
Three comments on the anti-frame rule

François Pottier
INRIA

Francois.Pottier@inria.fr

This informal note presents three comments about the anti-
frame rule, which respectively regard: its interaction with poly-
morphism; its interaction with the higher-order frame axiom; and a
problematic lack of modularity.

Interaction between anti-frame and polymorphism
It is well-known that a careless combination of parametric poly-
morphism and weak references is unsound. (A weak reference is
one that can be read and written without restrictions, as in ML.)
The standard way to work around this problem is to rely on the
value restriction [7] that is, to restrict the ∀-introduction rule to
values (as opposed to arbitrary terms).

Charguéraud and Pottier [3] pointed out that, on the other hand,
there is no adverse interaction between polymorphism and strong
references. (A strong reference is one that can be read and written
only by presenting a linear capability.) As a result, in a type-
and-capability system equipped with strong references, the value
restriction is not required.

The anti-frame rule was presented in the setting of Charguéraud
and Pottier’s type-and-capability system, which does not have the
value restriction. I proved [4] that the combination of anti-frame
and strong references allows encoding weak references. Therefore,
the combination of Charguéraud and Pottier’s system with the anti-
frame rule is unsound. This important fact was unwittingly omitted
in the anti-frame paper. In summary,

There is an adverse interaction between parametric poly-
morphism and the anti-frame rule. This interaction can be
avoided by re-introducing the value restriction.

Interaction between anti-frame and higher-order frame
In the introduction of the anti-frame paper [4], I considered the
higher-order frame axiom:

χ ≤ χ⊗ C

(The computation type χ can be thought of as a conjunction of a
value type, which describes the value produced by a computation,
and a capability, which describes the final state of the store. C is a
capability. The effect of the operator ⊗, borrowed from Birkedal et
al. [2], is to make C an input and output parameter of every arrow
within χ.)

At the time of writing this paper, my desire was to include both
the higher-order frame axiom and the anti-frame rule in a single
system. However, I found that the soundness proof sketch broke
when the higher-order frame axiom was introduced (in short, the
Revelation lemma does not hold, because (· ⊗ C1) ⊗ C2 is not
(· ⊗C2)⊗C1.) For this reason, I withdrew this axiom, and wrote:
“It would be desirable to formalize a system where the higher-order
frame rule and the higher-order anti-frame rule co-exist. I have not
yet worked out the details of such a combination.”

More recently, a shadow of a doubt was cast in my mind by
Schwinghammer, Birkedal, Reus, and Yang [6]. They published a
separation logic where the higher-order frame axiom is unsound,

due to a similar lack of a commutation property. (Their logic
does not include the anti-frame rule.) (This does not imply that
Charguéraud and Pottier’s system [3], extended with a higher-order
frame axiom, is unsound. On the contrary, it is quite likely that it is
sound.)

This prompted me to more closely study the interaction between
the anti-frame rule and the higher-order frame axiom. The result
was negative:

Charguéraud and Pottier’s type-and-capability system, ex-
tended with both the higher-order frame axiom and the anti-
frame rule, is unsound.

The counter-example is short and instructive. It relies on hidden,
higher-order store, that is, on a hidden reference to a function. The
encoding of weak references [4] takes the form of a function mkref,
which allocates a fresh reference and returns a pair of a getter and
a setter:

val mkref : ∀α. α→ (unit → α) × (α→ unit)

In order to get into trouble, it suffices to instantiate the type vari-
able α with a function type, say unit → unit, and to apply the
higher-order frame axiom to the setter alone:

let (get : unit → (unit → unit)), (set : (unit → unit) → unit) =
mkref (fun x → x) – a dummy initial value

let set : (unit ∗ C → unit ∗ C) ∗ C → unit ∗ C =
set – apply the higher-order frame axiom

(Here, C is an arbitrary capability.) We can now “launder” a func-
tion that has a side effect on C, and pretend that it has none, just by
writing it into the reference (using the second version of set above)
and reading it back (using get) at a type that does not mention C:

let launder : (unit ∗ C → unit ∗ C) ∗ C → (unit → unit) ∗ C =
λf.(set f ; get())

(The dynamic semantics of launder is the identity.) To carry the
counter-example up to its conclusion, one could allocate an integer
reference c; define C to be the capability over c; define a function
(say, increment) that requires c to exist, and has type unit ∗ C →
unit∗C; launder this function so that its type becomes unit → unit;
de-allocate c; and call increment—crash!

In summary, the higher-order frame axiom becomes unsound,
in the presence of hidden higher-order store, because “some arrows
escape it”. Intuitively, for the axiom to be sound, every arrow in
the type under consideration must be turned into a C-preserving
arrow. In the counter-example, the capability over the reference
allocated by mkref contains an arrow, but this capability is hidden,
so it escapes the application of the higher-order frame axiom.

There is no obvious way of working around this conflict. It
would be nice if one could somehow permit applying the higher-
order frame axiom to objects “that do not involve any hidden state”.
However, the very point of hidden state is that it is hidden! That is,

1 2009/7/1



whether an object does or does not have hidden state does not, and
should not, appear in its type.

An inherent lack of modularity of the anti-frame rule
The anti-frame rule takes the form:

Γ⊗ I ` t : χ⊗ I ∗ I

Γ ` t : χ

(The invariant I is a capability, which is visible to the term t and is
made invisible outside of it.)

The tensor operator ⊗ is applied to the entire judgement in the
premise. This includes the type environment Γ, which describes
the “outside world”, that is, the set of values and functions that are
available to the term t. As far as t is concerned, the outside world
is described by Γ⊗ I .

For instance, if Γ offers a function f of type int → int, then,
when type-checking t, the type of f becomes int ∗ I → int ∗ I .
This is a more restrictive type than int → int, because it requires
establishing the invariant I (which may have been temporarily
broken) before calling f .

This is required for soundness. One must guarantee that the
hidden invariant holds before giving control to the outside world,
because the outside world could make a re-entrant call into the
inside world. That is, the function f might cause the control to
enter the scope of t again—and, at this point, I will be expected
to hold. This issue with “callbacks” is known in the object-oriented
community [1].

Unfortunately, this feature of the anti-frame rule becomes prob-
lematic when the outside world does not in fact re-entrantly invoke
the inside world. For instance, imagine that the hidden invariant I
expresses the ownership of a doubly-linked list. Imagine that I, the
implementor of the inside world, wish to use an existing library for
manipulating doubly-linked lists. The type environment Γ presum-
ably contains a description of the functions offered by this library
(insertion, deletion, etc.). Each of these functions requires a capa-
bility over some doubly-linked list, performs a side effect on the
list, and returns this capability. Now, in the modified type environ-
ment Γ⊗I , each of these functions requires (and returns) two capa-
bilities: a capability over some doubly-linked list, on the one hand,
and the capability I , on the other hand. This means that I actu-
ally cannot invoke these library functions to operate on the hidden
doubly-linked list: for this purpose, I would need two copies of I .
However, I is a linear capability, and cannot be duplicated.

One could coin a name for this problem:

The anti-frame rule is paranoid.

(It is rightfully so, but that is still a problem.)
This problem was not apparent in the anti-frame paper [4],

because the three applications that are sketched there are small
enough to not require the use of any external library: they are
programmed up only in terms of primitive operations.

The problem can be worked around, to some extent, by using
dynamic checks to guard against re-entrancy, and by exploiting
the presence of these dynamic checks to make the code well-
typed again. In short, if the intended invariant is I , then the actual
invariant, say I ′, should be:

∃b.({σ : ref bool b} ∗ (¬b ⇒ I))

Here, σ is a singleton region, which is inhabited by a mutable
Boolean cell. The capability {σ : ref bool b} represents the owner-
ship of this cell; the index b represents the contents of the cell. This
invariant states that, if the cell holds the value false, then I holds.

The code is modified as follows:

1. the Boolean flag is initialized to false;

2. prior to calling an external function, one does not re-establish I;
instead, one sets the flag to true, which has the effect of estab-
lishing I ′, as required by the anti-frame rule;

3. when one is called from the outside, the anti-frame rule allows
assuming that I ′ holds; one then consults the flag: if it is false,
then I holds, and all is well; if it is true, then one must signal a
runtime failure;

4. when one returns control to the outside, one establishes I , then
sets the flag to false, so as to establish I ′.

(Some, but not all, of this defensive machinery can be eliminated
using the generalized anti-frame rule [5]. Indeed, the generalized
version of the rule allows expressing the property that the value
of the flag does not change over a balanced sequence of calls and
returns.)

The dynamic check technique is interesting, but has a runtime
cost, and weakens the static guarantees that can be made about the
code, so it is not satisfactory.

Of course, one could avoid the problem altogether, simply by
not hiding the invariant I . Every function that (directly or indi-
rectly) might call our code would then have its type “tainted”
with I . This, however, would entail a loss in flexibility and modu-
larity: because I is a linear capability, it would have to be explicitly
threaded through the clients of our code.

One might wish to somehow detect that certain library functions
are safe, because “they cannot possibly lead to a re-entrant call”,
and relax the anti-frame rule in that case. However, again, it is not
clear how to track which functions are safe without contradicting
the very principle of hidden state.

A solution to this problem seems required for the anti-frame
rule to become useful in a production-scale programming language.
Such a solution would perhaps eliminate, at the same time, the
incompatibility with the higher-order frame axiom. At present, I
know of no such solution.

It would be desirable to take a closer look at what has been done
in the object-oriented community, so as to determine what form the
problem takes there and how it is solved.

Acknowledgements
A discussion with Lars Birkedal, Bernhard Reus, Jan Schwingham-
mer, and Hongseok Yang prompted me to look more closely into
the interaction between the anti-frame rule and the higher-order
frame axiom. Alexandre Pilkiewicz pointed out the inherent lack
of modularity of the anti-frame rule.

References
[1] Anindya Banerjee and David A. Naumann. State based ownership,

reentrance, and encapsulation. In European Conference on Object-
Oriented Programming, volume 3586 of Lecture Notes in Computer
Science, pages 387–411. Springer, July 2005.

[2] Lars Birkedal, Noah Torp-Smith, and Hongseok Yang. Semantics of
separation-logic typing and higher-order frame rules for Algol-like
languages. Logical Methods in Computer Science, 2(5), November
2006.

[3] Arthur Charguéraud and François Pottier. Functional translation
of a calculus of capabilities. In ACM International Conference on
Functional Programming (ICFP), pages 213–224, September 2008.

[4] François Pottier. Hiding local state in direct style: a higher-order anti-
frame rule. In IEEE Symposium on Logic in Computer Science (LICS),
pages 331–340, June 2008.

[5] François Pottier. Generalizing the higher-order frame and anti-frame
rules. Unpublished, July 2009.

[6] Jan Schwinghammer, Lars Birkedal, Bernhard Reus, and Hongseok
Yang. Nested hoare triples and frame rules for higher-order store. In

2 2009/7/1

https://guinness.cs.stevens-tech.edu/~naumann/publications/ecoop.pdf
https://guinness.cs.stevens-tech.edu/~naumann/publications/ecoop.pdf
http://arxiv.org/pdf/cs.LO/0610081
http://arxiv.org/pdf/cs.LO/0610081
http://arxiv.org/pdf/cs.LO/0610081
http://cristal.inria.fr/~fpottier/publis/chargueraud-pottier-capabilities.pdf
http://cristal.inria.fr/~fpottier/publis/chargueraud-pottier-capabilities.pdf
http://cristal.inria.fr/~fpottier/publis/fpottier-antiframe-2008.pdf
http://cristal.inria.fr/~fpottier/publis/fpottier-antiframe-2008.pdf
http://gallium.inria.fr/~fpottier/publis/fpottier-gaf-2009.pdf
http://gallium.inria.fr/~fpottier/publis/fpottier-gaf-2009.pdf
http://www.itu.dk/~birkedal/papers/nested-triples-conf.pdf


Computer Science Logic, September 2009.

[7] Andrew K. Wright. Simple imperative polymorphism. Lisp and
Symbolic Computation, 8(4):343–356, December 1995.

3 2009/7/1

http://www.cs.rice.edu/CS/PLT/Publications/Scheme/lasc95-w.ps.gz

