type

Constraints:

c ::= � . �

Type schemes:

� ::= 8�:� j fc

i

g a quanti�ed (type, constraint set) pair

Figure 1: The type language

Expressions:

e ::= x variable or constant

j �x:e function

j e e function application

j let x = e in e polymorphic let

Figure 2: The expression language

A(x) = 8�:� j C ' is a substitution of domain �

A ` x : '(� j C)

A;x : � ` e : �

0

j C

A ` �x:e : � ! �

0

j C

A ` e

1

: �

1

j C

1

A ` e

2

: �

2

j C

2

A ` e

1

e

2

: � j C

1

[C

2

[f�

1

. �

2

! �g

A ` e

1

: �

1

j C

1

A;x : 8�:�

1

j C

1

` e

2

: �

2

j C

2

� = FV(�

1

j C

1

) n FV(A) � is a substitution of domain �

A ` let x = e

1

in e

2

: �

2

j �(C

1

) [C

2

A ` e : � j C C

0

` C C

0

` � . �

0

A ` e : �

0

j C

0

Figure 3: Type inference rules

2

Type inference rules are given by �gure 3. Judgements are of the form A ` e : � j C, where A is an

environment, e is the expression to type-check, and � j C is the inferred constrained type.

All constraint sets appearing in judgements are implicitly required to be closed and consistent, as de�ned

below. When taking the union of several sets, one implicitly takes the closure of this union. If a type

inference rule yields an inconsistent set, its use is invalid.

Each function application generates a subtyping constraint: the type of the supplied argument must be a

subtype of the type expected by the function.

The natural thing to do after accumulating a system of constraints is trying to solve it (that is, �nding a

substitution from variables to ground types which satis�es all constraints), and declaring that the program

is well-typed if and only if the constraints have a solution. However, solving a constraint set is not easy; it

involves at least introducing recursive types (�-binders), as well as > and ? types. So, instead of solving the

constraint set, one only veri�es that it is consistent, as de�ned below. The approach of solving constraints is

detailed in [1], while the approach of checking consistency is introduced in [4]. A formal equivalence between

the two has not yet been established, but seems to be an interesting research topic.

Checking consistency of a constraint set is done in two steps: computing its closure and checking that

the closure contains only consistent constraints. Computing the closure is done using two kinds of rules:

transitivity

C ` �

1

. � � . �

3

C ` �

1

. �

3

and structural propagation. There are di�erent propagation rules for each type construct, but all of them

have a similar appearance. For instance, here is the rule for record types:

C ` ff

i

: �

i

g

i2I

. ff

j

: �

j

g

j2J

k 2 J � I

C ` �

k

. �

k

Once the closure has been computed, the algorithm checks that it is consistent. A constraint set is consistent

if it does not contain any ill-formed constraints, that is, constraints of the form �

1

. �

2

where �

1

and �

2

are

terms with di�erent head constructors. For instance, typing application (0 1) would generate constraint

Int . Int ! �, which is inconsistent.

The policy of checking the consistency of a constraint set instead of trying to solve it could be quali�ed as

\lazy". It should be emphasized that any constraint with a variable on the left or right side is automatically

declared consistent. For instance, �

1

! �

2

. � is a consistent constraint and requires no further attention.

One would be tempted to replace variable � with expression �

1

! �

2

(where �

1

and �

2

are fresh variables),

and to break the constraint into more elementary constraints: �

1

. �

1

and �

2

. �

2

. However, this \greedy"

approach does not terminate when faced with a recursive constraint such as �

1

! � . �. Choosing the lazy

policy eliminates this problem.

The inference system described above is simple, elegant and can easily be extended to new language

features. Its main disadvantage is the size of the coercion sets. Since a constraint is generated for every

application node in the program, the size of the constraint set is directly proportional to that of the program.

Thus, it can get out of hand very quickly. Indeed, even simple primitive functions yield large coercion sets.

This situation hampers readability: understanding the inferred type becomes not just a challenge, but an

utopia. Also, it raises the issue of speed: computing the closure of a large coercion set is slow; also, coercions

are duplicated when a let construct is encountered; hence, the smaller the constraint sets involved, the

faster the type inference process completes.

We have devised several methods to reduce the size of a constraint set, while conserving its meaning. The

�rst one works by removing so-called \disconnected" constraints from the set. The other works by applying a

substitution to the type and to the coercion set; determining which substitution to use and proving that the

substitution yields an equivalent type are two interesting problems. The following sections give an overview

of the simpli�cation algorithms we have developed, as well as examples using our lightweight typechecker

implementation.

3

3 Removing disconnected constraints

Consider the following computation:

let y = function f -> (function g -> function x -> f (g g) x)

(function g -> function x -> f (g g) x) in

let compute = y (function f -> function x -> plus 1 (f x)) in

compute 1;;

The syntax used here is that of our prototype implementation of the typechecker, and is therefore somewhat

awkward. Here y is the classic �x-point combinator. Therefore, compute is a function which takes an

integer and returns an integer (it is of no signi�cance here that the function does not terminate), and the

computation as a whole should have an integer result.

Now, let's look at the output produced by a (hypothetical) typechecker which does not remove disconnected

constraints:

int where

'a |> ('b -> 'c) -> 'd -> 'e

'a |> ('b -> 'c) -> 'b -> 'c

'f -> 'b -> 'c = 'f

'g -> 'h -> int = 'g

'i -> 'j -> int = 'i

int |> 'j

Here 'a, 'b, etc. should be read �, �, etc. and stand for type variables. The inference algorithm indeed

reports that the expression has type Int; but it also produces a series of inclusion constraints, making the

result unexpectedly complex.

Each of these constraints is, of course, consistent, otherwise the typechecker would have rejected the

expression. Also, each of them has a variable on at least one side; otherwise, we would have broken it into

smaller, equivalent constraints.

What is their meaning? Assume that the above expression is part of a larger program. Other constraints

will be generated for the other parts of the program; then the constraint set will be closed (by transitivity

and structural decomposition) and its consistency will be veri�ed. Since the coercions above are consistent

and cannot be decomposed into more elementary constraints, the only in
uence they could have is through

transitivity. But the variables involved in these constraints will be found nowhere else in the constraint

set, because the typing algorithm uses fresh variables to type the rest of the program. Hence, transitivity

cannot be used with these constraints. To sum things up, these constraints have no e�ect whatsoever on the

consistency of the coercion set associated to the whole program. Hence, we can safely remove them now,

and report that this expression has type Int, with no associated coercions.

More generally speaking, assume we have inferred A ` e : � j C (where A is an environment, e is a

language expression, � a type expression and C a coercion set). We de�ne the set of reachable variables as

the smallest set R of type variables such that: �rst, FV(A) [FV(�) � R, i.e. variables which appear free in

the environment or in � are reachable; and second, if �

1

. �

2

2 C, then FV(�

1

) � R () FV(�

2

) � R, i.e.

if all variables on one side of a coercion are reachable, all variables on the other side become reachable too.

Now, each coercion in C either involves only reachable variables, or has at least one unreachable variable

on each side. In the latter case, the coercion is said to be disconnected. It is now rather straightforward

to prove that disconnected constraints can be removed from the coercion set without a�ecting the rest of

the type inference process. This property holds if we only work with canonical typing proofs, that is, if the

typing algorithm uses fresh variables wherever possible, so that a single type variable cannot appear in two

di�erent branches of the typing proof's tree.

Formally speaking, we introduce the following typing rule (called the connexity rule):

A ` e : � j C RC(C;FV(A) [FV(�)) � C

0

� C

A ` e : � j C

0

4

Here RC(C;FV(A) [FV(�)) stands for the set of reachable coercions in C. Hence, the rule states that any

disconnected coercions can be removed. Now, the following property holds:

Theorem 3.1 Consider a canonical proof of the typing judgement A ` e : � j C, possibly making use of the

connexity rule. Then there exists a canonical proof of this same judgement such that the connexity rule is

used at most once at the end of the proof.

This theorem is proved by showing that the connexity rule commutes with all other rules. As a consequence,

adding the connexity rule to the set of typing rules doesn't a�ect the set of well-typed programs.

In conclusion, removing disconnected constraints is easy, and it is mandatory to avoid keeping constraints

which no longer have any e�ect.

4 Using substitutions to simplify coercion sets

4.1 The substitution rule

The substitution which maps variable � to type � is written as [�=�].

One possible type for the addition primitive + is

8��
:�! � !
 j � . Int; � . Int; Int .

This type expresses that + accepts arguments of any types � and �, provided that � and � are both subtypes

of Int. But it would be equivalent to say that + expects arguments of type Int, because then, when + is

applied, the typechecker would generate constraints expressing that the types of the actual arguments are

subtypes of Int. We can reason in a similar way regarding
: if we said that + returns a result of type Int,

we would be able to pass this result to any function which accepts a supertype of Int, because applying the

function would generate the proper constraint. Hence, the above type is equivalent to

Int! Int! Int

Intuitively speaking, we have applied substitution [Int=�; Int=�; Int=
] to the original type. It remains to

be seen how applying a substitution to a type can be proven to be valid in general.

Assume a typing judgement A ` e : � j C has been derived. Let � be a substitution which leaves the

environment untouched, i.e. �(A) = A. Since the typing rules require all coercion sets appearing in a

judgement to be consistent, we are assured that C is consistent. However, this is not necessarily the case

for �(C): replacing variables with terms can introduce inconsistencies. For instance, coercion � . � !

is consistent, but replacing � with a product makes it inconsistent. So, we will further assume that �(C)

is consistent. Under this hypothesis, it is easy to rewrite the proof of A ` e : � j C into a proof of

A ` e : �(�) j �(C). This means that applying � to an inferred type is sound: it always yields another

correct typing judgement.

However, we have to be more cautious if the substituted type is to be equivalent to the original one.

Generally, it is less general than the original type, so applying a badly chosen substitution might lead us to

reject an otherwise correct program. We show that substitution � yields an equivalent type if the following

two requirements are met:

C ` �(C)

C ` �(�) . �

Here, symbol ` reads \entails" and will be formally introduced shortly thereafter. It is interesting to note

that [4] uses the following subsumption rule between judgements

1

:

A ` e : � j C C

0

` C C

0

` � . �

0

A ` e : �

0

j C

0

1

Except that the authors use plain containment (�) instead of our more powerful entailment (`) relation.

5

Hence, the two requirements introduced above mean exactly that it is possible to revert from A ` e : �(�) j

�(C) to A ` e : � j C by applying the subsumption rule. The substituted type must therefore be as general

as the original one.

To summarize, the substitution rule reads

A ` e : � j C C ` �(C) C ` �(�) . �

A ` e : �(� j C)

We have shown that adding this typing rule to the system does not alter the set of well-typed programs.

Also, we have shown that it is safe for the type inference algorithm to apply this rule at any time, i.e. applying

the rule will not lead the algorithm into a dead end, causing it to reject an otherwise valid program.

4.2 The entailment relation

When reasoning about coercion sets, the need to de�ne an entailment relation arises naturally; that is, we

need to be able to formally de�ne and prove that a certain set of coercions are \consequences" of another

set.

Given two coercion sets C

1

and C

2

, a possibility is to compute their closures (by transitivity and structural

decomposition) C

1

and C

2

, and to de�ne \C

1

entails C

2

" by C

1

� C

2

, as in [4]. However, this de�nition has

limited power. Closing the set using full structural congruence (yielding in�nite closures) would give slightly

better results, but some desirable deductions remain out of reach (see the example below).

We realized that any entailment relation should verify the following natural property: if C

1

entails C

2

,

then for any coercion set D such that C

1

[D is consistent, C

2

[D is consistent. This property expresses

that since C

2

is a consequence of C

1

, it cannot possibly cause an inconsistency in an environment where C

1

didn't. We noted that most proofs pertaining to the entailment relation can be written so as to use only

this property, and no knowledge of how the relation is de�ned.

This remark suggested that we de�ne ` precisely by

C

1

` C

2

() (8D C

1

[D consistent) C

2

[D consistent)

This way, ` seems to be as powerful an entailment relation as possible.

Let us give an interesting example of non-trivial entailment between two coercion sets. Let

C

1

= f� . F (�); � = F (�)g

C

2

= f� . �g

where F is a unary, covariant context. We claim that C

1

` C

2

(showing it takes a quick induction which we

can't develop here). This kind of deduction is impossible if one simply compares closures; yet it is desirable

and useful in practice: it is needed when trying to simplify most functions dealing with recursive types, such

as lists or objects coded as records.

4.3 Deciding the entailment relation

It is not clear whether relation ` is decidable. For now, we have not tried to address this issue directly;

instead, we have concentrated on designing an algorithm that be as close to completeness as possible. Even

if the relation is not decidable, we hope to de�ne an algorithm which is powerful enough in practice.

This section describes the steps we have taken in designing this algorithm. We do not know yet whether

it is complete or incomplete, but it is already powerful enough to give very good practical results.

We want to de�ne an algorithm capable of deciding whether C ` �

1

. �

2

(then, deciding whether C

1

` C

2

is a straightforward extension). From now on, we assume C to be closed (by transitivity and structural

decomposition).

6

4.3.1 A basic algorithm

Let us start by giving a simpli�ed version of the algorithm. It tries to prove entailment using the following

rules (where ` stands for a proof by the algorithm):

� (AXIOM):

�

1

. �

2

2 C

C ` �

1

. �

2

� (DOWN): A series of structural decomposition rules of the form:

8i 2 f1 : : : ng C ` c

i

C ` �

1

. �

2

where the c

i

are the elementary constraints which make up constraint �

1

. �

2

. There is one such rule

per construct; for instance, the one for products reads

C ` �

1

. �

2

C ` �

1

. �

2

C ` �

1

� �

1

. �

2

� �

2

The re
exivity rule can also be seen as a special case of the (DOWN) rules:

C ` � . �

� (TRANS):

� . � 2 C C ` � . �

C ` � . �

(and the symmetric rule), based on transitivity.

Verifying soundness of this simple algorithm is straightforward; all deductions made by the algorithm yield

coercions belonging to the closure C.

The (TRANS) rule is interesting: when a variable appears on one side of the goal, it is impossible to use

a structural decomposition rule, hence it attempts to use transitivity. Here � can be any supertype of � in

C, so the algorithm has to try them in sequence.

4.3.2 Making the algorithm reason by induction

How does this algorithm work when faced with the non-trivial example mentioned above: that is, when we

ask it to decide whether f� . F (�); � = F (�)g ` � . �? Since both sides of the goal are variables, the

algorithm must start by trying to apply rule (TRANS) twice. Here there is only one possible candidate for

�; hence, the goal becomes F (�) . F (�). Now, since we have assumed constructor F to be covariant, the

(DOWN) rule for F transforms the goal into � . �. We have found the original goal again.

The simplest reaction would be to reject the goal, in order to prevent the algorithm from looping. But

(intuitively speaking) since we have applied rule (DOWN) once before stumbling upon the original question,

we have veri�ed that \� and � are compatible at depth 1", that is, any instantiations of � and � have the

same head constructor. If we chose to let the algorithm run a little longer before failing, we would be able

to verify that they are compatible at any given �nite depth k, i.e. that any instantiations of � and � have

the same structure above depth k. Therefore, the conclusion � . � is sound.

Formalizing this idea, we de�ne the following generalization of the algorithm:

� (AXIOM):

�

1

. �

2

2 C

C;H

1

; H

0

` �

1

. �

2

7

� (REC):

�

1

. �

2

2 H

1

C;H

1

; H

0

` �

1

. �

2

� (DOWN):

8i 2 f1 : : : ng C;H

1

[H

0

; ; ` c

i

C;H

1

; H

0

` �

1

. �

2

� (TRANS):

� . � 2 C C;H

1

; H

0

[f� . �g ` � . �

C;H

1

; H

0

` � . �

Here H

0

and H

1

are sets of coercions; they contain a history of the questions which have been asked since

the start of the algorithm. Questions are accumulated into H

0

(see (TRANS) rule). When a (DOWN) rule

is applied, the content of H

0

is moved into H

1

. Hence, every coercion in H

1

is a question which has already

been asked before applying the last (DOWN) rule; if we encounter this question again, we will be able to

give it a positive answer. That's what the new (REC) rule is for. Initially, H

0

and H

1

are empty, so the

algorithm's answer is positive if and only if C; ;; ; ` �

1

. �

2

.

We have shown this extended algorithm to be sound with respect to the entailment relation, that is,

C; ;; ; ` �

1

. �

2

) C ` �

1

. �

2

4.3.3 Reasoning with upper and lower bounds

The algorithm described above already yields acceptable results on basic cases (provided that suitable substi-

tutions are used; see section 4.4). For instance, it is powerful enough to reduce the type of the map primitive

to its natural, ML-like form (see section 5). However, we quickly realized that it is not complete with respect

to `.

For instance, the following assertion holds for any type � :

f� . Int; � . Boolg ` � . �

Indeed, let D be a coercion set such that D [f� . Int; � . Boolg is consistent (i.e. the closure of this set is

consistent). Suppose D contains a coercion of the form � .�. Then, the consistency hypothesis implies that

coercions � . Int and � . Bool are both consistent. This forces � to be a variable. Hence, coercion � . � is

also consistent, and D [f� . �g is consistent. This proves the assertion.

However, the algorithm, when asked whether �. � , uses the (TRANS) rule and will give a positive answer

only if � is Int or Bool. Hence, it is not complete.

One might formulate the objection that, even though this case can arise in practice, it is of marginal

interest. Let us give a more crucial example. Consider the following assertion:

f�

1

� �

2

.
; �

1

� �

2

.
g ` �

1

� �

2

.

Verifying it is straightforward, using the de�nition of `. But the algorithm cannot prove it, because it can

only use the (TRANS) rule. Hence, it will successively try to show

�

1

� �

2

. �

1

� �

2

and

�

1

� �

2

. �

1

� �

2

none of which holds. The (TRANS) rule alone is too restrictive, for it forces us to choose too early which

hypothesis to use.

8

The reader might wonder why the algorithm does not identify
 with a product, say

1

�

2

(where

1

and

2

are fresh type variables), and break the assumptions into more elementary coercions. The algorithm

would then have to decide whether

f�

1

.

1

; �

2

.

2

; �

1

.

1

; �

2

.

2

g ` f�

1

.

1

; �

2

.

2

g

which would immediately be shown to be true using the (AXIOM) rule. However, recall that we have decided

not to \add structure" to the coercion set in such a way, because it would cause us to loop in the presence

of recursive constraints.

The problem here seems to stem from the fact that, when asked to prove that a certain type � is smaller

than variable
, the algorithm tries to prove that it is smaller than one of
's lower bounds. Instead, it

would be su�cient to prove that � is smaller than

0

s greatest lower bound. When asked whether C ` � .
,

we could turn this goal into

C ` � .

G

i

i

where the

i

's are
's lower bounds. To do this, we need to allow upper bounds on the right side of goals,

and symmetrically, lower bounds on the left side (coarsely speaking; the contravariance of arrow constructors

makes things more complex). However, no lower or upper bounds are needed in the hypothesis set C, which

helps keep things simple.

For now, we won't formalize the de�nition of upper and lower bounds; instead, let us show how they help

solve the previous problem. The original goal is

C = f�

1

� �

2

.
; �

1

� �

2

.
g ` �

1

� �

2

.

This time, the (TRANS) rules have been replaced by the upper bound introduction rule. Hence the goal

becomes

C ` �

1

� �

2

. (�

1

� �

2

) t (�

1

� �

2

)

We give ourselves a set of rules to compute upper and lower bounds. In particular, they are distributive

with respect to product, hence this goal can be rewritten as

C ` �

1

� �

2

. (�

1

t �

1

) � (�

2

t �

2

)

Now, the usual (DOWN) rule breaks this into two sub-goals:

C ` �

1

. �

1

t �

1

C ` �

2

. �

2

t �

2

both of which are accepted if we introduce � . � t � as an axiom.

This idea also lifts the �rst limitation discovered above: when asked whether

C = f� . Int; � . Boolg ` � . �

we turn this goal into

C ` Int u Bool . �

Since Int and Bool are incompatible atomic types, the lower bound evaluates to

C ` ? . �

which is a tautology. Hence the assertion is accepted.

There isn't room here to formalize this concept further, but the formalization exists and we have proven

an extended algorithm to be sound with respect to entailment.

4.4 Choosing the right substitutions

Assuming that we are able to decide whether it is valid to apply a certain substitution � to a type, it remains

to choose � itself. This can be a di�cult problem; if we build substitutions using terms which exist in the

coercion set, we obtain a �nite number of substitutions, but it is huge nonetheless.

9

4.4.1 Multi-point substitutions are necessary

A seemingly reasonable restriction would be to only try one-point substitutions, i.e. substitutions of the

form [
=�] where � is a variable and
 is a term occurring in the coercion set. However, we �nd that this is

too restrictive in some cases: it is sometimes necessary to substitute several variables at once. For instance,

suppose we have inferred type

 j f
 = [Nil j Cons of � �
]; Int . �g

for a certain expression e. This type says that e evaluates to a list of �'s, for any � which is a supertype of

Int. It would be simpler, and equivalent, to just say that we have a list of integers; hence, we would like to

apply substitution [Int=�]. The substitution rule requires us to prove that

f
 = [Nil j Cons of � �
]; Int . �g `
 = [Nil j Cons of Int �
]

We �nd that

f
 = [Nil j Cons of � �
]; Int . �g ` [Nil j Cons of Int �
] .

holds, thanks to the hypothesis Int . �. However, the other inclusion:

f
 = [Nil j Cons of � �
]; Int . �g `
 . [Nil j Cons of Int �
]

doesn't.

This situation is easy to understand: variable
, together with the equation
 = [Nil j Cons of � �
],

is a mute variable, i.e. it has been introduced only to express a �xpoint and would not be necessary if the

type language o�ered �-binders. Indeed, if �-binders were available, the type of e would read

�
:[Nil j Cons of � �
] j fInt . �g

Substitution [Int=�] would turn it into

�
:[Nil j Cons of Int �
]

In the latter type,
 represents a di�erent �xpoint. This seems to indicate that in the language without

�-binders, the substitution should also have an e�ect on
.

Consider again the original type inferred for e:

 j f
 = [Nil j Cons of � �
]; Int . �g

Let us introduce a fresh type variable

0

, together with the following equation (an equation stands for two

symmetrical inclusions):

0

= [Nil j Cons of Int �

0

]

Adding this equation to the inferred set of constraints yields an equivalent type, because the added equation

is consistent and disconnected from the other constraints (see section 3). Now, instead of substitution

[Int=�], let us try [Int=�;

0

=
]. This time, according to the substitution rule, all we have to show is:

f
 = [Nil j Cons of � �
];

0

= [Nil j Cons of Int �

0

]; Int . �g `

0

.

which our algorithm (see section 4.3.2) is able to show using hypothesis Int . � and the (REC) rule.

We have now shown that the original type is equivalent to type

0

j f

0

= [Nil j Cons of Int �

0

]

as expected. However, a substitution a�ecting two variables at once was needed. Our implementation of the

typechecker has a heuristic to try detecting \mute variables" like
 and build multi-variable substitutions

accordingly.

10

4.4.2 Turning coercions into equations

Let us write a list length function which computes the length of a list:

rec list_length in function

Nil -> 0

| Cons(_, rest) -> plus 1 (list_length rest)

;;

Running it through a typechecker might produce this type:

[Nil j Cons of � �
]! Int j f
 . [Nil j Cons of � �
]g

Obviously, this type means that the function accepts a list of elements of type � (� is implicitly universally

quanti�ed) and returns an integer. It seems natural to raise the following issue: why is
 constrained by

a (one-way) coercion instead of a full equation? An equation would help us better understand
's nature

as a �xpoint; also, if this coercion can be replaced with an equation, then it means that the list length

function has the same type in our system as in ML.

Indeed, we are able to show that using a coercion or an equation here is indi�erent. First, we introduce a

fresh variable

0

together with the equation

0

= [Nil j Cons of � �

0

]

Adding this constraint to the coercion set yields an equivalent type, because it is consistent and disconnected

(see section 3). Now, we can attempt to apply substitution [

0

=
]. The substitution rule requires us to show

C ` [Nil j Cons of � �

0

]! Int . [Nil j Cons of � �
]! Int

where C = f
 . [Nil j Cons of � �
];

0

= [Nil j Cons of � �

0

]g. Since

0

and
 appear in contravariant

position here, this is equivalent to

C `
 .

0

This assertion can easily be shown to be true (actually, it is a particular case of the non-trivial entailment

example mentioned in section 4.2). Hence, the substitution is valid, and the list length function also has

type

[Nil j Cons of � �

0

]! Int j f

0

= [Nil j Cons of � �

0

]g

which (using the equation) we can also write as

0

! Int j f

0

= [Nil j Cons of � �

0

]g

Neglecting the fact that
 has been renamed to

0

, we have shown that a coercion or an equation have the

same meaning.

Replacing coercions with equations can be important not only for readability, but also because it might

allow further simpli�cations: substitutions which were previously invalid can become valid, since there is

one more hypothesis in the constraint set. Therefore, we deem it useful in practice, and have implemented

a heuristic to introduce equations in the same manner as above.

5 An example: the map function

We de�ne map as follows:

rec map in function f -> function

Nil -> Nil

| Cons(element, rest) -> Cons(f element, map f rest)

;;

The syntax used here is that of our prototype implementation of the typechecker.

11

5.1 Typechecking

5.1.1 A quick sketch of the typing process

The typechecker �rst encounters the rec map in construct and introduces a fresh type variable � for map.

The inference rule for recursive constructs states that a constraint will be added on � after the body of the

construct has been typed; see later on.

Then, it sees the �-binder for f and introduces a fresh variable � for f.

It then starts building a type for the next function. This function uses pattern matching. The typechecker

processes each pattern; as output, it produces the type of the pattern and the environment which should be

used to type the result expression.

For the �rst pattern, the pattern type is [Nil] and the result environment is [map : �; f : �]. For the

second pattern, the type is [Cons of
 � �], where
 and � are fresh variables, and the result environment is

[map : �; f : �; element :
; rest : �].

Then the algorithm computes a type for the result expressions. For the �rst one, it is simply [Nil]. For

the second one, things are slightly more complex; each function application introduces a new type variable

as well as a new type constraint. Subexpression (f element) has type " and the constraint � .
 ! " is

added. Subexpression (map f) has type ' where � . � ! '; and subexpression (map f rest) has type

where ' . � ! . Finally the result type for the whole line is [Cons of " �].

The rule for functions with pattern matching can now compute the type of the innermost function: [Nil j

Cons of
 ��]! �, where � is a fresh type variable, together with the constraints [Nil].� and [Cons of "�

] . �.

Finally, the recursive constraint on map mentioned above is added; it reads � ! [Nil j Cons of
 � �] !

� . �.

5.1.2 The unsimpli�ed type

To sum things up, the typechecker outputs the following type for the whole expression:

� ! [Nil j Cons of
 � �]! �

together with the constraint set

8

>

>

>

>

>

>

<

>

>

>

>

>

>

:

� .
 ! "

� . � ! '

' . � !

[Nil] . �

[Cons of " �] . �

� ! [Nil j Cons of
 � �]! � . �

Also, for the sake of brevity, we have yet omitted to mention that after each step, the typechecker computes

the closure of the constraint set (by transitivity and structural decomposition) and checks its consistency.

Let us compute the closure of the above constraint set.

Transitivity on � gives

� ! [Nil j Cons of
 � �]! � . � ! '

which a structural propagation rule breaks into

[Nil j Cons of
 � �]! � . '

and the trivial constraint � . �, which is dropped.

Then, transitivity on ' yields

[Nil j Cons of
 � �]! � . � !

which is in turn broken into

� .

and

� . [Nil j Cons of
 � �]

12

The closure operation is now complete. All constraints are consistent so the term is found to be well-typed.

Without any simpli�cations, the type of map is found to be:

� ! [Nil j Cons of
 � �]! �

where

8

>

>

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

>

>

:

� .
 ! "

� . � ! '

' . � !

[Nil] . �

[Cons of " �] . �

� ! [Nil j Cons of
 � �]! � . �

[Nil j Cons of
 � �]! � . '

� .

� . [Nil j Cons of
 � �]

This type is obviously much too complex to be readily understood by a human being. Yet it is the type of

a simple, well-known primitive function. Hence it is necessary to simplify it by showing that it is equivalent

to a smaller type. Actually we will show that this type is, in a certain sense, equivalent to the usual ML

type for map.

5.2 Simplifying the inferred type

Only the substitutions and their results are shown here. Veri�cations are left to the reader. Recall that the

substitution rule reads

A ` e : � j C C ` �(C) C ` �(�) . �

A ` e : �(� j C)

The algorithm described in section 4.3.2 is powerful enough to verify that the substitutions applied below

are valid. Hence, the full power of ` is not needed in the case of map. However, the (REC) rule is central to

many proofs; therefore, the de�nition of entailment used in [4] would not su�ce to e�ect these reductions.

First, apply [� ! =']. The coercion set becomes

8

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

:

� .
 ! "

� . � ! � !

[Nil] . �

[Cons of " �] . �

� ! [Nil j Cons of
 � �]! � . �

� .

� . [Nil j Cons of
 � �]

Next, apply [� ! � ! =�]. We obtain

8

>

>

>

>

<

>

>

>

>

:

� .
 ! "

[Nil] . �

[Cons of " �] . �

� .

� . [Nil j Cons of
 � �]

Applying [
 ! "=�] then yields type:

(
 ! ")! [Nil j Cons of
 � �]! �

where

8

>

>

<

>

>

:

[Nil] . �

[Cons of " �] . �

� .

� . [Nil j Cons of
 � �]

Using [�=], we reduce the coercion set to

13

8

<

:

[Nil] . �

[Cons of " � �] . �

� . [Nil j Cons of
 � �]

Now, as explained in section 4.4.2, we turn the coercion concerning � into an equation. This is done by

introducing a fresh variable, �

0

, together with the equation

�

0

= [Nil j Cons of
 � �

0

]

Now, it is possible to apply substitution [�

0

=�]. Hence the type becomes

(
 ! ")! [Nil j Cons of
 � �

0

]! �

where

8

<

:

[Nil] . �

[Cons of " � �] . �

�

0

= [Nil j Cons of
 � �

0

]

Note that the body of the type can now be reduced to (
 ! ")! �

0

! �.

In the same way, we can introduce a fresh variable �

0

together with the equation

�

0

= [Nil j Cons of " � �

0

]

and apply substitution [�

0

=�]. This yields

(
 ! ")! �

0

! �

0

where

�

�

0

= [Nil j Cons of " � �

0

]

�

0

= [Nil j Cons of
 � �

0

]

This is, in a sense, equivalent to the usual ML type for map. Indeed, the two equations above can be read

as meaning �

0

=
 list and �

0

= " list. The type itself then reads

(
 ! ")!
 list! " list

One must not forget, however, that the type system will generate other inclusion constraints when map is

applied. As a result, (map f) can be fed a heterogeneous list, provided that the types of its elements are

subtypes of f's argument type. Even though map's type reads the same as its ML equivalent, it has more

intrinsic power.

6 A more elaborate example: quicksort

Here is the code for a more complex function, an implementation of the QuickSort algorithm. It is written

in a slightly awkward way to circumvent some limitations of our implementation: functions accept only one

argument, and let constructs don't incorporate pattern matching.

let concat = rec concat in function

Nil ->

(function list2 -> list2)

| Cons(one, rest) ->

(function list2 -> Cons(one, concat rest list2))

in let split = rec split in

function compare -> function pivot -> function

Nil ->

(Nil, Nil)

| Cons(one, rest) ->

(function (smaller, greater) -> if compare one pivot

then (Cons(one, smaller), greater)

14

else (smaller, Cons(one, greater)))

(split compare pivot rest)

in let quicksort = rec quicksort in

function compare -> function

Nil ->

Nil

| Cons(pivot, list) ->

(function (smaller, greater) ->

concat (quicksort compare smaller)

(Cons(pivot, quicksort compare greater)))

(split compare pivot list)

in quicksort

;;

With no simpli�cations at all, the inferred type contains 300 coercions, totalling 100 type variables. This

number might seem huge, as there aren't 300 function applications in the above code; it is explained by

the fact that let constructs duplicate coercions. If we remove disconnected constraints (but perform no

substitutions), 60 coercions, totalling 20 variables, are left. Needless to say, this complexity makes the

inferred type unreadable.

Our implementation of the typechecker is somewhat behind schedule and cannot yet simplify this type

completely. However, the theoretical results described in this paper are su�cient to reduce the type auto-

matically.

We �nished the job by hand and obtained the following type for quicksort:

(�! � ! Bool)! [Nil j Cons of � �
]! �

where

8

<

:

� = [Nil j Cons of � � �]

 = [Nil j Cons of � �
]

� . �

Note that the �rst element of the argument list has type �, whereas the remaining ones have type �.

This is bewildering at �rst; it seems that a list can only be sorted if all of its elements have the same type.

However, a closer look reveals that this type is correct, and slightly more general than the usual ML type. If

one looks at the code above, one will notice that it always uses the �rst element of the list as pivot, and the

pivot is always passed as second argument to the comparison function. This allows for a small generalization

of the type. For instance, let's assume for a second that coercion Int.Float is valid in our system. Suppose

our comparison function has type Int! Float! Bool, that is, it knows how to compare an integer with a

oating point number (but not two
oating point numbers). Then we are still able to sort a list whose �rst

element only is real, for instance [1:3; 2; 4].

This is of no practical interest, of course, but it was amusing to see that the inferred type was, unexpectedly,

more general than the usual ML type. If we restrict the inferred type by applying substitution [�=�;
=�],

we obtain the ML type as a special case.

7 Conclusion

We have evidenced that the constraint-based type inference system described in [4] cannot be used in practice

without performing type simpli�cation: large coercion sets need to be reduced to smaller, equivalent ones.

We give two main methods to simplify coercion sets: the �rst one consists in eliminating disconnected

constraints and is well understood. The second one consists in applying substitutions to lower the number

of type variables. We have given a rule to check the validity of a substitution which we believe to be very

powerful. This rule relies on an entailment relation (`) between coercion sets; deciding this relation { if it

is at all decidable { seems to be a di�cult problem. At present we have devised a powerful algorithm and

15

proven it to be sound with respect to entailment. The issue of completeness is still open at the time of this

writing.

If we are able to decide relation `, then we hope to be able to simplify inferred types completely, that

is, to reach a point where the remaining coercions are necessary to express the subtyping properties of the

program. Obtaining an e�cient implementation also seems within reach. Attaining these goals would show

that type inference using inclusion constraints is indeed practical.

References

[1] Alexander Aiken and Edward L. Wimmers. Type inclusion constraints and type inference. In Conference

on Functional Programming Languages and Computer Architecture, pages 31{41. ACM press, 1993.

[2] Roberto M. Amadio and Luca Cardelli. Subtyping recursive types. In Proceedings of the Eighteenth

ACM Symposium on Principles of Programming Languages, pages 104{118, Orlando, FL, January 1991.

Also available as DEC Systems Research Center Research Report number 62, August 1990.

[3] Luca Cardelli. A semantics of multiple inheritance. In Semantics of Data Types, volume 173 of Lecture

Notes in Computer Science, pages 51{68. Springer Verlag, 1984. Also in Information and Computation,

1988.

[4] J. Eifrig, S. Smith, and V. Trifonov. Type inference for recursively constrained types and its appli-

cation to OOP. In Mathematical Foundations of Programming Semantics, New Orleans, volume 1 of

Electronic Notes in Theoretical Computer Science. Elsevier, 1995. To appear. Currently available as

ftp://ftp.cs.jhu.edu/pub/scott/ooinfer.ps.Z.

[5] You-Chin Fuh and Prateek Mishra. Type inference with subtypes. In ESOP '88, volume 300 of Lecture

Notes in Computer Science, pages 94{114. Springer Verlag, 1988.

[6] You-Chin Fuh and Prateek Mishra. Polymorphic subtype inference: Closing the theory-practice gap. In

TAPSOFT'89, 1989.

[7] John C. Mitchell. Coercion and type inference. In Eleventh Annual Symposium on Principles Of Pro-

gramming Languages, 1984.

[8] Jens Palsberg. E�cient type inference of object types. In Ninth Annual IEEE Symposium on Logic in

Computer Science, pages 186{195, Paris, France, July 1994. IEEE Computer Society Press. To appear

in Information and Computation.

16

