
Algorithms and Proofs Inheritane in the Fo LanguageVirgile Prevosto (virgile.prevosto�lip6.fr)Laboratoire d'Informatique de Paris 6 � INRIA RoquenourtDamien Doligez (damien.doligez�inria.fr)INRIA RoquenourtAbstrat. In this paper, we present the Fo langugage, dediated to the de-velopment of erti�ed omputer algebra librairies (i.e. sets of programs). Theselibraries are based on a hierarhy of implementations of mathematial strutures.After presenting the ore set of features of our language, we desribe the statianalyses, whih rejet inonsistent programs. We then show how we translate Fode�nitions into Oaml, and Coq, our target languages for the omputational partand the proof heking respetively.1. Introdution1.1. The Fo Projet1.1.1. Computer algebra systems.A omputer algebra system (CAS) inludes two essential aspets ofmathematial knowledge: �rst, it provides, more or less expliitely, aformalization of the mathematial strutures (e.g. the de�nition of whatis a monoid, a group, a ring, et). Seond, it must give e�ient im-plementations of the algorithms used in these strutures. E�ieny isextremely important, beause CAS are used in many �elds of engi-neering and researh to perform arbitrarily omplex omputations. Therange of appliations of CAS is only limited by their performane, notby the demands of the users. This explains the emphasis of urrent CASon speed of built-in algorithms, and on ease of implementation of new,more omplex, faster algorithms.On the other hand, the formalization of algebrai strutures is anessential part of CAS [9℄, so every CAS must have some way of rep-resenting the mathematial strutures, whih provides the ontext inwhih its algorithms will work. This orrespondene between the math-ematial objets and their omputer representation needs to be learlyspei�ed and doumented, even if it is not always the ase.1.1.2. State of the art in CAS.The design of urrent omputer algebra systems puts heavy emphasison the e�ient implementation of state-of-the-art algorithms. In on-trast, the programming language o�ered to the user of these systems 2002 Kluwer Aademi Publishers. Printed in the Netherlands.
main.tex; 14/08/2002; 18:32; p.1

2is often poorly designed. In some systems (suh as Maple or Mupad)the language is onsidered as some kind of sripting language ratherthan an important feature of the CAS. Even in Axiom [16℄, Aldor,or Magma, where the user language is a entral part of the system,omputer algebra issues take preedene over the language design andspei�ation.Another issue with urrent CAS is the omplexity of the algorithmsand their implementations. The algorithms used in omputer algebraare generally proved orret with a mathematial proof, but they areomplex and hard to understand, and implementing them is far fromtrivial, whih explains the presene of obsure bugs in all urrent CAS.These bugs are dangerous beause the engineers and sientists tendto trust the answers given by the CAS, and the onsequenes of a wrongomputation an range from a few days of time lost in traking downthe error, to a omplete failure of the system designed by the engineer.1.1.3. The Fo approah to omputer algebra.The Fo projet1 [3℄, under the diretion of Th. Hardin, attempts todeal with these issues by providing a new programming language dedi-ated to omputer algebra. We intend to ground the language on �rmtheoretial results, with lear semantis and an e�ient implementationvia translation to Oaml. Our language has funtional and objet-oriented features arefully tailored to the task at hand. In order totakle the orretness problem, the language provides means for theprogrammers to write formal proofs of their ode, and to have themveri�ed by a proof heker (Coq).The programming part of our approah is validated by the Folibrary, developped by R. Rioboo [4℄, whih inludes some omplex al-gorithms with performane omparable to the best CAS in existene[4℄.The fat that we design our own language allows us to express moreeasily than in a general purpose language some very important on-epts of the omputer algebra, and in partiular the arrier type of astruture [12℄. On the other hand, we an also restrit objet-orientedfeatures to what is stritly neessary (Se. 3) to omputer algebra, andavoid unsound onstrutions, suh as open reursion, whih an lead toinonsistenies when used arelessly.1.1.4. ContentsIn this paper we desribe the ore features of the Fo language. Theremainder of this setion introdues informally the fundamental on-epts of Fo. Then, we present the onrete syntax (Se. 2). Some1 http://www-spi.lip6.fr/�fo
main.tex; 14/08/2002; 18:32; p.2

3programming errors annot be avoided at the syntax level, and we havedesigned a stati ode analysis to detet them (Se. 3). We are thenable to desribe the ompilation of the Fo soure to Oaml (Se. 4).Finally, we show how this work is extended to statements and proofs(Se. 5) and explain the translation into Coq (Se. 6). Main results arethe algorithm that performs the stati analysis and the handling of latebinding (see below) in Coq.1.2. SpeiesSpeies orrespond to algebrai strutures in mathematis and play aprimordial role in Fo: they are the nodes of the hierarhy of struturesonstituting the library. Entities are the elements of speies, the objetsmanipulated by the algorithms.1.2.1. Entities.Entities represent mathematial objets, suh as 0 or X2 + 3 �X � Y ,in the omputer universe. One issue here is that there is no simplerelationship between these two worlds. On the one hand, the onstant1 of the integer type an be used to represent 1 2 Z=2Z as well as1 2 Z=5Z. Of ourse, it would be a mistake to mix them up, sine theydo not have the same properties. On the other hand, the polynomialX+2 an be viewed as an ordered list of oe�ients, [1;2℄, or as a list ofpairs (sparse representation): [(1,1);(2,0)℄. In this ase, adding twopolynomials that do not share the same onrete representation is likelyto produe an error. To avoid suh onfusion, we need an abstrationmehanism in the spirit of abstrat data types.1.2.2. Speies and MethodsA speies an be seen as a set of methods, whih are identi�ed by theirnames. A method an be either delared or de�ned. Delared methodsre�et the onstants, the primitive operations, and the axioms thatde�ne a struture in mathematis. De�ned methods represent imple-mented operations (i.e. algorithms) and theorems built up (and proved)from these delared methods. There are three di�erent ategories ofmethods:� The arrier, or representation type (rep) of a speies is a type fromthe Fo type language. In other words (see Se.2.1), it an be anatomi type, a produt, a funtion type, or a parameterized type(suh as list(int)). It represents the type of the entities that thespeies manipulates. The arrier of eah speies is unique.� funtions (when de�ned) and signatures (when only delared)denote the operations that are allowed on the arrier's elements.
main.tex; 14/08/2002; 18:32; p.3

4� Finally, the developer of a new speies an speify the propertiesthat further implementations of this speies must meet. He mayalso prove some theorems for the urrent delarations/de�nitionsof funtions and properties.As an example, a monoid is built upon a set whih is representedin Fo by its arrier type. It has some delared operations, (spei�edby their types), namely +, and zero. These operations must satisfythe axioms of monoids, whih are expressed in Fo by properties. Wean then de�ne a funtion, dble, suh that dble(x) = x+ x, and provesome theorems about it, for instane that 8x 2 rep; dble(zero + x) =dble(x). Following Curry-Howard-de Bruijn isomorphism, we an linksignatures and properties on the one hand (both are abstrat methods),and funtions and proofs (as de�ned methods) on the other one.1.2.3. Inheritaneinheritane allows to de�ne a new speies from previous one(s). The newspeies inherits all the methods of its parent(s). If two parents havemethods that share the same name, they must have the same type.If both methods are de�ned, then we have to hoose the de�nitionthat will be exported in the new speies. A speies an de�ne somemethods that were delared in its parents, or even rede�ne a method.It an also delare a new method but not redelare an old one with adi�erent type. As said later (p. 18), this restrition ensures that anyimplementation of a speies that inherits from a speies a has at leastthe same methods as a, with the same type. A speies an also delareand de�ne a new method at the same time. These features, along withthe parameterization desribed further, enables the use of a re�nementmethodology to build new speies. Thus, multiple inheritane omeswith overriding and late binding, whih are usual features of objet-oriented languages.1.3. Abstration1.3.1. ParametersIn omputer algebra, many strutures are built upon previously de�nedalgebrai strutures by kinds of ategorial operations. For example,an algebra of polynomials is built upon a ring R of oe�ients and amonomial ordering D of degrees. In fat, to build polynomials, we needonly to know the operations provided by R, and their spei�ations,but not their partiular implementation. On the other hand, to buildan e�etive implementation of polynomials over Z, R needs to be in-stantiated by a struture whose all methods are de�ned. This leads tothe two dual notions of interfae and olletion.
main.tex; 14/08/2002; 18:32; p.4

51.3.2. InterfaesAn interfae is a list of delared methods. It orresponds to the end-user point of view, who wants to know whih funtions he an use, andwhih properties these funtions have, but doesn't are about the detailsof the implementation. In Fo, the de�nition of a speies must allowthe de�nition of the assoiated interfae, by removing all the bodies ofthe de�ned methods. While this abstration is easy within programminglanguages, it is not always possible when dealing with proofs, as pointedout by S. Boulmé [5℄. Se. 5 deals with this problem.1.3.3. ColletionsAssume that we are using Q as an atual parameter for P when buildingS. Suppose that a funtion f of Q is only delared but is used in S for aomputation. Then, there are two possibilities. Either we aept to waituntil run-time to obtain a de�nition for f and then we aept run-timefailures. Or, we fore any atual speies parameter to be a ompletelyde�ned speies. We hoose the more restritive way beause it is saferwhile still having enough expressive power.A olletion is a ompletely de�ned speies. This means that every�eld must be de�ned, and every parameter instantiated. It representsa partiular mathematial struture, suh as Z[X℄. Moreover, we annot aess diretly the entities belonging to a given olletion, to avoidbreaking the representation invariants. Colletions an also be used tointrodue a prede�ned types. For instane, we an assume that thereexist a olletion bool with an (abstrat) arrier, two element true andfalse, an unary operation not, et.2. SyntaxIn this setion, we present the ore syntax of Fo and an intuitiveexplanation of its semantis. The omplete syntax is built upon theore syntax by adding syntati sugar without hanging its expressivepower, so the properties of the ore language are easily extended.There are three di�erent sets of identi�ers:� x; y denote �-bound variables, funtion and method names.� s denotes speies names.� denotes olletion names.There is also a keyword, self , whih an be used only inside a speies sand represents the �urrent� olletion (thus self is a olletion name).
main.tex; 14/08/2002; 18:32; p.5

6It is used to handle late binding as seen in the following example. (InFo, !m denotes the method m of olletion).speies A = let f(x) = body; let g = . . . self !f . . .; endspeies B inherits A = let f(x) = improved body; endThe new de�nition of f in B overrides the old one, inherited from A.Then, in the value of g in B, self!f is not bound to the de�nition of fin the speies A, where g is de�ned, but to the atual value of f.Note that when doing the stati analysis of A, we have to assumethat self an be any olletion that inherits from A itself beause we donot know in what ontext g will be used.2.1. Expressions and Typesidenti�er ::= x, ydelaration ::= x [in type ℄expression ::= x j!x j fun delaration -> expressionj let [re ℄ delaration = expression in expressionj expression(expression { ,expression }*)type ::= j � j type -> type j type * typeAn expression an be a variable, a method x of some olletion , a loalde�nition with an expression in its sope, a funtion appliation, or afuntional abstration. A type an be a olletion name (representingthe arrier of that olletion), a variable, a funtion or a produt type.2.2. Fields of a Speiesdef_�eld ::= rep=type j let delaration = expressionj let re { delaration = expression; }+del_�eld ::= sig x in type j rep�eld ::= def_�eld j del_�eldA �eld � of a speies is a delaration or a de�nition of a method name.In the ase of mutually reursive methods, a single �eld de�nes severalmethods at one (using the let re keywords). The arrier is onsideredalso as a method, introdued by the rep keyword. Eah speies musthave exatly one rep �eld, either de�ned or inherited.

main.tex; 14/08/2002; 18:32; p.6

72.3. Speies and Colletion Definitionsspeies_def ::= speies s [(parameter { , parameter }*) ℄[inherits speies_expr { , speies_expr }* ℄= { �eld ; }* endolletion_def ::= olletion implements speies_exprparameter ::= x in type j is speies_exprspeies_expr ::= s j s (expr_or_oll { , expr_or_oll }*)expr_or_oll ::= j expressionA speies_expr is a speies identi�er (for an atomi speies), ora speies identi�er applied to some arguments (for a parameterizedspeies). The arguments an be olletions or expressions: in the dela-ration of a parameterized speies, a formal parameter an be a variable(and its type) or a olletion name (and its interfae). A speies de�-nition is an optional list of parameters, an optional list of inheritanedelarations, and a list of �elds (its body). Order of inheritane de-larations is signi�ant: if a method de�nition is inherited from severalsoures, the rightmost one is used. In addition, two di�erent �elds inspeies_def must de�ne or delare disjoint sets of method names.Note that in the omplete syntax, we an allow a olletion a im-plementing a speies b to have a body omposed of def_field entries.This an be translated in the ore syntax asspeies a spe inherits b = def field of a endolletion a implements a spe2.4. An ExampleAssume that the speies setoid and monoid have already been de�ned,and that we have a olletion integ that implements Z. We now de�nethe artesian produts of two setoids and of two monoids. We also usea few prede�ned operators (fst, snd, reate_pair, et.).speies artesian setoid(a is setoid, b is setoid)inherits setoid =rep = a * b;let eq = fun x �> fun y �>and(a!eq(fst(x), fst(y)), b!eq(snd(x), snd(y)));endspeies artesian monoid(a1 is monoid, b1 is monoid)inherits monoid, artesian setoid(a1,b1) =
main.tex; 14/08/2002; 18:32; p.7

8 let plus = fun x �> fun y �>let x1 = fst(x) in let x2 = snd(x) inlet y1 = fst(y) in let y2 = snd(y) inreate pair(a1!plus(x1, y1), b1!plus(x2, y2));let neutral = reate pair(a1!zero, b1!zero);endolletion z square implements artesian monoid(integ,integ)3. Analyzing Speies3.1. Informal Desription of Stati AnalysisNot all syntatially orret de�nitions are aeptable in Fo. In orderto respet the oherene properties, we need to hek some semantionstraints on the de�nitions of speies and olletions. We imposesome additional onstraints, espeially on mutually reursive methods,to make the proofs easier to write. The restritions are:� Typing: all expressions must be well-typed, the arguments passedto parameterized speies must have the expeted types, rede�ni-tions of methods must not hange their type.� When reating a olletion from a speies, all the �elds of thespeies must be de�ned (as opposed to simply delared).� The rep �eld must be present or inherited in every speies.� Reursion between methods outside a let re �eld is forbidden.If a olletion parameter is required to have interfae A, the on-straints on method types ensure that any implementation of A an beused as an atual parameter.We want the programmer to expliitate all the mutually-reursivegroups of methods beause we are interested in ertifying the ode,whih inludes proving the termination of every reursive method. Ifwe had impliit reursion between all methods of a speies (as usualin objet-oriented languages), these termination proofs would beometoo omplex, needlessly involving all the methods (whether de�nedor inherited) of the speies. By foring the programmer to �ag themutually-reursive groups of methods, we ensure that these groups areas small as possible, whih helps making the proofs simpler.
main.tex; 14/08/2002; 18:32; p.8

9Note that this restrition involves a global analysis, as shown by thetwo following examples. Let A, B, and C be de�ned as follows:speies A = rep; sig x in self ; let y = self !x; endspeies B = rep; let x = self !y; sig y in self ; endspeies C inherits A,B = rep = int; endolletion C imp implements C;;The speies A and B are obviously well de�ned. At �rst glane, C alsoseems to be well de�ned. However, the evaluation of C_imp!x annotterminate beause of the reursion between x and y. On the ontrary, thefollowing example illustrates the need of mutually reursive methods:speies odd and even =rep = int;let re odd (x in self) =if x = 0 then false else self !even(x�1)and even(x in self) =if x = 0 then true else self !odd(x�1);endHere, the presene of a let re �eld means that the user has to provide aproof of the termination of the odd and even methods. One the proofshave been done, it is safe to use these methods.As far as omputing is onerned, the whole point of dependenyanalysis is to rejet the �rst example while allowing the seond one.When we add properties and proofs, the dependeny analysis beomesmore omplex, as we see in Se. 5. To summarize, the analysis of aspeies de�nition must take are of three issues:� inheritane lookup, and resolution of multiple-inheritane on�its.� dependeny analysis� type-heking of the methods3.2. Basi definitionsFirst, we de�ne N (s), the method names that are introdued in a �eld(delaration or de�nition), and D (s) � N (s) the names introduedin a �eld de�nition. This is then extended to speies themselves, byindution on the inheritane graph. This graph is indeed a DAG, sinea speies an only inherit from already-de�ned speies. Formal de�nitionan be found in appendix A.
main.tex; 14/08/2002; 18:32; p.9

10 A method name annot be introdued twie in a speies body. Froma pratial point of view, it is always a mistake to give two de�nitionsof the same method in a speies body, beause one of the de�nitionswould be useless. The following analyses will keep this uniity, so thata speies in normal form (see def. 7) will have at most one de�nitionfor eah of its methods. In the remainder of this setion, we onsider aspeies de�nition of the following form, whih will be noted defspe:speies s inherits s1::sn = �1::�mwith 8i 6= j; N (�i) \N (�j) = ;Then, for every x in N (s), we de�ne Bs(x) to be the body of x ins. If x is inherited from another speies, we take the body from thatspeies. If x is inherited from several other speies, we take the one thatis mentioned last in the inherits lause.DEFINITION 1 (binding of a method x in a speies s).Let x 2 N (s) be the name of a method of s (de�ned by defspe)� if x =2 D (s), then Bs(x) = ?.� if x = rep, and 9i � m; �i is rep = � , then Bs(rep) = �� if 9i � m; �i is let x = expr then Bs(x) = expr� if 9i � m; �i is let re fx1 = e1; : : : ;xn = eng, and xj = x thenBs(x) = exprj� else 9i0 � n; x 2 N (si0) and 8i > i0; x =2 D (si), and x =2Smi=1D (�i) then Bs(x) = Bsi0 (x)By de�nition of D (s) we do not have other ases.3.3. Well-typed SpeiesThe methods of speies and olletions are not polymorphi. Instead,we use parameterized speies (see 3.8), whih provides generiity. Withunbounded polymorphism in methods, we ould build up inonsistentspeies, as shown in appendix E. On the ontrary, loal de�nitions insidea speies body an be polymorphi. We denote by F(�) the set of freetype variables that our in type � .DEFINITION 2 (Conrete type). A type � is said to be onrete if andonly if F(�) = ; (� may ontain names of olletion parameters)
main.tex; 14/08/2002; 18:32; p.10

11The typing environment of Fo is omposed of four sets: �;�;�;�,whih denote respetively the existing olletions, speies, variables, andthe methods of self. Elements of these sets have the following form:� : hxi : �ii 2 � where the �i's are onrete types� s : fxi : �i = eig 2 � where the �i's are onrete types� x : 8�i; � 2 �� x : � = e 2 �Typing rules for expressions are then basially the same as in theHindley-Milner type inferene algorithm. Fig. 1 presents these rules. Wede�ne as usual three auxiliary funtions, mgu, Gen and Inst. mgu triesto unify two types �1 and �2, and may instantiate some type variablesduring this proess. In addition to the usual algorithm, we provide twonew rules [Self1℄ and [Self2℄ to over uni�ation steps between selfand � when rep is de�ned to � . The mgu rules are given in B.DEFINITION 3 (Generalization and Instantiation). Let � be a typingenvironment, and � a type.Gen(�;�) = 8�i:� , where f�ig = F(�)nF(�)Inst(8�i:�;�) = � [�i �0i℄ where the �0i do no appear free in �.We an now formally introdue the notion of well-typed speies:every method is well-typed, and inherited methods keep their types.DEFINITION 4 (Well-typed speies). Given a speies s de�ned by defspe.Well-typed-spe8j; 8xi 2 N (�j); �;�;�; fxi : �i = Bs(xi)g ` Bs(xi) : �i8i; 8j; s.t.xi 2 N (sj); fxi : �i = Bsj (xi)g 2 �(sj)�;�;�; ; ` s : fxi : �i = Bs(xi)gGiven suh a speies s, we de�ne 8xi 2 N (s); Ts(xi) = �i:3.4. Introduing DependeniesAfter a �rst step of typing, we now de�ne the seond step of the statianalysis, the detetion of dependenies yle between the methods of aspeies. A method m1 depends on the method m2 if the name m2 isused in m1's body. So, we �rst introdue *e+ that takes an expressione and returns the set of the methods of self that are used in e.
main.tex; 14/08/2002; 18:32; p.11

12 [var℄x : 8�i:� 0 2 � � � Inst(8�i:� 0;�)�;�;�;� ` x : �[abs℄�;�;� + x : �1;� ` e : �2�;�;�;� ` fun x! e : �1 ! �2[let℄�;�;�;� ` e1 : �1 �;�;� + x : Gen(�1;�);� ` e2 : �2�;�;�;� ` let x = e1 in e2 : �2[let re℄�;�;� + x : Gen(�1;�);� ` e1 : �1�;�;� + x : Gen(�1;�);� ` e2 : �2�;�;�;� ` let re x = e1 in e2 : �2[app℄�;�;�;� ` e0 : �1 ! : : :! �n ! � 8i �;�;�;� ` ei : �i�;�;�;� ` e0(e1; : : : ; en) : � 6= self [meth all℄ 2 � x : � 2 �()�;�;�;� ` !x : � [self all℄x : � = expr 2 ��;�;�;� ` self !x : �Figure 1. typing rules for basi expressionsThen we extend this to �eld de�nitions, with a distintion betweenlet and let re de�nitions. Namely, in a let re de�nition �, we erasethe mutual dependenies between the methods de�ned inside it. Indeed,we only want to detet dependeny yles that our outside of let re�elds. Appendix C gives a formal de�nition of these dependenies.Finally, we de�ne *x+s to be the dependenies of a method x on themethods of the speies s in whih x is de�ned. As for Bs(x), we onsiderthe last de�nition in the order given by the inherits statement.DEFINITION 5 (dependenies in a speies).Let s be a speies de�ned by defspe. Then, 8x 2 D (s):� if 9j � m; x 2 D (�j) then *x+s = *�j+� if 8j � m; x 62 D (�j)^ 9i0 � n; x 2 D (si0)^ 8i > i0 x =2 D (si)then *x+s = *x+si0
main.tex; 14/08/2002; 18:32; p.12

13This leads to the notion of well-formed speies, where there is noyle of dependenies outside a re-struture. Only well-formed andwell-typed speies are aeptable in Fo.DEFINITION 6 (well-formedness).x1 Js x2 b= 9fyigi=1:::n s.t. y1 = x1; yn = x2;8i < n; yi+1 2 *yi+s.We say that s is well-formed if 8x 2 N (s) : (x Ja x).In addition, s must inherit only from well-formed speies.DEFINITION 7 (normal form). Let nf be a speies de�ned by:speies nf = �1 : : : �n endnf is said to be in normal form if:� There is no inherits lause� It is well-typed.� The di�erent �elds introdue di�erent names:8i; j; i 6= j) N (�i) \N (�j) = ;� A given de�nition depends only upon previous �elds:8i � n;8x 2 N (�i); *x+nf � i�1[j=1N (�j)3.5. Merging two fieldsLet s be a speies de�ned by defspe. To hek that it is well-typed andwell-formed, we reate a speies nfs that is equivalent to it, in the sensethat it shares the same de�nitions (and delarations). Intuitively, s andnfs annot be distinguished from eah other from �outside�: they reatin the same way to all method alls.This is done by indution on the inheritane graph. In the following,we will assimilate a speies in normal form and the sequene of allits de�nitions (its body). a1�a2 denotes the onatenation of two se-quenes. If s does not have an inherits lause, then reordering its �eldsand typing eah method is straightforward. Otherwise, let norm(si) bethe normal forms of si and W 1 = norm(s1)�:::�norm(sn)�[�1; :::; �m℄.W 1 may ontain several ourrenes of the same name, due to multipleinheritane or rede�nition. So we build a new sequene, W 2 , from W 1 ,in whih eah name is introdued only one. W 2 is identi�ed to a
main.tex; 14/08/2002; 18:32; p.13

14speies ~s: speies ~s = W 2 end. We prove that ~s is well-formed ifa is well-formed.To build W 2 from W 1 , we must �nd a preise way to resolve �on-�its� (multiple de�nitions of the same method) in inheritane. To dothat, we provide a funtion = to merge two �elds �1 and �2 thathave some names in ommon. This is not a total funtion beause aname might be de�ned with two inompatible types. In this ase, thede�nition is onsidered ill-typed and rejeted by =. Two let re �eldsan be merged even if they do not introdue exatly the same sets ofnames, beause you an inherit a let re �eld and then rede�ne onlysome of its methods (keeping the inherited de�nition for the others), andalso add some new methods to this reursion. In this ase, the mergingfuntion will take every method that are involved in at least one of thetwo mutual reursive de�nitions. This will also imply a new terminationproof (see 5.2), involving all the mutually de�ned funtions, inludingthe inherited ones that are not rede�ned. The full de�nition of = isgiven in appendix D.The operator = enjoys two important properties. First, it preservesall the names introdued by �1 or �2 in one of the de�nition, and if amethod is de�ned in �1 or �2, then it is also de�ned in �1=�2. Seond,it is ompatible with late binding, whih requires that a method allalways uses the �newest� de�nition available for it in the inheritanepath.Proposition 1. (names preservation) 8�1; �2 st N (�1) \N (�2) 6= ;N (�1 = �2) = N (�1) [N (�2)Same property holds for D ()Proposition 2. (late binding) 8�1; �2 s:t: N (�1) \N (�2) 6= ;� 8x 2 D (�2) ; B�1=�2(x) = B�2(x)8x 2 D (�1) nD (�2) ; B�1=�2(x) = B�1(x)This property is interesting only if neither �1 nor �2 is a sig. Otherwise,we deal with empty sets, and the property is trivial.Proof. immediate by ase analysis on the struture of �1 and �2. 2

main.tex; 14/08/2002; 18:32; p.14

153.6. Inheritane LookupWe then build a sequene W 2 of de�nitions from W 1 , by analysing itselements one by one in the order of the list. This is done inside a loop,starting with W 1 = �1 : : : �n and W 2 = ;. At eah step, we examinethe �rst �eld remaining in W 1 and we update W 1 and W 2 . The loopends when W 1 is empty. The loop body is the following:Let W 1 = �;X and W 2 = 1 : : : m� if N (�) \ N (W 2) = ; then W 1 X and W 2 (1 : : : n; �1):if the analyzed �eld does not have any name in ommon with theones already proessed, we an safely add it at the end of W 2 .� else let i0 be the smallest index suh that N (�)\N (i0) 6= ;, thenwe do W 1 ((�= i0);X) and W 2 (1 : : : i0�1; i0+1 : : : m).This time, we must use =. However, in the ase of mutually re-ursive de�nitions, � an have some names in ommon with morethan one i, so that �= i0 is kept in W 1 .To ensure the termination of the algorithm, we take the followinglexiographi ordering: (CardW 1 ;CardW 2). Indeed, let gW 1 and gW 2 bethe values omputed after one step in the loop. If there wasn't any on-�it, then CardgW 1 < CardW 1 . Else, we have CardgW 1 = CardW 1 ,and CardgW 2 < CardW 2 . 2We now establish the main properties of this algorithm, in order toshow that W 2 de�nes a well-formed speies equivalent to s. We use thesame notations as above to speak about the �elds of W 1 and W 2 .Proposition 3. (Well-typed merging) With the notations above, if s iswell typed, then i0 = � never fails.Proof. This is straightforward with the de�nition of = and def.4. 2Proposition 4. (uniity) 8�1; �2 2 nfs; N (�1) \N (�2) = ;.Proof. By indution on the length of W 1 : If there is only one de�ni-tion, then this is trivial. If there are n + 1 de�nitions, we an use theindution hypothesis for the �rst n steps. It remains to add the lastde�nition, �.� If 8 2 W 2 ; N (�) \N () = ; then we an safely add it� Else, we onlude by indution on the size ofN (�)\�S 2W 2 N ()�:if it onerns only one name x 2 N (�), then, i0 is the (only) de�nition
main.tex; 14/08/2002; 18:32; p.15

16in W 2 suh that x 2 N (i0), we haveN (i0 = �) \ 0� [�2W 2n i0 N (�)1A = ;Indeed, by de�nition of =, 8x 2 N (i0 =�1); x 2 N (i0)_x 2 N (�1).In both ases, we annot �nd x in any of the remaining i, by indution.� If there are m+1 names involved, then with the same notations asabove, j N (�) \ ([i 6=i0N (i)) j� m. Namely, by indution hypothesisany name introdued in i0 does not appear anywhere else in W 2 . Soevery x 2 N (�1)\N (i0) disappears from the intersetion while we donot add any new identi�er. 2As said above, we now de�ne ~s as speies ~s = W 2 end.Proposition 5. (equivalene) N (s) = N (~s), D (s) = D (~s), and8x 2 D (~s) ; Bs(x) = B~s(x)Proof. In fat, we just have to prove that the following propertieshold at eah step:N (s) = n[i=1N (si) [m[j=1N (�j) = [�2W 1N (�) [[2W 2N ()8x 2 N (s);9� 2 W 2 [W 1 ;Bs(x) 2 �At �rst step, this is true, sine W 1 ontains all the de�nitions foundin s or its parents. Suppose that the properties are still true after nsteps. Let �1 be the de�nition to be analyzed.If 8� 2 W 2 N (�1) \ N (�) = ; then we just move �1 from W 1 toW 2 , so that neither the set of names appearing in one of them , northe assoiated de�nitions hange.Else, with i0 suh that N (�1) \ N (i0) 6= ;: names preservationproperty says that N (i0 = �) = N (i0) [N (�), so that the globalnamespae is left unhanged. Besides, this is true for D (�).Moreover, the late binding property shows that the methods bod-ies that are removed are nB i0 (x); x 2 D (i0) \ D (�1)o. Sine W 1 isordered, we have, by de�nition of Bs(x)8x 2 D (i0) \ D (�)Bs(x) 6= B i0 (x)At the end of the onstrution, W 1 = ;, so that N (x) = S 2W 2 N ().Moreover, we have one de�nition for eah method: Bs(x) = B~s(x). 2We an now state the main result of this setion:
main.tex; 14/08/2002; 18:32; p.16

17THEOREM 1 (normal form of a speies).For eah well-formed and well-typed speies s, there exists a speiesnfs, whih is in normal form and enjoys the following properties:� names: N (nfs) = N (s) and D (nfs) = D (s)� de�nitions: 8x 2 D (s) ;Bs(x) = Bnfs(x)Proof. This follows diretly from Props. 3, 4 and 5. It just remainsto prove that ~s is well formed.DEFINITION 8. Let s be a speies without inherits lause, suh that8x 2 N (s);9!� 2 s; x 2 N (�)We will note Ds (x) the (unique) de�nition in s where x appears.Proposition 6. Using above notations, 8x 2 N (s),with Dx = f� 2 W 1 j x 2 N (�)g, we have N (D~s (x)) = �S�2Dx N (�)�Proof. One again, we will state a property veri�ed at eah step ofthe onstrution of W 2 , namely, that0� [x2N (�)N (�)1A [N (DW 2 (x)) = [�2DxN (�)This is trivial at �rst step, when W 2 is still empty and W 1 ontainsall the �elds involved in s. If it is still veri�ed after n steps, then with� the �rst �eld of W 1 , we have three possible ases:� if we an add �, then nothing is hanged for the union.� x =2 �; x =2 i0 . Then the de�nitions where x appear do not hange.� x 2 �1, or x 2 i0 . Then we remove i0 , but add i0 = �. SineN (i0=�) = N (i0)[N (�1), by Prop 1, the property is preserved.At the end, we are left with fDW 2 (x)g, and the property holds. 2We an now prove that ~s is well-formed: if this wasn't the ase,onsider x1 and x2 in N (~s) suh that, by de�nition of (non) well-formedness, x1 J~s x2 J~s x1. Then, sine 8x 2 D (~s) ; B~s(x) = Bs(x),by mutual re Ds (x1) = Ds (x2), so that x2 2 [Dx1N (�) = N (D~s (x1)),and D~s (x1) = D~s (x2)> Then this ommon de�nition is a let rede�nition, in ontradition with x1 J~s x2, so that ~s is well-formed.
main.tex; 14/08/2002; 18:32; p.17

18 Sine ~s is well-formed, J~s is a strit ordering. Then, we just have toreorder the �elds of W 2 aording to J~s. 23.7. ColletionsA olletion an only be reated from a ompletely de�ned speies s.In addition, we abstrat its arrier type and all the methods.[oll℄ s : fxi : �i = eig 2 � 8i ei 6= ?�;�;�;� ` olletion implements s : hxi : �i[self ℄iAs often in mathematis, we denote by the same name the olletion,and its arrier type, that is the set on top of whih the olletion is built:in the types of the interfae, self is replaed by the olletion's name.3.8. Parameterized SpeiesFirst, we de�ne a funtion A that takes a speies s and a name andreturns an interfae (abstrating all the methods and replaing self by in the types). Indeed a olletion parameter, of the form � is s� addsa olletion of interfae A(s;) in the environment.DEFINITION 9 (abstration). Let s = fxi : �i = eigi=1::n be a typedspeies, and a olletion name. ThenA(s;) = hxi : �i[self ℄ii=1::nA olletion parameter may be instantiated by a riher struturethan expeted. For instane, polynomials must be de�ned over a ring,but may perfetly be given a �eld instead. So we de�ne a sub-speiesrelation, 4 in order to allow suh instantiations.DEFINITION 10 (sub-speies). Let s1, s2 be two speies.s1 4 s2 b=N (s2) � N (s1) ^ 8x 2 N (s2);Ts1(x) = Ts2(x)Tsi(x) being de�ned as in def.4By def.4, if s1 inherits from s2, then s1 4 s2. Sine only the types ofthe methods are onerned, the relation is easily extended to interfaes.We an now present the typing rules for parameterized speies.
main.tex; 14/08/2002; 18:32; p.18

19[ent-prm℄�;�;� + x : �;� ` speies s(prms) expr_spe : (x in �)type_spe�;�;�;� ` speies s(x in �; prms) expr_spe : type_spe[oll-prm℄�;�;�;� ` i : inst �+ : A(inst;);�;�;� ` speies s(prms)expr_spe : type_spe�;�;�;� ` speies s(is i; prms) expr_spe :(is A(inst ;))type_spe[ent-inst℄(s; (x 2 �)type_spe) 2 � �;�;�;� ` e : ��;�;�;� ` s(e) : type_spe[oll-inst℄(s; (1 is i1)type_spe) 2 � 2; i2 2 � i2 4 A(i1; 2)�;�;�;� ` s(2) : type_spe[1 2℄[prm-inherit℄�;�;�;� ` si : fxi;j : �i;j = ei;jg�;�;�;� ` speies s inheritsfxi;j : �i;j = ei;jg = defs :fyj : �j = e0jg�;�;�;� ` speies s inherits si = defs : fyj : �j = e0jg4. E�etive omputation: translation to OamlThe initial development of Fo has been done in Oaml [17℄, a fun-tional language of the ML family developed at INRIA. The Oamlprodues a very e�ient ode, while the language has a lear semantisand features that over the needs of Fo, as objets and modules[3℄.Indeed, speies an be quite easily translated into lasses. Speiesinheritane in Fo is translated by lass inheritane in Oaml. Aolletion is represented as an objet (i.e an instane) of the lass thatorrespond to the speies it implements. Type abstration is ahievedthrough a module wrapper around the objet. Funtions outside themodule an only aess entities through the methods of the objet.4.1. Translation of SpeiesTranslation of expressions is straightforward. Eah method in Fo istranslated into a method in Oaml. There is no di�erene between a
main.tex; 14/08/2002; 18:32; p.19

20method whose body is a onstant, and a method that is a funtion. Thisis a problem for onstant methods beause in the objet-oriented on-text of Oaml they are evaluated at eah all. So we an optimize thetranslation by using instane variables in Oaml to represent onstantmethods of Fo. These instane variables must be initialized when anew objet is reated. The order in whih variables are initialized isexatly the order given by the dependeny analysis of Fo.4.2. ParametersParameters in Fo are translated by abstrating the lass de�nitionwith respet to them. For instane, to de�ne modular integers from anypossible implementation of integers, we would have the Fo de�nition:speies int mod (base is int spe, n in base) . . .whih is translated intolass ['t,'base arrier,'base imp℄ int mod =fun (base:'base imp) �> fun (n:'base arrier) �>objetonstraint 'base imp = ['base arrier℄#int spe. . .endEah olletion parameter adds two type parameters in the Oamltranslation. the �rst one (base_arrier) orrespond to its arrier type.The seond one (base_imp) allows us to instantiate int_mod with anyinstane of a sublass of int_spe. We also add a type onstraint whihexpresses the fat that 'base_arrier is the arrier of base.5. Adding Properties and Proofs5.1. SyntaxWe now extend the syntax of 2.2 with two new �eld de�nitions: the-orem and property. In fat, a proof is a term that is built fromother proofs by omposition, substitution, et. This is analogous to theonstrution of a program. The type veri�ation of this proof term inthe Coq language ensures the validity of the proof itself.def_�eld ::= . . . j theorem x = prop proof: [deps ℄ proofdeps ::= { (del: j def:) { xi }* }*�eld ::= . . . j property x = propprop ::= expr j prop and prop j prop or prop j prop ! propj not prop j all x in typ, prop j ex x in typ, prop
main.tex; 14/08/2002; 18:32; p.20

21For the time being, a proof is a Coq sript that orresponds to thetranslation of the property it is bound to. A proof language dediatedto Fo is under development.5.2. Def-Dependenies and Del-dependeniesWhen talking about proofs, the notion of dependeny introdued inthe previous setions (see 3.4) beomes too weak. For instane, we anexpress that plus in the speies monoid is assoiative:property asso =all x,y,z in self,self !eq(self !plus(self !plus(x,y),z)self !plus(x,self !plus(y,z)))then we are able to prove this property for the naive implementation ofplus on Peano's integer: 0 + n = n and su(m) + n = su(m + n).It is done by indution on x, y and z, and uses the exat de�nitionof plus. In other words, the proof of asso that we obtain dependsupon the de�nition of plus, while dependenies we have seen so farwere only upon the type of the methods. We all def-dependenies thisnew kind of dependenies, and speak of del-dependeny when only thetype of the method is needed. We need to avoid yles of dependenies�both del - and def - ones. The distintion between the two ours dur-ing inheritane resolution, when a method is rede�ned. We must nowerase every proof that def-depends upon this method, and prove theproperty for the new implementation. For instane, if we deide to usea more e�ient algorithm, that uses internally a binary representationof integers for plus, the old proof of asso is not orret anymore.Apart from expliitly stated properties, some proof obligations arerequested by Fo.� For every let re de�nition, we have to prove that any all to amethod ofN (re_def) ends. This proof has def-dependenies uponall the methods in N (re_def). Even if only one of the method isrede�ned, a new proof for all the methods involved is requested.� For eah speies that has an equality (that is that derives fromsetoid), we must prove that eah funtion that uses entities of thisspeies is ompatible with this equality.� For some partiular representations, additional proofs are requested.For instane, if we work with the native integers of Oaml, wemust ensure that there is no over�ow.
main.tex; 14/08/2002; 18:32; p.21

225.3. Dependenies upon the arrierUntil now, it is syntatially impossible to de�ne a arrier that dependsupon a method, but onversely, �normal� methods often depend uponthe arrier. We have to know if we use del- or def- dependenies.Given an expression e, if a sub-expression of e has type self, thenthere is a del-dependeny upon the arrier. Def-dependenies uponthe arrier an be deteted during the typing phase. More preisely, ifan uni�ation must use one of the two Self rules of mgu, then there isa def-dependeny. Indeed e annot be typed in an environment wherethe arrier is bound to another type. For instane, if we de�nespeies ounter =rep = int;let in in self �> self = fun x �> x + 1;endin def-depends upon the arrier int: in order to type in withself! self, we must know that self is bound to int.Suh def-dependenies addresses a new issue, sine they may ourin statements too. For instane, we an add to ounter the theorem:theorem in spe : all x in self, self !in(x) >= x + 1 proof : . . .The statement of in_spe has a def-dependeny on the arrier, so thatit would be impossible to build the interfae of ounter: rep annot beabstrated. Sine we want to build interfaes for eah speies (1.3.2),suh speies de�nition must be rejeted.In Fig. 5.3, we de�ne �� = �[Bs(rep) ?℄ whih hide the on-rete representation of rep when typing the statements. This ensuresthat def-dependenies upon rep at the property level are rejeted asill-typed. The Expr rule oere every boolean expression used in astatement into prop. Following Curry-Howard-de Bruijn isomorphism,we also extend Ts(x) to theorem and property �elds as being thestatement of x in s.5.4. Inheritane LookupWe extend straightforwardly the de�nitions of the preeding setion.*�+ now denotes del-dependeny, while **�++ denotes def-dependenies.DEFINITION 11 (binding of a method). Let s be de�ned by defspe,and x 2 N (s). Bs(x), Is(x) and D (s) are reursively de�ned as follows.� if 8i � n; x =2 D (si) ^ 8j � m; x =2 D (�j) then Bs(x) = ?.
main.tex; 14/08/2002; 18:32; p.22

23[expr℄�;�;�;�� ` expr : bool�;�;�;� ` expr : prop [not℄�;�;�;� ` p : prop�;�;�;� ` not p : prop[and℄�;�;�;� ` p1 : prop �;�;�;� ` p2 : prop�;�;�;� ` p1 � p2 : prop[ex℄�;�;� + x : �;� ` p : prop�;�;�;� ` ? x in �; p : propwith � 2 fand;or;!g and ? 2 fall; exgFigure 2. Typing rules for statements� if 9i � m; �i is let x = expr then Bs(x) = expr, and Is(x) =n+ 1.� if 9i � m; �i is let re fx1 = expr1 : : : xl = expr lg, and xj = xthen Bs(x) = expr j and Is(x) = n+ 1� if 9i � m; �i is theorem x : :::proof then Bs(x) = proof , andIs(x) = n+ 1� else let i0 be the greatest index suh that x 2 D (si0) then Bs(x) =Bsi0 (x), and Is(x) = i0DEFINITION 12 (de�ned methods). D (s) = fx 2 N (s);Bs(x) 6= ?gWe then de�ne the dependenies of x in a speies s. Note that notonly proofs but also statements may have del-dependenies, so that weanalyze Ts(x) as well as Bs(x).DEFINITION 13 (dependenies inside a speies).� if x is a funtion, then its del-dependenies are de�ned as in def.5� else, *x+s = *Bs(x)+ [*Ts(x)+ and **x++s = **Bs(x)++DEFINITION 14. x1 Js x2 b=9yii=1:::n s:t: y1 = x1; yn = x2;8i <nyi+1 2 *yi+s [**yi++s.We say that s is well-formed if 8x 2 N (s):x Js x.
main.tex; 14/08/2002; 18:32; p.23

24 Eah well formed and well-typed speies still has a normal form.Due to def-dependenies, some inherited proofs must be removed, butwe want to erase as few proofs as possible. So the main result of thissetion is that for eah well-formed speies s, there exist a normal formwith the same delarations as s, and a subset of its de�nitions whih ismaximal wrt inlusion.In order to preisely state the theorem, we need a tehnial de�nition.hanged(y; x) is true if and only if the de�nition of y has hanged sinethe last de�nition of x (following the inherits lause of s).DEFINITION 15.hanged(y; x) is a relation over N (s), s being de�ned by defspehanged(y; x) () �9j > Is(x); y 2 D (sj) ^ Bsj (y) 6= BsIs(x)(y)�_ (9k; y 2 D (�k) ^ Is(x) 6= n+ 1)= is extended to merge theorems and properties. Names-preservationand late-binding are preserved by this extension.To build nfs , the main di�erene is that we must now take def-dependenies into aount when merging two de�nitions. First, we mustslightly re�ne the onstrution of W 1 to avoid erasing new de�nitions.Let i1; : : : ; in be a permutation of 1 : : : n suh that 8j < k; N (�ij)**�ik++ = ;. Suh a permutation exists by de�nition of well-formedness.Then W 1 = norm(a1)� : : :�norm(an)�[defi1 : : : defin ℄Then, we build W 2 step by step. Now, if there is a on�it between�1 and i0 , some proofs of W 2 must be erased. Let N = N (�1)\N (i0).Eah d 2 W 2 s:t: N \ **d++ 6= ; is replaed by property x = Td(x)2.We an now prove that we build a normal form. First, de�nitionuniity still holds, by indution on the length of W 1 . Then, we stillhave N (nfs) = N (s), sine there is no hange here. It remains to provethat we do not erase too many proofs.Proposition 7. (preservation of de�nitions)D (nfs) � D (s)8x 2 D (nfs) ;Bs(x) = Bnfs(x)8x 2 D (s) nD (nfs) ;9y 2 **x++s s:t:y =2 D (nfs) or y 2 D (nfs) ^ hanged(y; x).Proof. First, D (nfs) � D (s). Indeed, if we don't onsider the def-dependenies, we would have the equality, as in preeding setion. More-over, sine Prop. 2 still holds, the bodies that are not erased are always2 Only theorems have def-dependenies.
main.tex; 14/08/2002; 18:32; p.24

25the latest de�nition of the method. It remains to prove that we do noterase too muh proofs.Suppose that we have x 2 D (s) nD (nfs). If 9�i s:t: x 2 D (�i), then9�j s:t: y 2 D (�j) suh that x def-depends upon y and �i is analyzedbefore �j . Otherwise, x would be de�ned in nfs too. Sine we havereordered the list of de�nitions, this ase annot our.Otherwise, 9si0 s:t: x 2 D (si0), and 8y 2 **Bsi0 (x)++;Bs(y) = Bsi0 (y)Suh an y may be rede�ned in si0 itself, but sine we work with thenormal forms of father speies, the orresponding de�nition is analyzedbefore the one of x in building W 2 . If it was rede�ned after si0 , thenthe hypothesis wouldn't hold, so that this ase annot our. 2It remains to prove that nfs is well-formed. Prop 3 and 6 are easilyextended, so that we an onlude the same way as above:THEOREM 2 (normal form of well-formed speies). For eah well-formedand well-typed speies s, there exists a speies nfs, whih is in normalform and enjoys the following properties:� names: N (nfs) = N (s) and D (nfs) � D (s)� de�nitions: 8x 2 D (nfs) ;Bs(x) = Bnfs(x)� 8x 2 D (s) nD (nfs) ;9y 2 **x++s s:t:(y =2 D (nfs)) or (y 2 D (nfs) ^ hanged (y; x)).6. Certi�ation: the translation into oq6.1. Overview of the translationCoq is a proof-heker, based on the Calulus of Indutive Constru-tions [22℄. Its language is very expressive, and it was quite natural tohoose it as the target language of the erti�ation part of Fo, beauseit ontains as a sublanguage the purely funtional part of Oaml.In his PhD [5℄, S. Boulmé desribes a omplete axiomatization inCoq of inheritane and del- and def-dependenies (alled opaque andtransparent in his work). In this formalism, the size of the terms growsup very fast with the number of methods and inheritane steps, andthese terms soon beome too ompliated for the Coq type-heker. Wethen designed a new approah that deals with smaller Coq expressions.As in Boulmé's work, interfaes are represented by Reords (seebelow), and olletions by instanes of the orresponding Reords.Our speies de�nitions, however, are quite di�erent. In fat, we build a
main.tex; 14/08/2002; 18:32; p.25

26set of method generators. A method generator is a lambda-lifting whihprodues the body of a method. For instane, in the speies a below,speies a =sig eq in self�> self�>bool;let neq = fun x �> fun y �> notb(self !eq(x,y));The method generator for neq is (using Coq syntax)[abst T:Set℄[abst eq:abst T�>abst T�>bool℄[x,y:abst T℄(notb (abst eq x y))The �rst line orresponds to the abstrations we have made. Theseond line is the translation of the method's body in the environmentset up by the appropriated abstrations. In partiular, the all to self !eqhas been replaed by the variable abst_eq.To reate a olletion from a ompletely de�ned speies s, we followthe order of the methods in the normal form of s. For eah method,we selet the orresponding generator and apply it to the preedingmethods of the olletion.6.2. Dependent ReordsCoq Reords are quite similar to the reords of most programminglanguages: n-uples whose omponents (alled �elds) are named. Themain distintion is that the type of one omponent may depend on thepreeding ones, i.e. use their labels. For eah speies de�ned in Fo,we de�ne a Reord type in Coq, whih denotes its interfae. If thespeies has the form fsi : �i = eig in Fo, the Reord is de�ned asReord name_spe : Type := mk_spe fsi : �igIn ontrast with the Oaml translation, here we expliitly give all the�elds of the Reord, in the order given by the normal form.6.3. Method generatorsA speies de�nition onsists in the reation of the method generators,for the funtions and theorems that are (re)de�ned in the speies itself.To translate the de�nition of x, we onsider the minimal environment� neessary to type the body of x. We keep the methods xi x dependsupon, but we need di�erent handling for del-dependenies (where thebody of xi an be forgotten) and def-dependenies (where this bodymust be kept in �). Moreover, the bodies of these def-dependenies areexpressions themselves, and we also need to keep their dependenies.
main.tex; 14/08/2002; 18:32; p.26

27DEFINITION 16 (Minimal Environment). Let � = fxi : �i = eig ande be an expression. � e e is de�ned as follows.� u e = fxj : �j = new_ej jxj 2 *e+ ^ (xj : �j = ej) 2 �gwhere new_ej = � ej if xj 2 **e++? otherwiseU1 = � u eUk+1 = Uk [[(xj :�j=ej)2Uk � u ej� e e = [k>0Ukwhere fx : � = ?g [fx : � = eg = fx : � = egSine the sequene Ui is growing and bounded by �, it has a leastupper bound, so the de�nition of e is orret. For eah identi�er presentin � e d, we de�ne either a �-abstration (for del-dependenies) or aloal binding (for def-dependenies).DEFINITION 17 (Translation of a method's environment).J;; dK = JdKJfx : � = ?; lg; dK = [abst_x : � ℄ Jl; dKJfx : � = e; lg; dK = Let abst_x : � := (gen_x abst_si)in Jl; dKwhere gen_x is the method generator of x (inherited or not: aordingto the dependeny analysis, it is de�ned before this translation).Of ourse, we need to apply gen_x to some arguments, namely themethods si from � e x that are, by def.16, part of the environment weuse. The translation of the body itself is straightforward, exept thateah method all self !x is turned into a variable referene, abst_x.7. Related worksThere exist a ertain number of projets in the area of spei�ationof algebrai strutures. Among them, CoFI [7℄ o�ers a language, CASL(Common Algebrai Spei�ation Language), in whih it might be inter-esting to express the interfaes of the Fo hierarhy. On the other hand,OpenMath [8℄ an be very useful to represent Fo entities. OpenMathprovides a standard for a semantially-rih representation of mathemat-ial objets in XML. OMDo, an extension of OpenMath whih handles
main.tex; 14/08/2002; 18:32; p.27

28whole douments an also help Fo to provide speies desriptions in astandard XML format. However, this onerns only spei�ations, notthe onrete implementation of the algorithms.Algebrai hierarhies have been developed in various theorem-proversor proof-hekers. In partiular, Loi Pottier [20℄ has developed an hugelibrary in Coq about fundamental notions of algebra, up to �elds. H.Geuvers and the FTA projet [13℄ are also using the Reords of Coq torepresent algebrai strutures, in order to de�ne abstrat and onreterepresentations of reals and omplex. In addition, R. Pollak [19℄ andG. Betarte [2℄ have given their own embedding of dependent reords inType Theory. At last, a fairly large amount of proofs has been doneinside the Mizar projet, whih attempts to build a database of impor-tant theorems of mathematis. We an also mention Imps [11℄, a proofsystem whih aims at providing a omputational support for mathe-matial proofs. However, none of these works inlude a omputationalounterpart, similar to the Oaml translation of Fo. P. Jakson [15℄implemented a spei�ation of multivariate polynomials in Nuprl. Hisapproah is quite di�erent from Fo, as in his formalism, a group annot be diretly onsidered as a monoid, for instane. In other words,the mathematial hierarhy is not fully re�eted in this onstrution.8. Future work8.1. Higher-order methodsIn addition to the ore language, some new features have been addedto over pratial requests from the programmers. Some further workis needed to inorporate them in the formalization desribed above. Inpartiular, we need a way to de�ne a method that returns a �olletion�,i.e. a speies with all its methods de�ned. For instane, we an de�ne thespeies of multivariate polynomials. Assuming that polynom is a speiesparameterized by the name of the variable, the ring of oe�ients andthe ordered set of degrees, we will de�ne a method that lifts the wholespeies to the orret number of variables for a given operation:let updom (s in string)=polynom(s,self,my degree)It is not lear yet how we an extend dependeny analysis to suhmethods. The most simple solution seems to onsider that updom del-depends upon all the methods of self that polynom an see throughthe interfae ring.
main.tex; 14/08/2002; 18:32; p.28

298.2. The proof languageAs said in se. 5.1, it is now neessary to de�ne a proof language for Fothat will be independent from Coq sripts. It is yet possible to writesome basi proofs diretly in Fo but some features are still missing:In partiular, proof obligations are not yet generated. In addition, wehave to provide more support for indution and rewriting steps.9. ConlusionAs a onlusion, we an say that Fo has now ahieved quite goodexpressive power, at least for its omputational part. The stati analysesthat are disussed in se. 3 and 5 have been suessfully implementedin a ompiler that generates Oaml as well as Coq ode, following theideas of se 4 and 6.On the one hand, we are able to provide a good environment to provethe properties that are needed in eah speies' implementation. We stillhave to speify a language to build proofs in this environment.On the other hand, the Oaml ode produed by Fo onforms tothe initial requirements of the projet. Moreover, the generated ode isquite e�ient, thanks to the optimizations allowed by stati analysis.10. AknowledgementThe authors wish to thank Thérèse Hardin and Gilles Dowek for herpreious help, and the anonymous referees for their preise and usefulomments on previous versions of this paper.Referenes1. C. Ballarin, K. Homann, and J. Calmet. Theorems and algorithms: an interfaebetween isabelle and maple. In A. Levelt, editor, Proeedings of ISSAC, pages150�157, Montréal, Canada, 1995. ACM Press.2. G. Betarte. Dependent Reord Types and Formal Abstrat Reasoning: Theoryand Pratie. PhD thesis, University of Göteborg, 1998.3. S. Boulmé, T. Hardin, and R. Rioboo. Polymorphi data types, objets, mod-ules and funtors: is it too muh ? Researh Report 14, LIP6, 2000. availableat http://www.lip6.fr/reports/lip6.2000.014.html.4. S. Boulmé, T. Hardin, and R. Rioboo. Some hints for polynomials in the Foprojet. In Calulemus 2001 Proeedings, June 2001.5. S. Boulmé. Spéi�ation d'un environnement dédié à la programmation erti�éede bibliothèques de Calul Formel. PhD thesis, Université Paris 6, 2000.
main.tex; 14/08/2002; 18:32; p.29

306. B. Buhberger and all. A survey on the theorema projet. In W. Kuehlin,editor, Proeedings of ISSAC'97. ACM Press, 1997.7. M. Cerioli, P. Mosses, and G. Reggio, editors. Proeedings of the 15th In-ternational Workshop on Algebrai Development Tehniques and the GeneralWorkshop of the CoFI WG, Genova, Italy, April 2001.8. S. Dalmas, M. Gaëtano, and S. Watt. An openmath 1.0 implementation. InW. Kuehlin, editor, Proeedings of ISSAC 97. ACM Press, 1997.9. J. Davenport, Y. Siret, E. Tournier, and D. Lazard. Computer Algebra. Masson,1993.10. M. Dunstan, H. Gottliebsen, T. Kelsey, and U. Martin. Computer algebrameets automated theorem proving: A maple-pvs interfae. In Proeedings ofthe Calulemus Workshop, 2001.11. W. M. Farmer, J. D. Guttman, and F. J. Thayer. The imps user's manual. Teh-nial Report M-93B138, The mitre Corporation, November 1995. Available atftp://math.harvard.edu/imps/do/.12. S. Fehter. Une sémantique pour fo. Rapport de D.E.A., Université Paris 6,Septembre 2001.13. H. Geuvers, R. Pollak, F. Wiedijk, and J. Zwanenburg. The algebrai hierarhyof the fta projet. In Proeedings of the Calulemus Workshop, 2001.14. J. Harrison and L. Théry. A skepti's approah to ombining HOL and Maple.Journal of Automated Reasoning, 21:279�294, 1998.15. P. Jakson. Exploring abstrat algebra in onstrutive type theory. InProeedings of 12th International Conferene on Automated Dedution, 1994.16. R. D. Jenks and R. S. Stutor. AXIOM, The Sienti� Computation System.Springer-Verlag, 1992.17. X. Leroy, D. Doligez, J. Garrigue, D. Rémy, and J. Vouillon. The ObjetiveCaml system release 3.00 Doumentation and user's manual. INRIA, 2000.http://pauilla.inria.fr/oaml/htmlman/.18. L. Mandel. Fatorisation de polyn�mes sur les orps �nis. Rapport demagistère, Université Paris 6, 2001.19. R. Pollak. Dependently typed reords for representing mathematial stru-tures. In TPHOLs'00. Springer-Verlag, 2000.20. L. Pottier. ontrib algebra. http://oq.inria.fr/ontribs-eng.html.21. V. Prevosto. Vers une interfae utilisateur pour fo. Rapport de D.E.A.,Université Paris 6, Septembre 2000.22. The Coq Development Team. The Coq Proof Assistant Referene Manual.Projet LogiCal, INRIA-Roquenourt � LRI Paris 11, Nov. 1996.
Appendix

main.tex; 14/08/2002; 18:32; p.30

31A. Names introdued in a �eld and a speiesDEFINITION 18. N (def) and D (def) are de�ned in the followingway: N (let x = e) = N (sig x in �) = fxgN (let re fx1 = e1; : : : ;xn = eng) = fxigi=1:::nN (rep) = N (rep = �) = repD (def) = ; if def = � sig s in �rep= N (def) elseN (theorem x = :::) = fxg N (property x = :::) = fxgD (theorem x = :::) = fxg D (property x = :::) = ;Consider the following statement:speies s inherits s1; : : : sn = �1 : : : �m suh that8i; j � m;N (�i) \N (�j) = ;Then, we de�ne N (s) and D (s):N (s) = n[i=1N (si)! [0� m[j=1N (�j)1AD (s) = n[i=1D (si)! [0� m[j=1D (�j)1A
B. Most General Uni�erDEFINITION 19 (Most General Uni�er).Let � be either a onrete type � or ?,[Eq℄mgu�(�; �) = �; id [Var1℄mgu�(�; �) = �; [� � ℄ � not free in �[Var2℄mgu�(�; �) = �; [� � ℄ � not free in �

main.tex; 14/08/2002; 18:32; p.31

32 [Arrow℄mgu�(�1; � 01) = � 001 ; � mgu�(�2�; � 02�) = � 002 ; �mgu�(�1 ! �2; � 01 ! � 02) = � 001 ! � 002 ; ��[Prod℄mgu�(�1; � 01) = � 001 ; � mgu�(�2�; � 02�) = � 002 ; �mgu�(�1 � �2; � 01 ! � 02) = � 001 ! � 002 ; ��[Self1℄mgu�(self; �) = self; id [Self2℄mgu�(�; self) = self; idIn every other ase, mgu� fails.Given �;�;�;� a typing environment, and �1; �2 two types suh thatmgu�(rep)(�1; �2) = �3; � we de�ne Mgu(�1; �2)b=�3�.C. DependeniesDEFINITION 20. *�+ is de�ned by indution on the expressions of thelanguage: *x+ = ;*let x = e1 in e2+ = *e1+� *e2+*let re x = e1 in e2+ = *e1+� *e2+*�x:e+ = *e+*:x+ = � ; when 6= selffxg when = self*e0(e1; : : : ; en)+ = *e0+ [(Sni=1 *ei+)DEFINITION 21 (dependenies of prop). If a proposition p onsistsof an expression then its dependenies are already de�ned in def.20.Otherwise, we de�ne them by indution on the struture of p:*p1 and p2+ = *p1+� *p2+ *p1 or p2+ = *p1+� *p2+*p1 ! p2+ = *p1+� *p2+ *not p+ = *p+ *all x in �; p+ = *p+*ex x in �; p+ = *p+DEFINITION 22. *let x = e+ = *e+*let re fx1 = e1 : : : xn = eng+ = [ni=1*ei+n fxigi=1:::n*sig x in �+ = ;*property x = p+ = *p+*theorem x = p proof: : : : del x1; : : : ; xn; : : :+ = *p+ [fxigi=1::n
main.tex; 14/08/2002; 18:32; p.32

33DEFINITION 23 (def-dependenies).**proof: : : : def:x1 : : : xn : : :++ = fxigi=1:::nLet � be a method de�nition� if � is theorem x = : : : proof then **�++ = **proof++� otherwise **�++ = ;D. Merging two �eldsDEFINITION 24.Let �1 and �2 be two �elds, with N (�1) \N (�2) 6= ;.We de�ne �1 = �2 the following way. Note that this is a partialfuntion, sine alls to Mgu may fail.sig x in � = sig x in � = sig x in �sig x in �1 = let x in �2 = e2 = let x in Mgu(�1; �2) = e2sig x in �1 = let re(x in �2 = e2) [C = let re(x in Mgu(�1; �2) = e2) [Clet re(x in �1 = e1) [C = sig x in �2 = let re(x in Mgu(�1; �2) = e1) [Clet x in �1 = e1 = let x in �2 = e2 = let x in Mgu(�1; �2) = e2let x in �1 = e1 = sig x in �2 = let x in Mgu(�1; �2) = e1let refxi [in �i℄ = exiyi [in �i℄ = eyig = let refxi [in �i℄ = ex0izi [in �i℄ = ezig = let re(fxi in Mgu(�i; �i) = ex0ig[fyi in �i = eyig[fzi in �i = ezig)DEFINITION 25 (merging properties and theorems).property x = p = property x = p = property x = pproperty x = p = theorem x = pproof:prf = theorem x = pproof:prftheorem x = pproof:prf = property x = p = theorem x = pproof:prftheorem x = pproof:prf1 = theorem x = pproof:prf2 = theorem x = pproof:prf2Other ases are irrelevant: the two �eld de�nitions must share the samename and the same statement (i.e. Tdef (x))
main.tex; 14/08/2002; 18:32; p.33

34 E. The Issues of Polymorphi Speiesspeies polymorph = rep; let id = fun x �> x; endspeies prm (x is polymorph) =rep = unit;let elt = x!id(true);endspeies imp inherits polymorph =rep = unit; let id = fun x �> x + 1;endolletion Imp implements impolletion error implements prm(Imp)Here, polymorph has a polymorphi method id, with type 'a->'a.Then prm takes any implementation x of polymorph as parameter, anduses x!id with type bool -> bool. imp is a sub-speies of polymorphwhih rede�nes id with type int->int. Both bool -> bool and int->intare valid instanes of 'a->'a, so that the de�nition appears to beorret. However, the olletion error is not well-typed: Its methodelt would evaluate in true + 1.

main.tex; 14/08/2002; 18:32; p.34

