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Abstract

This paper shows how to systematically extend an arbitrary
type system with dependency information, and how sound-
ness and non-interference proofs for the new system may
rely upon, rather than duplicate, the soundness proof of the
original system. This allows enriching virtually any of the
type systems known today with information flow analysis,
while requiring only a minimal proof effort.

Our approach is based on an untyped operational seman-
tics for a labelled calculus akin to core ML. Thus, it is sim-
ple, and should be applicable to other computing paradigms,
such as object or process calculi.

The paper also discusses access control, and shows it
may be viewed as entirely independent of information flow
control. Letting the two mechanisms coexist, without inter-
acting, yields a simple and expressive type system, which
allows, in particular, “selective” declassification.

1 Introduction

Today, considerable amounts of military, commercial, or per-
sonal data are processed and stored in computer systems.
Thus, valuable data must be protected against deliberate
or accidental release or corruption, which may be caused
not only by individuals, but also by programs. Access con-
trol mechanisms provide some protection, but require the
programs to which access is granted to be unconditionally
trusted. Allowing inspection or update of the data by un-
trusted programs requires analyzing their code, to ensure
that it meets some security policy. This process is called
information flow analysis.

The need for such a form of protection was identified
very early [13]. Following military practice, several authors
suggested assigning a security level to every program vari-
able, and requiring that information be allowed to flow only
from lower level variables to higher ones. The techniques
proposed to enforce this restriction involved security checks
at run-time [8], at compile-time [7], or as part of a man-
ual proof process [4]. Security levels offer a simple way of
guaranteeing non-interference — a property which allows de-
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scribing many security policies, including (combinations of)
secrecy and integrity requirements [11].

Non-interference states the absence of dependency be-
tween (part of) a program’s inputs and (part of) its outputs.
Thus, information flow analysis is nothing but a dependency
analysis. This fact was pointed out by Abadi et al. [1], who
described a general-purpose dependency analysis in terms of
a type system for an extended A-calculus.

In our eyes, expressing dependency properties in terms
of types is a highly commendable approach. Indeed, it has
no run-time cost, and offers a correctness guarantee prior to
program execution. Types are usually simple, predictable,
and may serve as a specification language. Lastly, this al-
lows automating the construction of correctness proofs, pro-
vided type inference is available!. In fact, later versions
of Denning’s compile-time certification system [6] bear a
strong resemblance with today’s polymorphic, constraint-
based type systems. Yet, to the best of our knowledge, the
first type-based information flow analysis is due to Pals-
berg and Orbak, who developed a typed A-calculus with in-
tegrity annotations [18, 17]. This work was, unfortunately,
not supported by a non-interference proof. It was followed
by several others, concerned with preserving secrecy in a
first-order imperative language [27], a higher-order func-
tional language [12, 1], or in Java [14].

Although these works offer a wide variety of techniques
and ideas, none of them provides polymorphism and type in-
ference — features routinely found in modern typed program-
ming languages — together with a non-interference proof. For
instance, Myers [14] offers a very powerful system, but is un-
able to prove its correctness, due to the sheer number of its
features. Heintze, Riecke, Abadi and Banerjee [12, 1] only
propose simply-typed A-calculi. One may conjecture that
their non-interference proofs, based on logical relations and
(in the later paper) on a categorical semantics of A-calculus,
cannot easily deal with recursive or polymorphic types. Vol-
pano and Smith’s type inference algorithm [27] infers prin-
cipal type schemes, but does not use them to its own advan-
tage. Rather, it textually expands “let” definitions, which
takes exponential time. The reason for this weakness may
be the effort involved in duplicating a correctness proof for
a truly polymorphic, constraint-based type system.

This paper describes a systematic way of extending an
existing type system with information flow control. Given
an arbitrary type system for core ML, we build a related
system, whose types carry security annotations, and whose
correctness, including non-interference, rests upon the origi-
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nal’s. Thus, we avoid proof duplication, and obtain a formal
non-interference result at a very small cost.

Varying the original system yields a whole family of prov-
ably correct, information flow-aware type systems, showing
that information flow analysis may be readily combined with
recursive types, polymorphism, type inference, or other ad-
vanced type-theoretic features. Our proofs rely on an un-
typed operational semantics. This approach has several
advantages. It requires no domain- or category-theoretic
knowledge. It does not make any assumptions about the
form of types, allowing any type system to be used as a
starting point. Furthermore, it should be applicable to other
languages, such as A-calculi with side effects, object calculi,
or process calculi, which already enjoy rich type systems
(e.g. [9]), yet may not have a denotational semantics.

We conclude with a comparison of information flow con-
trol and access control, and argue that these mechanisms
may usefully coexist, while remaining entirely independent
at a theoretical level. On the whole, we believe this paper
gives rise to the most powerful type systems equipped with
static information flow and access control to date, with min-
imal theoretical overhead. We hope it will serve as a useful
practical guide for programming language implementors.

2 Overview

It seems intuitively obvious that the simplest way of dynam-
ically tracking information flow throughout a computation
is to mark its inputs with labels, and to require every opera-
tion to copy the labels carried by its arguments to its result.
Provided labels are properly copied, none can be dropped
along the way; so, the final result must carry the labels of
all inputs which have effectively been used. Reversing this
statement, we see that the final result cannot depend on any
input whose label it does not carry. This route is taken by
Abadi, Lampson and Lévy [2], who develop a labelled A-
calculus in order to dynamically analyze dependencies. It
exhibits two differences with ordinary A-calculus. First, ex-
pressions may carry a label; second, a new reduction rule
copies labels, forcing the result of every function applica-
tion to retain the label attached to the function. We review
this calculus in section 3, and prove that “labels cannot be
dropped” by stating a stabulity theorem.

Abadi, Lampson and Lévy’s labelled A-calculus, ex-
tended with a “let” construct, is our starting point. However,
we wish to analyze dependencies statically, rather than dy-
namically; in fact, we plan to do so by building a type system
for the labelled calculus. To this end, it seems natural to
pick some existing type system for core ML, and enrich it
with information about labels. However, if we modify an ex-
isting system, then we must also modify its correctness proof
— which essentially means duplicating it. (This approach is
followed in all papers to date.) Instead, we wish to build
on the system’s correctness theorem, regardless of its proof.
Thus, we cannot afford to modify the existing system; in-
stead, we must use it as a building block — a black boz — in
the definition of the new system.

However, neither labelled expressions, nor the extra re-
duction rule are known to a type system for core ML. How
to “explain” these features to it? Our answer is to devise
a translation scheme. Using it, we turn a program written
in the labelled calculus into a core ML program, which we
can then submit to a traditional type system. Because our
translation scheme is computationally meaningful, the type

thus produced makes sense: it describes the behavior of the
original program with respect to data and to labels.

The encoding is extremely simple. It maps every source
expression to a pair, whose first component represents the
expression’s computational content, and whose second com-
ponent contains (an approximation of) its label. Of course,
the target calculus must have pairs, as well as a family of
constants which represent labels. We define such a calculus
in section 4. We then describe the translation scheme, and
give a fundamental simulation lemma, in section 5.

In section 6, we assume given a type system for the target
calculus. We define a small number of requirements about
it, most notably a syntactic type soundness theorem. Then,
we impose this type system on the source calculus, through
our translation. We show that the system thus obtained is
also sound, and enjoys a non-interference property.

In section 7, we note that our translation scheme is a bit
naive, and may cause an exponential increase in the size of
programs. To remedy this, we define a variant of it, which
only has linear overhead, and show that it is equivalent, as
far as typing is concerned.

In section 8, we illustrate our theoretical construction
with a concrete example. We pick an existing type inference
system for core ML [20], show that it meets our require-
ments, and give a concrete description of the corresponding
information flow-aware system. We illustrate its power by
running it on a small, but typical, program.

Section 9 discusses access control, and argues that it is in-
dependent of information flow control. The two mechanisms
may of course coexist; we show that this allows selective de-
classification & la Myers and Liskov [15].

Section 10 discusses our contribution and concludes.

3 Source calculus

3.1 Presentation

Our source calculus is exactly Abadi, Lampson and Lévy’s
labelled A-calculus [2], extended with a “let” construct in the
style of ML.

source terms

| k integer constant (k € N)
| = variable (z € V)
| Az.e abstraction (z € V)
| (ee application
| letz=eine local definition (z € V)
| L:e labelled term (I € £)

The set V of program variables is assumed to be denumer-
able. No assumptions are made, at this point, about the set
of labels L.

The operational semantics for the calculus follows. Rules
(8), (let) and (contest) are standard. In rule (contest), C
ranges over arbitrary contexts: we do not yet choose a par-
ticular evaluation strategy. Rule (lift) allows moving labels
outwards as little as possible to permit 3-reduction. In other
words, (lift) moves the label of a function to its result, so
as to record the fact that it has been used in producing it,
and, consequently, that the result depends on it.

(/\m.e}) ez — eilex/z] (B)

letx =e;ines — ezfer/a] (let)
(l : 61) es — [ (61 62) ) (l’L )

Clei] — Clez] ifex > e (context)



From a practical point of view, labels may be inserted into
the code as a way of supplying security information. Spe-
cific labels may be used, for instance, to indicate that the
result of certain expressions must be kept secret (e.g. if it
is deemed to contain confidential information), or must not
be trusted (e.g. if it was read from a public input channel).
Notice, however, that no fixed meaning is built into labels.
Labels merely track dependencies; their “meaning” only ex-
ists in the user’s mind. After we define a type system for
this calculus, the user will be able to add static typing asser-
tions, to programs, thereby defining a security policy, and
giving “meaning” to labels. Because the policy is statically
enforced, the semantics does not have “security violations”.

Example To illustrate every step taken throughout the pa-
per, we will use a very simple running example. Assuming
L and H are labels, let e = (L : (Azy.y)) (H: 27). Then,

e — L:((Azy.y) (1:27)) by (lift)
- L:(Ayy) by (8)

Rule (lift) moves the label L up one node. This exposes the
[B-redex, allowing the function Azy.y to receive its argument.
At the same time, this guarantees that the application’s re-
sult is tagged L, thus recording its dependency on the sub-
term L : (Azy.y). Notice how the sub-term H : 27, which is
unused, is dropped during S-reduction, label included.

3.2 A stability theorem

Thanks to the presence of explicit labels, this calculus enjoys
a simple, constructive stability theorem. Given a computa-
tion sequence e —* f, it guarantees that f does not depend
on any sub-term of e which carries a label not found in f.
More precisely, it states that the prefiz of e obtained by
“pruning” all such sub-terms is still able to produce f, in
spite of the missing information.

We begin with some standard definitions. A prefiz is an
expression which may have missing sub-expressions:

e prefixes

_ hole

A prefix e is a prefix of another prefix (or expression) ¢’ if e
matches €', except e may have more holes; we write e < ¢'.
For the purposes of reduction, we treat _ like a free variable.
Prefixes enjoy the following monotonicity property:

Lemma 3.1 Let e, €' be prefizes such that e < e'. If f is
an ezpression such that e —* f, then ¢/ —* f.

Given an arbitrary set of labels L C £, we define the
function |-]z, which maps any prefix e to a prefix of itself:

l:e]|c when | ¢ L
[l:el|c whenl € L

l: el

,_
x>~
|
-
I

z.le|r
lei]r le2]r)

let z = |e1]r in |e2]L
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>
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@
| —
=
1
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le1 e2|L
llet © = e1 in ez

Informally speaking, | -]z removes every sub-term which car-
ries a label not found in L.

We are now ready to state the stability theorem. We
supply its proof, not because of its interest, but rather be-
cause we wish to insist on its simplicity. It begins with the
following auxiliary lemma.

Lemma 3.2 If e — f may be derived by applying (B) or
(let), or by (lift)-ing a label | € L, then le|L — [ f]L.

Proof. Case (8). Then, e = ((Az.e1) e2) — eilex/z] =
fo So, [e]r = ((Az.ler]r) le2]r) — [er]cllea]r/a] =
leilez/z]]r = |f]z. Case (let) is similar.

Case (lift). Then, e = ((I : e1) e2) = 1 : (e1 e2) = f.
Because | € L, |e|r is ((I : ler]r) le2]z. By (lift), this
reduces to I : (le1]z |e2]r) = [flc. |

Theorem 3.1 (Stability) Assume e is a prefic and f is
an ezxpression. If e =* f and | f|o = f, then |e|L —* f.

Proof. By induction over the length of the derivation of
e —* f. In the base case, e equals f, and the result is imme-
diate. In the inductive case, we assume e — g —* f, where,
by induction hypothesis, |g|r —* f. Let C be a context
such that e = C[e'], g = C|g'], and €' — ¢', where ¢/ — ¢’
follows directly from (3), (let) or (lift). Define D = |C].
(Extend |-|L to contexts in the obvious way.) Now, either
lemma 3.2 is applicable to e’ — ¢’, or it isn’t.

If it is, then |’ |, — |¢']L holds. So, le]L = |C[€']|L =
Dlle'|1] = Dllf]u] = 1Clgl)s = loli. Recall that
lglz =~ f; the result follows.

If it isn’t, then ¢’ — ¢’ is an instance of a (lift) rule
involving a label [ ¢ L. So, g’ is of the form [ : g". Since
g=C[l:g"landl & L, |g|r equals D[_]. Thus, it is a prefix
of D[|e'|.] = [Cle']llr = le]r. Recall that |g|r =" f; by
lemma 3.1, this entails |e]z —* f. O

Example The program e = (L : (Azy.y)) (H : 27) produces
the result L : (Ay.y) = f. The only label that appears in
fis L, so |f]y = f. According to theorem 3.1, the prefix
le];} must reduce to f as well. Indeed, we find

lelpy = (L: (Azyy)) - ,
= L ((Ary.y) -) by (lift)
= L:(Ay.y) by (8)

By lemma 3.1, any expression which has |e](.} as a prefix
must reduce to f as well. For instance, (L : (Azy.y)) (H : 68)
does. Using labels, we have determined that the sub-term
27 does not contribute to the computation e —* f.

4 Target calculus

As explained in section 2, we now wish to translate our
source calculus into a more conventional, unlabelled calcu-
lus, so as to be able to use some off-the-shelf type system.
As our target calculus, we choose core ML, extended with
pairs and label constants.

e = target terms
k integer constant (k € N)
x variable (z € V)
Az.e abstraction (z € V)
(ee) application

letz =eine local definition (z € V)

(e, e) pair
fst first pair projection
snd second pair projection
l label constant (I € £)
@ label join



(k)L = &
(z)* = fstx
(Az.e)t = Az.(e)
(erex)t = fot ((er)" (e2))
(let z =e1inex)' = let o= (er) in (e2)
(T:e)t = (el
(k) = e
(]:1:[)2 = sndz
(Az.e)? = e
(ere2)® = (er)*@snd ((er)’ (e2))
(let z = e inez[)‘2 = letalr;:‘(]el[)in(]egl)2
(l:e)®> = 1Q(e)?

Figure 1: Translation

For clarity, double applications of @ will be written using
infix notation.

At this point, we assume the set of labels £ is an up-
per semi-lattice, whose least element, ordering relation, and
least upper bound operation are denoted €, < and Y, respec-
tively. For [ € £, | [ denotes the lower cone {m € L; m < l}.

The calculus is equipped with a standard operational
semantics, augmented with a new rule, (join), which states
that @ returns the least upper bound of its arguments.

(Az.e1)ea — eilea/x] B)

let x =e; ines — ezler/q] (let)
fst (e1,e2) — el (m1)

snd (e1,e2) — e (m2)
l@m — Iym (join)

Clei] — Cle2] ifer > ez (conteat)

In rule (contest), C again ranges over arbitrary contexts.

In the source calculus, an expression may carry zero, one
or more labels. However, our translation scheme (to be pre-
sented in section 5) associates exactly one label with every
expression. The least label € will also be used to represent
the absence of any label; the join operation, @, will be used
to compute a conservative approximation of two labels. In
other words, the source expressions e and € : e will be trans-
lated to equivalent target expressions; so will [ : m : e and
(I Y m) : e. This lack of precision will not be a problem.
In fact, even if the translation itself was not approximate,
the subsequent typing stage would certainly be: there is no
point, in practice, in keeping track of lists of labels.

Lastly, to allow formal reasoning about the fact that @
stands for an associative operation, with neutral element e,
we define an extended semantics, denoted —@, by adding
two extra rules to those above:

(61@62)@63 —a 61@(62@63)
eQe —a e

(assoc)
(neutral)

In particular, —+@ contains —.

5 Translation

A translation from the source calculus to the target calculus
is defined in figure 1. The translation function maps every

source expression e to a pair (e, whose first (resp. second)
component is denoted (e)! (resp. (e))?). The functions (),
(-)' and (-)? are defined using mutual induction.

A source expression e is mapped to a pair, whose first
component represents e’s “actual value” (i.e. its computa-
tional content), and whose second component represents e’s
label. For instance, the unlabeled integer k is translated to
(k,e) — we use the least label € to denote the absence of a
label. A-abstractions are handled similarly. A variable x is
translated to (fst x,snd z). Although it would be possible
to translate it as x, this is more homogeneous.

The translation of an application expression (e; e2)
makes the (lift)-ing process explicit. According to our con-
vention, (e ) is a pair of a function and a label. We extract
the former, namely (e )', and apply it to its argument as
a whole, namely (e2]). This returns — again — a pair, whose
first component — the computational content — we then keep
unchanged, and whose second component — the label — we
join with e;’s label, namely (e; )%. Thus, the label attached,
in the translation, with (e1 e2), includes (i.e. is greater than,
according to <) the one attached with e;. Joining labels
allows keeping track of a single label per expression, rather
than a list thereof. This is simpler, while still precise enough
for our purposes.

Because the expression (e1 )’ (e2) appears in (e; es)*
and in ey e2)?, the size of (e) is exponential in the size
of e. From a purely theoretical point of view, this is not a
problem. We favor this formulation for its simplicity: thanks
to it, stating and proving a simulation lemma is very easy.
In practice, however, efficiency demands a linear encoding.
We will define one, and prove that it is equivalent to this
one, as far as typing is concerned, in section 7. The reader
may wish to immediately have a look at its definition, given
in figure 2.

Expressions of the form let £ = e; ine> and [ : e are
translated in a straightforward way (again, inducing expo-
nential behavior). Notice how ([ : e)) has the same compu-
tational content as (e, but has a greater label, due to the
join operation [ @ -.

It is a matter of pure routine to check the following
lemma, whose proof we therefore omit.

Lemma 5.1 (Simulation) Ife — f, then (e) =& (f)-

Example The translation of H : 27 is (27,H@¢). The
translation of L : (Azy.y) is (Az.(Ay.(fst y,snd y),e),LQe).
Thus, the term e = (L : (Azy.y)) (1 : 27) is translated to
(fst a, (LQ@e€) @snd a), where a stands for

(Az.(Ay.(fst y,snd y),€)) (27,HQ€)

Through (B), (71), (m2), (assoc) and (neutral), (e)) reduces
to (Ay.(fst y,snd y), LQ¢€), which is exactly (L : (A\y.y)) =
(f), in accordance with lemma 5.1.

6 Typing
6.1 Fixing a strategy

So far, we have not committed to a particular evaluation
strategy in the source or target language. We must now
do so, mainly because it seems we cannot otherwise state a
meaningful progress theorem — one of the two fundamental
type soundness theorems [28]|. Let us settle on call-by-name
evaluation; we will discuss call-by-value when appropriate.



In the source language, let —csy be the reduction rela-
tion obtained by restricting rule (contest) to the following
subset of contexts. Furthermore, define values, a subset of
expressions, as follows.

C:=[1({Cell:C
vi=k|Aze|l:v

We proceed similarly with the target language:

C:=[|(Ce)|fstC|sndC|(QC)|(@lC)
vi=k|Ax.e|(ee)|fst|snd|l| Q@] (QI)

It is interesting to notice that the second fundamental
type soundness theorem, namely subject reduction, can be
stated independently of the reduction strategy: it suffices to
require that types be preserved along all reduction paths.
We will in fact do so in the following.

6.2 Assumptions

From here on, we assume the target calculus is equipped
with a type system. As explained in section 2, we view it
as a “black box”: that is, we make no assumptions about its
definition. Rather, we simply regard it as a relation between
closed target expressions and types, satisfying a small num-
ber of axioms. This frees us from caring about typing rules,
environments, constraints, universal quantification, or other
subtleties involved in the system’s inner workings. Thus, we
assume typing judgements are of the form e : t, where e is a
closed target expression, and ¢ belongs to some (unspecified)
set of types T.

We now present our assumptions about the type sys-
tem, in the form of 6 axioms. The first one states that any
(closed) sub-expression of a well-typed expression is well-
typed. This axiom is satisfied by all systems defined in terms
of structural typing rules.

Axiom 1 (Compositionality) Ife is a closed ezpression
such that Cle] : t, then e : u holds for some u € T .

Our next two axioms constitute a syntactic type sound-
ness hypothesis [28]. The subject reduction axiom refers
to —a, whereas — gy would be expected, since we have
chosen a call-by-name evaluation strategy. This strength-
ens it in two ways. First, replacing —csn with — requires
types to be preserved by all reductions, rather than only by
call-by-name reductions. Many common type systems, such
as Hindley/Milner’s, are unaware of the evaluation strat-
egy, and satisfy this stronger axiom. Although working with
the usual (weak) version of the axiom may be possible, this
choice simplifies our proofs. Second, replacing — with —ae
requires (assoc) and (neutral) to preserve types as well.

Axiom 2 (Subj. red.) Ife:t and e —a f, then f : t.

Axiom 3 (Progress) Ife : t, then either 3f e —cun f,
or e is a value.

The next axiom requires that every label [, which is already
a valid ezpression in the target calculus, be also a valid type
(possibly modulo some implicit embedding). It also states
that, if m is a valid type for [, where both [ and m are labels,
then [ must be below m in the semi-lattice L.

Clearly, one way of implementing these requirements is
to define a set of types 7 which syntactically contains £, to

make [ : [ a valid typing judgement for every I € £, and to
define a subtyping relationship whereby [ is a subtype of m
if and only if I < m holds. We illustrate this approach in
section 8. However, it is interesting to note that this axiom
does not demand subtyping. A system without subtyping,
but with a sufficient degree of polymorphism, may also be
used. For instance, if £ happens to be the power-set of a
set P (which represents, say, principals), then labels may be
typed using P-indexed rows [21]. A similar idea underlies
Objective ML [22], a typed object-oriented language which
does not rely on subtyping.

Axiom 4 (Labels) Every label is a type: L C T. Ifl,m €
L, then | : m implies | X m.

Our last two axioms concern integers and pairs. They are
far less important than axioms 1-4: their main use is to help
formulate the non-interference theorem in a nice way.

Axiom 5 (Integers) There is a type int € T. A value v
satisfies v : int if and only if it is an integer constant k € N.

Axiom 6 (Pairs) There is a partial function x : T> — T
such that (e, f) : t X u implies e : t A\ f : u. Conversely, if e
and f are well-typed, then (e, f) is well-typed.

Note that int and x may not directly correspond to the type
system’s own int and X type constructors. Indeed, what is
known as a type in this axiomatization may be known e.g.
as a type scheme in the system’s actual definition.

6.3 Typing the source calculus

We now define the type system of the source calculus as the
composition of the translation defined in section 5 with the
type system of the target calculus. That is, for any closed
source expression e, e : ¢ holds if and only if (e]) : ¢ holds.
We notice that if the chosen type system enjoys the existence
of principal types, or of a type inference algorithm, then so
does the newly defined system.

This abstract definition suffices to prove soundness and
non-interference theorems about the derived system. Of
course, if one is given the rules which define the target sys-
tem, then one may combine them with the definition of (-],
yielding a set of derived rules which allow direct type check-
ing/inference in the source calculus. We will illustrate this
in section 8.

The new system enjoys the following two soundness re-
sults. We omit the proof of theorem 6.2, which is straight-
forward, but slightly verbose.

Theorem 6.1 (Subj. red.) Ife:t ande — f, then f : t.

Proof. According to lemma 5.1, ¢ — f implies (e)) =g (f)-
Furthermore, by definition of the type system in the source
calculus, our hypothesis e : ¢ may be read as (e : ¢, and
our goal may be read as ( f)) : ¢. The result follows from the
fact that —@ preserves types (axiom 2). ]

Theorem 6.2 (Progress) Ife:t, then either f e —cpx
f, or e is a value.

Next, we prove a non-interference theorem, which states
that types in the new system do contain useful dependency
information. The interesting aspect of our proof is that it is
written in an entirely operational style: it essentially relies



on two properties of the labelled calculus: stability (theo-
rem 3.1) and subject reduction (theorem 6.1).

For simplicity, the theorem only concerns integer results.
A more general statement would be possible.

Theorem 6.3 (Non-interference) Ife: intxl ande —*
v, where v is a value, then |e]y —* v.

Proof. According to theorem 6.1, v : int x [ holds. This
may be read (v)) : int x [, which, according to axiom 6,
implies (v)' : int. So, according to axiom 5, (v)' cannot
be a A-abstraction. Considering v is a value, v must be of
the form Iy : Iy : ... : 1, : k, for some n > 0.

Thus, (v) is (k,l1 @ ... @Ql, @¢). From the fact that
this expression has type int x [, we may deduce, through
axiom 6, that [, @ ... @[, @e has type I. However, this
expression may be reduced, by repeated application of rule
(join), to 1 Y...Yl,. According to axioms 2 and 4, it follows
that I; Y ... Y[, <. In other words, every [; is an element
of L I. So, |v]y equals v, which, according to theorem 3.1,
implies |e];; =" v. m|

The non-interference theorem may be better known under
the following symmetric form:

Corollary 6.4 Assume e, f : int X [ and |le|y = |flu-
Then, either both e and f diverge, or both e and f converge
and produce the same value.

Proof. Assume e converges. Then, according to theorem 6.3
and lemma 3.1, f converges to the same value. By symme-
try, the converse also holds: if f converges, then e converges
to the same value. Furthermore, by theorems 6.1 and 6.2,
neither e nor f can go wrong. The result follows. a

Here, to converge means to be able to reach a value along
some reduction path. To diverge means not to converge and
not to go wrong. To go wrong means to get stuck along
some reduction path. By normalization?, these are the same
notions, regardless of whether — or —¢sy is being used.

Corollary 6.4 guarantees not only that e and f produce
the same value, but also that they behave similarly with re-
spect to termination. This is a strong non-interference state-
ment. With a call-by-value semantics, one would obtain a
slightly weaker result, whereby e and f would be guaran-
teed to yield the same value only if they terminate. Indeed,
if e »cpy v and f —csy w, where v and w are values, then,
by normalization, e —cex v and e —+oy w, whence, by corol-
lary 6.4, v = w. To obtain a strong non-interference result
in a call-by-value setting, one may modify the labelled calcu-
lus accordingly [2, section 3.7], and repeat our construction.
This yields, however, a significantly more restrictive type
system.

These non-interference results are stated in the source
calculus, which has non-standard semantics. However, la-
bels are not first-class entities, i.e. they cannot affect the
course of computations, as shown by [2, prop. 3]. Thus,
if all labels are removed before execution, i.e. if we evalu-
ate “stripped” terms within a standard A-calculus, then the
non-interference results still hold.

Lastly, it is important to prove that “enough” programs
are accepted by the new system, which may otherwise turn
out to be devoid of practical interest. Unfortunately, doing
so at an abstract level requires more axioms, which are diffi-
cult to state in an elegant way. For this reason, we will only
address this issue in the concrete setting of section 8.

2We haven’t proved a normalization theorem for the labelled A-
calculus, but this can be done using existing techniques.

K] = (ke
[«¢] = ({(fstz,snd x)
[Az.e] = (Az.[e],¢) .
[e1 e2] = letp (z,t) =[e1] in
letp (y,u) = z [e2] in
(y,tQu)
[let x =e; inex] = let z =[ei] in [[552]]
[l:e] = letp(z,t) =[e]in
(z,1Qt)

Figure 2: Linear translation

7 A more efficient translation

The translation scheme presented in section 5 behaves nicely
with respect to reduction: it enjoys a very simple simulation
lemma. However, because it duplicates sub-expressions, it
has exponential complexity. In this section, we present a
slightly different translation scheme, which only has linear
overhead, because it uses local variable definitions to share
sub-expressions where needed. We could have chosen to use
this one in the first place, but losing lemma 5.1 would have
made our proofs somewhat heavier.

The new encoding’s definition is shown in figure 2. The
auxiliary local variables x, t, y, v must be chosen so as to
avoid variable capture. We use letp (z,y) = e in e to
denote ((Ap.((Azy.e2) (fst p) (snd p))) e1) where p does not
appear free in es. It would also be possible to implement
“letp” in terms of “let”. Our choice emphasizes the fact that
no polymorphism is required: the point is to avoid duplicat-
ing e1, not to generalize its type.

To establish a relationship between [-] and (-)), we need
a few extra axioms concerning the target type system. Let
us use e :¢ t to denote Cle] : . This gives us a crude way of
denoting the “type” of a non-closed expression.

Axiom 7 If (fst e,snd e) :¢ ¢, then e :¢ t.

Axiom 8 If z and y appear free exactly once in f, and if
fler/z,ez/y] :c t, then letp (x,y) = (e1,e2) in f :¢ t.

Axiom 9 let x = ein (f1, f2) :¢ t holds if and only if
(let x =ein fi,let x = e in f2) :¢ t does.

Using these extra axioms, as well as axiom 2, it is easy to
prove that (-) and [-] give rise to the same derived type
system:

Theorem 7.1 [e] : t if and only if (e : ¢t.

Thus, if type checking (resp. type inference) has complexity
O(n*), where k > 1, in the original system, then it has the
same complexity in the derived system. Indeed, [-] may be
computed in linear time, and the size of its output remains
within a constant factor of that of its input.

8 A concrete case

In this section, we illustrate our approach with a concrete
example. We first pick an existing type system for the tar-
get calculus, and show that it satisfies the axioms given in
the previous section. Our construction thus gives rise to a
concrete information flow-aware type system for the source
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Figure 3: Subtyping on ground types

calculus, a direct description of which is given in the form of
a set of type inference rules. Lastly, to illustrate the system’s
power, we exercise it on a simple program fragment.

8.1 Typing the target calculus

Our target calculus is simply core ML with pairs, extended
with label constants and the primitive operation @Q. In prac-
tice, almost any type system for core ML will do, provided
it allows giving an appropriate type scheme to every [ € £
and to @. Thus, we have a very wide range of systems to
choose from, e.g. [10, 24, 26, 22, 3, 16]. We pick a subtyping-
constraint-based type system, previously studied by the first
author. By lack of space, we must describe it very succinctly.
More detailed accounts appear in [20, 19].

For simplicity, we distinguish identifiers bound by A, de-
noted z,y,... from those bound by “let”, denoted XY, ...
We expect each A-identifier to be bound at most once in
a given program. Furthermore, in every expression of the
form let X = e; in es, we require X to appear free within
es. Overcoming these restrictions is of course possible, but
requires more cumbersome typing rules.

The presentation of the system begins with a definition
of ground types. They are the reqular trees described by the
following co-inductive definition:

to=L|1|int |t xt|t—t| T

Ground types are equipped with a subtyping order, given in
figure 3. It is, again, defined co-inductively: a subtyping
assertion holds if and only if it has a finite or infinite deriva-
tion. Let us assume, from here on, that (£, <) is a lattice.
Then, ground types also form a lattice, within which £ is
embedded.

We then (inductively) define types and constraints:

tu=a,fB,...| L|l]int |t xt|t—o¢t|T
cu=t<t

Here, a, 3, ... range over a denumerable set of type variables.
A ground substitution ¢ is a map from type variables to
ground types. ¢ satisfies a constraint t; < t» if and only if
od(t1) < P(t2). ¢ satisfies a constraint set C' if and only if it
satisfies each of its elements.

A contezt A is a set of bindings of the form x : t. A type
scheme o is a triple of a constraint set, a context and a type,
written VC. A = ¢t. Intuitively speaking, all variables which
appear in o should be thought of as universally quantified,
hence the V notation. More formally, the denotation of a
type scheme is defined by

[VC. A = t] = MH{¢(A = t); ¢ satisfies C'}

« fresh

PhHz:{z:a)=>a

I'tie:VO. A=t
D Aze:VC. (A\z) = A(z) = ¢

ke :VC1. A1 =t I'kres :VC>. As = to
« fresh C=CiUCU{t: <tz > a}

Fl—lelegtvc.(AlﬂAg)ﬁa

IN(X)=¢ p fresh renaming of o
L' X : p(o)
I'Fiei:o1 F+[X'—)Ul]|—16220'2

IPhilet X =¢e;ines: oo

Figure 4: Type inference rules

where 17X represents the upper cone of a set X with respect
to ground subtyping. (This requires a straightforward ex-
tension of < to objects of the form A = t.) Given two type
schemes o1 and o2, we say the former is more general than
the latter, and we write o < o2, if and only if [o1] D [o2].

Figure 4 gives the type inference rules of the system.
Judgements are of the form I' k1 e : o, where I' is an envi-
ronment (i.e. a list of bindings of the form X : ), e is a
target expression, and o is a type scheme. As far as nota-
tion is concerned, (x : @) represents a context containing a
single entry. A \ z is the context obtained by removing z’s
binding (if any) from A. We shorten the notation VC. A = ¢
to VC.t, A = t, or simply ¢, if A, C, or both are empty.

For the sake of readability, we slightly abuse notation.
We let A(x) stand for the type associated with z in A, if
A contains a binding for x, and for T otherwise. We use
A; M Az to denote the point-wise intersection of A; and
As. That is, whenever x has a binding in A; or A,, its
binding in A; M As is Ai(x) M A2(z). Because the system
does not have intersection types, this expression must in fact
be understood as a fresh type variable, accompanied by an
appropriate conjunction of subtyping constraints.

Every type scheme is implicitly required to have a non-
empty denotation, i.e. a solvable set of constraints.

These rules only describe core ML. Type inference for the
full target language, as defined in section 4, is obtained by
adding the following (pseudo-)bindings to the initial typing
environment ['g:

k: int

fst: axT—oa

snd: T Xa—a«
l: 1 (lelL)
Q: Via<wla—-a—a

(w): a=B-oaxpf

(k eN)

Here, w stands for the greatest element of the lattice L.
The constraint @ < w guarantees that @ is only applied to
expressions which denote label constants.
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a, ¢ fresh

Phpz:(z:a®)=a¥

'toe:VC. A=t
Dhp Ave:VC.(A\ z) = (A(z) = t)°

Irkpoer :VC1. A1 =t Ihkpes: VO As = to
a, ¢ fresh
C=ClUCzU{t1 S(tg—>a“")“",<p§w}

'ty 6162ZVC.(A1 |_|A2) = a¥

I'tpe:VC.A=>t
a, ¢ fresh C'=CU{t<a?, l<¢p<w}

Thp(l:e):VC'. A= a¥

Figure 5: Derived type inference rules

8.2 Back to the source calculus

We are now ready to apply the results of section 6 in the
concrete setting considered here.

Theorem 8.1 Define types, in the sense of section 6, to be
type schemes, in the sense of this section. Define e : o to
hold if and only if 3o’ <% o ToFie:o’. Then, azioms 1-9
are satisfied.

A proof of subject reduction, in the case of core ML, appears
in [20]. Extending it to the language considered here, as well
as checking the other axioms, is straightforward, although
somewhat lengthy. We omit proofs.

Composing [-] with the type inference algorithm of the
target calculus yields a type inference algorithm for the
source calculus, enjoying all of the properties stated in sec-
tion 6. Let us now give a more direct description of this
algorithm. By systematically composing the definition of
the encoding with the rules of figure 4, and performing a
few constraint simplification steps, as allowed by the use of
<Y in theorem 8.1, we obtain a set of derived type inference
rules, shown in figure 5. The last two rules, which deal with
“let”-bound variables and “let” definitions, are unchanged, so
they are not shown. The product notation ¢ x v has been re-
placed with t“, so as to insist on the fact that we are dealing
with types carrying security annotations.

These rules seem quite intuitive. They resemble the rules
of figure 4, with the following differences. Values (integer
constants and A-abstractions) are annotated with € upon
creation. The security level of a function application ex-
pression is the join of the result level with the function level,
thus recording the fact that the function contributes to the
computation. The security level of a labelled expression [ : e
is the join of e’s level with [. Of course, it would have been
easy to come up with these rules directly. However, our
approach has several advantages over a manual approach.
First, it is systematic, leaving no doubt that these rules are
natural. Second, we obtain correctness proofs (almost) for
free, which is non-trivial, considering the system has poly-
morphism, subtyping, recursive types, and type inference.

Lastly, our approach is general and may be applied to many
other type systems.

As a last refinement, it would be possible to partition
types, a posteriori, into three sorts: plain types ¢, label types
u, and secure types, of the form ¢*. This would allow getting
rid of the constraint ¢ < w in the last two rules: ¢ would
then range over labels, making it redundant.

Comparing typability in the derived and in the original
system is now easy. Let strip denote the natural projection
from source to target language; in particular, strip(l : e) is
strip(e). Then,

Theorem 8.2 (Conservativity) The source expression e
is well-typed in the derived system if and only if the target
expression strip(e) is well-typed in the original system.

The proof relies on two simple remarks. First, any solution
of the constraints generated by the rules of figure 5 also
satisfies those inferred by the rules of figure 4. Conversely,
any solution of the latter may be extended to a solution of
the former, where every label variable ¢ is mapped to w.

This result shows that one may switch to the new type
system, and label any number of sub-expressions in a pro-
gram, without affecting its typability. A program may be-
come untypable only if a non-trivial security policy, ex-
pressed by inserting typing assertions, is adopted.

Example Let us use the rules of figure 5 to infer the type
of our running example. The type scheme inferred for
H : 27 clearly is int”. The one inferred for L : (Azy.y) is
(T = (¥ = a®))". Thus, the term e = (L : (\zy.y)) (& :
27) receives the type scheme (¥ — af)".

This type scheme states that evaluating e does not reveal
any information of level H. Thus, the type inference algo-
rithm statically finds that e does not leak the value 27, a
fact which we had previously dynamically obtained by eval-
uating e (see section 3). Furthermore, this type scheme is
polymorphic in « and in ¢, showing that e’s result — which
is L : Ay.y, the identity function labelled L — is able to accept
any argument, regardless of its content and of its security
level.

8.3 A realistic example

We conclude this section with a longer example. We as-
sume the source language is extended with operations on
Booleans, strings, pairs, variants and records. By lack of
space, we do not define typing rules for these constructs.
Provably correct rules can be obtained in (at least) two ways.
One is to explicitly extend the target language, the transla-
tion scheme, and our proofs. The other is to derive correct
typing rules for these constructs by considering their Church
encodings into the basic language.

Figure 6 shows a small example program. It is a full pro-
gram, which contains no type information, but does contain
a few security annotations, in the form of labelled expres-
sions.

The program first defines a classic predicate on lists, ez-
ists, which tells whether a given predicate is satisfied by at
least one element of a given list. Recursion is achieved via an
explicit fix-point combinator, fiz. It is well-typed, because
the system has recursive types. Thus, we are able to write
recursive programs, even though our formal development did
not explicitly deal with recursion.

To improve readability, we write ¢ instead of t° (resp. t*)
when ¢ occurs positively (resp. negatively) in a type scheme.



let fiz ff =
(funfz = fF(ff)z) (funfz = ()2

let exists = fiz (
fun ezists predicate list —
match list with
Nil —
false
| Cons (element, rest) —
if predicate element then
true
else
exists predicate rest

)

let users =
Cons({ login = "Pam";pw = Sys: "Tnuggets" },
Cons({ login = "Sam"; pw = Sys: "" },
Nil))

let queryl =
exists (fun r —
r.login = Priv:
) users

"Monica"

let query2 =
exists (fun r —
rpw = "0
) users

Figure 6: Example program

Then, the type scheme computed by the type inference al-
gorithm for ezists is

VC. (a” — boolw)d) — ¢ — bool?

where C' contains a single constraint:
. @ Pq¥
¢ <[Nil| Cons of (a¥ x {)"]

Intuitively, this recursive constraint requires { to represent a
list, whose elements have type a?, and whose security level
is ©. ewists’s first argument, a predicate, must accordingly
accept an argument of type a”. If the predicate has level
1, and if it returns a Boolean result of level ¢, then so will
ezists. Notice that ¢ are ¢ are a prior: unrelated: they will
become related only if exists is applied to a predicate which
leaks some information about its argument.

Three important points must be made here. First, this
type scheme is precise, and highly polymorphic. Thus, mul-
tiple applications of ezists, e.g. to lists with distinct secu-
rity levels, or to predicates with different behavior, will not
“pollute” each other. This is a requirement when writing li-
braries, since code duplication would otherwise be necessary.
Second, the code of ezists contains no security annotations,
and its type was inferred without help from the user. This
feature is also of utmost importance for backward compati-
bulity: it allows a large body of code, written without any
security requirements in mind, to be re-used in a program
where security matters. Third, this type scheme is indepen-
dent of the underlying security lattice. Even though it does
not mention any constant label [ € £, it does encode rel-
evant dependency information. In other words, the choice

of a particular security lattice is irrelevant when analyzing
generic code; it is required only when wishing to enforce a
particular security policy.

Let us come back to the program in figure 6. Its next step
is to define a list, called users, whose elements are records
containing name (login) and password (pw) strings. The in-
formation contained in pw fields, which is deemed somehow
important, is labelled Sys. Notice that labelling a piece of
data does not restrict access to it; it only forces any compu-
tations which make use of this data to receive a type which
reveals this dependency. In other words, our type system
does not forbid anything by default; it merely watches every-
thing. Security restrictions, when required, may be added
using additional type constraints, as we will see below.

The rest of the program counsists of two queries about the
users list, implemented using ezists. The first query checks
whether some user is called Monica. The programmer, per-
haps wishing not to disclose the fact that he is looking for
this particular person, has marked the string "Monica" with
the label Priv. The second query looks for a user with an
empty password string.

According to the type inference algorithm, the type of
queryl is boolT™™ . Thus, the query’s result reveals some
information about the string "Monica". Notice, however,
that it does not carry the label Sys: it does not leak anything
about the passwords contained in the list users. The type
of query2, on the other hand, is bool1%¥*, which tells that it
does contain information about the passwords.

If these information channels are deemed undesirable,
they can be easily eliminated by adding typing assertions
to the program. For instance, if Public is a label such that
neither Priv < Public nor Sys < Public hold, then writing

1Publ1.c —

let queryl : boo v
let query2 : boollvbhe

causes both definitions to become ill-typed, thus revealing
and forbidding the leaks. Thus, typing assertions may be
used to express, and statically enforce, a security policy.

9 Access control

Information flow analysis offers a way of proving an un-
trusted program correct with respect to a security policy.
However, it is a restrictive discipline, since it does not allow
declassification. For instance, a function which compares a
secret password string against a given input must return a
secret result, even though it usually yields far less than one
bit of information about the password. Thus, some useful
programs cannot be proved correct; for this reason, trust, in
the form of access control, must be re-introduced.

9.1 A calculus with access control

Let us briefly describe explicit access control. Assume given
a fixed set of principals P, equipped with an arbitrary binary
relation »=. The assertion p »= ¢ intuitively means that p acts
for g, i.e. q trusts p. As a result, g grants p the ability of
directly accessing any value to which ¢ has access. Assume
the calculus’ syntax includes the following productions:

terms
lock, locking (p € P)
unlock, unlocking (p € P)

e



Assume its semantics includes the following reduction rule:

unlock, (locky €) = € ifpi=q

Then, a value locked with ¢’s authority becomes unusable
until it is unlocked by some principal p which acts for g. Any
attempt to unlock a value by an unauthorized principal re-
sults in a failure. Of course, in practice, some compiler and
operating system support is required to ensure that unlock,
is only used in code which actually acts on behalf of principal
p. This usually requires the use of cryptographic authenti-
cation techniques.

It is also possible to design a calculus with implicit access
control, i.e. where every value is implicitly locked upon cre-
ation, and unlocked upon access, as in e.g. [12]. We discuss
both cases below.

9.2 Typing

Again, extending an existing type system with access control
features can be done abstractly, i.e. independently of the
system’s definition, using a translation-based approach. Let
us briefly sketch how.

Assume given a target calculus with pairs (-, -), plus, for
every principal p € P, a constant p and a primitive operation
actsfor,. Require (actsforp, v) to be well-typed only if v is
a constant ¢ € P such that p > ¢. To easily meet this
requirement, the target system’s implementor may wish to
assume (P, =) forms a lattice. Define a type system for the
source calculus by lifting the target system through a simple
encoding:

[lock,] = Az.{z,p)
[unlock,] = Az.
letp {z,q¢) =z in
actsfor, g¢;
T

Then, the derived type system enjoys subject reduction and
progress properties. In particular, access control is entirely
static: if a program is well-typed, then all of its access con-
trol checks must succeed. As a result, all checks can be
compiled away. In other words, the above encoding only
serves typing, not compilation, purposes.

9.3 Combining information flow and access control

Information flow and access control may coexist. Extend
the syntax and semantics of the source calculus presented in
section 3 with (explicit or implicit) access control features,
while preserving its stability property. Find a typed target
calculus equipped with principal constants p € P, label con-
stants [ € £, and suitable operations thereon. Then, lift the
target type system through an appropriate encoding.

If the source calculus has implicit access control, then a
simple encoding, where every expression e is mapped to a
triple (ec, ep, er), will do. The components of the triple re-
spectively represent e’s computational content, the principal
whose authority has been used to lock e, and e’s label. This
yields a system where every type carries two annotations, a
principal and a label.

If the source calculus has explicit access control opera-
tions, then a different encoding must be used. Map every ex-
pression e to a pair (-, e;), whose first component is {ec, ep),
if e is locked, and simply e. otherwise. This is ezactly the
encoding presented in section 5, extended to deal with lock,
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and unlock,. As before, it yields a system where every type
carries one (information flow) label. A value of computa-
tional type «, carrying a label ¢, will receive type a¥ if it is
unlocked, and (a 7 locked)? if it is locked at level 7. Here,
locked is the type constructor associated with pairs of the
form (-,-) in the target system.

In common programs, access control features should be
used only at a few key places. For this reason, making ac-
cess control explicit, rather than implicit, may be preferable.
Indeed, this approach yields types which are usually more
concise, and where access control restrictions are syntacti-
cally more apparent.

Marrying information flow analysis with access control is
not a new idea. Stoughton [25] and Heintze and Riecke [12]
notice that access control and information flow control serve
different purposes, and propose hybrid systems where both
mechanisms coexist.

However, these works fail, in our opinion, to make a cru-
cial point: the two mechanisms are entirely unrelated, and
should coexist without interacting. Indeed, access control
involves principals, trust and authentication, while informa-
tion flow control requires neither. Furthermore, describing
access control usually involves introducing some form of se-
curity violation in the language’s semantics, while informa-
tion flow control does not. Why? Access control implements
a fixed security policy, defined by (P, ); it is meaningless
in the absence of such a policy. Information flow control,
on the other hand, does make sense even when (£, <) is left
unspecified, as pointed out in section 8.3, because it is only
a dependency analysis. It does not, fundamentally, have
anything to do with security, which explains why it can be
formalized without a notion of security violation.

Why such emphasis on this point? Both Stoughton [25]
and Heintze and Riecke [12] define systems where access con-
trol and information flow interact, by identifying principals
with labels, i.e. setting P = £, and requiring every value
to carry an information flow label [ which is less restrictive
than its access control label p, i.e. | < p. Furthermore, [12]
defines an operational semantics where both kinds of labels
interact: the expression (protect;, v) uses the information
flow label ir to update not only v’s information flow label,
but also its access control label.

In these works, the alleged justification for requesting
I X pis as follows. p tells who may use the value directly,
while [ tells who may use it indirectly, i.e. have (possibly
partial) access to the information contained in it. Because
any principal who is granted direct access is thereby granted
indirect access at the same time, requiring ! < p may seem
natural. We deem it wrong, however, because these notions
are really orthogonal: while p indeed tells who may use the
value, [ tells which information it contains. Mixing the two
mechanisms yields a needlessly complex system. Separating
them makes the system more modular, conceptually sim-
pler, and potentially more expressive, since P and £ may be
distinct.

Myers and Liskov [15, 14] propose a “decentralized” label
model which is a subtle mixture of access control and infor-
mation flow control. The model also rests on a set of prin-
cipals (P, ). A label is a set of tagged policies, where the
tag carried by every policy is a principal, called its owner.
A policy is a set of principals, called readers. Labels form a
pre-order, whose underlying order is a lattice; it is used, as in
this paper, to perform information flow analysis. However,
Myers and Liskov also allow a number of “safe” declassifica-
tion operations: a principal p may choose to relaz the label



carried by a given value, by arbitrarily modifying any policy
owned by a principal ¢ which it acts for. Of course, p is not
allowed to affect the policies owned by principals whose trust
it has not received. So, labels do not only carry dependency
information; they also contain access control information,
since the use of declassification is restricted.

We think Myers and Liskov’s model has significant prac-
tical interest. However, we believe that comparable expres-
sive power® can be achieved in a theoretically simpler sys-
tem. Indeed, imagine orthogonal access control and infor-
mation flow control, as suggested above. Then, one may
selectively allow declassification by providing, in the initial
typing environment, a number of declassification operations,
locked at appropriate levels of authority. The sets P and £
may, in general, be chosen independently; only the types of
the declassification operations provide a connection between
the two. This presentation of the system is modular and ab-
stract. By varying P, £, and the level of authority required
by each declassification operation, one obtains a wide range
of concrete systems, some of which are in fact very close to
Myers and Liskov’s, and have comparable expressiveness.

We prefer to present declassification as selective, rather
than safe, since its use breaks the non-interference property
— at least partially. Although it is only a matter of terminol-
ogy, speaking of “safe” declassification is somewhat mislead-
ing: this sort of declassification is only safe for principals
whose authority is not granted to the operation.

Let us illustrate our proposal with a very simple example,
inspired from the ACCAT Guard [6]. Assume L is the lattice
product of the 2-point lattice SECRET = {L < H} with some
unspecified lattice M. Thus, in a calculus with (say) implicit
access control, types will be of the form o™ ) where 7, A
and p range over P, SECRET and M, respectively. Assume
the initial typing environment offers the binding

SWO, €

declass : Varp.(a™ 1) — o™ 1)

where swo € P is a fixed principal. Then, information
may freely flow from level (L,m) to level (H,m), for any
m € M, since the former is a sub-type of the latter. How-
ever, the only way of allowing flows in the reverse direction
is to use declass, which requires approval by the principal
SWO, since it must be unlocked when invoked. This allows
modeling a “guard”, i.e. a gateway between a classified and
a non-classified system, where flows which appear to vio-
late security must be approved by a trusted Security Watch
Officer. Furthermore, notice that even the principal swo
may not perform arbitrary declassifications: it is unable to
modify the second component of labels. Thus, a partial non-
interference result holds: a result whose information label is
(-,m) cannot depend on any input whose label is (-,n),
where n € | m. For instance, if Nuclear and Strategic are
incomparable elements of M, then a computation whose re-
sult type is (L, Nuclear) cannot leak any information of type
(L, Strategic), even though it may reveal some information
of level (H, Nuclear). This is exactly what Myers and Liskov
term “safe” declassification.

10 Discussion

We have shown how to systematically extend an arbitrary
type system with dependency information, and how sound-
ness and non-interference proofs for the new system may

Bassuming (P, =) is fixed, i.e. may not vary at runtime.
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rely upon, rather than duplicate, the soundness proof of the
original system. This allows enriching virtually any of the
type systems known today with information flow analysis,
while requiring only a minimal proof effort.

We recently became aware of Ross and Sagiv’s reduction
of a flow dependence problem to a may-alias problem [23].
Although the programming language (first-order, imperative
vs. higher-order, functional) and the target system (pointer
analysis vs. type inference) considered are rather different
from ours, both papers rely on a similar encoding, where
every value is translated to a pair of a value and a tag. We
take this as evidence of the strength of this reductionistic
approach.

Our work complements Abadi et al.’s [1]. They show that
several program analyses, including secrecy and integrity
analyses, program slicing, and binding-time analysis, are de-
pendency analyses, which only differ by the choice of the
information lattice £. As a unifying dependency calculus,
they propose a simply-typed A-calculus, based on Moggi’s
computational A-calculus. In turn, we show that it is pos-
sible to enrich any standard type system with dependency
information. Combining these results yields expressive type
systems for all of the analyses above.

By varying £, a dependency analysis may be used to
obtain secrecy or integrity guarantees about a program. It
is interesting to notice that both may be obtained at the
same time, without requiring two annotations per type: one
is enough, provided L is the product of a secrecy lattice
with an integrity lattice. The same trick can be applied to
access control: by labeling data with “locks”, rather than
principals, and choosing the lattice of locks to be the lattice
product of (P, %) with its own dual, a single annotation
suffices to manage and enforce restrictions on value access
and creation. Thus, extending the SLam calculus to deal
with integrity [12, section 4] was unnecessary: not only is
it enough to maintain two security annotations, rather than
four, but no new correctness proof needs be given.

In fact, in a type system enriched with dependency an-
notations, a polymorphic type scheme (such as that of exists,
given in section 8.3) fully and abstractly describes the de-
pendencies induced by a piece of code. (This idea appears in
several previous works, e.g. [6, 5, 27].) Indeed, it documents
not only the behavior of the code at different security lev-
els, but also within different security lattices. This explains
the remark of the previous paragraph: rather than add new
annotations, use a new lattice.

We have argued that access control and information flow
control should be implemented independently. The latter
is not a refinement of the former; they are different mecha-
nisms. One is based on trust, the other on proof. It is possi-
ble, however, to let them coexist within a single design. We
have shown that this gives rise to interesting possibilities,
including selective declassification.

To conclude, we believe we have found a very lightweight
approach to non-interference proofs. It is based on an un-
typed operational semantics for a labelled calculus, together
with a translation to an unlabelled calculus. Two basic re-
sults must be proved: a stability theorem, which states that
the labelled semantics never “drops” labels, and a simula-
tion lemma, which shows that the translation is meaningful.
Because of its simplicity, this approach should be directly
applicable to other computing paradigms, such as object or
process calculi. We are currently investigating this issue.
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