
Information Flow Inferene For Free

François Pottier

�

Franois.Pottier�inria.fr

Sylvain Conhon

�

Sylvain.Conhon�inria.fr

Abstrat

This paper shows how to systematially extend an arbitrary

type system with dependeny information, and how sound-

ness and non-interferene proofs for the new system may

rely upon, rather than dupliate, the soundness proof of the

original system. This allows enrihing virtually any of the

type systems known today with information �ow analysis,

while requiring only a minimal proof e�ort.

Our approah is based on an untyped operational seman-

tis for a labelled alulus akin to ore ML. Thus, it is sim-

ple, and should be appliable to other omputing paradigms,

suh as objet or proess aluli.

The paper also disusses aess ontrol, and shows it

may be viewed as entirely independent of information �ow

ontrol. Letting the two mehanisms oexist, without inter-

ating, yields a simple and expressive type system, whih

allows, in partiular, �seletive� delassi�ation.

1 Introdution

Today, onsiderable amounts of military, ommerial, or per-

sonal data are proessed and stored in omputer systems.

Thus, valuable data must be proteted against deliberate

or aidental release or orruption, whih may be aused

not only by individuals, but also by programs. Aess on-

trol mehanisms provide some protetion, but require the

programs to whih aess is granted to be unonditionally

trusted. Allowing inspetion or update of the data by un-

trusted programs requires analyzing their ode, to ensure

that it meets some seurity poliy. This proess is alled

information �ow analysis.

The need for suh a form of protetion was identi�ed

very early [13℄. Following military pratie, several authors

suggested assigning a seurity level to every program vari-

able, and requiring that information be allowed to �ow only

from lower level variables to higher ones. The tehniques

proposed to enfore this restrition involved seurity heks

at run-time [8℄, at ompile-time [7℄, or as part of a man-

ual proof proess [4℄. Seurity levels o�er a simple way of

guaranteeing non-interferene � a property whih allows de-

�

INRIA, BP 105, F-78153 Le Chesnay Cedex, Frane.

To be presented at the International Conferene on

Funtional Programming, Montréal, Canada, Septem-

ber 2000.

sribing many seurity poliies, inluding (ombinations of)

serey and integrity requirements [11℄.

Non-interferene states the absene of dependeny be-

tween (part of) a program's inputs and (part of) its outputs.

Thus, information �ow analysis is nothing but a dependeny

analysis. This fat was pointed out by Abadi et al. [1℄, who

desribed a general-purpose dependeny analysis in terms of

a type system for an extended �-alulus.

In our eyes, expressing dependeny properties in terms

of types is a highly ommendable approah. Indeed, it has

no run-time ost, and o�ers a orretness guarantee prior to

program exeution. Types are usually simple, preditable,

and may serve as a spei�ation language. Lastly, this al-

lows automating the onstrution of orretness proofs, pro-

vided type inferene is available

1

. In fat, later versions

of Denning's ompile-time erti�ation system [6℄ bear a

strong resemblane with today's polymorphi, onstraint-

based type systems. Yet, to the best of our knowledge, the

�rst type-based information �ow analysis is due to Pals-

berg and Ørbæk, who developed a typed �-alulus with in-

tegrity annotations [18, 17℄. This work was, unfortunately,

not supported by a non-interferene proof. It was followed

by several others, onerned with preserving serey in a

�rst-order imperative language [27℄, a higher-order fun-

tional language [12, 1℄, or in Java [14℄.

Although these works o�er a wide variety of tehniques

and ideas, none of them provides polymorphism and type in-

ferene � features routinely found in modern typed program-

ming languages � together with a non-interferene proof. For

instane, Myers [14℄ o�ers a very powerful system, but is un-

able to prove its orretness, due to the sheer number of its

features. Heintze, Rieke, Abadi and Banerjee [12, 1℄ only

propose simply-typed �-aluli. One may onjeture that

their non-interferene proofs, based on logial relations and

(in the later paper) on a ategorial semantis of �-alulus,

annot easily deal with reursive or polymorphi types. Vol-

pano and Smith's type inferene algorithm [27℄ infers prin-

ipal type shemes, but does not use them to its own advan-

tage. Rather, it textually expands �let� de�nitions, whih

takes exponential time. The reason for this weakness may

be the e�ort involved in dupliating a orretness proof for

a truly polymorphi, onstraint-based type system.

This paper desribes a systemati way of extending an

existing type system with information �ow ontrol. Given

an arbitrary type system for ore ML, we build a related

system, whose types arry seurity annotations, and whose

orretness, inluding non-interferene, rests upon the origi-

1

These are, of ourse, only well-known advantages of strong typing.

nal's. Thus, we avoid proof dupliation, and obtain a formal

non-interferene result at a very small ost.

Varying the original system yields a whole family of prov-

ably orret, information �ow-aware type systems, showing

that information �ow analysis may be readily ombined with

reursive types, polymorphism, type inferene, or other ad-

vaned type-theoreti features. Our proofs rely on an un-

typed operational semantis. This approah has several

advantages. It requires no domain- or ategory-theoreti

knowledge. It does not make any assumptions about the

form of types, allowing any type system to be used as a

starting point. Furthermore, it should be appliable to other

languages, suh as �-aluli with side e�ets, objet aluli,

or proess aluli, whih already enjoy rih type systems

(e.g. [9℄), yet may not have a denotational semantis.

We onlude with a omparison of information �ow on-

trol and aess ontrol, and argue that these mehanisms

may usefully oexist, while remaining entirely independent

at a theoretial level. On the whole, we believe this paper

gives rise to the most powerful type systems equipped with

stati information �ow and aess ontrol to date, with min-

imal theoretial overhead. We hope it will serve as a useful

pratial guide for programming language implementors.

2 Overview

It seems intuitively obvious that the simplest way of dynam-

ially traking information �ow throughout a omputation

is to mark its inputs with labels, and to require every opera-

tion to opy the labels arried by its arguments to its result.

Provided labels are properly opied, none an be dropped

along the way; so, the �nal result must arry the labels of

all inputs whih have e�etively been used. Reversing this

statement, we see that the �nal result annot depend on any

input whose label it does not arry. This route is taken by

Abadi, Lampson and Lévy [2℄, who develop a labelled �-

alulus in order to dynamially analyze dependenies. It

exhibits two di�erenes with ordinary �-alulus. First, ex-

pressions may arry a label; seond, a new redution rule

opies labels, foring the result of every funtion applia-

tion to retain the label attahed to the funtion. We review

this alulus in setion 3, and prove that �labels annot be

dropped� by stating a stability theorem.

Abadi, Lampson and Lévy's labelled �-alulus, ex-

tended with a �let� onstrut, is our starting point. However,

we wish to analyze dependenies statially, rather than dy-

namially; in fat, we plan to do so by building a type system

for the labelled alulus. To this end, it seems natural to

pik some existing type system for ore ML, and enrih it

with information about labels. However, if we modify an ex-

isting system, then we must also modify its orretness proof

� whih essentially means dupliating it. (This approah is

followed in all papers to date.) Instead, we wish to build

on the system's orretness theorem, regardless of its proof.

Thus, we annot a�ord to modify the existing system; in-

stead, we must use it as a building blok � a blak box � in

the de�nition of the new system.

However, neither labelled expressions, nor the extra re-

dution rule are known to a type system for ore ML. How

to �explain� these features to it? Our answer is to devise

a translation sheme. Using it, we turn a program written

in the labelled alulus into a ore ML program, whih we

an then submit to a traditional type system. Beause our

translation sheme is omputationally meaningful, the type

thus produed makes sense: it desribes the behavior of the

original program with respet to data and to labels.

The enoding is extremely simple. It maps every soure

expression to a pair, whose �rst omponent represents the

expression's omputational ontent, and whose seond om-

ponent ontains (an approximation of) its label. Of ourse,

the target alulus must have pairs, as well as a family of

onstants whih represent labels. We de�ne suh a alulus

in setion 4. We then desribe the translation sheme, and

give a fundamental simulation lemma, in setion 5.

In setion 6, we assume given a type system for the target

alulus. We de�ne a small number of requirements about

it, most notably a syntati type soundness theorem. Then,

we impose this type system on the soure alulus, through

our translation. We show that the system thus obtained is

also sound, and enjoys a non-interferene property.

In setion 7, we note that our translation sheme is a bit

naïve, and may ause an exponential inrease in the size of

programs. To remedy this, we de�ne a variant of it, whih

only has linear overhead, and show that it is equivalent, as

far as typing is onerned.

In setion 8, we illustrate our theoretial onstrution

with a onrete example. We pik an existing type inferene

system for ore ML [20℄, show that it meets our require-

ments, and give a onrete desription of the orresponding

information �ow-aware system. We illustrate its power by

running it on a small, but typial, program.

Setion 9 disusses aess ontrol, and argues that it is in-

dependent of information �ow ontrol. The two mehanisms

may of ourse oexist; we show that this allows seletive de-

lassi�ation à la Myers and Liskov [15℄.

Setion 10 disusses our ontribution and onludes.

3 Soure alulus

3.1 Presentation

Our soure alulus is exatly Abadi, Lampson and Lévy's

labelled �-alulus [2℄, extended with a �let� onstrut in the

style of ML.

e ::= soure terms

j k integer onstant (k 2 N)

j x variable (x 2 V)

j �x:e abstration (x 2 V)

j (e e) appliation

j let x = e in e loal de�nition (x 2 V)

j l : e labelled term (l 2 L)

The set V of program variables is assumed to be denumer-

able. No assumptions are made, at this point, about the set

of labels L.

The operational semantis for the alulus follows. Rules

(�), (let) and (ontext) are standard. In rule (ontext), C

ranges over arbitrary ontexts: we do not yet hoose a par-

tiular evaluation strategy. Rule (lift) allows moving labels

outwards as little as possible to permit �-redution. In other

words, (lift) moves the label of a funtion to its result, so

as to reord the fat that it has been used in produing it,

and, onsequently, that the result depends on it.

(�x:e

1

) e

2

! e

1

[e

2

=x℄ (�)

let x = e

1

in e

2

! e

2

[e

1

=x℄ (let)

(l : e

1

) e

2

! l : (e

1

e

2

) (lift)

C[e

1

℄ ! C[e

2

℄ if e

1

! e

2

(ontext)

2

From a pratial point of view, labels may be inserted into

the ode as a way of supplying seurity information. Spe-

i� labels may be used, for instane, to indiate that the

result of ertain expressions must be kept seret (e.g. if it

is deemed to ontain on�dential information), or must not

be trusted (e.g. if it was read from a publi input hannel).

Notie, however, that no �xed meaning is built into labels.

Labels merely trak dependenies; their �meaning� only ex-

ists in the user's mind. After we de�ne a type system for

this alulus, the user will be able to add stati typing asser-

tions, to programs, thereby de�ning a seurity poliy, and

giving �meaning� to labels. Beause the poliy is statially

enfored, the semantis does not have �seurity violations�.

Example To illustrate every step taken throughout the pa-

per, we will use a very simple running example. Assuming

l and h are labels, let e = (l : (�xy:y)) (h : 27). Then,

e ! l : ((�xy:y) (h : 27)) by (lift)

! l : (�y:y) by (�)

Rule (lift) moves the label l up one node. This exposes the

�-redex, allowing the funtion �xy:y to reeive its argument.

At the same time, this guarantees that the appliation's re-

sult is tagged l, thus reording its dependeny on the sub-

term l : (�xy:y). Notie how the sub-term h : 27, whih is

unused, is dropped during �-redution, label inluded.

3.2 A stability theorem

Thanks to the presene of expliit labels, this alulus enjoys

a simple, onstrutive stability theorem. Given a omputa-

tion sequene e!

?

f , it guarantees that f does not depend

on any sub-term of e whih arries a label not found in f .

More preisely, it states that the pre�x of e obtained by

�pruning� all suh sub-terms is still able to produe f , in

spite of the missing information.

We begin with some standard de�nitions. A pre�x is an

expression whih may have missing sub-expressions:

e ::= pre�xes

j hole

j : : :

A pre�x e is a pre�x of another pre�x (or expression) e

0

if e

mathes e

0

, exept e may have more holes; we write e � e

0

.

For the purposes of redution, we treat like a free variable.

Pre�xes enjoy the following monotoniity property:

Lemma 3.1 Let e, e

0

be pre�xes suh that e � e

0

. If f is

an expression suh that e!

?

f , then e

0

!

?

f .

Given an arbitrary set of labels L � L, we de�ne the

funtion b�

L

, whih maps any pre�x e to a pre�x of itself:

bl : e

L

= when l 62 L

bl : e

L

= l : be

L

when l 2 L

b

L

=

bk

L

= k

bx

L

= x

b�x:e

L

= �x:be

L

be

1

e

2

L

= (be

1

L

be

2

L

)

blet x = e

1

in e

2

L

= let x = be

1

L

in be

2

L

Informally speaking, b�

L

removes every sub-term whih ar-

ries a label not found in L.

We are now ready to state the stability theorem. We

supply its proof, not beause of its interest, but rather be-

ause we wish to insist on its simpliity. It begins with the

following auxiliary lemma.

Lemma 3.2 If e ! f may be derived by applying (�) or

(let), or by (lift)-ing a label l 2 L, then be

L

! bf

L

.

Proof. Case (�). Then, e = ((�x:e

1

) e

2

) ! e

1

[e

2

=x℄ =

f . So, be

L

= ((�x:be

1

L

) be

2

L

) ! be

1

L

[be

2

L

=x℄ =

be

1

[e

2

=x℄

L

= bf

L

. Case (let) is similar.

Case (lift). Then, e = ((l : e

1

) e

2

) ! l : (e

1

e

2

) = f .

Beause l 2 L, be

L

is ((l : be

1

L

) be

2

L

. By (lift), this

redues to l : (be

1

L

be

2

L

) = bf

L

. 2

Theorem 3.1 (Stability) Assume e is a pre�x and f is

an expression. If e!

?

f and bf

L

= f , then be

L

!

?

f .

Proof. By indution over the length of the derivation of

e!

?

f . In the base ase, e equals f , and the result is imme-

diate. In the indutive ase, we assume e! g !

?

f , where,

by indution hypothesis, bg

L

!

?

f . Let C be a ontext

suh that e = C[e

0

℄, g = C[g

0

℄, and e

0

! g

0

, where e

0

! g

0

follows diretly from (�), (let) or (lift). De�ne D = bC

L

.

(Extend b�

L

to ontexts in the obvious way.) Now, either

lemma 3.2 is appliable to e

0

! g

0

, or it isn't.

If it is, then be

0

L

! bg

0

L

holds. So, be

L

= bC[e

0

℄

L

=

D[be

0

L

℄ !

?

D[bg

0

L

℄ = bC[g

0

℄

L

= bg

L

. Reall that

bg

L

!

?

f ; the result follows.

If it isn't, then e

0

! g

0

is an instane of a (lift) rule

involving a label l 62 L. So, g

0

is of the form l : g

00

. Sine

g = C[l : g

00

℄ and l 62 L, bg

L

equals D[℄. Thus, it is a pre�x

of D[be

0

L

℄ = bC[e

0

℄

L

= be

L

. Reall that bg

L

!

?

f ; by

lemma 3.1, this entails be

L

!

?

f . 2

Example The program e = (l : (�xy:y)) (h : 27) produes

the result l : (�y:y) = f . The only label that appears in

f is l, so bf

flg

= f . Aording to theorem 3.1, the pre�x

be

flg

must redue to f as well. Indeed, we �nd

be

flg

= (l : (�xy:y))

! l : ((�xy:y)) by (lift)

! l : (�y:y) by (�)

By lemma 3.1, any expression whih has be

flg

as a pre�x

must redue to f as well. For instane, (l : (�xy:y)) (h : 68)

does. Using labels, we have determined that the sub-term

27 does not ontribute to the omputation e!

?

f .

4 Target alulus

As explained in setion 2, we now wish to translate our

soure alulus into a more onventional, unlabelled alu-

lus, so as to be able to use some o�-the-shelf type system.

As our target alulus, we hoose ore ML, extended with

pairs and label onstants.

e ::= target terms

j k integer onstant (k 2 N)

j x variable (x 2 V)

j �x:e abstration (x 2 V)

j (e e) appliation

j let x = e in e loal de�nition (x 2 V)

j he; ei pair

j fst �rst pair projetion

j snd seond pair projetion

j l label onstant (l 2 L)

j � label join

3

L e M = hL e M

1

; L e M

2

i

L k M

1

= k

Lx M

1

= fst x

L�x:e M

1

= �x:L e M

L e

1

e

2

M

1

= fst (L e

1

M

1

L e

2

M)

L let x = e

1

in e

2

M

1

= let x = L e

1

M in L e

2

M

1

L l : e M

1

= L e M

1

L k M

2

= �

Lx M

2

= snd x

L�x:e M

2

= �

L e

1

e

2

M

2

= L e

1

M

2

� snd (L e

1

M

1

L e

2

M)

L let x = e

1

in e

2

M

2

= let x = L e

1

M in L e

2

M

2

L l : e M

2

= l� L e M

2

Figure 1: Translation

For larity, double appliations of � will be written using

in�x notation.

At this point, we assume the set of labels L is an up-

per semi-lattie, whose least element, ordering relation, and

least upper bound operation are denoted �, 4 and g, respe-

tively. For l 2 L, # l denotes the lower one fm 2 L ; m 4 lg.

The alulus is equipped with a standard operational

semantis, augmented with a new rule, (join), whih states

that � returns the least upper bound of its arguments.

(�x:e

1

) e

2

! e

1

[e

2

=x℄ (�)

let x = e

1

in e

2

! e

2

[e

1

=x℄ (let)

fst he

1

; e

2

i ! e

1

(�

1

)

snd he

1

; e

2

i ! e

2

(�

2

)

l�m ! l gm (join)

C[e

1

℄ ! C[e

2

℄ if e

1

! e

2

(ontext)

In rule (ontext), C again ranges over arbitrary ontexts.

In the soure alulus, an expression may arry zero, one

or more labels. However, our translation sheme (to be pre-

sented in setion 5) assoiates exatly one label with every

expression. The least label � will also be used to represent

the absene of any label; the join operation, �, will be used

to ompute a onservative approximation of two labels. In

other words, the soure expressions e and � : e will be trans-

lated to equivalent target expressions; so will l : m : e and

(l g m) : e. This lak of preision will not be a problem.

In fat, even if the translation itself was not approximate,

the subsequent typing stage would ertainly be: there is no

point, in pratie, in keeping trak of lists of labels.

Lastly, to allow formal reasoning about the fat that �

stands for an assoiative operation, with neutral element �,

we de�ne an extended semantis, denoted !

�

, by adding

two extra rules to those above:

(e

1

� e

2

)� e

3

!

�

e

1

�(e

2

� e

3

) (asso)

�� e !

�

e (neutral)

In partiular, !

�

ontains !.

5 Translation

A translation from the soure alulus to the target alulus

is de�ned in �gure 1. The translation funtion maps every

soure expression e to a pair L e M, whose �rst (resp. seond)

omponent is denoted L e M

1

(resp. L e M

2

). The funtions L � M,

L � M

1

and L � M

2

are de�ned using mutual indution.

A soure expression e is mapped to a pair, whose �rst

omponent represents e's �atual value� (i.e. its omputa-

tional ontent), and whose seond omponent represents e's

label. For instane, the unlabeled integer k is translated to

hk; �i � we use the least label � to denote the absene of a

label. �-abstrations are handled similarly. A variable x is

translated to hfst x; snd xi. Although it would be possible

to translate it as x, this is more homogeneous.

The translation of an appliation expression (e

1

e

2

)

makes the (lift)-ing proess expliit. Aording to our on-

vention, L e

1

M is a pair of a funtion and a label. We extrat

the former, namely L e

1

M

1

, and apply it to its argument as

a whole, namely L e

2

M. This returns � again � a pair, whose

�rst omponent � the omputational ontent � we then keep

unhanged, and whose seond omponent � the label � we

join with e

1

's label, namely L e

1

M

2

. Thus, the label attahed,

in the translation, with (e

1

e

2

), inludes (i.e. is greater than,

aording to 4) the one attahed with e

1

. Joining labels

allows keeping trak of a single label per expression, rather

than a list thereof. This is simpler, while still preise enough

for our purposes.

Beause the expression L e

1

M

1

L e

2

M appears in L e

1

e

2

M

1

and in L e

1

e

2

M

2

, the size of L e M is exponential in the size

of e. From a purely theoretial point of view, this is not a

problem. We favor this formulation for its simpliity: thanks

to it, stating and proving a simulation lemma is very easy.

In pratie, however, e�ieny demands a linear enoding.

We will de�ne one, and prove that it is equivalent to this

one, as far as typing is onerned, in setion 7. The reader

may wish to immediately have a look at its de�nition, given

in �gure 2.

Expressions of the form let x = e

1

in e

2

and l : e are

translated in a straightforward way (again, induing expo-

nential behavior). Notie how L l : e M has the same ompu-

tational ontent as L e M, but has a greater label, due to the

join operation l� �.

It is a matter of pure routine to hek the following

lemma, whose proof we therefore omit.

Lemma 5.1 (Simulation) If e! f , then L e M !

?

�

L f M.

Example The translation of h : 27 is h27;h� �i. The

translation of l : (�xy:y) is h�x:h�y:hfst y; snd yi; �i; l� �i.

Thus, the term e = (l : (�xy:y)) (h : 27) is translated to

hfst a; (l� �)� snd ai, where a stands for

(�x:h�y:hfst y; snd yi; �i) h27;h� �i

Through (�), (�

1

), (�

2

), (asso) and (neutral), L e M redues

to h�y:hfst y; snd yi; l� �i, whih is exatly L l : (�y:y) M =

L f M, in aordane with lemma 5.1.

6 Typing

6.1 Fixing a strategy

So far, we have not ommitted to a partiular evaluation

strategy in the soure or target language. We must now

do so, mainly beause it seems we annot otherwise state a

meaningful progress theorem � one of the two fundamental

type soundness theorems [28℄. Let us settle on all-by-name

evaluation; we will disuss all-by-value when appropriate.

4

In the soure language, let !

bn

be the redution rela-

tion obtained by restriting rule (ontext) to the following

subset of ontexts. Furthermore, de�ne values, a subset of

expressions, as follows.

C ::= [℄ j (C e) j l : C

v ::= k j �x:e j l : v

We proeed similarly with the target language:

C ::= [℄ j (C e) j fst C j snd C j (� C) j (� l C)

v ::= k j �x:e j he; ei j fst j snd j l j � j (� l)

It is interesting to notie that the seond fundamental

type soundness theorem, namely subjet redution, an be

stated independently of the redution strategy: it su�es to

require that types be preserved along all redution paths.

We will in fat do so in the following.

6.2 Assumptions

From here on, we assume the target alulus is equipped

with a type system. As explained in setion 2, we view it

as a �blak box�: that is, we make no assumptions about its

de�nition. Rather, we simply regard it as a relation between

losed target expressions and types, satisfying a small num-

ber of axioms. This frees us from aring about typing rules,

environments, onstraints, universal quanti�ation, or other

subtleties involved in the system's inner workings. Thus, we

assume typing judgements are of the form e : t, where e is a

losed target expression, and t belongs to some (unspei�ed)

set of types T .

We now present our assumptions about the type sys-

tem, in the form of 6 axioms. The �rst one states that any

(losed) sub-expression of a well-typed expression is well-

typed. This axiom is satis�ed by all systems de�ned in terms

of strutural typing rules.

Axiom 1 (Compositionality) If e is a losed expression

suh that C[e℄ : t, then e : u holds for some u 2 T .

Our next two axioms onstitute a syntati type sound-

ness hypothesis [28℄. The subjet redution axiom refers

to !

�

, whereas !

bn

would be expeted, sine we have

hosen a all-by-name evaluation strategy. This strength-

ens it in two ways. First, replaing !

bn

with ! requires

types to be preserved by all redutions, rather than only by

all-by-name redutions. Many ommon type systems, suh

as Hindley/Milner's, are unaware of the evaluation strat-

egy, and satisfy this stronger axiom. Although working with

the usual (weak) version of the axiom may be possible, this

hoie simpli�es our proofs. Seond, replaing ! with !

�

requires (asso) and (neutral) to preserve types as well.

Axiom 2 (Subj. red.) If e : t and e!

�

f , then f : t.

Axiom 3 (Progress) If e : t, then either 9f e !

bn

f ,

or e is a value.

The next axiom requires that every label l, whih is already

a valid expression in the target alulus, be also a valid type

(possibly modulo some impliit embedding). It also states

that, ifm is a valid type for l, where both l andm are labels,

then l must be below m in the semi-lattie L.

Clearly, one way of implementing these requirements is

to de�ne a set of types T whih syntatially ontains L, to

make l : l a valid typing judgement for every l 2 L, and to

de�ne a subtyping relationship whereby l is a subtype of m

if and only if l 4 m holds. We illustrate this approah in

setion 8. However, it is interesting to note that this axiom

does not demand subtyping. A system without subtyping,

but with a su�ient degree of polymorphism, may also be

used. For instane, if L happens to be the power-set of a

set P (whih represents, say, prinipals), then labels may be

typed using P-indexed rows [21℄. A similar idea underlies

Objetive ML [22℄, a typed objet-oriented language whih

does not rely on subtyping.

Axiom 4 (Labels) Every label is a type: L � T . If l;m 2

L, then l : m implies l 4 m.

Our last two axioms onern integers and pairs. They are

far less important than axioms 1�4: their main use is to help

formulate the non-interferene theorem in a nie way.

Axiom 5 (Integers) There is a type int 2 T . A value v

satis�es v : int if and only if it is an integer onstant k 2 N.

Axiom 6 (Pairs) There is a partial funtion � : T

2

! T

suh that he; fi : t� u implies e : t ^ f : u. Conversely, if e

and f are well-typed, then he; fi is well-typed.

Note that int and�may not diretly orrespond to the type

system's own int and � type onstrutors. Indeed, what is

known as a type in this axiomatization may be known e.g.

as a type sheme in the system's atual de�nition.

6.3 Typing the soure alulus

We now de�ne the type system of the soure alulus as the

omposition of the translation de�ned in setion 5 with the

type system of the target alulus. That is, for any losed

soure expression e, e : t holds if and only if L e M : t holds.

We notie that if the hosen type system enjoys the existene

of prinipal types, or of a type inferene algorithm, then so

does the newly de�ned system.

This abstrat de�nition su�es to prove soundness and

non-interferene theorems about the derived system. Of

ourse, if one is given the rules whih de�ne the target sys-

tem, then one may ombine them with the de�nition of L � M,

yielding a set of derived rules whih allow diret type hek-

ing/inferene in the soure alulus. We will illustrate this

in setion 8.

The new system enjoys the following two soundness re-

sults. We omit the proof of theorem 6.2, whih is straight-

forward, but slightly verbose.

Theorem 6.1 (Subj. red.) If e : t and e! f , then f : t.

Proof. Aording to lemma 5.1, e! f implies L e M !

?

�

L f M.

Furthermore, by de�nition of the type system in the soure

alulus, our hypothesis e : t may be read as L e M : t, and

our goal may be read as L f M : t. The result follows from the

fat that !

�

preserves types (axiom 2). 2

Theorem 6.2 (Progress) If e : t, then either 9f e!

bn

f , or e is a value.

Next, we prove a non-interferene theorem, whih states

that types in the new system do ontain useful dependeny

information. The interesting aspet of our proof is that it is

written in an entirely operational style: it essentially relies

5

on two properties of the labelled alulus: stability (theo-

rem 3.1) and subjet redution (theorem 6.1).

For simpliity, the theorem only onerns integer results.

A more general statement would be possible.

Theorem 6.3 (Non-interferene) If e : int�l and e!

?

v, where v is a value, then be

#l

!

?

v.

Proof. Aording to theorem 6.1, v : int � l holds. This

may be read L v M : int � l, whih, aording to axiom 6,

implies L v M

1

: int. So, aording to axiom 5, L v M

1

annot

be a �-abstration. Considering v is a value, v must be of

the form l

1

: l

2

: : : : : l

n

: k, for some n � 0.

Thus, L v M is hk; l

1

� : : : � l

n

� �i. From the fat that

this expression has type int � l, we may dedue, through

axiom 6, that l

1

� : : : � l

n

� � has type l. However, this

expression may be redued, by repeated appliation of rule

(join), to l

1

g: : :gl

n

. Aording to axioms 2 and 4, it follows

that l

1

g : : :g l

n

4 l. In other words, every l

i

is an element

of # l. So, bv

#l

equals v, whih, aording to theorem 3.1,

implies be

#l

!

?

v. 2

The non-interferene theorem may be better known under

the following symmetri form:

Corollary 6.4 Assume e; f : int � l and be

#l

= bf

#l

.

Then, either both e and f diverge, or both e and f onverge

and produe the same value.

Proof. Assume e onverges. Then, aording to theorem 6.3

and lemma 3.1, f onverges to the same value. By symme-

try, the onverse also holds: if f onverges, then e onverges

to the same value. Furthermore, by theorems 6.1 and 6.2,

neither e nor f an go wrong. The result follows. 2

Here, to onverge means to be able to reah a value along

some redution path. To diverge means not to onverge and

not to go wrong. To go wrong means to get stuk along

some redution path. By normalization

2

, these are the same

notions, regardless of whether ! or !

bn

is being used.

Corollary 6.4 guarantees not only that e and f produe

the same value, but also that they behave similarly with re-

spet to termination. This is a strong non-interferene state-

ment. With a all-by-value semantis, one would obtain a

slightly weaker result, whereby e and f would be guaran-

teed to yield the same value only if they terminate. Indeed,

if e!

bv

v and f !

bv

w, where v and w are values, then,

by normalization, e!

bn

v and e!

bn

w, whene, by orol-

lary 6.4, v = w. To obtain a strong non-interferene result

in a all-by-value setting, one may modify the labelled alu-

lus aordingly [2, setion 3.7℄, and repeat our onstrution.

This yields, however, a signi�antly more restritive type

system.

These non-interferene results are stated in the soure

alulus, whih has non-standard semantis. However, la-

bels are not �rst-lass entities, i.e. they annot a�et the

ourse of omputations, as shown by [2, prop. 3℄. Thus,

if all labels are removed before exeution, i.e. if we evalu-

ate �stripped� terms within a standard �-alulus, then the

non-interferene results still hold.

Lastly, it is important to prove that �enough� programs

are aepted by the new system, whih may otherwise turn

out to be devoid of pratial interest. Unfortunately, doing

so at an abstrat level requires more axioms, whih are di�-

ult to state in an elegant way. For this reason, we will only

address this issue in the onrete setting of setion 8.

2

We haven't proved a normalization theorem for the labelled �-

alulus, but this an be done using existing tehniques.

JkK = hk; �i

JxK = hfst x; snd xi

J�x:eK = h�x:JeK; �i

Je

1

e

2

K = letp hx; ti = Je

1

K in

letp hy; ui = x Je

2

K in

hy; t�ui

Jlet x = e

1

in e

2

K = let x = Je

1

K in Je

2

K

Jl : eK = letp hx; ti = JeK in

hx; l� ti

Figure 2: Linear translation

7 A more e�ient translation

The translation sheme presented in setion 5 behaves niely

with respet to redution: it enjoys a very simple simulation

lemma. However, beause it dupliates sub-expressions, it

has exponential omplexity. In this setion, we present a

slightly di�erent translation sheme, whih only has linear

overhead, beause it uses loal variable de�nitions to share

sub-expressions where needed. We ould have hosen to use

this one in the �rst plae, but losing lemma 5.1 would have

made our proofs somewhat heavier.

The new enoding's de�nition is shown in �gure 2. The

auxiliary loal variables x, t, y, u must be hosen so as to

avoid variable apture. We use letp hx; yi = e

1

in e

2

to

denote ((�p:((�xy:e

2

) (fst p) (snd p))) e

1

) where p does not

appear free in e

2

. It would also be possible to implement

�letp� in terms of �let�. Our hoie emphasizes the fat that

no polymorphism is required: the point is to avoid dupliat-

ing e

1

, not to generalize its type.

To establish a relationship between J�K and L � M, we need

a few extra axioms onerning the target type system. Let

us use e :

C

t to denote C[e℄ : t. This gives us a rude way of

denoting the �type� of a non-losed expression.

Axiom 7 If hfst e; snd ei :

C

t, then e :

C

t.

Axiom 8 If x and y appear free exatly one in f , and if

f [e

1

=x; e

2

=y℄ :

C

t, then letp hx; yi = he

1

; e

2

i in f :

C

t.

Axiom 9 let x = e in hf

1

; f

2

i :

C

t holds if and only if

hlet x = e in f

1

; let x = e in f

2

i :

C

t does.

Using these extra axioms, as well as axiom 2, it is easy to

prove that L � M and J�K give rise to the same derived type

system:

Theorem 7.1 JeK : t if and only if L e M : t.

Thus, if type heking (resp. type inferene) has omplexity

O(n

k

), where k � 1, in the original system, then it has the

same omplexity in the derived system. Indeed, J�K may be

omputed in linear time, and the size of its output remains

within a onstant fator of that of its input.

8 A onrete ase

In this setion, we illustrate our approah with a onrete

example. We �rst pik an existing type system for the tar-

get alulus, and show that it satis�es the axioms given in

the previous setion. Our onstrution thus gives rise to a

onrete information �ow-aware type system for the soure

6

? � t t � > int � int

l 4 l

0

l � l

0

t

0

0

� t

0

t

1

� t

0

1

t

0

! t

1

� t

0

0

! t

0

1

t

0

� t

0

0

t

1

� t

0

1

t

0

� t

1

� t

0

0

� t

0

1

Figure 3: Subtyping on ground types

alulus, a diret desription of whih is given in the form of

a set of type inferene rules. Lastly, to illustrate the system's

power, we exerise it on a simple program fragment.

8.1 Typing the target alulus

Our target alulus is simply ore ML with pairs, extended

with label onstants and the primitive operation �. In pra-

tie, almost any type system for ore ML will do, provided

it allows giving an appropriate type sheme to every l 2 L

and to �. Thus, we have a very wide range of systems to

hoose from, e.g. [10, 24, 26, 22, 3, 16℄. We pik a subtyping-

onstraint-based type system, previously studied by the �rst

author. By lak of spae, we must desribe it very suintly.

More detailed aounts appear in [20, 19℄.

For simpliity, we distinguish identi�ers bound by �, de-

noted x; y; : : : from those bound by �let�, denoted X;Y; : : :

We expet eah �-identi�er to be bound at most one in

a given program. Furthermore, in every expression of the

form let X = e

1

in e

2

, we require X to appear free within

e

2

. Overoming these restritions is of ourse possible, but

requires more umbersome typing rules.

The presentation of the system begins with a de�nition

of ground types. They are the regular trees desribed by the

following o-indutive de�nition:

t ::= ? j l j int j t� t j t! t j >

Ground types are equipped with a subtyping order, given in

�gure 3. It is, again, de�ned o-indutively: a subtyping

assertion holds if and only if it has a �nite or in�nite deriva-

tion. Let us assume, from here on, that (L;4) is a lattie.

Then, ground types also form a lattie, within whih L is

embedded.

We then (indutively) de�ne types and onstraints :

t ::= �; �; : : : j ? j l j int j t� t j t! t j >

 ::= t � t

Here, �; �; : : : range over a denumerable set of type variables.

A ground substitution � is a map from type variables to

ground types. � satis�es a onstraint t

1

� t

2

if and only if

�(t

1

) � �(t

2

). � satis�es a onstraint set C if and only if it

satis�es eah of its elements.

A ontext A is a set of bindings of the form x : t. A type

sheme � is a triple of a onstraint set, a ontext and a type,

written 8C:A) t. Intuitively speaking, all variables whih

appear in � should be thought of as universally quanti�ed,

hene the 8 notation. More formally, the denotation of a

type sheme is de�ned by

J8C:A) tK = "f�(A) t) ; � satis�es Cg

� fresh

� `

I

x : hx : �i) �

� `

I

e : 8C:A) t

� `

I

�x:e : 8C: (A n x)) A(x)! t

� `

I

e

1

: 8C

1

: A

1

) t

1

� `

I

e

2

: 8C

2

: A

2

) t

2

� fresh C = C

1

[C

2

[ft

1

� t

2

! �g

� `

I

e

1

e

2

: 8C: (A

1

u A

2

)) �

�(X) = � � fresh renaming of �

� `

I

X : �(�)

� `

I

e

1

: �

1

� + [X 7! �

1

℄ `

I

e

2

: �

2

� `

I

let X = e

1

in e

2

: �

2

Figure 4: Type inferene rules

where "X represents the upper one of a set X with respet

to ground subtyping. (This requires a straightforward ex-

tension of � to objets of the form A) t.) Given two type

shemes �

1

and �

2

, we say the former is more general than

the latter, and we write �

1

�

8

�

2

, if and only if J�

1

K � J�

2

K.

Figure 4 gives the type inferene rules of the system.

Judgements are of the form � `

I

e : �, where � is an envi-

ronment (i.e. a list of bindings of the form X : �), e is a

target expression, and � is a type sheme. As far as nota-

tion is onerned, hx : �i represents a ontext ontaining a

single entry. A n x is the ontext obtained by removing x's

binding (if any) from A. We shorten the notation 8C:A) t

to 8C: t, A) t, or simply t, if A, C, or both are empty.

For the sake of readability, we slightly abuse notation.

We let A(x) stand for the type assoiated with x in A, if

A ontains a binding for x, and for > otherwise. We use

A

1

u A

2

to denote the point-wise intersetion of A

1

and

A

2

. That is, whenever x has a binding in A

1

or A

2

, its

binding in A

1

u A

2

is A

1

(x) u A

2

(x). Beause the system

does not have intersetion types, this expression must in fat

be understood as a fresh type variable, aompanied by an

appropriate onjuntion of subtyping onstraints.

Every type sheme is impliitly required to have a non-

empty denotation, i.e. a solvable set of onstraints.

These rules only desribe ore ML. Type inferene for the

full target language, as de�ned in setion 4, is obtained by

adding the following (pseudo-)bindings to the initial typing

environment �

0

:

k : int (k 2 N)

fst : ��>! �

snd : >� �! �

l : l (l 2 L)

� : 8f� � !g: �! �! �

h�; �i : �! � ! �� �

Here, ! stands for the greatest element of the lattie L.

The onstraint � � ! guarantees that � is only applied to

expressions whih denote label onstants.

7

� `

d

k : int

�

�; ' fresh

� `

d

x : hx : �

'

i) �

'

� `

d

e : 8C:A) t

� `

d

�x:e : 8C: (A n x)) (A(x)! t)

�

� `

d

e

1

: 8C

1

: A

1

) t

1

� `

d

e

2

: 8C

2

: A

2

) t

2

�; ' fresh

C = C

1

[C

2

[ft

1

� (t

2

! �

'

)

'

; ' � !g

� `

d

e

1

e

2

: 8C: (A

1

uA

2

)) �

'

� `

d

e : 8C:A) t

�; ' fresh C

0

= C [ft � �

'

; l � ' � !g

� `

d

(l : e) : 8C

0

: A) �

'

Figure 5: Derived type inferene rules

8.2 Bak to the soure alulus

We are now ready to apply the results of setion 6 in the

onrete setting onsidered here.

Theorem 8.1 De�ne types, in the sense of setion 6, to be

type shemes, in the sense of this setion. De�ne e : � to

hold if and only if 9�

0

�

8

� �

0

`

I

e : �

0

. Then, axioms 1�9

are satis�ed.

A proof of subjet redution, in the ase of ore ML, appears

in [20℄. Extending it to the language onsidered here, as well

as heking the other axioms, is straightforward, although

somewhat lengthy. We omit proofs.

Composing J�K with the type inferene algorithm of the

target alulus yields a type inferene algorithm for the

soure alulus, enjoying all of the properties stated in se-

tion 6. Let us now give a more diret desription of this

algorithm. By systematially omposing the de�nition of

the enoding with the rules of �gure 4, and performing a

few onstraint simpli�ation steps, as allowed by the use of

�

8

in theorem 8.1, we obtain a set of derived type inferene

rules, shown in �gure 5. The last two rules, whih deal with

�let�-bound variables and �let� de�nitions, are unhanged, so

they are not shown. The produt notation t�u has been re-

plaed with t

u

, so as to insist on the fat that we are dealing

with types arrying seurity annotations.

These rules seem quite intuitive. They resemble the rules

of �gure 4, with the following di�erenes. Values (integer

onstants and �-abstrations) are annotated with � upon

reation. The seurity level of a funtion appliation ex-

pression is the join of the result level with the funtion level,

thus reording the fat that the funtion ontributes to the

omputation. The seurity level of a labelled expression l : e

is the join of e's level with l. Of ourse, it would have been

easy to ome up with these rules diretly. However, our

approah has several advantages over a manual approah.

First, it is systemati, leaving no doubt that these rules are

natural. Seond, we obtain orretness proofs (almost) for

free, whih is non-trivial, onsidering the system has poly-

morphism, subtyping, reursive types, and type inferene.

Lastly, our approah is general and may be applied to many

other type systems.

As a last re�nement, it would be possible to partition

types, a posteriori, into three sorts: plain types t, label types

u, and seure types, of the form t

u

. This would allow getting

rid of the onstraint ' � ! in the last two rules: ' would

then range over labels, making it redundant.

Comparing typability in the derived and in the original

system is now easy. Let strip denote the natural projetion

from soure to target language; in partiular, strip(l : e) is

strip(e). Then,

Theorem 8.2 (Conservativity) The soure expression e

is well-typed in the derived system if and only if the target

expression strip(e) is well-typed in the original system.

The proof relies on two simple remarks. First, any solution

of the onstraints generated by the rules of �gure 5 also

satis�es those inferred by the rules of �gure 4. Conversely,

any solution of the latter may be extended to a solution of

the former, where every label variable ' is mapped to !.

This result shows that one may swith to the new type

system, and label any number of sub-expressions in a pro-

gram, without a�eting its typability. A program may be-

ome untypable only if a non-trivial seurity poliy, ex-

pressed by inserting typing assertions, is adopted.

Example Let us use the rules of �gure 5 to infer the type

of our running example. The type sheme inferred for

h : 27 learly is int

h

. The one inferred for l : (�xy:y) is

(>! (�

'

! �

'

)

�

)

l

. Thus, the term e = (l : (�xy:y)) (h :

27) reeives the type sheme (�

'

! �

'

)

l

.

This type sheme states that evaluating e does not reveal

any information of level h. Thus, the type inferene algo-

rithm statially �nds that e does not leak the value 27, a

fat whih we had previously dynamially obtained by eval-

uating e (see setion 3). Furthermore, this type sheme is

polymorphi in � and in ', showing that e's result � whih

is l : �y:y, the identity funtion labelled l � is able to aept

any argument, regardless of its ontent and of its seurity

level.

8.3 A realisti example

We onlude this setion with a longer example. We as-

sume the soure language is extended with operations on

Booleans, strings, pairs, variants and reords. By lak of

spae, we do not de�ne typing rules for these onstruts.

Provably orret rules an be obtained in (at least) two ways.

One is to expliitly extend the target language, the transla-

tion sheme, and our proofs. The other is to derive orret

typing rules for these onstruts by onsidering their Churh

enodings into the basi language.

Figure 6 shows a small example program. It is a full pro-

gram, whih ontains no type information, but does ontain

a few seurity annotations, in the form of labelled expres-

sions.

The program �rst de�nes a lassi prediate on lists, ex-

ists, whih tells whether a given prediate is satis�ed by at

least one element of a given list. Reursion is ahieved via an

expliit �x-point ombinator, �x. It is well-typed, beause

the system has reursive types. Thus, we are able to write

reursive programs, even though our formal development did

not expliitly deal with reursion.

To improve readability, we write t instead of t

�

(resp. t

!

)

when t ours positively (resp. negatively) in a type sheme.

8

let �x � =

(fun f x ! � (f f) x) (fun f x ! � (f f) x)

let exists = �x (

fun exists prediate list !

math list with

Nil !

false

| Cons (element ; rest) !

if prediate element then

true

else

exists prediate rest

)

let users =

Cons(f login = "Pam"; pw = Sys : "7nuggets" },

Cons(f login = "Sam"; pw = Sys : "" },

Nil))

let query1 =

exists (fun r !

r.login = Priv : "Monia"

) users

let query2 =

exists (fun r !

r.pw = ""

) users

Figure 6: Example program

Then, the type sheme omputed by the type inferene al-

gorithm for exists is

8C: (�

'

! bool

)

! � ! bool

where C ontains a single onstraint:

� � [Nil j Cons of (�

'

� �)

℄

Intuitively, this reursive onstraint requires � to represent a

list, whose elements have type �

'

, and whose seurity level

is . exists 's �rst argument, a prediate, must aordingly

aept an argument of type �

'

. If the prediate has level

 , and if it returns a Boolean result of level , then so will

exists. Notie that ' are are a priori unrelated: they will

beome related only if exists is applied to a prediate whih

leaks some information about its argument.

Three important points must be made here. First, this

type sheme is preise, and highly polymorphi. Thus, mul-

tiple appliations of exists, e.g. to lists with distint seu-

rity levels, or to prediates with di�erent behavior, will not

�pollute� eah other. This is a requirement when writing li-

braries, sine ode dupliation would otherwise be neessary.

Seond, the ode of exists ontains no seurity annotations,

and its type was inferred without help from the user. This

feature is also of utmost importane for bakward ompati-

bility : it allows a large body of ode, written without any

seurity requirements in mind, to be re-used in a program

where seurity matters. Third, this type sheme is indepen-

dent of the underlying seurity lattie. Even though it does

not mention any onstant label l 2 L, it does enode rel-

evant dependeny information. In other words, the hoie

of a partiular seurity lattie is irrelevant when analyzing

generi ode; it is required only when wishing to enfore a

partiular seurity poliy.

Let us ome bak to the program in �gure 6. Its next step

is to de�ne a list, alled users, whose elements are reords

ontaining name (login) and password (pw) strings. The in-

formation ontained in pw �elds, whih is deemed somehow

important, is labelled Sys. Notie that labelling a piee of

data does not restrit aess to it; it only fores any ompu-

tations whih make use of this data to reeive a type whih

reveals this dependeny. In other words, our type system

does not forbid anything by default; it merely wathes every-

thing. Seurity restritions, when required, may be added

using additional type onstraints, as we will see below.

The rest of the program onsists of two queries about the

users list, implemented using exists. The �rst query heks

whether some user is alled Monia. The programmer, per-

haps wishing not to dislose the fat that he is looking for

this partiular person, has marked the string "Monia" with

the label Priv. The seond query looks for a user with an

empty password string.

Aording to the type inferene algorithm, the type of

query1 is bool

Priv

. Thus, the query's result reveals some

information about the string "Monia". Notie, however,

that it does not arry the label Sys: it does not leak anything

about the passwords ontained in the list users. The type

of query2, on the other hand, is bool

Sys

, whih tells that it

does ontain information about the passwords.

If these information hannels are deemed undesirable,

they an be easily eliminated by adding typing assertions

to the program. For instane, if Publi is a label suh that

neither Priv 4 Publi nor Sys 4 Publi hold, then writing

let query1 : bool

Publi

= : : :

let query2 : bool

Publi

= : : :

auses both de�nitions to beome ill-typed, thus revealing

and forbidding the leaks. Thus, typing assertions may be

used to express, and statially enfore, a seurity poliy.

9 Aess ontrol

Information �ow analysis o�ers a way of proving an un-

trusted program orret with respet to a seurity poliy.

However, it is a restritive disipline, sine it does not allow

delassi�ation. For instane, a funtion whih ompares a

seret password string against a given input must return a

seret result, even though it usually yields far less than one

bit of information about the password. Thus, some useful

programs annot be proved orret; for this reason, trust, in

the form of aess ontrol, must be re-introdued.

9.1 A alulus with aess ontrol

Let us brie�y desribe expliit aess ontrol. Assume given

a �xed set of prinipals P, equipped with an arbitrary binary

relation <. The assertion p < q intuitively means that p ats

for q, i.e. q trusts p. As a result, q grants p the ability of

diretly aessing any value to whih q has aess. Assume

the alulus' syntax inludes the following produtions:

e ::= terms

j lok

p

loking (p 2 P)

j unlok

p

unloking (p 2 P)

j : : :

9

Assume its semantis inludes the following redution rule:

unlok

p

(lok

q

e)! e if p < q

Then, a value loked with q's authority beomes unusable

until it is unloked by some prinipal p whih ats for q. Any

attempt to unlok a value by an unauthorized prinipal re-

sults in a failure. Of ourse, in pratie, some ompiler and

operating system support is required to ensure that unlok

p

is only used in ode whih atually ats on behalf of prinipal

p. This usually requires the use of ryptographi authenti-

ation tehniques.

It is also possible to design a alulus with impliit aess

ontrol, i.e. where every value is impliitly loked upon re-

ation, and unloked upon aess, as in e.g. [12℄. We disuss

both ases below.

9.2 Typing

Again, extending an existing type system with aess ontrol

features an be done abstratly, i.e. independently of the

system's de�nition, using a translation-based approah. Let

us brie�y sketh how.

Assume given a target alulus with pairs hh�; �ii, plus, for

every prinipal p 2 P, a onstant p and a primitive operation

atsfor

p

. Require (atsfor

p

v) to be well-typed only if v is

a onstant q 2 P suh that p < q. To easily meet this

requirement, the target system's implementor may wish to

assume (P;<) forms a lattie. De�ne a type system for the

soure alulus by lifting the target system through a simple

enoding:

Jlok

p

K = �x:hhx; pii

Junlok

p

K = �x:

letp hhx; qii = x in

atsfor

p

q ;

x

Then, the derived type system enjoys subjet redution and

progress properties. In partiular, aess ontrol is entirely

stati: if a program is well-typed, then all of its aess on-

trol heks must sueed. As a result, all heks an be

ompiled away. In other words, the above enoding only

serves typing, not ompilation, purposes.

9.3 Combining information �ow and aess ontrol

Information �ow and aess ontrol may oexist. Extend

the syntax and semantis of the soure alulus presented in

setion 3 with (expliit or impliit) aess ontrol features,

while preserving its stability property. Find a typed target

alulus equipped with prinipal onstants p 2 P, label on-

stants l 2 L, and suitable operations thereon. Then, lift the

target type system through an appropriate enoding.

If the soure alulus has impliit aess ontrol, then a

simple enoding, where every expression e is mapped to a

triple he

; e

p

; e

l

i, will do. The omponents of the triple re-

spetively represent e's omputational ontent, the prinipal

whose authority has been used to lok e, and e's label. This

yields a system where every type arries two annotations, a

prinipal and a label.

If the soure alulus has expliit aess ontrol opera-

tions, then a di�erent enoding must be used. Map every ex-

pression e to a pair h�; e

l

i, whose �rst omponent is hhe

; e

p

ii,

if e is loked, and simply e

otherwise. This is exatly the

enoding presented in setion 5, extended to deal with lok

p

and unlok

p

. As before, it yields a system where every type

arries one (information �ow) label. A value of omputa-

tional type �, arrying a label ', will reeive type �

'

if it is

unloked, and (� � loked)

'

if it is loked at level �. Here,

loked is the type onstrutor assoiated with pairs of the

form hh�; �ii in the target system.

In ommon programs, aess ontrol features should be

used only at a few key plaes. For this reason, making a-

ess ontrol expliit, rather than impliit, may be preferable.

Indeed, this approah yields types whih are usually more

onise, and where aess ontrol restritions are syntati-

ally more apparent.

Marrying information �ow analysis with aess ontrol is

not a new idea. Stoughton [25℄ and Heintze and Rieke [12℄

notie that aess ontrol and information �ow ontrol serve

di�erent purposes, and propose hybrid systems where both

mehanisms oexist.

However, these works fail, in our opinion, to make a ru-

ial point: the two mehanisms are entirely unrelated, and

should oexist without interating. Indeed, aess ontrol

involves prinipals, trust and authentiation, while informa-

tion �ow ontrol requires neither. Furthermore, desribing

aess ontrol usually involves introduing some form of se-

urity violation in the language's semantis, while informa-

tion �ow ontrol does not. Why? Aess ontrol implements

a �xed seurity poliy, de�ned by (P;<); it is meaningless

in the absene of suh a poliy. Information �ow ontrol,

on the other hand, does make sense even when (L;4) is left

unspei�ed, as pointed out in setion 8.3, beause it is only

a dependeny analysis. It does not, fundamentally, have

anything to do with seurity, whih explains why it an be

formalized without a notion of seurity violation.

Why suh emphasis on this point? Both Stoughton [25℄

and Heintze and Rieke [12℄ de�ne systems where aess on-

trol and information �ow interat, by identifying prinipals

with labels, i.e. setting P = L, and requiring every value

to arry an information �ow label l whih is less restritive

than its aess ontrol label p, i.e. l 4 p. Furthermore, [12℄

de�nes an operational semantis where both kinds of labels

interat: the expression (protet

ir

v) uses the information

�ow label ir to update not only v's information �ow label,

but also its aess ontrol label.

In these works, the alleged justi�ation for requesting

l 4 p is as follows. p tells who may use the value diretly,

while l tells who may use it indiretly, i.e. have (possibly

partial) aess to the information ontained in it. Beause

any prinipal who is granted diret aess is thereby granted

indiret aess at the same time, requiring l 4 p may seem

natural. We deem it wrong, however, beause these notions

are really orthogonal: while p indeed tells who may use the

value, l tells whih information it ontains. Mixing the two

mehanisms yields a needlessly omplex system. Separating

them makes the system more modular, oneptually sim-

pler, and potentially more expressive, sine P and L may be

distint.

Myers and Liskov [15, 14℄ propose a �deentralized� label

model whih is a subtle mixture of aess ontrol and infor-

mation �ow ontrol. The model also rests on a set of prin-

ipals (P;<). A label is a set of tagged poliies, where the

tag arried by every poliy is a prinipal, alled its owner.

A poliy is a set of prinipals, alled readers. Labels form a

pre-order, whose underlying order is a lattie; it is used, as in

this paper, to perform information �ow analysis. However,

Myers and Liskov also allow a number of �safe� delassi�a-

tion operations: a prinipal p may hoose to relax the label

10

arried by a given value, by arbitrarily modifying any poliy

owned by a prinipal q whih it ats for. Of ourse, p is not

allowed to a�et the poliies owned by prinipals whose trust

it has not reeived. So, labels do not only arry dependeny

information; they also ontain aess ontrol information,

sine the use of delassi�ation is restrited.

We think Myers and Liskov's model has signi�ant pra-

tial interest. However, we believe that omparable expres-

sive power

3

an be ahieved in a theoretially simpler sys-

tem. Indeed, imagine orthogonal aess ontrol and infor-

mation �ow ontrol, as suggested above. Then, one may

seletively allow delassi�ation by providing, in the initial

typing environment, a number of delassi�ation operations,

loked at appropriate levels of authority. The sets P and L

may, in general, be hosen independently; only the types of

the delassi�ation operations provide a onnetion between

the two. This presentation of the system is modular and ab-

strat. By varying P, L, and the level of authority required

by eah delassi�ation operation, one obtains a wide range

of onrete systems, some of whih are in fat very lose to

Myers and Liskov's, and have omparable expressiveness.

We prefer to present delassi�ation as seletive, rather

than safe, sine its use breaks the non-interferene property

� at least partially. Although it is only a matter of terminol-

ogy, speaking of �safe� delassi�ation is somewhat mislead-

ing: this sort of delassi�ation is only safe for prinipals

whose authority is not granted to the operation.

Let us illustrate our proposal with a very simple example,

inspired from the ACCAT Guard [6℄. Assume L is the lattie

produt of the 2-point lattie Seret = fl 4 hg with some

unspei�ed lattieM. Thus, in a alulus with (say) impliit

aess ontrol, types will be of the form �

�; (�; �)

, where �, �

and � range over P, Seret and M, respetively. Assume

the initial typing environment o�ers the binding

delass : 8���:(�

�; (h; �)

! �

�; (l; �)

)

swo; �

where swo 2 P is a �xed prinipal. Then, information

may freely �ow from level (l;m) to level (h;m), for any

m 2 M, sine the former is a sub-type of the latter. How-

ever, the only way of allowing �ows in the reverse diretion

is to use delass, whih requires approval by the prinipal

swo, sine it must be unloked when invoked. This allows

modeling a �guard�, i.e. a gateway between a lassi�ed and

a non-lassi�ed system, where �ows whih appear to vio-

late seurity must be approved by a trusted Seurity Wath

O�er. Furthermore, notie that even the prinipal swo

may not perform arbitrary delassi�ations: it is unable to

modify the seond omponent of labels. Thus, a partial non-

interferene result holds: a result whose information label is

(� ;m) annot depend on any input whose label is (� ; n),

where n 62 # m. For instane, if Nulear and Strategi are

inomparable elements of M, then a omputation whose re-

sult type is (l;Nulear) annot leak any information of type

(l; Strategi), even though it may reveal some information

of level (h;Nulear). This is exatly what Myers and Liskov

term �safe� delassi�ation.

10 Disussion

We have shown how to systematially extend an arbitrary

type system with dependeny information, and how sound-

ness and non-interferene proofs for the new system may

3

assuming (P;<) is �xed, i.e. may not vary at runtime.

rely upon, rather than dupliate, the soundness proof of the

original system. This allows enrihing virtually any of the

type systems known today with information �ow analysis,

while requiring only a minimal proof e�ort.

We reently beame aware of Ross and Sagiv's redution

of a �ow dependene problem to a may-alias problem [23℄.

Although the programming language (�rst-order, imperative

vs. higher-order, funtional) and the target system (pointer

analysis vs. type inferene) onsidered are rather di�erent

from ours, both papers rely on a similar enoding, where

every value is translated to a pair of a value and a tag. We

take this as evidene of the strength of this redutionisti

approah.

Our work omplements Abadi et al.'s [1℄. They show that

several program analyses, inluding serey and integrity

analyses, program sliing, and binding-time analysis, are de-

pendeny analyses, whih only di�er by the hoie of the

information lattie L. As a unifying dependeny alulus,

they propose a simply-typed �-alulus, based on Moggi's

omputational �-alulus. In turn, we show that it is pos-

sible to enrih any standard type system with dependeny

information. Combining these results yields expressive type

systems for all of the analyses above.

By varying L, a dependeny analysis may be used to

obtain serey or integrity guarantees about a program. It

is interesting to notie that both may be obtained at the

same time, without requiring two annotations per type: one

is enough, provided L is the produt of a serey lattie

with an integrity lattie. The same trik an be applied to

aess ontrol: by labeling data with �loks�, rather than

prinipals, and hoosing the lattie of loks to be the lattie

produt of (P;<) with its own dual, a single annotation

su�es to manage and enfore restritions on value aess

and reation. Thus, extending the SLam alulus to deal

with integrity [12, setion 4℄ was unneessary: not only is

it enough to maintain two seurity annotations, rather than

four, but no new orretness proof needs be given.

In fat, in a type system enrihed with dependeny an-

notations, a polymorphi type sheme (suh as that of exists,

given in setion 8.3) fully and abstratly desribes the de-

pendenies indued by a piee of ode. (This idea appears in

several previous works, e.g. [6, 5, 27℄.) Indeed, it douments

not only the behavior of the ode at di�erent seurity lev-

els, but also within di�erent seurity latties. This explains

the remark of the previous paragraph: rather than add new

annotations, use a new lattie.

We have argued that aess ontrol and information �ow

ontrol should be implemented independently. The latter

is not a re�nement of the former; they are di�erent meha-

nisms. One is based on trust, the other on proof. It is possi-

ble, however, to let them oexist within a single design. We

have shown that this gives rise to interesting possibilities,

inluding seletive delassi�ation.

To onlude, we believe we have found a very lightweight

approah to non-interferene proofs. It is based on an un-

typed operational semantis for a labelled alulus, together

with a translation to an unlabelled alulus. Two basi re-

sults must be proved: a stability theorem, whih states that

the labelled semantis never �drops� labels, and a simula-

tion lemma, whih shows that the translation is meaningful.

Beause of its simpliity, this approah should be diretly

appliable to other omputing paradigms, suh as objet or

proess aluli. We are urrently investigating this issue.

11

Referenes

[1℄ M. Abadi, A. Banerjee, N. Heintze, and J. G. Rieke. A

ore alulus of dependeny. In Conferene Reord of

the 26th ACM Symposium on Priniples of Program-

ming Languages, pages 147�160, San Antonio, Texas,

Jan. 1999. URL: http://pa.bell-labs.om/~abadi/Papers/

flowpopl.ps.

[2℄ M. Abadi, B. Lampson, and J.-J. Lévy. Analysis and

ahing of dependenies. In Proeedings of the 1996

ACM SIGPLAN International Conferene on Fun-

tional Programming, pages 83�91, Philadelphia, Penn-

sylvania, May 1996. URL: http://pa.bell-labs.om/~abadi/

Papers/make-preprint.ps.

[3℄ A. Aiken, M. Fähndrih, J. S. Foster, and Z. Su. A

toolkit for onstruting type- and onstraint-based pro-

gram analyses. Leture Notes in Computer Siene,

1473:78, 1998. URL: http://www.s.berkeley.edu/~aiken/

papers/ti98.ps.

[4℄ G. R. Andrews and R. P. Reitman. An axiomati

approah to information �ow in programs. ACM

Transations on Programming Languages and Systems,

2(1):56�76, Jan. 1980.

[5℄ J.-P. Banâtre, C. Brye, and D. Le Métayer. Compile-

time detetion of information �ow in sequential pro-

grams. In D. Gollmann, editor, Proeedings of the

3rd European Symposium on Researh in Computer

Seurity, volume 875 of Leture Notes in Computer

Siene, pages 55�74. Springer Verlag, 1994. URL:

ftp://ftp.irisa.fr/loal/lande/dlm-esoris94.ps.Z.

[6℄ D. E. Denning. Cryptography and Data Seurity.

Addison-Wesley, Reading, Massahusetts, 1982.

[7℄ D. E. Denning and P. J. Denning. Certi�ation of pro-

grams for seure information �ow. Communiations of

the ACM, 20(7):504�513, July 1977.

[8℄ J. S. Fenton. Memoryless subsystems. The Computer

Journal, 17(2):143�147, May 1974.

[9℄ C. Fournet, L. Maranget, C. Laneve, and D. Rémy.

Impliit typing à la ML for the join-alulus. In

8th International Conferene on Conurreny Theory

(CONCUR'97), volume 1243 of Leture Notes in Com-

puter Siene, pages 196�212, Warsaw, Poland, 1997.

Springer. URL: ftp://ftp.inria.fr/INRIA/Projets/ristal/

Didier.Remy/typing-join.ps.gz.

[10℄ Y.-C. Fuh and P. Mishra. Polymorphi subtype in-

ferene: Closing the theory-pratie gap. In J. Díaz

and F. Orejas, editors, Proeedings of the International

Joint Conferene on Theory and Pratie of Software

Development : Vol. 2, volume 352 of LNCS, pages 167�

183, Berlin, Mar. 1989. Springer.

[11℄ J. Goguen and J. Meseguer. Seurity poliies and seu-

rity models. In Proeedings of the 1982 IEEE Sympo-

sium on Seurity and Privay, pages 11�20, Apr. 1982.

[12℄ N. Heintze and J. G. Rieke. The SLam alulus: Pro-

gramming with serey and integrity. In Conferene

Reord of the 25th ACM Symposium on Priniples of

Programming Languages, pages 365�377, San Diego,

California, Jan. 1998. URL: http://m.bell-labs.om/m/

s/who/nh/slam.ps.

[13℄ B. W. Lampson. A note on the on�nement prob-

lem. Communiations of the Assoiation for Comput-

ing Mahinery, 16(10):613�615, Ot. 1973. URL: http://

researh.mirosoft.om/lampson/11-Confinement/WebPage.html.

[14℄ A. C. Myers. Mostly-Stati Deentralized Informa-

tion Flow Control. PhD thesis, Massahusetts In-

stitute of Tehnology, Jan. 1999. Tehnial Re-

port MIT/LCS/TR-783. URL: http://www.s.ornell.edu/

andru/release/tr783.ps.gz.

[15℄ A. C. Myers and B. Liskov. Complete, safe informa-

tion �ow with deentralized labels. In Proeedings of

the 1998 IEEE Symposium on Seurity and Privay,

pages 186�197, May 1998. URL: http://www.s.ornell.

edu/andru/papers/sp98/top.html.

[16℄ M. Odersky, M. Sulzmann, and M. Wehr. Type infer-

ene with onstrained types. Theory and Pratie of

Objet Systems, 5(1), 1999. URL: http://www.s.mu.oz.au/

~sulzmann/publiations/tapos.ps.

[17℄ P. Ørbæk and J. Palsberg. Trust in the �-alulus.

Journal of Funtional Programming, 7(6):557�591,

Nov. 1997. URL: http://www.s.purdue.edu/homes/palsberg/

paper/jfp97.ps.gz.

[18℄ J. Palsberg and P. Ørbæk. Trust in the �-

alulus. Leture Notes in Computer Siene, 983:314�

330, 1995. URL: ftp://ftp.daimi.au.dk/pub/empl/poe/

lambda-trust.dvi.gz.

[19℄ F. Pottier. Simplifying subtyping onstraints: a

theory. Submitted for journal publiation, De.

1998. URL: http://pauilla.inria.fr/~fpottier/publis/

fpottier-journal-98.ps.gz.

[20℄ F. Pottier. Type inferene in the presene of subtyping:

from theory to pratie. Tehnial Report 3483, INRIA,

Sept. 1998. URL: ftp://ftp.inria.fr/INRIA/publiation/RR/

RR-3483.ps.gz.

[21℄ D. Rémy. Projetive ML. In 1992 ACM Conferene on

Lisp and Funtional Programming, pages 66�75, New-

York, 1992. ACM Press. URL: ftp://ftp.inria.fr/INRIA/

Projets/ristal/Didier.Remy/lfp92.ps.gz.

[22℄ D. Rémy and J. Vouillon. Objetive ML: A sim-

ple objet-oriented extension of ML. In Proeedings

of the 24th ACM Symposium on Priniples of Pro-

gramming Languages, pages 40�53, Paris, Frane, Jan.

1997. URL: ftp://ftp.inria.fr/INRIA/Projets/ristal/

Didier.Remy/objetive-ml!popl97.ps.gz.

[23℄ J. L. Ross and M. Sagiv. Building a bridge between

pointer aliases and program dependenes. Nordi Jour-

nal of Computing, 5(4):361�386, 1998. URL: http:

//www.math.tau.a.il/~sagiv/nj98.ps.

[24℄ G. S. Smith. Polymorphi type inferene with overload-

ing and subtyping. In M.-C. Gaudel and J.-P. Jouan-

naud, editors, TAPSOFT'93, volume 668 of Leture

Notes in Computer Siene, pages 671�685. Springer-

Verlag, Apr. 1993.

12

[25℄ A. Stoughton. Aess �ow: A protetion model whih

integrates aess ontrol and information �ow. In Pro-

eedings of the 1981 IEEE Symposium on Seurity and

Privay, pages 9�18, 1981.

[26℄ V. Trifonov and S. Smith. Subtyping onstrained types.

In Proeedings of the Third International Stati Analy-

sis Symposium, volume 1145 of LNCS, pages 349�365.

SV, Sept. 1996. URL: http://www.s.jhu.edu/~trifonov/

papers/subon.ps.gz.

[27℄ D. Volpano and G. Smith. A type-based approah to

program seurity. Leture Notes in Computer Siene,

1214:607�621, Apr. 1997. URL: http://www.s.nps.navy.

mil/people/faulty/volpano/papers/tapsoft97.ps.Z.

[28℄ A. K. Wright and M. Felleisen. A syntati approah

to type soundness. Information and Computation,

115(1):38�94, Nov. 1994. URL: http://www.s.rie.edu/

CS/PLT/Publiations/i94-wf.ps.gz.

13

