
Information Flow Inferen
e For Free

François Pottier

�

Fran
ois.Pottier�inria.fr

Sylvain Con
hon

�

Sylvain.Con
hon�inria.fr

Abstra
t

This paper shows how to systemati
ally extend an arbitrary

type system with dependen
y information, and how sound-

ness and non-interferen
e proofs for the new system may

rely upon, rather than dupli
ate, the soundness proof of the

original system. This allows enri
hing virtually any of the

type systems known today with information �ow analysis,

while requiring only a minimal proof e�ort.

Our approa
h is based on an untyped operational seman-

ti
s for a labelled
al
ulus akin to
ore ML. Thus, it is sim-

ple, and should be appli
able to other
omputing paradigms,

su
h as obje
t or pro
ess
al
uli.

The paper also dis
usses a

ess
ontrol, and shows it

may be viewed as entirely independent of information �ow

ontrol. Letting the two me
hanisms
oexist, without inter-

a
ting, yields a simple and expressive type system, whi
h

allows, in parti
ular, �sele
tive� de
lassi�
ation.

1 Introdu
tion

Today,
onsiderable amounts of military,
ommer
ial, or per-

sonal data are pro
essed and stored in
omputer systems.

Thus, valuable data must be prote
ted against deliberate

or a

idental release or
orruption, whi
h may be
aused

not only by individuals, but also by programs. A

ess
on-

trol me
hanisms provide some prote
tion, but require the

programs to whi
h a

ess is granted to be un
onditionally

trusted. Allowing inspe
tion or update of the data by un-

trusted programs requires analyzing their
ode, to ensure

that it meets some se
urity poli
y. This pro
ess is
alled

information �ow analysis.

The need for su
h a form of prote
tion was identi�ed

very early [13℄. Following military pra
ti
e, several authors

suggested assigning a se
urity level to every program vari-

able, and requiring that information be allowed to �ow only

from lower level variables to higher ones. The te
hniques

proposed to enfor
e this restri
tion involved se
urity
he
ks

at run-time [8℄, at
ompile-time [7℄, or as part of a man-

ual proof pro
ess [4℄. Se
urity levels o�er a simple way of

guaranteeing non-interferen
e � a property whi
h allows de-

�

INRIA, BP 105, F-78153 Le Chesnay Cedex, Fran
e.

To be presented at the International Conferen
e on

Fun
tional Programming, Montréal, Canada, Septem-

ber 2000.

s
ribing many se
urity poli
ies, in
luding (
ombinations of)

se
re
y and integrity requirements [11℄.

Non-interferen
e states the absen
e of dependen
y be-

tween (part of) a program's inputs and (part of) its outputs.

Thus, information �ow analysis is nothing but a dependen
y

analysis. This fa
t was pointed out by Abadi et al. [1℄, who

des
ribed a general-purpose dependen
y analysis in terms of

a type system for an extended �-
al
ulus.

In our eyes, expressing dependen
y properties in terms

of types is a highly
ommendable approa
h. Indeed, it has

no run-time
ost, and o�ers a
orre
tness guarantee prior to

program exe
ution. Types are usually simple, predi
table,

and may serve as a spe
i�
ation language. Lastly, this al-

lows automating the
onstru
tion of
orre
tness proofs, pro-

vided type inferen
e is available

1

. In fa
t, later versions

of Denning's
ompile-time
erti�
ation system [6℄ bear a

strong resemblan
e with today's polymorphi
,
onstraint-

based type systems. Yet, to the best of our knowledge, the

�rst type-based information �ow analysis is due to Pals-

berg and Ørbæk, who developed a typed �-
al
ulus with in-

tegrity annotations [18, 17℄. This work was, unfortunately,

not supported by a non-interferen
e proof. It was followed

by several others,
on
erned with preserving se
re
y in a

�rst-order imperative language [27℄, a higher-order fun
-

tional language [12, 1℄, or in Java [14℄.

Although these works o�er a wide variety of te
hniques

and ideas, none of them provides polymorphism and type in-

feren
e � features routinely found in modern typed program-

ming languages � together with a non-interferen
e proof. For

instan
e, Myers [14℄ o�ers a very powerful system, but is un-

able to prove its
orre
tness, due to the sheer number of its

features. Heintze, Rie
ke, Abadi and Banerjee [12, 1℄ only

propose simply-typed �-
al
uli. One may
onje
ture that

their non-interferen
e proofs, based on logi
al relations and

(in the later paper) on a
ategori
al semanti
s of �-
al
ulus,

annot easily deal with re
ursive or polymorphi
 types. Vol-

pano and Smith's type inferen
e algorithm [27℄ infers prin-

ipal type s
hemes, but does not use them to its own advan-

tage. Rather, it textually expands �let� de�nitions, whi
h

takes exponential time. The reason for this weakness may

be the e�ort involved in dupli
ating a
orre
tness proof for

a truly polymorphi
,
onstraint-based type system.

This paper des
ribes a systemati
 way of extending an

existing type system with information �ow
ontrol. Given

an arbitrary type system for
ore ML, we build a related

system, whose types
arry se
urity annotations, and whose

orre
tness, in
luding non-interferen
e, rests upon the origi-

1

These are, of
ourse, only well-known advantages of strong typing.

nal's. Thus, we avoid proof dupli
ation, and obtain a formal

non-interferen
e result at a very small
ost.

Varying the original system yields a whole family of prov-

ably
orre
t, information �ow-aware type systems, showing

that information �ow analysis may be readily
ombined with

re
ursive types, polymorphism, type inferen
e, or other ad-

van
ed type-theoreti
 features. Our proofs rely on an un-

typed operational semanti
s. This approa
h has several

advantages. It requires no domain- or
ategory-theoreti

knowledge. It does not make any assumptions about the

form of types, allowing any type system to be used as a

starting point. Furthermore, it should be appli
able to other

languages, su
h as �-
al
uli with side e�e
ts, obje
t
al
uli,

or pro
ess
al
uli, whi
h already enjoy ri
h type systems

(e.g. [9℄), yet may not have a denotational semanti
s.

We
on
lude with a
omparison of information �ow
on-

trol and a

ess
ontrol, and argue that these me
hanisms

may usefully
oexist, while remaining entirely independent

at a theoreti
al level. On the whole, we believe this paper

gives rise to the most powerful type systems equipped with

stati
 information �ow and a

ess
ontrol to date, with min-

imal theoreti
al overhead. We hope it will serve as a useful

pra
ti
al guide for programming language implementors.

2 Overview

It seems intuitively obvious that the simplest way of dynam-

i
ally tra
king information �ow throughout a
omputation

is to mark its inputs with labels, and to require every opera-

tion to
opy the labels
arried by its arguments to its result.

Provided labels are properly
opied, none
an be dropped

along the way; so, the �nal result must
arry the labels of

all inputs whi
h have e�e
tively been used. Reversing this

statement, we see that the �nal result
annot depend on any

input whose label it does not
arry. This route is taken by

Abadi, Lampson and Lévy [2℄, who develop a labelled �-

al
ulus in order to dynami
ally analyze dependen
ies. It

exhibits two di�eren
es with ordinary �-
al
ulus. First, ex-

pressions may
arry a label; se
ond, a new redu
tion rule

opies labels, for
ing the result of every fun
tion appli
a-

tion to retain the label atta
hed to the fun
tion. We review

this
al
ulus in se
tion 3, and prove that �labels
annot be

dropped� by stating a stability theorem.

Abadi, Lampson and Lévy's labelled �-
al
ulus, ex-

tended with a �let�
onstru
t, is our starting point. However,

we wish to analyze dependen
ies stati
ally, rather than dy-

nami
ally; in fa
t, we plan to do so by building a type system

for the labelled
al
ulus. To this end, it seems natural to

pi
k some existing type system for
ore ML, and enri
h it

with information about labels. However, if we modify an ex-

isting system, then we must also modify its
orre
tness proof

� whi
h essentially means dupli
ating it. (This approa
h is

followed in all papers to date.) Instead, we wish to build

on the system's
orre
tness theorem, regardless of its proof.

Thus, we
annot a�ord to modify the existing system; in-

stead, we must use it as a building blo
k � a bla
k box � in

the de�nition of the new system.

However, neither labelled expressions, nor the extra re-

du
tion rule are known to a type system for
ore ML. How

to �explain� these features to it? Our answer is to devise

a translation s
heme. Using it, we turn a program written

in the labelled
al
ulus into a
ore ML program, whi
h we

an then submit to a traditional type system. Be
ause our

translation s
heme is
omputationally meaningful, the type

thus produ
ed makes sense: it des
ribes the behavior of the

original program with respe
t to data and to labels.

The en
oding is extremely simple. It maps every sour
e

expression to a pair, whose �rst
omponent represents the

expression's
omputational
ontent, and whose se
ond
om-

ponent
ontains (an approximation of) its label. Of
ourse,

the target
al
ulus must have pairs, as well as a family of

onstants whi
h represent labels. We de�ne su
h a
al
ulus

in se
tion 4. We then des
ribe the translation s
heme, and

give a fundamental simulation lemma, in se
tion 5.

In se
tion 6, we assume given a type system for the target

al
ulus. We de�ne a small number of requirements about

it, most notably a synta
ti
 type soundness theorem. Then,

we impose this type system on the sour
e
al
ulus, through

our translation. We show that the system thus obtained is

also sound, and enjoys a non-interferen
e property.

In se
tion 7, we note that our translation s
heme is a bit

naïve, and may
ause an exponential in
rease in the size of

programs. To remedy this, we de�ne a variant of it, whi
h

only has linear overhead, and show that it is equivalent, as

far as typing is
on
erned.

In se
tion 8, we illustrate our theoreti
al
onstru
tion

with a
on
rete example. We pi
k an existing type inferen
e

system for
ore ML [20℄, show that it meets our require-

ments, and give a
on
rete des
ription of the
orresponding

information �ow-aware system. We illustrate its power by

running it on a small, but typi
al, program.

Se
tion 9 dis
usses a

ess
ontrol, and argues that it is in-

dependent of information �ow
ontrol. The two me
hanisms

may of
ourse
oexist; we show that this allows sele
tive de-

lassi�
ation à la Myers and Liskov [15℄.

Se
tion 10 dis
usses our
ontribution and
on
ludes.

3 Sour
e
al
ulus

3.1 Presentation

Our sour
e
al
ulus is exa
tly Abadi, Lampson and Lévy's

labelled �-
al
ulus [2℄, extended with a �let�
onstru
t in the

style of ML.

e ::= sour
e terms

j k integer
onstant (k 2 N)

j x variable (x 2 V)

j �x:e abstra
tion (x 2 V)

j (e e) appli
ation

j let x = e in e lo
al de�nition (x 2 V)

j l : e labelled term (l 2 L)

The set V of program variables is assumed to be denumer-

able. No assumptions are made, at this point, about the set

of labels L.

The operational semanti
s for the
al
ulus follows. Rules

(�), (let) and (
ontext) are standard. In rule (
ontext), C

ranges over arbitrary
ontexts: we do not yet
hoose a par-

ti
ular evaluation strategy. Rule (lift) allows moving labels

outwards as little as possible to permit �-redu
tion. In other

words, (lift) moves the label of a fun
tion to its result, so

as to re
ord the fa
t that it has been used in produ
ing it,

and,
onsequently, that the result depends on it.

(�x:e

1

) e

2

! e

1

[e

2

=x℄ (�)

let x = e

1

in e

2

! e

2

[e

1

=x℄ (let)

(l : e

1

) e

2

! l : (e

1

e

2

) (lift)

C[e

1

℄ ! C[e

2

℄ if e

1

! e

2

(
ontext)

2

From a pra
ti
al point of view, labels may be inserted into

the
ode as a way of supplying se
urity information. Spe-

i�
 labels may be used, for instan
e, to indi
ate that the

result of
ertain expressions must be kept se
ret (e.g. if it

is deemed to
ontain
on�dential information), or must not

be trusted (e.g. if it was read from a publi
 input
hannel).

Noti
e, however, that no �xed meaning is built into labels.

Labels merely tra
k dependen
ies; their �meaning� only ex-

ists in the user's mind. After we de�ne a type system for

this
al
ulus, the user will be able to add stati
 typing asser-

tions, to programs, thereby de�ning a se
urity poli
y, and

giving �meaning� to labels. Be
ause the poli
y is stati
ally

enfor
ed, the semanti
s does not have �se
urity violations�.

Example To illustrate every step taken throughout the pa-

per, we will use a very simple running example. Assuming

l and h are labels, let e = (l : (�xy:y)) (h : 27). Then,

e ! l : ((�xy:y) (h : 27)) by (lift)

! l : (�y:y) by (�)

Rule (lift) moves the label l up one node. This exposes the

�-redex, allowing the fun
tion �xy:y to re
eive its argument.

At the same time, this guarantees that the appli
ation's re-

sult is tagged l, thus re
ording its dependen
y on the sub-

term l : (�xy:y). Noti
e how the sub-term h : 27, whi
h is

unused, is dropped during �-redu
tion, label in
luded.

3.2 A stability theorem

Thanks to the presen
e of expli
it labels, this
al
ulus enjoys

a simple,
onstru
tive stability theorem. Given a
omputa-

tion sequen
e e!

?

f , it guarantees that f does not depend

on any sub-term of e whi
h
arries a label not found in f .

More pre
isely, it states that the pre�x of e obtained by

�pruning� all su
h sub-terms is still able to produ
e f , in

spite of the missing information.

We begin with some standard de�nitions. A pre�x is an

expression whi
h may have missing sub-expressions:

e ::= pre�xes

j hole

j : : :

A pre�x e is a pre�x of another pre�x (or expression) e

0

if e

mat
hes e

0

, ex
ept e may have more holes; we write e � e

0

.

For the purposes of redu
tion, we treat like a free variable.

Pre�xes enjoy the following monotoni
ity property:

Lemma 3.1 Let e, e

0

be pre�xes su
h that e � e

0

. If f is

an expression su
h that e!

?

f , then e

0

!

?

f .

Given an arbitrary set of labels L � L, we de�ne the

fun
tion b�

L

, whi
h maps any pre�x e to a pre�x of itself:

bl : e

L

= when l 62 L

bl : e

L

= l : be

L

when l 2 L

b

L

=

bk

L

= k

bx

L

= x

b�x:e

L

= �x:be

L

be

1

e

2

L

= (be

1

L

be

2

L

)

blet x = e

1

in e

2

L

= let x = be

1

L

in be

2

L

Informally speaking, b�

L

removes every sub-term whi
h
ar-

ries a label not found in L.

We are now ready to state the stability theorem. We

supply its proof, not be
ause of its interest, but rather be-

ause we wish to insist on its simpli
ity. It begins with the

following auxiliary lemma.

Lemma 3.2 If e ! f may be derived by applying (�) or

(let), or by (lift)-ing a label l 2 L, then be

L

! bf

L

.

Proof. Case (�). Then, e = ((�x:e

1

) e

2

) ! e

1

[e

2

=x℄ =

f . So, be

L

= ((�x:be

1

L

) be

2

L

) ! be

1

L

[be

2

L

=x℄ =

be

1

[e

2

=x℄

L

= bf

L

. Case (let) is similar.

Case (lift). Then, e = ((l : e

1

) e

2

) ! l : (e

1

e

2

) = f .

Be
ause l 2 L, be

L

is ((l : be

1

L

) be

2

L

. By (lift), this

redu
es to l : (be

1

L

be

2

L

) = bf

L

. 2

Theorem 3.1 (Stability) Assume e is a pre�x and f is

an expression. If e!

?

f and bf

L

= f , then be

L

!

?

f .

Proof. By indu
tion over the length of the derivation of

e!

?

f . In the base
ase, e equals f , and the result is imme-

diate. In the indu
tive
ase, we assume e! g !

?

f , where,

by indu
tion hypothesis, bg

L

!

?

f . Let C be a
ontext

su
h that e = C[e

0

℄, g = C[g

0

℄, and e

0

! g

0

, where e

0

! g

0

follows dire
tly from (�), (let) or (lift). De�ne D = bC

L

.

(Extend b�

L

to
ontexts in the obvious way.) Now, either

lemma 3.2 is appli
able to e

0

! g

0

, or it isn't.

If it is, then be

0

L

! bg

0

L

holds. So, be

L

= bC[e

0

℄

L

=

D[be

0

L

℄ !

?

D[bg

0

L

℄ = bC[g

0

℄

L

= bg

L

. Re
all that

bg

L

!

?

f ; the result follows.

If it isn't, then e

0

! g

0

is an instan
e of a (lift) rule

involving a label l 62 L. So, g

0

is of the form l : g

00

. Sin
e

g = C[l : g

00

℄ and l 62 L, bg

L

equals D[℄. Thus, it is a pre�x

of D[be

0

L

℄ = bC[e

0

℄

L

= be

L

. Re
all that bg

L

!

?

f ; by

lemma 3.1, this entails be

L

!

?

f . 2

Example The program e = (l : (�xy:y)) (h : 27) produ
es

the result l : (�y:y) = f . The only label that appears in

f is l, so bf

flg

= f . A

ording to theorem 3.1, the pre�x

be

flg

must redu
e to f as well. Indeed, we �nd

be

flg

= (l : (�xy:y))

! l : ((�xy:y)) by (lift)

! l : (�y:y) by (�)

By lemma 3.1, any expression whi
h has be

flg

as a pre�x

must redu
e to f as well. For instan
e, (l : (�xy:y)) (h : 68)

does. Using labels, we have determined that the sub-term

27 does not
ontribute to the
omputation e!

?

f .

4 Target
al
ulus

As explained in se
tion 2, we now wish to translate our

sour
e
al
ulus into a more
onventional, unlabelled
al
u-

lus, so as to be able to use some o�-the-shelf type system.

As our target
al
ulus, we
hoose
ore ML, extended with

pairs and label
onstants.

e ::= target terms

j k integer
onstant (k 2 N)

j x variable (x 2 V)

j �x:e abstra
tion (x 2 V)

j (e e) appli
ation

j let x = e in e lo
al de�nition (x 2 V)

j he; ei pair

j fst �rst pair proje
tion

j snd se
ond pair proje
tion

j l label
onstant (l 2 L)

j � label join

3

L e M = hL e M

1

; L e M

2

i

L k M

1

= k

Lx M

1

= fst x

L�x:e M

1

= �x:L e M

L e

1

e

2

M

1

= fst (L e

1

M

1

L e

2

M)

L let x = e

1

in e

2

M

1

= let x = L e

1

M in L e

2

M

1

L l : e M

1

= L e M

1

L k M

2

= �

Lx M

2

= snd x

L�x:e M

2

= �

L e

1

e

2

M

2

= L e

1

M

2

� snd (L e

1

M

1

L e

2

M)

L let x = e

1

in e

2

M

2

= let x = L e

1

M in L e

2

M

2

L l : e M

2

= l� L e M

2

Figure 1: Translation

For
larity, double appli
ations of � will be written using

in�x notation.

At this point, we assume the set of labels L is an up-

per semi-latti
e, whose least element, ordering relation, and

least upper bound operation are denoted �, 4 and g, respe
-

tively. For l 2 L, # l denotes the lower
one fm 2 L ; m 4 lg.

The
al
ulus is equipped with a standard operational

semanti
s, augmented with a new rule, (join), whi
h states

that � returns the least upper bound of its arguments.

(�x:e

1

) e

2

! e

1

[e

2

=x℄ (�)

let x = e

1

in e

2

! e

2

[e

1

=x℄ (let)

fst he

1

; e

2

i ! e

1

(�

1

)

snd he

1

; e

2

i ! e

2

(�

2

)

l�m ! l gm (join)

C[e

1

℄ ! C[e

2

℄ if e

1

! e

2

(
ontext)

In rule (
ontext), C again ranges over arbitrary
ontexts.

In the sour
e
al
ulus, an expression may
arry zero, one

or more labels. However, our translation s
heme (to be pre-

sented in se
tion 5) asso
iates exa
tly one label with every

expression. The least label � will also be used to represent

the absen
e of any label; the join operation, �, will be used

to
ompute a
onservative approximation of two labels. In

other words, the sour
e expressions e and � : e will be trans-

lated to equivalent target expressions; so will l : m : e and

(l g m) : e. This la
k of pre
ision will not be a problem.

In fa
t, even if the translation itself was not approximate,

the subsequent typing stage would
ertainly be: there is no

point, in pra
ti
e, in keeping tra
k of lists of labels.

Lastly, to allow formal reasoning about the fa
t that �

stands for an asso
iative operation, with neutral element �,

we de�ne an extended semanti
s, denoted !

�

, by adding

two extra rules to those above:

(e

1

� e

2

)� e

3

!

�

e

1

�(e

2

� e

3

) (asso
)

�� e !

�

e (neutral)

In parti
ular, !

�

ontains !.

5 Translation

A translation from the sour
e
al
ulus to the target
al
ulus

is de�ned in �gure 1. The translation fun
tion maps every

sour
e expression e to a pair L e M, whose �rst (resp. se
ond)

omponent is denoted L e M

1

(resp. L e M

2

). The fun
tions L � M,

L � M

1

and L � M

2

are de�ned using mutual indu
tion.

A sour
e expression e is mapped to a pair, whose �rst

omponent represents e's �a
tual value� (i.e. its
omputa-

tional
ontent), and whose se
ond
omponent represents e's

label. For instan
e, the unlabeled integer k is translated to

hk; �i � we use the least label � to denote the absen
e of a

label. �-abstra
tions are handled similarly. A variable x is

translated to hfst x; snd xi. Although it would be possible

to translate it as x, this is more homogeneous.

The translation of an appli
ation expression (e

1

e

2

)

makes the (lift)-ing pro
ess expli
it. A

ording to our
on-

vention, L e

1

M is a pair of a fun
tion and a label. We extra
t

the former, namely L e

1

M

1

, and apply it to its argument as

a whole, namely L e

2

M. This returns � again � a pair, whose

�rst
omponent � the
omputational
ontent � we then keep

un
hanged, and whose se
ond
omponent � the label � we

join with e

1

's label, namely L e

1

M

2

. Thus, the label atta
hed,

in the translation, with (e

1

e

2

), in
ludes (i.e. is greater than,

a

ording to 4) the one atta
hed with e

1

. Joining labels

allows keeping tra
k of a single label per expression, rather

than a list thereof. This is simpler, while still pre
ise enough

for our purposes.

Be
ause the expression L e

1

M

1

L e

2

M appears in L e

1

e

2

M

1

and in L e

1

e

2

M

2

, the size of L e M is exponential in the size

of e. From a purely theoreti
al point of view, this is not a

problem. We favor this formulation for its simpli
ity: thanks

to it, stating and proving a simulation lemma is very easy.

In pra
ti
e, however, e�
ien
y demands a linear en
oding.

We will de�ne one, and prove that it is equivalent to this

one, as far as typing is
on
erned, in se
tion 7. The reader

may wish to immediately have a look at its de�nition, given

in �gure 2.

Expressions of the form let x = e

1

in e

2

and l : e are

translated in a straightforward way (again, indu
ing expo-

nential behavior). Noti
e how L l : e M has the same
ompu-

tational
ontent as L e M, but has a greater label, due to the

join operation l� �.

It is a matter of pure routine to
he
k the following

lemma, whose proof we therefore omit.

Lemma 5.1 (Simulation) If e! f , then L e M !

?

�

L f M.

Example The translation of h : 27 is h27;h� �i. The

translation of l : (�xy:y) is h�x:h�y:hfst y; snd yi; �i; l� �i.

Thus, the term e = (l : (�xy:y)) (h : 27) is translated to

hfst a; (l� �)� snd ai, where a stands for

(�x:h�y:hfst y; snd yi; �i) h27;h� �i

Through (�), (�

1

), (�

2

), (asso
) and (neutral), L e M redu
es

to h�y:hfst y; snd yi; l� �i, whi
h is exa
tly L l : (�y:y) M =

L f M, in a

ordan
e with lemma 5.1.

6 Typing

6.1 Fixing a strategy

So far, we have not
ommitted to a parti
ular evaluation

strategy in the sour
e or target language. We must now

do so, mainly be
ause it seems we
annot otherwise state a

meaningful progress theorem � one of the two fundamental

type soundness theorems [28℄. Let us settle on
all-by-name

evaluation; we will dis
uss
all-by-value when appropriate.

4

In the sour
e language, let !

bn

be the redu
tion rela-

tion obtained by restri
ting rule (
ontext) to the following

subset of
ontexts. Furthermore, de�ne values, a subset of

expressions, as follows.

C ::= [℄ j (C e) j l : C

v ::= k j �x:e j l : v

We pro
eed similarly with the target language:

C ::= [℄ j (C e) j fst C j snd C j (� C) j (� l C)

v ::= k j �x:e j he; ei j fst j snd j l j � j (� l)

It is interesting to noti
e that the se
ond fundamental

type soundness theorem, namely subje
t redu
tion,
an be

stated independently of the redu
tion strategy: it su�
es to

require that types be preserved along all redu
tion paths.

We will in fa
t do so in the following.

6.2 Assumptions

From here on, we assume the target
al
ulus is equipped

with a type system. As explained in se
tion 2, we view it

as a �bla
k box�: that is, we make no assumptions about its

de�nition. Rather, we simply regard it as a relation between

losed target expressions and types, satisfying a small num-

ber of axioms. This frees us from
aring about typing rules,

environments,
onstraints, universal quanti�
ation, or other

subtleties involved in the system's inner workings. Thus, we

assume typing judgements are of the form e : t, where e is a

losed target expression, and t belongs to some (unspe
i�ed)

set of types T .

We now present our assumptions about the type sys-

tem, in the form of 6 axioms. The �rst one states that any

(
losed) sub-expression of a well-typed expression is well-

typed. This axiom is satis�ed by all systems de�ned in terms

of stru
tural typing rules.

Axiom 1 (Compositionality) If e is a
losed expression

su
h that C[e℄ : t, then e : u holds for some u 2 T .

Our next two axioms
onstitute a synta
ti
 type sound-

ness hypothesis [28℄. The subje
t redu
tion axiom refers

to !

�

, whereas !

bn

would be expe
ted, sin
e we have

hosen a
all-by-name evaluation strategy. This strength-

ens it in two ways. First, repla
ing !

bn

with ! requires

types to be preserved by all redu
tions, rather than only by

all-by-name redu
tions. Many
ommon type systems, su
h

as Hindley/Milner's, are unaware of the evaluation strat-

egy, and satisfy this stronger axiom. Although working with

the usual (weak) version of the axiom may be possible, this

hoi
e simpli�es our proofs. Se
ond, repla
ing ! with !

�

requires (asso
) and (neutral) to preserve types as well.

Axiom 2 (Subj. red.) If e : t and e!

�

f , then f : t.

Axiom 3 (Progress) If e : t, then either 9f e !

bn

f ,

or e is a value.

The next axiom requires that every label l, whi
h is already

a valid expression in the target
al
ulus, be also a valid type

(possibly modulo some impli
it embedding). It also states

that, ifm is a valid type for l, where both l andm are labels,

then l must be below m in the semi-latti
e L.

Clearly, one way of implementing these requirements is

to de�ne a set of types T whi
h synta
ti
ally
ontains L, to

make l : l a valid typing judgement for every l 2 L, and to

de�ne a subtyping relationship whereby l is a subtype of m

if and only if l 4 m holds. We illustrate this approa
h in

se
tion 8. However, it is interesting to note that this axiom

does not demand subtyping. A system without subtyping,

but with a su�
ient degree of polymorphism, may also be

used. For instan
e, if L happens to be the power-set of a

set P (whi
h represents, say, prin
ipals), then labels may be

typed using P-indexed rows [21℄. A similar idea underlies

Obje
tive ML [22℄, a typed obje
t-oriented language whi
h

does not rely on subtyping.

Axiom 4 (Labels) Every label is a type: L � T . If l;m 2

L, then l : m implies l 4 m.

Our last two axioms
on
ern integers and pairs. They are

far less important than axioms 1�4: their main use is to help

formulate the non-interferen
e theorem in a ni
e way.

Axiom 5 (Integers) There is a type int 2 T . A value v

satis�es v : int if and only if it is an integer
onstant k 2 N.

Axiom 6 (Pairs) There is a partial fun
tion � : T

2

! T

su
h that he; fi : t� u implies e : t ^ f : u. Conversely, if e

and f are well-typed, then he; fi is well-typed.

Note that int and�may not dire
tly
orrespond to the type

system's own int and � type
onstru
tors. Indeed, what is

known as a type in this axiomatization may be known e.g.

as a type s
heme in the system's a
tual de�nition.

6.3 Typing the sour
e
al
ulus

We now de�ne the type system of the sour
e
al
ulus as the

omposition of the translation de�ned in se
tion 5 with the

type system of the target
al
ulus. That is, for any
losed

sour
e expression e, e : t holds if and only if L e M : t holds.

We noti
e that if the
hosen type system enjoys the existen
e

of prin
ipal types, or of a type inferen
e algorithm, then so

does the newly de�ned system.

This abstra
t de�nition su�
es to prove soundness and

non-interferen
e theorems about the derived system. Of

ourse, if one is given the rules whi
h de�ne the target sys-

tem, then one may
ombine them with the de�nition of L � M,

yielding a set of derived rules whi
h allow dire
t type
he
k-

ing/inferen
e in the sour
e
al
ulus. We will illustrate this

in se
tion 8.

The new system enjoys the following two soundness re-

sults. We omit the proof of theorem 6.2, whi
h is straight-

forward, but slightly verbose.

Theorem 6.1 (Subj. red.) If e : t and e! f , then f : t.

Proof. A

ording to lemma 5.1, e! f implies L e M !

?

�

L f M.

Furthermore, by de�nition of the type system in the sour
e

al
ulus, our hypothesis e : t may be read as L e M : t, and

our goal may be read as L f M : t. The result follows from the

fa
t that !

�

preserves types (axiom 2). 2

Theorem 6.2 (Progress) If e : t, then either 9f e!

bn

f , or e is a value.

Next, we prove a non-interferen
e theorem, whi
h states

that types in the new system do
ontain useful dependen
y

information. The interesting aspe
t of our proof is that it is

written in an entirely operational style: it essentially relies

5

on two properties of the labelled
al
ulus: stability (theo-

rem 3.1) and subje
t redu
tion (theorem 6.1).

For simpli
ity, the theorem only
on
erns integer results.

A more general statement would be possible.

Theorem 6.3 (Non-interferen
e) If e : int�l and e!

?

v, where v is a value, then be

#l

!

?

v.

Proof. A

ording to theorem 6.1, v : int � l holds. This

may be read L v M : int � l, whi
h, a

ording to axiom 6,

implies L v M

1

: int. So, a

ording to axiom 5, L v M

1

annot

be a �-abstra
tion. Considering v is a value, v must be of

the form l

1

: l

2

: : : : : l

n

: k, for some n � 0.

Thus, L v M is hk; l

1

� : : : � l

n

� �i. From the fa
t that

this expression has type int � l, we may dedu
e, through

axiom 6, that l

1

� : : : � l

n

� � has type l. However, this

expression may be redu
ed, by repeated appli
ation of rule

(join), to l

1

g: : :gl

n

. A

ording to axioms 2 and 4, it follows

that l

1

g : : :g l

n

4 l. In other words, every l

i

is an element

of # l. So, bv

#l

equals v, whi
h, a

ording to theorem 3.1,

implies be

#l

!

?

v. 2

The non-interferen
e theorem may be better known under

the following symmetri
 form:

Corollary 6.4 Assume e; f : int � l and be

#l

= bf

#l

.

Then, either both e and f diverge, or both e and f
onverge

and produ
e the same value.

Proof. Assume e
onverges. Then, a

ording to theorem 6.3

and lemma 3.1, f
onverges to the same value. By symme-

try, the
onverse also holds: if f
onverges, then e
onverges

to the same value. Furthermore, by theorems 6.1 and 6.2,

neither e nor f
an go wrong. The result follows. 2

Here, to
onverge means to be able to rea
h a value along

some redu
tion path. To diverge means not to
onverge and

not to go wrong. To go wrong means to get stu
k along

some redu
tion path. By normalization

2

, these are the same

notions, regardless of whether ! or !

bn

is being used.

Corollary 6.4 guarantees not only that e and f produ
e

the same value, but also that they behave similarly with re-

spe
t to termination. This is a strong non-interferen
e state-

ment. With a
all-by-value semanti
s, one would obtain a

slightly weaker result, whereby e and f would be guaran-

teed to yield the same value only if they terminate. Indeed,

if e!

bv

v and f !

bv

w, where v and w are values, then,

by normalization, e!

bn

v and e!

bn

w, when
e, by
orol-

lary 6.4, v = w. To obtain a strong non-interferen
e result

in a
all-by-value setting, one may modify the labelled
al
u-

lus a

ordingly [2, se
tion 3.7℄, and repeat our
onstru
tion.

This yields, however, a signi�
antly more restri
tive type

system.

These non-interferen
e results are stated in the sour
e

al
ulus, whi
h has non-standard semanti
s. However, la-

bels are not �rst-
lass entities, i.e. they
annot a�e
t the

ourse of
omputations, as shown by [2, prop. 3℄. Thus,

if all labels are removed before exe
ution, i.e. if we evalu-

ate �stripped� terms within a standard �-
al
ulus, then the

non-interferen
e results still hold.

Lastly, it is important to prove that �enough� programs

are a

epted by the new system, whi
h may otherwise turn

out to be devoid of pra
ti
al interest. Unfortunately, doing

so at an abstra
t level requires more axioms, whi
h are di�-

ult to state in an elegant way. For this reason, we will only

address this issue in the
on
rete setting of se
tion 8.

2

We haven't proved a normalization theorem for the labelled �-

al
ulus, but this
an be done using existing te
hniques.

JkK = hk; �i

JxK = hfst x; snd xi

J�x:eK = h�x:JeK; �i

Je

1

e

2

K = letp hx; ti = Je

1

K in

letp hy; ui = x Je

2

K in

hy; t�ui

Jlet x = e

1

in e

2

K = let x = Je

1

K in Je

2

K

Jl : eK = letp hx; ti = JeK in

hx; l� ti

Figure 2: Linear translation

7 A more e�
ient translation

The translation s
heme presented in se
tion 5 behaves ni
ely

with respe
t to redu
tion: it enjoys a very simple simulation

lemma. However, be
ause it dupli
ates sub-expressions, it

has exponential
omplexity. In this se
tion, we present a

slightly di�erent translation s
heme, whi
h only has linear

overhead, be
ause it uses lo
al variable de�nitions to share

sub-expressions where needed. We
ould have
hosen to use

this one in the �rst pla
e, but losing lemma 5.1 would have

made our proofs somewhat heavier.

The new en
oding's de�nition is shown in �gure 2. The

auxiliary lo
al variables x, t, y, u must be
hosen so as to

avoid variable
apture. We use letp hx; yi = e

1

in e

2

to

denote ((�p:((�xy:e

2

) (fst p) (snd p))) e

1

) where p does not

appear free in e

2

. It would also be possible to implement

�letp� in terms of �let�. Our
hoi
e emphasizes the fa
t that

no polymorphism is required: the point is to avoid dupli
at-

ing e

1

, not to generalize its type.

To establish a relationship between J�K and L � M, we need

a few extra axioms
on
erning the target type system. Let

us use e :

C

t to denote C[e℄ : t. This gives us a
rude way of

denoting the �type� of a non-
losed expression.

Axiom 7 If hfst e; snd ei :

C

t, then e :

C

t.

Axiom 8 If x and y appear free exa
tly on
e in f , and if

f [e

1

=x; e

2

=y℄ :

C

t, then letp hx; yi = he

1

; e

2

i in f :

C

t.

Axiom 9 let x = e in hf

1

; f

2

i :

C

t holds if and only if

hlet x = e in f

1

; let x = e in f

2

i :

C

t does.

Using these extra axioms, as well as axiom 2, it is easy to

prove that L � M and J�K give rise to the same derived type

system:

Theorem 7.1 JeK : t if and only if L e M : t.

Thus, if type
he
king (resp. type inferen
e) has
omplexity

O(n

k

), where k � 1, in the original system, then it has the

same
omplexity in the derived system. Indeed, J�K may be

omputed in linear time, and the size of its output remains

within a
onstant fa
tor of that of its input.

8 A
on
rete
ase

In this se
tion, we illustrate our approa
h with a
on
rete

example. We �rst pi
k an existing type system for the tar-

get
al
ulus, and show that it satis�es the axioms given in

the previous se
tion. Our
onstru
tion thus gives rise to a

on
rete information �ow-aware type system for the sour
e

6

? � t t � > int � int

l 4 l

0

l � l

0

t

0

0

� t

0

t

1

� t

0

1

t

0

! t

1

� t

0

0

! t

0

1

t

0

� t

0

0

t

1

� t

0

1

t

0

� t

1

� t

0

0

� t

0

1

Figure 3: Subtyping on ground types

al
ulus, a dire
t des
ription of whi
h is given in the form of

a set of type inferen
e rules. Lastly, to illustrate the system's

power, we exer
ise it on a simple program fragment.

8.1 Typing the target
al
ulus

Our target
al
ulus is simply
ore ML with pairs, extended

with label
onstants and the primitive operation �. In pra
-

ti
e, almost any type system for
ore ML will do, provided

it allows giving an appropriate type s
heme to every l 2 L

and to �. Thus, we have a very wide range of systems to

hoose from, e.g. [10, 24, 26, 22, 3, 16℄. We pi
k a subtyping-

onstraint-based type system, previously studied by the �rst

author. By la
k of spa
e, we must des
ribe it very su

in
tly.

More detailed a

ounts appear in [20, 19℄.

For simpli
ity, we distinguish identi�ers bound by �, de-

noted x; y; : : : from those bound by �let�, denoted X;Y; : : :

We expe
t ea
h �-identi�er to be bound at most on
e in

a given program. Furthermore, in every expression of the

form let X = e

1

in e

2

, we require X to appear free within

e

2

. Over
oming these restri
tions is of
ourse possible, but

requires more
umbersome typing rules.

The presentation of the system begins with a de�nition

of ground types. They are the regular trees des
ribed by the

following
o-indu
tive de�nition:

t ::= ? j l j int j t� t j t! t j >

Ground types are equipped with a subtyping order, given in

�gure 3. It is, again, de�ned
o-indu
tively: a subtyping

assertion holds if and only if it has a �nite or in�nite deriva-

tion. Let us assume, from here on, that (L;4) is a latti
e.

Then, ground types also form a latti
e, within whi
h L is

embedded.

We then (indu
tively) de�ne types and
onstraints :

t ::= �; �; : : : j ? j l j int j t� t j t! t j >

 ::= t � t

Here, �; �; : : : range over a denumerable set of type variables.

A ground substitution � is a map from type variables to

ground types. � satis�es a
onstraint t

1

� t

2

if and only if

�(t

1

) � �(t

2

). � satis�es a
onstraint set C if and only if it

satis�es ea
h of its elements.

A
ontext A is a set of bindings of the form x : t. A type

s
heme � is a triple of a
onstraint set, a
ontext and a type,

written 8C:A) t. Intuitively speaking, all variables whi
h

appear in � should be thought of as universally quanti�ed,

hen
e the 8 notation. More formally, the denotation of a

type s
heme is de�ned by

J8C:A) tK = "f�(A) t) ; � satis�es Cg

� fresh

� `

I

x : hx : �i) �

� `

I

e : 8C:A) t

� `

I

�x:e : 8C: (A n x)) A(x)! t

� `

I

e

1

: 8C

1

: A

1

) t

1

� `

I

e

2

: 8C

2

: A

2

) t

2

� fresh C = C

1

[C

2

[ft

1

� t

2

! �g

� `

I

e

1

e

2

: 8C: (A

1

u A

2

)) �

�(X) = � � fresh renaming of �

� `

I

X : �(�)

� `

I

e

1

: �

1

� + [X 7! �

1

℄ `

I

e

2

: �

2

� `

I

let X = e

1

in e

2

: �

2

Figure 4: Type inferen
e rules

where "X represents the upper
one of a set X with respe
t

to ground subtyping. (This requires a straightforward ex-

tension of � to obje
ts of the form A) t.) Given two type

s
hemes �

1

and �

2

, we say the former is more general than

the latter, and we write �

1

�

8

�

2

, if and only if J�

1

K � J�

2

K.

Figure 4 gives the type inferen
e rules of the system.

Judgements are of the form � `

I

e : �, where � is an envi-

ronment (i.e. a list of bindings of the form X : �), e is a

target expression, and � is a type s
heme. As far as nota-

tion is
on
erned, hx : �i represents a
ontext
ontaining a

single entry. A n x is the
ontext obtained by removing x's

binding (if any) from A. We shorten the notation 8C:A) t

to 8C: t, A) t, or simply t, if A, C, or both are empty.

For the sake of readability, we slightly abuse notation.

We let A(x) stand for the type asso
iated with x in A, if

A
ontains a binding for x, and for > otherwise. We use

A

1

u A

2

to denote the point-wise interse
tion of A

1

and

A

2

. That is, whenever x has a binding in A

1

or A

2

, its

binding in A

1

u A

2

is A

1

(x) u A

2

(x). Be
ause the system

does not have interse
tion types, this expression must in fa
t

be understood as a fresh type variable, a

ompanied by an

appropriate
onjun
tion of subtyping
onstraints.

Every type s
heme is impli
itly required to have a non-

empty denotation, i.e. a solvable set of
onstraints.

These rules only des
ribe
ore ML. Type inferen
e for the

full target language, as de�ned in se
tion 4, is obtained by

adding the following (pseudo-)bindings to the initial typing

environment �

0

:

k : int (k 2 N)

fst : ��>! �

snd : >� �! �

l : l (l 2 L)

� : 8f� � !g: �! �! �

h�; �i : �! � ! �� �

Here, ! stands for the greatest element of the latti
e L.

The
onstraint � � ! guarantees that � is only applied to

expressions whi
h denote label
onstants.

7

� `

d

k : int

�

�; ' fresh

� `

d

x : hx : �

'

i) �

'

� `

d

e : 8C:A) t

� `

d

�x:e : 8C: (A n x)) (A(x)! t)

�

� `

d

e

1

: 8C

1

: A

1

) t

1

� `

d

e

2

: 8C

2

: A

2

) t

2

�; ' fresh

C = C

1

[C

2

[ft

1

� (t

2

! �

'

)

'

; ' � !g

� `

d

e

1

e

2

: 8C: (A

1

uA

2

)) �

'

� `

d

e : 8C:A) t

�; ' fresh C

0

= C [ft � �

'

; l � ' � !g

� `

d

(l : e) : 8C

0

: A) �

'

Figure 5: Derived type inferen
e rules

8.2 Ba
k to the sour
e
al
ulus

We are now ready to apply the results of se
tion 6 in the

on
rete setting
onsidered here.

Theorem 8.1 De�ne types, in the sense of se
tion 6, to be

type s
hemes, in the sense of this se
tion. De�ne e : � to

hold if and only if 9�

0

�

8

� �

0

`

I

e : �

0

. Then, axioms 1�9

are satis�ed.

A proof of subje
t redu
tion, in the
ase of
ore ML, appears

in [20℄. Extending it to the language
onsidered here, as well

as
he
king the other axioms, is straightforward, although

somewhat lengthy. We omit proofs.

Composing J�K with the type inferen
e algorithm of the

target
al
ulus yields a type inferen
e algorithm for the

sour
e
al
ulus, enjoying all of the properties stated in se
-

tion 6. Let us now give a more dire
t des
ription of this

algorithm. By systemati
ally
omposing the de�nition of

the en
oding with the rules of �gure 4, and performing a

few
onstraint simpli�
ation steps, as allowed by the use of

�

8

in theorem 8.1, we obtain a set of derived type inferen
e

rules, shown in �gure 5. The last two rules, whi
h deal with

�let�-bound variables and �let� de�nitions, are un
hanged, so

they are not shown. The produ
t notation t�u has been re-

pla
ed with t

u

, so as to insist on the fa
t that we are dealing

with types
arrying se
urity annotations.

These rules seem quite intuitive. They resemble the rules

of �gure 4, with the following di�eren
es. Values (integer

onstants and �-abstra
tions) are annotated with � upon

reation. The se
urity level of a fun
tion appli
ation ex-

pression is the join of the result level with the fun
tion level,

thus re
ording the fa
t that the fun
tion
ontributes to the

omputation. The se
urity level of a labelled expression l : e

is the join of e's level with l. Of
ourse, it would have been

easy to
ome up with these rules dire
tly. However, our

approa
h has several advantages over a manual approa
h.

First, it is systemati
, leaving no doubt that these rules are

natural. Se
ond, we obtain
orre
tness proofs (almost) for

free, whi
h is non-trivial,
onsidering the system has poly-

morphism, subtyping, re
ursive types, and type inferen
e.

Lastly, our approa
h is general and may be applied to many

other type systems.

As a last re�nement, it would be possible to partition

types, a posteriori, into three sorts: plain types t, label types

u, and se
ure types, of the form t

u

. This would allow getting

rid of the
onstraint ' � ! in the last two rules: ' would

then range over labels, making it redundant.

Comparing typability in the derived and in the original

system is now easy. Let strip denote the natural proje
tion

from sour
e to target language; in parti
ular, strip(l : e) is

strip(e). Then,

Theorem 8.2 (Conservativity) The sour
e expression e

is well-typed in the derived system if and only if the target

expression strip(e) is well-typed in the original system.

The proof relies on two simple remarks. First, any solution

of the
onstraints generated by the rules of �gure 5 also

satis�es those inferred by the rules of �gure 4. Conversely,

any solution of the latter may be extended to a solution of

the former, where every label variable ' is mapped to !.

This result shows that one may swit
h to the new type

system, and label any number of sub-expressions in a pro-

gram, without a�e
ting its typability. A program may be-

ome untypable only if a non-trivial se
urity poli
y, ex-

pressed by inserting typing assertions, is adopted.

Example Let us use the rules of �gure 5 to infer the type

of our running example. The type s
heme inferred for

h : 27
learly is int

h

. The one inferred for l : (�xy:y) is

(>! (�

'

! �

'

)

�

)

l

. Thus, the term e = (l : (�xy:y)) (h :

27) re
eives the type s
heme (�

'

! �

'

)

l

.

This type s
heme states that evaluating e does not reveal

any information of level h. Thus, the type inferen
e algo-

rithm stati
ally �nds that e does not leak the value 27, a

fa
t whi
h we had previously dynami
ally obtained by eval-

uating e (see se
tion 3). Furthermore, this type s
heme is

polymorphi
 in � and in ', showing that e's result � whi
h

is l : �y:y, the identity fun
tion labelled l � is able to a

ept

any argument, regardless of its
ontent and of its se
urity

level.

8.3 A realisti
 example

We
on
lude this se
tion with a longer example. We as-

sume the sour
e language is extended with operations on

Booleans, strings, pairs, variants and re
ords. By la
k of

spa
e, we do not de�ne typing rules for these
onstru
ts.

Provably
orre
t rules
an be obtained in (at least) two ways.

One is to expli
itly extend the target language, the transla-

tion s
heme, and our proofs. The other is to derive
orre
t

typing rules for these
onstru
ts by
onsidering their Chur
h

en
odings into the basi
 language.

Figure 6 shows a small example program. It is a full pro-

gram, whi
h
ontains no type information, but does
ontain

a few se
urity annotations, in the form of labelled expres-

sions.

The program �rst de�nes a
lassi
 predi
ate on lists, ex-

ists, whi
h tells whether a given predi
ate is satis�ed by at

least one element of a given list. Re
ursion is a
hieved via an

expli
it �x-point
ombinator, �x. It is well-typed, be
ause

the system has re
ursive types. Thus, we are able to write

re
ursive programs, even though our formal development did

not expli
itly deal with re
ursion.

To improve readability, we write t instead of t

�

(resp. t

!

)

when t o

urs positively (resp. negatively) in a type s
heme.

8

let �x � =

(fun f x ! � (f f) x) (fun f x ! � (f f) x)

let exists = �x (

fun exists predi
ate list !

mat
h list with

Nil !

false

| Cons (element ; rest) !

if predi
ate element then

true

else

exists predi
ate rest

)

let users =

Cons(f login = "Pam"; pw = Sys : "7nuggets" },

Cons(f login = "Sam"; pw = Sys : "" },

Nil))

let query1 =

exists (fun r !

r.login = Priv : "Moni
a"

) users

let query2 =

exists (fun r !

r.pw = ""

) users

Figure 6: Example program

Then, the type s
heme
omputed by the type inferen
e al-

gorithm for exists is

8C: (�

'

! bool

)

! � ! bool

where C
ontains a single
onstraint:

� � [Nil j Cons of (�

'

� �)

℄

Intuitively, this re
ursive
onstraint requires � to represent a

list, whose elements have type �

'

, and whose se
urity level

is . exists 's �rst argument, a predi
ate, must a

ordingly

a

ept an argument of type �

'

. If the predi
ate has level

 , and if it returns a Boolean result of level , then so will

exists. Noti
e that ' are are a priori unrelated: they will

be
ome related only if exists is applied to a predi
ate whi
h

leaks some information about its argument.

Three important points must be made here. First, this

type s
heme is pre
ise, and highly polymorphi
. Thus, mul-

tiple appli
ations of exists, e.g. to lists with distin
t se
u-

rity levels, or to predi
ates with di�erent behavior, will not

�pollute� ea
h other. This is a requirement when writing li-

braries, sin
e
ode dupli
ation would otherwise be ne
essary.

Se
ond, the
ode of exists
ontains no se
urity annotations,

and its type was inferred without help from the user. This

feature is also of utmost importan
e for ba
kward
ompati-

bility : it allows a large body of
ode, written without any

se
urity requirements in mind, to be re-used in a program

where se
urity matters. Third, this type s
heme is indepen-

dent of the underlying se
urity latti
e. Even though it does

not mention any
onstant label l 2 L, it does en
ode rel-

evant dependen
y information. In other words, the
hoi
e

of a parti
ular se
urity latti
e is irrelevant when analyzing

generi

ode; it is required only when wishing to enfor
e a

parti
ular se
urity poli
y.

Let us
ome ba
k to the program in �gure 6. Its next step

is to de�ne a list,
alled users, whose elements are re
ords

ontaining name (login) and password (pw) strings. The in-

formation
ontained in pw �elds, whi
h is deemed somehow

important, is labelled Sys. Noti
e that labelling a pie
e of

data does not restri
t a

ess to it; it only for
es any
ompu-

tations whi
h make use of this data to re
eive a type whi
h

reveals this dependen
y. In other words, our type system

does not forbid anything by default; it merely wat
hes every-

thing. Se
urity restri
tions, when required, may be added

using additional type
onstraints, as we will see below.

The rest of the program
onsists of two queries about the

users list, implemented using exists. The �rst query
he
ks

whether some user is
alled Moni
a. The programmer, per-

haps wishing not to dis
lose the fa
t that he is looking for

this parti
ular person, has marked the string "Moni
a" with

the label Priv. The se
ond query looks for a user with an

empty password string.

A

ording to the type inferen
e algorithm, the type of

query1 is bool

Priv

. Thus, the query's result reveals some

information about the string "Moni
a". Noti
e, however,

that it does not
arry the label Sys: it does not leak anything

about the passwords
ontained in the list users. The type

of query2, on the other hand, is bool

Sys

, whi
h tells that it

does
ontain information about the passwords.

If these information
hannels are deemed undesirable,

they
an be easily eliminated by adding typing assertions

to the program. For instan
e, if Publi
 is a label su
h that

neither Priv 4 Publi
 nor Sys 4 Publi
 hold, then writing

let query1 : bool

Publi

= : : :

let query2 : bool

Publi

= : : :

auses both de�nitions to be
ome ill-typed, thus revealing

and forbidding the leaks. Thus, typing assertions may be

used to express, and stati
ally enfor
e, a se
urity poli
y.

9 A

ess
ontrol

Information �ow analysis o�ers a way of proving an un-

trusted program
orre
t with respe
t to a se
urity poli
y.

However, it is a restri
tive dis
ipline, sin
e it does not allow

de
lassi�
ation. For instan
e, a fun
tion whi
h
ompares a

se
ret password string against a given input must return a

se
ret result, even though it usually yields far less than one

bit of information about the password. Thus, some useful

programs
annot be proved
orre
t; for this reason, trust, in

the form of a

ess
ontrol, must be re-introdu
ed.

9.1 A
al
ulus with a

ess
ontrol

Let us brie�y des
ribe expli
it a

ess
ontrol. Assume given

a �xed set of prin
ipals P, equipped with an arbitrary binary

relation <. The assertion p < q intuitively means that p a
ts

for q, i.e. q trusts p. As a result, q grants p the ability of

dire
tly a

essing any value to whi
h q has a

ess. Assume

the
al
ulus' syntax in
ludes the following produ
tions:

e ::= terms

j lo
k

p

lo
king (p 2 P)

j unlo
k

p

unlo
king (p 2 P)

j : : :

9

Assume its semanti
s in
ludes the following redu
tion rule:

unlo
k

p

(lo
k

q

e)! e if p < q

Then, a value lo
ked with q's authority be
omes unusable

until it is unlo
ked by some prin
ipal p whi
h a
ts for q. Any

attempt to unlo
k a value by an unauthorized prin
ipal re-

sults in a failure. Of
ourse, in pra
ti
e, some
ompiler and

operating system support is required to ensure that unlo
k

p

is only used in
ode whi
h a
tually a
ts on behalf of prin
ipal

p. This usually requires the use of
ryptographi
 authenti-

ation te
hniques.

It is also possible to design a
al
ulus with impli
it a

ess

ontrol, i.e. where every value is impli
itly lo
ked upon
re-

ation, and unlo
ked upon a

ess, as in e.g. [12℄. We dis
uss

both
ases below.

9.2 Typing

Again, extending an existing type system with a

ess
ontrol

features
an be done abstra
tly, i.e. independently of the

system's de�nition, using a translation-based approa
h. Let

us brie�y sket
h how.

Assume given a target
al
ulus with pairs hh�; �ii, plus, for

every prin
ipal p 2 P, a
onstant p and a primitive operation

a
tsfor

p

. Require (a
tsfor

p

v) to be well-typed only if v is

a
onstant q 2 P su
h that p < q. To easily meet this

requirement, the target system's implementor may wish to

assume (P;<) forms a latti
e. De�ne a type system for the

sour
e
al
ulus by lifting the target system through a simple

en
oding:

Jlo
k

p

K = �x:hhx; pii

Junlo
k

p

K = �x:

letp hhx; qii = x in

a
tsfor

p

q ;

x

Then, the derived type system enjoys subje
t redu
tion and

progress properties. In parti
ular, a

ess
ontrol is entirely

stati
: if a program is well-typed, then all of its a

ess
on-

trol
he
ks must su

eed. As a result, all
he
ks
an be

ompiled away. In other words, the above en
oding only

serves typing, not
ompilation, purposes.

9.3 Combining information �ow and a

ess
ontrol

Information �ow and a

ess
ontrol may
oexist. Extend

the syntax and semanti
s of the sour
e
al
ulus presented in

se
tion 3 with (expli
it or impli
it) a

ess
ontrol features,

while preserving its stability property. Find a typed target

al
ulus equipped with prin
ipal
onstants p 2 P, label
on-

stants l 2 L, and suitable operations thereon. Then, lift the

target type system through an appropriate en
oding.

If the sour
e
al
ulus has impli
it a

ess
ontrol, then a

simple en
oding, where every expression e is mapped to a

triple he

; e

p

; e

l

i, will do. The
omponents of the triple re-

spe
tively represent e's
omputational
ontent, the prin
ipal

whose authority has been used to lo
k e, and e's label. This

yields a system where every type
arries two annotations, a

prin
ipal and a label.

If the sour
e
al
ulus has expli
it a

ess
ontrol opera-

tions, then a di�erent en
oding must be used. Map every ex-

pression e to a pair h�; e

l

i, whose �rst
omponent is hhe

; e

p

ii,

if e is lo
ked, and simply e

otherwise. This is exa
tly the

en
oding presented in se
tion 5, extended to deal with lo
k

p

and unlo
k

p

. As before, it yields a system where every type

arries one (information �ow) label. A value of
omputa-

tional type �,
arrying a label ', will re
eive type �

'

if it is

unlo
ked, and (� � lo
ked)

'

if it is lo
ked at level �. Here,

lo
ked is the type
onstru
tor asso
iated with pairs of the

form hh�; �ii in the target system.

In
ommon programs, a

ess
ontrol features should be

used only at a few key pla
es. For this reason, making a
-

ess
ontrol expli
it, rather than impli
it, may be preferable.

Indeed, this approa
h yields types whi
h are usually more

on
ise, and where a

ess
ontrol restri
tions are synta
ti-

ally more apparent.

Marrying information �ow analysis with a

ess
ontrol is

not a new idea. Stoughton [25℄ and Heintze and Rie
ke [12℄

noti
e that a

ess
ontrol and information �ow
ontrol serve

di�erent purposes, and propose hybrid systems where both

me
hanisms
oexist.

However, these works fail, in our opinion, to make a
ru-

ial point: the two me
hanisms are entirely unrelated, and

should
oexist without intera
ting. Indeed, a

ess
ontrol

involves prin
ipals, trust and authenti
ation, while informa-

tion �ow
ontrol requires neither. Furthermore, des
ribing

a

ess
ontrol usually involves introdu
ing some form of se-

urity violation in the language's semanti
s, while informa-

tion �ow
ontrol does not. Why? A

ess
ontrol implements

a �xed se
urity poli
y, de�ned by (P;<); it is meaningless

in the absen
e of su
h a poli
y. Information �ow
ontrol,

on the other hand, does make sense even when (L;4) is left

unspe
i�ed, as pointed out in se
tion 8.3, be
ause it is only

a dependen
y analysis. It does not, fundamentally, have

anything to do with se
urity, whi
h explains why it
an be

formalized without a notion of se
urity violation.

Why su
h emphasis on this point? Both Stoughton [25℄

and Heintze and Rie
ke [12℄ de�ne systems where a

ess
on-

trol and information �ow intera
t, by identifying prin
ipals

with labels, i.e. setting P = L, and requiring every value

to
arry an information �ow label l whi
h is less restri
tive

than its a

ess
ontrol label p, i.e. l 4 p. Furthermore, [12℄

de�nes an operational semanti
s where both kinds of labels

intera
t: the expression (prote
t

ir

v) uses the information

�ow label ir to update not only v's information �ow label,

but also its a

ess
ontrol label.

In these works, the alleged justi�
ation for requesting

l 4 p is as follows. p tells who may use the value dire
tly,

while l tells who may use it indire
tly, i.e. have (possibly

partial) a

ess to the information
ontained in it. Be
ause

any prin
ipal who is granted dire
t a

ess is thereby granted

indire
t a

ess at the same time, requiring l 4 p may seem

natural. We deem it wrong, however, be
ause these notions

are really orthogonal: while p indeed tells who may use the

value, l tells whi
h information it
ontains. Mixing the two

me
hanisms yields a needlessly
omplex system. Separating

them makes the system more modular,
on
eptually sim-

pler, and potentially more expressive, sin
e P and L may be

distin
t.

Myers and Liskov [15, 14℄ propose a �de
entralized� label

model whi
h is a subtle mixture of a

ess
ontrol and infor-

mation �ow
ontrol. The model also rests on a set of prin-

ipals (P;<). A label is a set of tagged poli
ies, where the

tag
arried by every poli
y is a prin
ipal,
alled its owner.

A poli
y is a set of prin
ipals,
alled readers. Labels form a

pre-order, whose underlying order is a latti
e; it is used, as in

this paper, to perform information �ow analysis. However,

Myers and Liskov also allow a number of �safe� de
lassi�
a-

tion operations: a prin
ipal p may
hoose to relax the label

10

arried by a given value, by arbitrarily modifying any poli
y

owned by a prin
ipal q whi
h it a
ts for. Of
ourse, p is not

allowed to a�e
t the poli
ies owned by prin
ipals whose trust

it has not re
eived. So, labels do not only
arry dependen
y

information; they also
ontain a

ess
ontrol information,

sin
e the use of de
lassi�
ation is restri
ted.

We think Myers and Liskov's model has signi�
ant pra
-

ti
al interest. However, we believe that
omparable expres-

sive power

3

an be a
hieved in a theoreti
ally simpler sys-

tem. Indeed, imagine orthogonal a

ess
ontrol and infor-

mation �ow
ontrol, as suggested above. Then, one may

sele
tively allow de
lassi�
ation by providing, in the initial

typing environment, a number of de
lassi�
ation operations,

lo
ked at appropriate levels of authority. The sets P and L

may, in general, be
hosen independently; only the types of

the de
lassi�
ation operations provide a
onne
tion between

the two. This presentation of the system is modular and ab-

stra
t. By varying P, L, and the level of authority required

by ea
h de
lassi�
ation operation, one obtains a wide range

of
on
rete systems, some of whi
h are in fa
t very
lose to

Myers and Liskov's, and have
omparable expressiveness.

We prefer to present de
lassi�
ation as sele
tive, rather

than safe, sin
e its use breaks the non-interferen
e property

� at least partially. Although it is only a matter of terminol-

ogy, speaking of �safe� de
lassi�
ation is somewhat mislead-

ing: this sort of de
lassi�
ation is only safe for prin
ipals

whose authority is not granted to the operation.

Let us illustrate our proposal with a very simple example,

inspired from the ACCAT Guard [6℄. Assume L is the latti
e

produ
t of the 2-point latti
e Se
ret = fl 4 hg with some

unspe
i�ed latti
eM. Thus, in a
al
ulus with (say) impli
it

a

ess
ontrol, types will be of the form �

�; (�; �)

, where �, �

and � range over P, Se
ret and M, respe
tively. Assume

the initial typing environment o�ers the binding

de
lass : 8���:(�

�; (h; �)

! �

�; (l; �)

)

swo; �

where swo 2 P is a �xed prin
ipal. Then, information

may freely �ow from level (l;m) to level (h;m), for any

m 2 M, sin
e the former is a sub-type of the latter. How-

ever, the only way of allowing �ows in the reverse dire
tion

is to use de
lass, whi
h requires approval by the prin
ipal

swo, sin
e it must be unlo
ked when invoked. This allows

modeling a �guard�, i.e. a gateway between a
lassi�ed and

a non-
lassi�ed system, where �ows whi
h appear to vio-

late se
urity must be approved by a trusted Se
urity Wat
h

O�
er. Furthermore, noti
e that even the prin
ipal swo

may not perform arbitrary de
lassi�
ations: it is unable to

modify the se
ond
omponent of labels. Thus, a partial non-

interferen
e result holds: a result whose information label is

(� ;m)
annot depend on any input whose label is (� ; n),

where n 62 # m. For instan
e, if Nu
lear and Strategi
 are

in
omparable elements of M, then a
omputation whose re-

sult type is (l;Nu
lear)
annot leak any information of type

(l; Strategi
), even though it may reveal some information

of level (h;Nu
lear). This is exa
tly what Myers and Liskov

term �safe� de
lassi�
ation.

10 Dis
ussion

We have shown how to systemati
ally extend an arbitrary

type system with dependen
y information, and how sound-

ness and non-interferen
e proofs for the new system may

3

assuming (P;<) is �xed, i.e. may not vary at runtime.

rely upon, rather than dupli
ate, the soundness proof of the

original system. This allows enri
hing virtually any of the

type systems known today with information �ow analysis,

while requiring only a minimal proof e�ort.

We re
ently be
ame aware of Ross and Sagiv's redu
tion

of a �ow dependen
e problem to a may-alias problem [23℄.

Although the programming language (�rst-order, imperative

vs. higher-order, fun
tional) and the target system (pointer

analysis vs. type inferen
e)
onsidered are rather di�erent

from ours, both papers rely on a similar en
oding, where

every value is translated to a pair of a value and a tag. We

take this as eviden
e of the strength of this redu
tionisti

approa
h.

Our work
omplements Abadi et al.'s [1℄. They show that

several program analyses, in
luding se
re
y and integrity

analyses, program sli
ing, and binding-time analysis, are de-

penden
y analyses, whi
h only di�er by the
hoi
e of the

information latti
e L. As a unifying dependen
y
al
ulus,

they propose a simply-typed �-
al
ulus, based on Moggi's

omputational �-
al
ulus. In turn, we show that it is pos-

sible to enri
h any standard type system with dependen
y

information. Combining these results yields expressive type

systems for all of the analyses above.

By varying L, a dependen
y analysis may be used to

obtain se
re
y or integrity guarantees about a program. It

is interesting to noti
e that both may be obtained at the

same time, without requiring two annotations per type: one

is enough, provided L is the produ
t of a se
re
y latti
e

with an integrity latti
e. The same tri
k
an be applied to

a

ess
ontrol: by labeling data with �lo
ks�, rather than

prin
ipals, and
hoosing the latti
e of lo
ks to be the latti
e

produ
t of (P;<) with its own dual, a single annotation

su�
es to manage and enfor
e restri
tions on value a

ess

and
reation. Thus, extending the SLam
al
ulus to deal

with integrity [12, se
tion 4℄ was unne
essary: not only is

it enough to maintain two se
urity annotations, rather than

four, but no new
orre
tness proof needs be given.

In fa
t, in a type system enri
hed with dependen
y an-

notations, a polymorphi
 type s
heme (su
h as that of exists,

given in se
tion 8.3) fully and abstra
tly des
ribes the de-

penden
ies indu
ed by a pie
e of
ode. (This idea appears in

several previous works, e.g. [6, 5, 27℄.) Indeed, it do
uments

not only the behavior of the
ode at di�erent se
urity lev-

els, but also within di�erent se
urity latti
es. This explains

the remark of the previous paragraph: rather than add new

annotations, use a new latti
e.

We have argued that a

ess
ontrol and information �ow

ontrol should be implemented independently. The latter

is not a re�nement of the former; they are di�erent me
ha-

nisms. One is based on trust, the other on proof. It is possi-

ble, however, to let them
oexist within a single design. We

have shown that this gives rise to interesting possibilities,

in
luding sele
tive de
lassi�
ation.

To
on
lude, we believe we have found a very lightweight

approa
h to non-interferen
e proofs. It is based on an un-

typed operational semanti
s for a labelled
al
ulus, together

with a translation to an unlabelled
al
ulus. Two basi
 re-

sults must be proved: a stability theorem, whi
h states that

the labelled semanti
s never �drops� labels, and a simula-

tion lemma, whi
h shows that the translation is meaningful.

Be
ause of its simpli
ity, this approa
h should be dire
tly

appli
able to other
omputing paradigms, su
h as obje
t or

pro
ess
al
uli. We are
urrently investigating this issue.

11

Referen
es

[1℄ M. Abadi, A. Banerjee, N. Heintze, and J. G. Rie
ke. A

ore
al
ulus of dependen
y. In Conferen
e Re
ord of

the 26th ACM Symposium on Prin
iples of Program-

ming Languages, pages 147�160, San Antonio, Texas,

Jan. 1999. URL: http://pa.bell-labs.
om/~abadi/Papers/

flowpopl.ps.

[2℄ M. Abadi, B. Lampson, and J.-J. Lévy. Analysis and

a
hing of dependen
ies. In Pro
eedings of the 1996

ACM SIGPLAN International Conferen
e on Fun
-

tional Programming, pages 83�91, Philadelphia, Penn-

sylvania, May 1996. URL: http://pa.bell-labs.
om/~abadi/

Papers/make-preprint.ps.

[3℄ A. Aiken, M. Fähndri
h, J. S. Foster, and Z. Su. A

toolkit for
onstru
ting type- and
onstraint-based pro-

gram analyses. Le
ture Notes in Computer S
ien
e,

1473:78, 1998. URL: http://www.
s.berkeley.edu/~aiken/

papers/ti
98.ps.

[4℄ G. R. Andrews and R. P. Reitman. An axiomati

approa
h to information �ow in programs. ACM

Transa
tions on Programming Languages and Systems,

2(1):56�76, Jan. 1980.

[5℄ J.-P. Banâtre, C. Bry
e, and D. Le Métayer. Compile-

time dete
tion of information �ow in sequential pro-

grams. In D. Gollmann, editor, Pro
eedings of the

3rd European Symposium on Resear
h in Computer

Se
urity, volume 875 of Le
ture Notes in Computer

S
ien
e, pages 55�74. Springer Verlag, 1994. URL:

ftp://ftp.irisa.fr/lo
al/lande/dlm-esori
s94.ps.Z.

[6℄ D. E. Denning. Cryptography and Data Se
urity.

Addison-Wesley, Reading, Massa
husetts, 1982.

[7℄ D. E. Denning and P. J. Denning. Certi�
ation of pro-

grams for se
ure information �ow. Communi
ations of

the ACM, 20(7):504�513, July 1977.

[8℄ J. S. Fenton. Memoryless subsystems. The Computer

Journal, 17(2):143�147, May 1974.

[9℄ C. Fournet, L. Maranget, C. Laneve, and D. Rémy.

Impli
it typing à la ML for the join-
al
ulus. In

8th International Conferen
e on Con
urren
y Theory

(CONCUR'97), volume 1243 of Le
ture Notes in Com-

puter S
ien
e, pages 196�212, Warsaw, Poland, 1997.

Springer. URL: ftp://ftp.inria.fr/INRIA/Proje
ts/
ristal/

Didier.Remy/typing-join.ps.gz.

[10℄ Y.-C. Fuh and P. Mishra. Polymorphi
 subtype in-

feren
e: Closing the theory-pra
ti
e gap. In J. Díaz

and F. Orejas, editors, Pro
eedings of the International

Joint Conferen
e on Theory and Pra
ti
e of Software

Development : Vol. 2, volume 352 of LNCS, pages 167�

183, Berlin, Mar. 1989. Springer.

[11℄ J. Goguen and J. Meseguer. Se
urity poli
ies and se
u-

rity models. In Pro
eedings of the 1982 IEEE Sympo-

sium on Se
urity and Priva
y, pages 11�20, Apr. 1982.

[12℄ N. Heintze and J. G. Rie
ke. The SLam
al
ulus: Pro-

gramming with se
re
y and integrity. In Conferen
e

Re
ord of the 25th ACM Symposium on Prin
iples of

Programming Languages, pages 365�377, San Diego,

California, Jan. 1998. URL: http://
m.bell-labs.
om/
m/

s/who/n
h/slam.ps.

[13℄ B. W. Lampson. A note on the
on�nement prob-

lem. Communi
ations of the Asso
iation for Comput-

ing Ma
hinery, 16(10):613�615, O
t. 1973. URL: http://

resear
h.mi
rosoft.
om/lampson/11-Confinement/WebPage.html.

[14℄ A. C. Myers. Mostly-Stati
 De
entralized Informa-

tion Flow Control. PhD thesis, Massa
husetts In-

stitute of Te
hnology, Jan. 1999. Te
hni
al Re-

port MIT/LCS/TR-783. URL: http://www.
s.
ornell.edu/

andru/release/tr783.ps.gz.

[15℄ A. C. Myers and B. Liskov. Complete, safe informa-

tion �ow with de
entralized labels. In Pro
eedings of

the 1998 IEEE Symposium on Se
urity and Priva
y,

pages 186�197, May 1998. URL: http://www.
s.
ornell.

edu/andru/papers/sp98/top.html.

[16℄ M. Odersky, M. Sulzmann, and M. Wehr. Type infer-

en
e with
onstrained types. Theory and Pra
ti
e of

Obje
t Systems, 5(1), 1999. URL: http://www.
s.mu.oz.au/

~sulzmann/publi
ations/tapos.ps.

[17℄ P. Ørbæk and J. Palsberg. Trust in the �-
al
ulus.

Journal of Fun
tional Programming, 7(6):557�591,

Nov. 1997. URL: http://www.
s.purdue.edu/homes/palsberg/

paper/jfp97.ps.gz.

[18℄ J. Palsberg and P. Ørbæk. Trust in the �-

al
ulus. Le
ture Notes in Computer S
ien
e, 983:314�

330, 1995. URL: ftp://ftp.daimi.au.dk/pub/empl/poe/

lambda-trust.dvi.gz.

[19℄ F. Pottier. Simplifying subtyping
onstraints: a

theory. Submitted for journal publi
ation, De
.

1998. URL: http://pauilla
.inria.fr/~fpottier/publis/

fpottier-journal-98.ps.gz.

[20℄ F. Pottier. Type inferen
e in the presen
e of subtyping:

from theory to pra
ti
e. Te
hni
al Report 3483, INRIA,

Sept. 1998. URL: ftp://ftp.inria.fr/INRIA/publi
ation/RR/

RR-3483.ps.gz.

[21℄ D. Rémy. Proje
tive ML. In 1992 ACM Conferen
e on

Lisp and Fun
tional Programming, pages 66�75, New-

York, 1992. ACM Press. URL: ftp://ftp.inria.fr/INRIA/

Proje
ts/
ristal/Didier.Remy/lfp92.ps.gz.

[22℄ D. Rémy and J. Vouillon. Obje
tive ML: A sim-

ple obje
t-oriented extension of ML. In Pro
eedings

of the 24th ACM Symposium on Prin
iples of Pro-

gramming Languages, pages 40�53, Paris, Fran
e, Jan.

1997. URL: ftp://ftp.inria.fr/INRIA/Proje
ts/
ristal/

Didier.Remy/obje
tive-ml!popl97.ps.gz.

[23℄ J. L. Ross and M. Sagiv. Building a bridge between

pointer aliases and program dependen
es. Nordi
 Jour-

nal of Computing, 5(4):361�386, 1998. URL: http:

//www.math.tau.a
.il/~sagiv/nj
98.ps.

[24℄ G. S. Smith. Polymorphi
 type inferen
e with overload-

ing and subtyping. In M.-C. Gaudel and J.-P. Jouan-

naud, editors, TAPSOFT'93, volume 668 of Le
ture

Notes in Computer S
ien
e, pages 671�685. Springer-

Verlag, Apr. 1993.

12

[25℄ A. Stoughton. A

ess �ow: A prote
tion model whi
h

integrates a

ess
ontrol and information �ow. In Pro-

eedings of the 1981 IEEE Symposium on Se
urity and

Priva
y, pages 9�18, 1981.

[26℄ V. Trifonov and S. Smith. Subtyping
onstrained types.

In Pro
eedings of the Third International Stati
 Analy-

sis Symposium, volume 1145 of LNCS, pages 349�365.

SV, Sept. 1996. URL: http://www.
s.jhu.edu/~trifonov/

papers/sub
on.ps.gz.

[27℄ D. Volpano and G. Smith. A type-based approa
h to

program se
urity. Le
ture Notes in Computer S
ien
e,

1214:607�621, Apr. 1997. URL: http://www.
s.nps.navy.

mil/people/fa
ulty/volpano/papers/tapsoft97.ps.Z.

[28℄ A. K. Wright and M. Felleisen. A synta
ti
 approa
h

to type soundness. Information and Computation,

115(1):38�94, Nov. 1994. URL: http://www.
s.ri
e.edu/

CS/PLT/Publi
ations/i
94-wf.ps.gz.

13

