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Abstract. Verification tools targeting Rust programs need to handle a
salient feature of this language: mutable borrows. The elegant approach
of using prophecies to model mutable borrows is used in practice in the
Creusot deductive verification tool—yet, so far, this encoding has only
been described in the idealized setting of a core calculus. In this work,
after observing that “scaling up” this approach into a usable verification
tool is non-trivial, we show how to integrate this encoding with two
common features of deductive verification systems: ghost code and type
invariants. Additionally, we provide concrete implementation strategies
for key aspects of the encoding that were unspecified but turn out to
be crucial when considering realistic programs. All of our work has been
implemented as an extension of Creusot.
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1 Introduction

The Rust programming language [13] offers an enticing programming paradigm:
programmers have access to fine-grained control over resources and data layout
while enjoying the benefits of a strong type system that ensures type safety,
memory safety and data race freedom. One of Rust’s key features are borrows. A
borrow is a kind of pointer: a reference that can be used to access—and possibly
modify—a piece of memory held by another part of the program. Crucially, the
use of borrows is restricted by the Rust type system, which statically enforces
that a given piece of memory is never aliased and mutated at the same time.

In the context of program verification, Rust’s static control over aliasing and
mutation is a huge boon. Over the last few years, a wide range of approaches
has been developed to tackle verification of Rust programs [1,12,11,9,16]. Among
those, RustHorn [16] and Aeneas [9] came up with a similar key insight: it is
possible to reason on a well-typed Rust program (e.g., to formally verify its
correctness) almost as if it were a purely functional program. In particular, one
does not need to reason explicitly about pointers nor aliasing. In other words,
Rust borrows look like pointers, but reasoning about them turns out to be much
easier than reasoning about unrestricted pointers.

Specifically, RustHorn’s key contribution is a lightweight encoding of Rust
borrows as functional values, based on prophecies, a logical mechanism by which
one can refer to the “final” value of a borrow. This idea was further formalized in
RustHornBelt [15], establishing the soundness of the translation—a non-trivial
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proof. On the practical side, this prophecy-based translation of borrows is the
foundation of Creusot [6], a deductive verification tool for Rust programs. It
allows Creusot to be the only deductive verification tool able to handle all uses
of borrows found in Rust programs (functions returning borrows, nested borrows,
borrows stored in data structures...) while producing verification conditions that
can be efficiently offloaded to SMT solvers.

RustHorn’s prophetic translation of borrows, as formalized in RustHornBelt
and implemented in Creusot, has only been studied on a core calculus. However,
building a usable verification tool requires going further than a core calculus:
one typically wants to support as many language features as possible, as well as
providing the user with powerful logical reasoning principles to aid verification.
This is in line with recent work done on Creusot to add support for iterators [5]
and use so-called “traits” (originally a Rust feature) for logical reasoning [6].

In this work, we make progress towards building a realistic verification system
based on a RustHorn-style encoding of borrows. We build on top of Creusot, and
make contributions along the two following axes:

– We show how to integrate the prophetic encoding of borrows with new logical
reasoning features: ghost code and type invariants. Both features are gener-
ally useful in performing complex verification tasks and appear in many
existing deductive verification systems, such as Dafny [18], Why3 [19] or
VCC [4]. Perhaps surprisingly, integrating these seemingly unrelated features
presents significant challenges. In particular, we found out that it required
modifying the prophetic encoding of borrows, in addition to some non-trivial
design work to make the resulting system both sound and expressive enough.

– We show how to apply the prophetic encoding of borrows to realistic pro-
grams. Specifically, practical aspects of the “resolution” step of the transla-
tion (see §1.2) were left somewhat unspecified in previous work, namely where
to perform resolution and how to do it modularly (and soundly). These ques-
tions become important when building a practical tool and moving from a
core calculus to actual Rust programs. We provide answers to both of them.

Before going into the details of our contributions (§1.3), let us first look more
closely at how mutable borrows are used in Rust (§1.1), and how RustHorn’s
prophecy-based encoding allows reasoning about them (§1.2).

1.1 Rust’s Borrows

Rust provides two flavors of borrows: mutable borrows and shared borrows.
Mutable borrows allow modifying the data they point to but cannot be aliased,
while shared borrows allow aliasing but disallow mutation. Mutable borrows are
the ones we are interested in here, and they are the ones which are represented
using a prophecy-based encoding. (Shared borrows are much easier to handle as
they can be directly represented as their underlying value, so we will not talk
much about them.)

A representative example of the use of mutable borrows is the index_mut func-
tion on Rust vectors. A vector is a contiguous, extensible array, and index_mut
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can be used to get a pointer to one of its elements, given its index. It has the
following signature: 1

1 fn index_mut<’a, T>(v: &’a mut Vec<T>, i: usize) -> &’a mut T

Here, T is a type of elements and Vec<T> the type of vectors storing Ts. A
call to index_mut takes as arguments a mutable borrow v on a vector, an integer
index i, and returns a mutable borrow pointing to the element stored at that
index. The lifetime ’a relates the borrows of the vector and of the element. This
means that we are locked out from using the initial borrow of the vector until
the element’s borrow expires.

The following piece of code illustrates the use of this function:

1 fn f(v: &mut Vec<i32>) {
2 let bor = index_mut(v, 2);
3 // v.push(42); // Forbidden: v is frozen because lifetime is active
4 *bor = 3;
5 v.push(4); // Allowed: bor is no longer used, so v is unfrozen
6 }

This function takes as parameter v a mutable borrow to a vector. It first calls
index_mut on v to obtain a mutable borrow inside this vector. Importantly, per-
forming this call does not move the full ownership of v to index_mut: this creates
implicitly a reborrow of v (sometimes noted &mut *v). This new borrow, passed
to index_mut, points to the same memory locations, but has a shorter lifetime
’a than that of v: once this shorter lifetime ends, we recover the right to use v,
allowing, for instance to perform the last call v.push(4). However, ’a has to be
active when bor, the return value of index_mut is still in use. When ’a is active,
v is frozen: this explains why the call v.push(42) would be forbidden. This is
fortunate, because this call could reallocate the vector and make bor point to
freed memory.

1.2 Reasoning on Mutable Borrows Using Prophecies

When reasoning about a program in a verification tool, we typically track the
logical model of program value through the execution. The challenge with bor-
rows is that mutating a borrow modifies a value held in a different part of the
program, in a way that becomes observable as soon as the borrow ends. How can
we express, at the logical level, the relationship between a borrow and the value
it borrows from?

Logical interpretation of borrows The key idea from RustHorn is to take
the logical model of a borrow to be a pair of values: its current value, and its
prophesized final value. This final value is called a prophecy because it logically
represents a value that is only known later in the program, at the time its
corresponding borrow ends.
1 In the Rust standard library, index_mut has a more general signature, parameterized

over a general notion of index; we show here one of its most standard instances.
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Let us illustrate this idea on a simple example, shown below. We look at
the logical interpretation of three key operations on borrows: creating a borrow,
writing to a borrow, and ending a borrow. We show Rust code on the left, and
the logical context associating each variable with its model on the right.

1 let mut x = 0; x 7→ 0
2 let y = &mut x; x 7→ α, y 7→ (0, α)
3 *y = 1; x 7→ α, y 7→ (1, α)
4 // resolve y x 7→ α, y 7→ (1, α), α = 1
5 assert!(x == 1);

On line 2, we create a borrow y from the variable x. We model this operation
by creating a new prophecy α representing the final value of y. While y is active,
it has exclusive access to the value it borrows and holds it as its current value.
The model of x is set to α: thus, whenever y ends, x will be able to observe the
mutations made through y’s lifetime. On line 3, we update the borrow with a
new value, and its model is updated consequently. Finally, the borrow y ends on
line 4, at which point we resolve its prophecy: we learn that the final value of
the borrow is equal to its current value. This allows us to propagate the changes
back to the model of x, and prove the assertion on line 5.

Using this prophetic encoding, one can reason about memory in a purely
local way: mutating a borrow only affects the borrow’s value. The resolution
of a borrow introduces an equality that can be propagated back to its lender,
without requiring the knowledge of who the lender is to perform resolution.

Function specifications The prophetic interpretation of borrows is compo-
sitional : the specification of a borrow-manipulating function can be expressed
solely in terms of the current and final values of its arguments and its result.

For instance, let us look at how the index_mut function on vectors is specified
in Creusot (we omit calls to Creusot’s “shallow model” operator @ for clarity):

1 #[requires(0 <= i && i < v.len())]
2 #[ensures(*result == (*v)[i] && ^result == (^v)[i])]
3 #[ensures(forall<j: Int> 0 <= j && j < v.len() && j != i ==>
4 (*v)[j] == (^v)[j] )]
5 fn index_mut<T>(v: &mut Vec<T>, i: usize) -> &mut T

The requires and ensures keywords specify pre- and post-conditions that can
refer to the function’s arguments and return value (named result). Here, v and
result are borrows: Creusot allows the specification to refer not only to their
current value using “*v” and “*result” but also their final value using “^v”
and “^result”.

The specification requires that i is a valid index (line 1), and provides two
guarantees. First, the result borrow is responsible for the value at index i of the
vector (line 2). Second, the contents of the vector at any other index j (line 3)
is not changed by the call to index_mut (line 4). Together, these two properties
provide an elegant and complete specification of index_mut.
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1.3 Contributions

The central observation behind this work is that, while RustHorn’s prophetic
translation provides a clean and general foundation, putting it into practice
requires finding solutions to many additional design problems.

In this work, we tackle several challenges we faced when scaling up the
prophetic translation into a practical verification tool. In each case, our solu-
tion aims to strike a fine balance between soundness and expressivity. Creusot
must be sound, and its soundness argument should ideally be easy to under-
stand. However, soundness of the prophetic translation is non-trivial: it relies on
the fact that prophecies cannot be used to create “causality cycles”, a property
that is hard to reason about and uphold when extending the system. But ex-
pressivity is also important: borrows are a ubiquitous feature of Rust, and even
small restrictions on the reasoning rules for borrows can have a drastic impact
on the ability to reason about realistic Rust programs. Each of the proposals
below aims to be sound and have good expressivity, while minimizing the overall
complexity of the system.

Ghost Code is a feature found in deductive verification tools which adds the
ability to intersperse a verified program with code that is not executed but helps
verification. Ghost code can also typically refer to values that exist only at the
logical level: this is important for expressivity. This poses an important challenge
when combining ghost code with prophecies (§2.1): one must prevent ghost code
from using prophecies in nonsensical ways (e.g., instantiating a prophecy with a
value that depends on itself) without compromising its expressivity.

Our solution involves stratifying our logic into “prophetic” and “non-prophetic”
layers (§2.2), and extending the prophetic translation to introduce a notion of
“logical identity” of borrows (§2.3). This allows us to control the behavior of
logical equality on borrows and is necessary to restore soundness, but it can also
affect expressivity if one assigns identities that distinguish “too many” borrows.
For that purpose, we propose a new program analysis (§2.4) identifying so-called
“final borrows”, which are cases where a borrow identity can be soundly “reused”.

Type Invariants in deductive verification systems allow the user to specify a
logical predicate associated with all values of a chosen type. This is a convenient
feature for verification: it allows threading correctness invariants in a systematic
fashion while typically also allowing them to be temporarily broken as long as
they are restored afterward. In practice, Creusot enforces invariants at function
boundaries: it automatically inserts pre- and post-conditions ensuring that every
function’s parameters and its return value satisfy their type invariants (§3.1).
This poses a unique challenge (§3.2): it is difficult to modularly generate post-
conditions asserting that all borrows received by a function satisfy their type
invariants when the function returns. In particular, complications arise when
borrows are passed inside arbitrary data structures or returned by the function.
Therefore, we chose to assume that the final values of borrows satisfy their type
invariant from the start, and check that this assumption is valid at resolution
time (§3.3).
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Modularity of Borrow Resolution. In the prophetic encoding of borrows, reso-
lution is the final logical step where one “learns” the prophesized final value of
a borrow. In larger programs, resolution applies not only to single borrows, but
also to data structures containing borrows. For instance, if a vector containing
borrows goes out of scope, then one must resolve all the borrows it contains at
once. This is a challenge for modular verification: how does one know how to
resolve borrows stored in an abstract datatype verified separately? We describe
how we express modular resolution predicates (§4), which are defined in terms of
the public logical model of a data structure, but are proven sound with respect
to its private concrete implementation.

Location of Borrow Resolution. The prophetic encoding of borrows leaves us
the choice to perform resolution anywhere between the last use of a borrow
and the end of its syntactic scope. Designing an adequate placement strategy is
not completely obvious (§5.1). On the one hand, borrow resolution adds a new
logical fact to the context, so it should ideally happen as soon as possible. On the
other hand, when considering a borrow on a value whose invariant is temporarily
broken, resolving the borrow too early may not leave enough time for the user
to repair the invariant. We propose a strategy for determining resolve points by
combining information from three simple data-flow analyses (§5.2).

Implementation. We have implemented and evaluated our contributions by ex-
tending Creusot, which we include as an artifact. In Section 6, we further discuss
implementation choices, limitations, and evaluation on case studies.

2 Interaction of Prophecies with Ghost Code

Many existing deductive verification systems provide a mechanism to annotate
the verified program with so-called “ghost code”, program instructions that are
not executed but instead help verification. Typically, one may use ghost code to
construct mathematical objects that model the concrete values the executable
code is working with. Ghost instructions thus typically have access to “logical”
operations, on top of “ordinary” program instructions.

In this work, we consider a relatively limited form of ghost code for Creusot.
In a given program, one may write ghost!{e} to denote a ghost expression e;
here, e may read but not modify memory. If e has type T then ghost!{e} has type
Ghost<T>; the Rust compiler then knows that values of the Ghost type can be
erased during compilation (because it is declared as a “zero-sized type”). Finally,
one can only access ghost values inside ghost!{...} blocks; elsewhere they are
considered as completely opaque.

2.1 Challenges

The fact that ghost code manipulates the logical representation of data has a
drastic consequence for prophecies: using ghost code one can resolve a prophecy
to a value that depends on itself, creating a “causality loop”:



The Prophecy-Based Encoding of Borrows in a Realistic Verification Tool 7

1 let mut x: Ghost<bool> = ghost! { true }; // x 7→ ⊤
2 let bor: &mut Ghost<bool> = &mut x; // x 7→ α, bor 7→ (⊤, α)
3 *bor = ghost! { ! ^bor }; // x 7→ α, bor 7→ (¬α, α)
4 // resolve bor: assume ( ^bor == *bor ) // We deduce α = ¬α
5 proof_assert!( false );

Here, we first create a boolean in ghost code, and store it in the variable x.
Then, we take a mutable borrow to this value. On line 3, we access the prophecy
of the borrow to create a contradiction: the current value of the borrow is updated
to contain the opposite of the prophecy.

This means that on the next line, we resolve the borrow, so we have both
*bor == ^bor and *bor != ^bor, and we are able to prove false (line 5).

As we explain later in §2.2, it is easy to disallow the ^ operator inside ghost
code. However, this is not enough: it is also possible to indirectly observe prophe-
cies via logical equality on borrows, as shown below.

1 let mut x = ghost! { true }; // x 7→ ⊤
2 let b1: &mut Ghost<bool> = &mut x; // x 7→ α, b1 7→ (⊤, α)
3 // resolve b1 // x 7→ α, b1 7→ (⊤, α), α = ⊤
4 let b2: &mut Ghost<bool> = &mut x; // x 7→ β, b1 7→ (⊤,⊤), b2 7→ (⊤, β)
5 *b2 = ghost! { ! (b2 == b1) }; // x 7→ β, b1 7→ (⊤,⊤),

b2 7→ (((⊤, β) ̸= (⊤,⊤)), β)
6 // equivalent to: // x 7→ β, b1 7→ (⊤,⊤), b2 7→ (¬β, β)
7 // resolve b2 // We deduce β = ¬β
8 proof_assert!( false );

This code uses the same idea as the previous example, but leverages equality
on borrows to get the value of the prophecy. Before the execution of line 5, we
know two key facts: first, *b1 and *b2 are both equal to Ghost(true), since we
have not to written anything yet into b1 or b2. Second, b1 is never written to,
so ^b1 == Ghost(true). Then, b2 == b1 is exactly equivalent to (^b2) == true,
hence we can deduce false in the same way we did in the first example.

There are several ways to solve this particular problem, but they are not all
equally satisfying: we want to retain the expressivity we already have, allowing
comparisons of mutable borrows while still being ergonomic and composable.
The solution we chose involves changing the model of borrows, so that testing
the equality of borrows does not simply boil down to testing the equality of their
current and final values.

2.2 Prophetic Logical Functions

As shown in the first example, the most straightforward way to observe the
prophecy value is to use the “final” operator ^ of Creusot. In order to soundly mix
ghost code and prophecies, the first step is thus to forbid using this operator in
ghost code. Therefore, we stratify the ghost code language: on the first hand, the
purely logical level, only used in specifications, does not interact with executable
code and can use the final operator. On the other hand, the ghost level can
create runtime (ghost) objects but cannot use the operator. We call the first
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level “prophetic logic” (annotated with #[logic(prophetic)]), and the second
“logic” (or #[logic]). Then, #[logic(prophetic)] functions are allowed to call
#[logic] functions, but the converse is forbidden.

In order to correctly implement this idea, one must be careful with traits: if
a trait method is declared with #[logic], we must forbid implementations to be
annotated with #[logic(prophetic)].

2.3 Non-Extensional Borrows

We have seen in §2.1 that logical equality can also be used in ghost code to ob-
serve prophecies and create paradoxes. Indeed, per RustHorn’s encoding, logical
equality on borrows boils down to the equality of their current and final values.

One possible solution could be to forbid logical equality on mutable borrows.
But this would come at a great cost to ergonomics: functions that use logical
equality on a polymorphic type T would have to forbid instantiating T with a
mutable borrow, which does not compose well.

We instead chose to make borrows non-extensional. We change the model of
borrows to use three fields instead of two: their current and final value and a new
identity field. This third field can be of any type, as long as the type contains
an infinite number of values (e.g., int). When creating a new borrow, we pick a
fresh identity for it, making it logically distinct from existing borrows. In fact,
we have the following key property: if two borrows have the same identity, then
they have the same prophecy value. This property means that we cannot extract
information about the prophecy by using logical equality on borrows.

This change is enough to restore soundness of ghost code. For instance, on
the last example of §2.1, b1 and b2 each get a unique identity so comparing them
always yields false, regardless of the prophecy of b2.

There is one issue, however: implementing this change as-is results in se-
vere limitations in the expressivity of our specification language. We outline two
problematic scenarios below. In both cases, one can work around the issue by
replacing equalities between borrows into equality of their respective current and
final value; but the result is extremely cumbersome.

– The Rust compiler regularly introduces reborrows, in places that can be
surprising. For example, consider the identity function on mutable borrows.

1 #[ensures(result == bor)]
2 fn id<T>(bor: &mut T) -> &mut T { bor }

We cannot prove its intuitive function specification because the compiler
inserts a hidden reborrow when returning bor (i.e., it is replaced with &mut
*bor), meaning that result and bor end up with different identities.

– To ease the writing of specifications using mutable borrows, Creusot allows
using the &mut x.field syntax in specifications. For example:

1 #[ensures(result == &mut x.0)]
2 fn first_field<T>(x: &mut (T, T)) -> &mut T { &mut (*x).0 }
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Before we introduce the borrow identity field, &mut x.0 in the specification is
syntactic sugar for ((*x).0, (^x).0), allowing us to easily prove this function
specification. Even better, Rust allows us to directly write &mut x.0 instead
of &mut (*x).0 here, meaning the code and the specification read the same.
Unfortunately, with an identity field, &mut x.0 in the specification cannot be
meaningfully compared with any program borrow, because the expression
&mut (*x).0 in Rust program code generates a fresh identity.

2.4 Sharing Identity for Final Reborrows

To restore the soundness of ghost code, all we need is to forbid observing prophe-
cies. By adding a borrow identity field, we reach this goal because whenever the
prophecies of two borrows differ, their identity also differs necessarily. However,
this comes at a great cost of ergonomics. Our goal in this section is to refine the
notion of borrow identity, allowing more borrows to have the same identity while
preserving this key property. This refinement is what we call final reborrows.

A first observation is that if we perform a simple reborrow (e.g., &mut *bor)
and never write to the original borrow, then the prophecy of the original borrow
and the reborrow are the same. We can thus safely assign them the same identity.
Let us take a look at the identity function again, with the reborrow made explicit:

1 #[ensures(result == bor)]
2 fn id<T>(bor: &mut T) -> &mut T { // bor 7→ (x, α, id)
3 let result = &mut *bor; // bor 7→ (β, α, id), result 7→ (x, β, id)
4 result
5 } // We deduce α = β

After line 3, bor is not modified, and is subsequently resolved when the function
ends. We thus get the equality of the two prophecies α and β, so we can inherit
the identity field id . This allows us to prove the specification.

We also want to be able to prove the first_field function defined earlier:
we want &mut (*x).0 to be final, but it cannot reuse the identity of x directly,
as it could be used to mix &mut (*x).0 and &mut (*x).1. Instead, when we want
to mark such a reborrow as final, we introduce a special logical function, deter-
ministic but opaque, and call it on the identity of the original borrow. In this
case, the identity of &mut x.0 would be field0(x.id).

Note that in the specification, &mut x.0 always translates to ((*x).0, (^x).0,
field0(x.id)). Since we reuse the prophecy of x, we can also reuse its identity.

2.5 Detecting Final Reborrows

The remaining question is to determine which reborrows are “final”, i.e., when
we can soundly reuse the identity field when creating a borrow from another. To
get this information, we developed a static analysis based on MIR.

MIR is an intermediate language of the Rust compiler, based on a control-
flow graph. It only performs basic operations on values: all types are explicit,
and expressions are decomposed into elementary statements (read variable, add,
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v ∈ Ident Variable
f ∈ Ident Field
l ∈ Z Block label

func ∈ Ident Function label
pl ::= v | ∗pl | pl .f Place

stmt ::= pl ← pl | pl ← func(pl⋆) | pl ← borrow(pl) Statement
term ::= return | goto l | switch pl l⋆ Terminator

bb ::= l : stmt⋆ term Basic block
body ::= func : bb⋆ Function body

Fig. 1. Simplified description of the MIR intermediate language

call function, etc.). It is used as an intermediate step to generate executable code
and to perform various program analyses.

Description of MIR To describe the analysis, we use a simplified version of
MIR, whose grammar is given in Fig. 1. MIR is made of functions having a body
(body) identified by labels func, consisting of a control flow graph whose nodes
are called basic blocks (bb), identified by labels l. In each basic block, a succession
of statements (stmt) execute in order, until we reach a terminator (term). The
terminator can end the function execution (return), jump unconditionally to
another block (goto) or make a conditional jump (switch). There are special
local variables that contain the parameters and the return value of the function.

Statements act on places (pl): a place is an expression that identifies a loca-
tion in memory. A place corresponds either to a local variable v, the dereference
of mutable borrow stored in another place (∗pl)2, or a subfield of another place
(pl .f). For example, if x has type (i32, i32), the place x.0 refers to the first
integer of the pair.

A statement can be either an assignment pl ← pl , which copies the content
of the right-hand side into the left-hand side; a function call3 pl ← func(pl⋆); or
a borrow pl ← borrow(pl), which creates a borrow of the right-hand side place,
and writes the result into the left-hand side.

Program locations λ describe a point in a function body: there is a program
location before each statement and before each terminator. The label of a basic
block is the first program location of the block.

The Final Borrows Analysis For each program location λ, we compute a set
of places Φλ. A place pl is in Φλ if it contains a least one dereference, and we
2 In real MIR, places can dereference other kinds of pointers, but we ignore this here.
3 In real MIR, function calls are terminators because they have several return points.

We ignore this complication, because Creusot doesn’t support exceptional returns.
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λ1
pl1 ← pl2 λ2 ⊢ Φλ1 = (Φλ2 \ (C(pl1) ∪ C(pl2))) ∪D(pl1)

λ1
pl← func(pl1, . . . , pln) λ2 ⊢ Φλ1 = (Φλ2 \ (C(pl) ∪

n⋃
i=1

C(pl i))) ∪D(pl)

λ1
pl1 ← borrow(pl2) λ2 ⊢ Φλ1 = (Φλ2 \ (C(pl1) ∪ C(pl2))) ∪D(pl1)

λ1
return ⊢ Φλ1 =

⋃
v∈vars

D(v)

λ1
goto l ⊢ Φλ1 = Φl

λ1
switch pl l1 · · · ln ⊢ Φλ1 =

n⋂
i=1

Φli

Fig. 2. Rules of the final borrows analysis

statically know that the mutable borrow corresponding to the last dereference
has its current value equal to its prophecy. If pl contains only one dereference, this
means that it is in Φλ if the value of the corresponding borrow does not change
until it expires. A reborrow of place pl immediately before program location λ
is considered final if pl ∈ Φλ.

The analysis finds the greatest solution of the system of set equations de-
scribed in Fig. 2, by computing a greatest fixed point iteratively. This is a back-
ward data-flow analysis: when a borrow is resolved, we know its current value
is equal to its prophecy, hence the corresponding places belong to Φ for these
program locations. This information is propagated backward through statements
that preserve this property: in “λ1

stmt λ2”, λ1 denotes the program location just
before stmt , and λ2 the location just after.

The analysis depends on two auxiliary sets of places associated with a given
place pl :

– The set C(pl) of places that conflict with pl . Two places conflict if they have
the same root variable, and the memory they give access to overlap.

– The set D(pl) of places pl ′, such that pl ′ is a subplace of pl , and pl ′ contains
one more dereference (∗) than pl . That is always a subset of C(pl).

We now focus on the effects of the assignment statement. The effects of
pl1 ← pl2 on the set are to remove C(pl1), remove C(pl2), and add D(pl1).
The set C(pl1) is removed, because the current value of pl1 just changed, so we
cannot statically guarantee that it is equal to its prophecy. Any place in conflict
with pl1 might also have had their value change, which is why we remove the
whole C(pl1) set. Now we might wonder why we also do the same for pl2, which
is not written to by this statement. The issue here is that we cannot statically
track the current value of borrows inside pl2 anymore: writes to ∗pl1 might affect
the value in ∗pl2. For this reason, we remove the set C(pl2) as well.
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Finally, note that writing into pl1 destroys its previous content, resolving the
borrows it contains. In particular, writes into ∗pl1 after the statement do not
affect the value of ∗pl1 before the statement. So we can add ∗pl1 to the set, and
in fact we can add D(pl1).

In order to better understand what is happening here, we come back to the
example first_field that we already mentioned above. When annotated with
sets of locations Φ, its MIR code is (we omit places that do not appear in the
program):

1 // Φ = {}
2 result ← borrow (*x).0
3 // Φ = {*x, (*x).0}
4 return

At the point right after the borrow, the place (*x).0 is in the set, so the reborrow
is final, and we can prove the specification of the function.

3 Interaction of Prophecies with Type Invariants

In Rust, some types have a semantic interpretation dictating that a certain
predicate holds true for all publically visible values. A typical example is the
type HashMap of hash tables, implicitly using as an internal invariant the fact that
each mapping is stored in a bucket corresponding to its hash value. This can be
specified using type invariants, a mechanism to associate a logical predicate to
a type. We give a brief description of the support of this feature in our version
of Creusot (§3.1). While type invariants exists in many deductive verification
tools, when used in Creusot, there are unique challenges related to the prophetic
encoding of mutable borrows (§3.2). The notion of prophetic invariants addresses
these challenges (§3.3). We finally give an illustrative example in §3.4.

3.1 Type Invariants in Creusot

Our version of Creusot allows users to attach type invariants to their types
by implementing the Invariant trait and defining the predicate invariant. For
example, we can define the type Even of even integers as follows:

1 struct Even(u64);
2 impl Invariant for Even {
3 #[logic] fn invariant(self) -> bool { self.0 % 2 == 0 }
4 }

To determine the invariant of a particular type, we do not only take into
account implementations of the Invariant trait but also the structure of the
type itself. We see why this is necessary by considering the type Option<Even>:
intuitively, values such as None and Some(Even(4)) should be allowed, but not
Some(Even(3)). This type should have the expected invariant regardless of whether
there is an explicit trait implementation. Hence, we define the invariant of a type
as the conjunction of a user-defined part and a structural part, which is derived
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automatically based on the type’s definition. Here are some examples of types
and their corresponding invariants4:

Type of x Invariant

Option<Even> match x { None => true, Some(y) => invariant(y) }

(Even, Even) invariant(x.0) && invariant(x.1)

Box<Even> invariant(*x)

For the expressivity of our approach, it is important to allow a type invariant
to be temporarily broken. For example, if a hash table maintains in a separate
field the number of entries in the table, it is natural to use a type invariant to
guarantee that this field contains the right value. When an element is added
to the table, we first need to update the table itself, and then increment the
counter: in between, the invariant is broken.

Hence, we only enforce type invariants at function boundaries by automati-
cally adding pre- and post-conditions to every function based on its parameter
and return types. Each parameter corresponds to a pre-condition stating that
the type invariant of the argument holds, and the return type corresponds to a
post-condition for the invariant of the return value. This scheme ensures that
invariants hold across function boundaries, complementing the principle of mod-
ular verification.

3.2 Challenge

While type invariants are well understood in principle and supported by many
verification systems, their implementation in Creusot presents a unique challenge
in their interaction with prophecies. In particular, we have to consider what it
means to take a mutable borrow to a value with a type invariant, as demonstrated
by the following example:

1 let mut x = Even(2);
2 let bx = &mut x; // bx 7→ (Even(2), α), x 7→ α
3 take_even_bor(bx);
4 assert!(invariant(x));

On line 2, we create a mutable borrow bx borrowing x, which has a type in-
variant stating that its value must be even. The borrow is subsequently passed to
the function take_even_bor. Following the general principle that type invariants
are enforced at function boundaries, we should be able to prove the assertion
on line 4 stating that the new value contained in variable x satisfies its type
invariant.

As mutable borrows in function parameters act similarly to function outputs,
one conceivable solution is adding post-conditions stating that the invariants of
the parameters’ prophecies hold. However, this is unsatisfactory as demonstrated
by the following function:
4 The definition of the structural type invariant of mutable borrows is somewhat sur-

prising: we delay its definition in §3.3, where we discuss it more in detail.
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1 fn pair_bor_mut<T>(p: (&mut T, &mut T), take_first: bool) -> &mut T {
2 if take_first { v.0 } else { v.1 }
3 }

Finding a post-condition for the prophecies contained in the parameter p presents
several challenges:

– Structural invariant derivation must now distinguish two kinds of invari-
ants, one for pre-conditions using the current value of mutable borrows,
and one for post-conditions using final values. For example, the parameter
p would get the pre-condition invariant(*p.0) && invariant(*p.1) and the
post-condition invariant(^p.0) && invariant(^p.1). This distinction is less
intuitive for borrows of borrows. It is not clear in general whether the post-
condition for x: &mut &mut T should be invariant(^(*x)) or invariant(^(^x)).

– In our example, one of the borrows will not be resolved inside the function,
and thus we cannot prove its prophecy invariant. Here, the post-condition
we would want is something like invariant(^result) ==> invariant(^p.0)
&& invariant(^p.1).

In conclusion, the naive approach of adding pre- and post-conditions to func-
tions is insufficient to check that type invariants are maintained when using
mutable borrows in Creusot. We need another technique to generate these veri-
fication conditions.

3.3 Prophetic Type Invariants for Mutable Borrows

How should we specify that take_even_bor reestablishes the type invariant of
the value pointed to by x before returning? This is important for the caller of
take_even_bor, which needs this information to continue using the value con-
tained in the borrowed place.

To overcome this issue, we introduce the notion of “prophetic invariants”:
prophecies now additionally carry a promise that the eventual final value satis-
fies its type invariant. We achieve this by assuming the invariant of the prophecy
when creating a mutable borrow (i.e., adding an axiom for the invariant). Fur-
thermore, we define the type invariant of a type x: &mut T as invariant(*x) &&
invariant(^x), combining the invariants of both the current and the final value
of a mutable borrow. Using this trick, the creator of the borrow knows that the
new value of the borrowed place satisfies its invariant from the fact we assumed.

Of course, this assumption comes at a cost: we need to check that, indeed,
the final value of the borrow satisfies its type invariant. This check occurs when
we know the actual value of the final value, i.e., at resolution time: just before
resolving a borrow, we create a new verification condition stating that the current
value of the borrow satisfies its type invariant. This new verification condition
acts as the hypothetical post-condition we cannot automatically generate for
pair_bor_mut.

There is one final problem with this approach: when defining a type invariant,
we are not required to prove that the invariant is inhabited (i.e., there exist values
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satisfying the type invariant). However, when creating a borrow, we prophecize
a value satisfying the type invariant, hence assuming that the type invariant is
inhabited. Thus, we could declare an uninhabited invariant, create a temporary
local value (which does not need to satisfy the type invariant), create a borrow
of this value and thus unsoundly deduce falsity because the prophecy should
satisfy the type invariant.

Let us search for a solution to this problem. The naive approach of requiring
inhabitedness of type invariants is not an option, as, for parameterized types,
inhabitedness may depend on properties of type parameters. We chose instead
to reestablish the type invariant of a place before borrowing it. This way, we
know that the type invariant is inhabited since the borrowed place satisfies it.

3.4 Example

The following example illustrates the concept of prophetic invariants:

1 fn call_pair_bor_mut(mut x: Even, mut y: Even) {
2 let bx = &mut x; // bx 7→ (x, α), x 7→ α, assume invariant(α)
3 let by = &mut y; // by 7→ (y, β), y 7→ β, assume invariant(β)
4 let b = pair_bor_mut((bx, by), false); // b 7→ (y, β)
5 // check the invariant of y, resolve b
6 assert!(invariant(x) && invariant(y)); // provable
7 }

For each mutable borrow bx and by, we assume the invariants of the prophe-
cies α and β, respectively. These assumptions let us immediately prove the as-
sertion on line 6, as the borrowed variables are assigned the prophetic values. To
ensure that the prophecies actually satisfy the invariants, additional proof obli-
gations are inserted whenever a mutable borrow is resolved. In the example, one
of the borrows passed to pair_bor_mut is resolved inside the called function and
the other borrow is resolved in the caller, depending on the boolean parameter
take_first. As take_first is false, the borrow bx is resolved in pair_bor_mut
while by is resolved in call_pair_bor_mut under its new name b. When b is re-
solved on line 5, we thus have to prove the invariant of its current value y before
we learn β = y. This fact is trivially obtained from the post-condition generated
for the invariant of the return value of pair_bor_mut. Importantly, this reasoning
does not depend on the specification of pair_bor_mut: Creusot does not know
that the value of b is (y, β), it simply knows this is a mutable borrow satisfying
its type invariant.

There is an interesting consequence of prophetic invariants: because invari-
ants of prophecies are checked at the points where they are resolved, resolution
becomes crucial for the soundness of prophetic invariants. We must ensure that
final values of mutable borrows always satisfy their invariants. This is guaranteed
by the algorithm determining at which point to resolve each prophecy (§5).
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4 Modular and Sound Resolution of Borrows

When using the prophetic encoding of borrows, resolution plays a central role,
effecting the transfer of ownership back to the lending variables. It is natural
to extend the notion of resolution beyond merely borrow types (&mut T) to any
type, allowing us to recover the prophecies in a value regardless of how deeply
nested they are. For example, we could define the resolution of a vector v as:

1 forall<i : Int> 0 <= i && i < v.len() ==> v[i].resolve()

Thanks to this definition, when a vector of borrows Vec<&mut i32> (or even a
vector of vectors of borrows, etc.) is resolved, we recover the information of the
equality of each prophecy with the current value of the corresponding borrow.

When modularly verifying code from different libraries, library authors should
thus be able to declare what the resolution predicate is for types they define (es-
pecially if their implementation is private). In prior work in Creusot [6], this was
achieved through a trusted trait Resolve that library authors could implement.

Challenge A major limitation of this approach is that nothing prevents a user
from providing an unsound implementation of Resolve (e.g., false). At resolve
points, Creusot simply assumed user-defined Resolve predicates to hold. In other
words, library authors routinely extended the trusted computing base of the tool.
To make things worse, an unsoundness in resolution is particularly pernicious:
it can appear anywhere in client functions and is not visible in the source since
the assumptions of resolutions are automatically inserted by the tool.

We solve this by introducing a verification condition for user definitions of
Resolve, related to an automatically generated structural definition of Resolve.
This new condition ensures users may only use custom instances to perform
information hiding, or reformulation in more easily usable terms.

Structural vs User-defined Resolution. Resolution is a structural property, so
one may wonder if user-defined predicates are necessary at all. First, they are
needed for modularity reasons: a resolution predicate should only refer to the
public interface of a type (e.g., its logical model) while a structural implementa-
tion would, by definition, expose details of its implementation. Second, defining
resolution through direct recursion will often produce a predicate which is sub-
optimal for verification. Consider a binary search tree: we could write resolve
recursively, or we could rely on abstractions already established for other parts
of the proof, such as a logical get function. We could then define resolve as:

1 forall<k:_, v:_> tree.get(k) == Some(v) ==> k.resolve() && v.resolve()

This definition makes it easy for provers to reason about the resolution of
key-value, while keeping the concrete definition of trees entirely abstract.

Sound User-defined Resolution. We still need to ensure the soundness of user-
defined resolution predicates. Our solution is to allow such predicates, but, at
definition time, require the user to prove them sound with respect to a built-in
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structural resolution predicate. This proof must be discharged once by the imple-
mentor of a custom predicate, as part of the implementation of the corresponding
type. Then, clients of the type can simply use the user-defined predicate.

Specifically, we require that a user-defined resolve must be implied by a new
structural_resolve predicate, and defined automatically as follows:

Type of x Structural Resolution

(T1, T2) x.0.resolve() && x.1.resolve()

&mut T ^x == *x

Box<T> (*x).resolve()

Note that this definition is shallow : structural_resolve is not recursively
defined in terms of itself, but instead uses the resolution predicates for individual
components of the type.

Using structural_resolve, we can state the correctness criterion for a custom
resolve by adding a lemma function resolve_coherence to our Resolve trait:

pub trait Resolve {

#[logic(prophetic)]
fn resolve(self) -> bool;

}

#[logic(prophetic)]
#[requires(inv(self))]
#[requires(structural_resolve(self))]
#[ensures((*self).resolve())]
fn resolve_coherence(&self);

Implementations of Resolve are required to demonstrate that this lemma
holds, ensuring that no unsound definition can be admitted. User definitions
can thus only be used for information hiding: for instance, a bogus definition of
resolve as false would require proving true ==> false, and thus be rejected.

5 Timely Resolution of Borrows

The prophetic encoding of prophecies crucially relies on the insertion of the
resolution assumption, for each borrow, as soon as we are certain that the borrow
will not be used.

Given a value, there may be several valid “resolve points” (e.g., immediately
after its last use, or later when it goes out of scope). In our earlier examples, we
have each time indicated informally the resolve point we consider. But of course,
in practice, a verification tool must compute and choose valid resolve points auto-
matically, without relying on any user annotations. How should resolve points be
determined? The existing literature on RustHorn-style prophecies does not yield
a satisfactory answer! RustHornBelt [15] formalizes borrow resolution but does
not prescribe when it should happen. RustHorn [16] and Creusot’s authors [6,
§3.2] say that a “borrow is resolved at the moment it is dropped”.

However, as we explain in §5.1, this is not satisfying because it would lead
to unprovable verification conditions for legitimate programs. Choosing where
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in the code we should insert resolution assumptions is in fact a subtle problem.
Next, in §5.2, we detail the algorithm we use to solve this problem.

5.1 Challenges

Resolve points need to satisfy several constraints, which we detail next. Some of
them are important for soundness, while others (of lower priority) are needed to
make some verification conditions provable.

Resolution of a variable must happen when the value it contains will
no longer be used. Otherwise, a future use could change the value of a borrow
contained in the variable, and we would assume that the prophecy of the borrow
equals a value which is not the final value of the borrow. As a result, provers
would assume a wrong new value for the borrowed place, which is unsound.

A borrow should be resolved before its lifetime ends. The lifetime of
a borrow is a time span during the execution of the program during which the
borrow is accessible, but the borrowed variable is temporarily inaccessible. It
corresponds to a code span automatically inferred by the compiler in order to
check for safety, and it is known by Creusot. It is important that a borrow is
resolved before its lifetime ends for two reasons: first, if a borrow is not resolved
at the end of its lifetime, we do not have any information about the new value of
the borrowed place (which is now accessible), a loss in precision that can lead to
unprovable verification conditions. Second (and more importantly), as explained
in §3, we assert the validity of the type invariant of borrows before resolving
them, and this assertion is important for the soundness of the tool. If we miss
the resolution of a borrow, we may have broken the type invariant of the value
contained in the borrow while, as we explain in §3, we do assume it holds.5

The lifetime of a borrow can be shorter than its lexical scope. Consider
the following valid Rust function:

1 fn f() {
2 let mut x = 1;
3 let b = &mut x;
4 // [b] is still in scope, but its lifetime has ended.
5 // Hence [x] can be accessed.
6 x += 1;

5 The reader may argue that Rust’s type system does not enforce the absence of
memory leak, and that e.g., std::mem::forget or cycles of reference-counted point-
ers may leak mutable borrow without giving us the opportunity to resolve it. This
is true: our system may miss resolutions (and hence precision) because of memory
leaks, but this cannot cause unsoundness. The reason is that when a borrow is leaked
by using one of these mechanisms, it has to be passed to a library function (e.g.,
std::mem::forget or std::rc::Rc::new) which does enforce the type invariant.
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7 proof_assert!(x == 2);
8 }

In this function, we create a borrow b of local variable x, and then we write
to local variable x. This write is allowed because the lifetime of the borrow has
ended when the write happens. However, note that at this point of code, the
variable b which contains the borrow is still in scope: this illustrates a feature of
Rust called “non-lexical lifetimes”, where the lifetime of a borrow can be shorter
than its lexical scope [14].

This is challenging for determining resolution points, because a natural can-
didate for the resolve point of a variable is when it leaves its scope (i.e., when it
is dropped, as RustHorn [16] and Creusot’s authors [6, §3.2] suggest). This is not
a valid choice in general because resolution needs to happen before the end of the
lifetime, which is sometimes before the value is dropped. In the example above,
this would mean that the final proof_assert would not be provable, because it
depends on the resolution of b.

We should not resolve variables when they are uninitialized. In Rust,
local variables can be declared uninitialized and later initialized. One can also
“un-initialize” a local variable by moving the ownership of its content somewhere
else (e.g., by passing it as a parameter to another function). The end result is
that, at some program points, some local variables may not be initialized. Of
course, we should never resolve such variables, which contain nonsensical data.

This is made more complicated by the fact that we may not know statically
whether a variable is initialized or not:

1 fn f(x: Box<&mut i32>) {
2 if <some boolean value> {
3 g(x) // Move content of x to function f
4 }
5 // x is initialized or not, depending on whether we took the branch
6 }

Hence, in this case, we should resolve x immediately before the join point, in
the implicit else branch. Fortunately, the Rust compiler rejects any use of a
variable that is not statically known to be initialized: if, at a control flow join
point, we lose the track of the initializedness, then it is sound to resolve the
variable immediately before the join point because it is also necessarilly dead.

There is, however, a subtlety: Rust tracks initializedness by places rather
than local variables. That is, it is possible to move the value out of the second
component of a pair, leaving the other component initialized and available for
any kind of use. In this case, we are not able to establish the type invariant for
the local variable (part of its value is undefined), and thus resolving the whole
variable is impossible. For example, consider the following piece of Rust code:

1 #[ensures(*x.0 == ^x.0 && result == x.1)]
2 fn h(x: (&mut i32, Box<&mut i32>)) -> Box<&mut i32> {
3 return x.1
4 }
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Here, the function h returns the second component of the parameter x by moving
it to the caller. Hence, when the function returns, x.1 is undefined, but x.0 still
needs to be resolved.

Literature on prophetic models for mutable borrows [16,15,6] only consider
resolving local variables at once. But this observation calls for a mechanism for
determining resolve points for each place (in the sense of the MIR intermediate
language, see Fig. 1) instead of individual local variables. All the constraints we
evoked above in this section for resolving variables also applies to places.

As much as possible, we should not resolve borrows if they are frozen.
To understand this constraint, consider the following example (the type Even
and its type invariant are defined in §3.1):

1 fn f(e: &mut Even) {
2 let b = &mut e.x;
3 *b = 2;
4 }

In function f, where should we resolve e? A simple answer might be that we
resolve e as soon as we know it will never be used again (i.e., it is dead). That is,
we could resolve e just after b is created. This is not a good idea: at this program
point, the final value of b is not known, hence the current value of e.x (which is
equal to the final value of b) is not known either. Therefore, we cannot establish
at this program point that the type invariant holds for e. This is problematic
because (recall §3) we must prove the type invariant before resolution.

The problem here is that we are trying to resolve e when it is still frozen (i.e.,
e is borrowed, with a lifetime which is still active): in general, we should refrain
from resolving places which are frozen, because we may not know anything about
their value. In the case of the above example, this means that e should be resolved
at the end of the function, after b is resolved. At this program point, we know
the value of the prophecy of b, so we know the value of e, and have what is
needed to reestablish the type invariant.

Note, however, that this constraint cannot always be satisfied because the
lifetime at which a borrow is frozen can exceed its scope. As an example, consider
the following Rust function:

1 fn g(e: &mut Even) -> &mut i32 {
2 &mut e.x
3 }

This function returns a borrow inside its parameter e. The lifetime of the re-
turned borrow depends on the calling code, and exceeds the body of the function:
as a result, the parameter e is frozen even after it leaves its scope, and there is
no program point where we could resolve it while satisfying this constraint.

In this case, it is still important (for soundness) to resolve e somewhere,
because the type invariant of the borrowed place (of type Even) needs to be
reestablished. Hence, we decide to resolve it as late as possible, i.e., when it
leaves its scope at the end of the function. This leads to an unsolvable goal; this
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is expected because nothing prevents the caller of this function from writing an
odd integer in the returned borrow, thus breaking the invariant for e.6

5.2 Algorithm for Determining Resolve Points

We now describe the procedure we use to address the challenges described in §5.1.
It works on the Rust’s compiler MIR intermediate representation we already
described in §2.5, and relies on three data-flow analyses:

– A per-place initializedness analysis, determining for each place and each
program point whether we know statically that this place is initialized. A
place can be uninitialized either because the underlying local variable has
not yet been written to, or because its value has been moved elsewhere. This
analysis is already implemented in the Rust compiler (it is forbidden to use
the value of a place which is not initialized); we reuse it directly. We note
I(λ) the set of places which are definitely initialized at program point λ.

– A per-place liveness analysis, determining for each place and each program
point whether we know statically that the value it contains will not possibly
be used by the program in the future. We note Λ(λ) the set of places for
which we cannot statically guarantee they will not be used after program
point λ. We say these are live places at program point λ.

– A per-place frozenness analysis, determining for each place and each program
point whether that place is frozen because there is a borrow of that place
(or part of it) whose lifetime is still active. This analysis reuses information
computed by the borrow checker : the part of the Rust compiler that checks
that borrows are used in a way that does not violate ownership and aliasing
restrictions; determining frozenness is central to its operation. We note F (λ)
the set of places which are frozen at program point λ.

Places containing a dereference of a mutable borrow (i.e., corresponding to
memory accessed through a mutable borrow) correspond to memory that is given
back to the lender when the lifetime dies. Hence, the only situation where we
resolve them is before they are overwritten. In particular, initializedness, liveness
or frozenness play no role for these places. Therefore, they are not considered by
these analyses: we only consider places which do not contain the dereference of
a mutable borrow7.

Given the result of these analyses, we compute, for each program location λ,
two sets of places:

N(λ) = I(λ) ∩ (Λ(λ) ∪ F (λ)) R(λ) = I(λ) \N(λ)

6 In order to allow verification of such functions, we could take inspiration from
Prusti [1,2] and support pledges, assertions that need to be valid only when a lifetime
ends. This is out of the scope of this paper.

7 Places corresponding to array indexing (not mentioned in Fig. 1, but existing in the
real implementation) are also ignored because we cannot statically distinguish array
slots. The remaining places are called “move paths” by the Rust compiler developers,
and some support is available in the compiler to perform analyses on them.
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Any initialized place is either in R(λ) or in N(λ). The general idea of our algo-
rithm for the insertion of resolution is to make sure that, at program location λ,
places in R(λ) have already been resolved, and that values in places of N(λ) will
either be resolved or moved somewhere else. Hence, when a place enters R(λ), we
should resolve it, and when a place leaves N(λ), then either it has been moved,
or we should resolve it. More precisely, we are inserting resolve statement at the
following program points:

– At function entry, we resolve any places in R(λ).
– When a local variable x leaves its scope (at function exit or when leaving a

nested scope), we resolve any place in N(λ) which is a subplace of x.
– We decompose statements (including function calls) into two steps: the first

step does a pure computation (e.g., typically it evaluates the right-hand side
of an assignment), while the second step performs some side effects (e.g., a
place is assigned with the value computed during the first step). We note
λ1, λ2 and λ3 the program points before, between and after these two steps,
respectively.
Before the statement, we resolve places in N(λ1)∩R(λ2). Then, we consider
the second step: if pl is a place written by the statement second step, we
resolve it before the statement if pl ∈ N(λ2) and after the statement, if
pl ∈ R(λ3).

– Suppose λ is the last program point of basic block jumping (via a goto
or a switch terminator) to λ′, the first program point of a basic block.
Along the corresponding edge in the control flow graph, we resolve places in
N(λ) \N(λ′).

6 Discussion

6.1 Evaluation

In order to validate the ergonomics of our system, we migrated Creusot’s test
suite to our extension. We were able to make all the tests pass, without any
significant regression, despite the additional soundness restrictions described in
§2 and §4. We have not observed any example where the placement of resolution
as described in §5 were unsatisfying.

Thanks to the new support of type invariants, we were able to simplify the
implementation of non-trivial data structures (e.g., red-black tree maps, hash
tables, binary decision diagram) implemented as part of the test suite: we suc-
cessfully used type invariants to remove the manual threading of invariant that
was used before this work. Additionally, we used type invariants to simplify
specifications of iterators in Creusot [5].

We were mostly satisfied by all these uses of type invariants. The main incon-
veniences we encountered was the need to guard, in specifications for iterators,
some quantifiers by the corresponding type invariant; and, in the proof of red-
black trees, the fact that not all invariants hold when recursively calling internal
functions. In this case, we placed the whole tree type in a top-level wrapper



The Prophecy-Based Encoding of Borrows in a Realistic Verification Tool 23

type, which makes it possible, thanks to type invariant, to provide to the client
a specification free of internal invariant.

6.2 Limitations and Future Work

We believe our extensions of Creusot and RustHorn’s prophetic translation to be
sound, but we have not yet established this formally. Extending RustHornBelt
with our new features would be a natural way to tackle this question.

From an expressivity perspective, our type invariants are less powerful than
the ones in Why3 [19] or Dafny [18]. In those systems, type invariants effectively
define subset types: values satisfy their invariant even at the logical level (spec-
ifications and assertions). In our work, this is not the case: type invariants only
insert conditions in pre- and post-conditions of functions. Subset types would
be interesting but challenging to add to Creusot: the underlying SMT solvers
used by Creusot assume all types to be inhabited, but subset types break this
property (in particular, the Rust standard library includes an empty type, which
Creusot sees as a type with the invariant ⊥).

Our ghost code is also of limited expressivity, in that it does not carry own-
ership: a ghost value of type Ghost<T> is always duplicable. Allowing ghost linear
values would be more expressive, following ideas from Verus [12]. This would be
a non-trivial extension of our current work, but remaining challenges should be
orthogonal to prophecies: we expect the present work to smoothly apply to this
more expressive form of ghost code.

Our type invariants determine verification conditions that must be checked at
the resolution point of a borrow to any value of the corresponding type. It would
additionally be convenient to allow specifications to declare that an assertion
must be satisfied at the resolution of a specific borrow, on a case-by-case basis
(see e.g., the last example in §5.1). This is easily expressed using Prusti’s pledge
mechanism, but currently not possible in Creusot.

7 Related Work

To our knowledge, Creusot [6] is the only deductive verification tool for Rust
that uses a prophecy-based encoding of mutable borrows. Here, we also compare
with work on Rust verification based on different techniques, and deductive
verification tools with functionalities related to the challenges we presented.

Verification of Rust code using a prophetic encoding of borrows. Our work is
based on Creusot [6] and extends it beyond its state of the art. Ghost code
was briefly mentioned in earlier works as a feature of Creusot [6,5], but one
can check that these works rely on an unsound implementation of ghost code
(they incorrectly accept the second example of §2.1). Type invariants were also
mentioned in the earlier work on iterators [5], but in the actual implementation
these to-be “type invariants” were in fact manually threaded through the code.
Modular resolution predicates written by library authors were part of the trusted
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computing base [6, §4.2]; in our work, they soundly lead to proof obligations that
need to be discharged by the user. Finally, resolution in Creusot was triggered
at the moment a variable stops being used; this does not account for partially
uninitialized values and type invariants, as opposed to our approach.

RustHorn [16] first introduced a prophetic translation of borrows by translat-
ing a core subset of Rust to constrained Horn clauses. It targets the automated
verification of unannotated programs and does not handle specifications, loop
and type invariants, or other features for functional correctness verification.

RustHornBelt (RHB) [15] is a formalization of the RustHorn approach in
Coq. It defines a core language for Rust on which it establishes the soundness of
the prophetic reasoning principles. Notably, RHB’s core language has no notion
of “place” as they appear in Rust’s MIR intermediate representation; resolution of
borrows is only performed on variables. This is a major simplification compared
to our work which considers the full extent of MIR. RHB allows customizing
resolution predicates in a sound manner, but this requires unfolding the RHB’s
semantic model of Rust types, something that we wish to avoid. Unlike Creusot,
in RHB resolution points are manually triggered by users as a manual reasoning
step. In the context of an automated verification tool this would be extremely
cumbersome. Finally, RHB does not include ghost code or type invariants.

RefinedRust [8] does not directly implement RustHorn’s prophetic encoding,
but takes inspiration from it and adapts it for the verification of unsafe Rust
code. In RefinedRust, a borrow is interpreted as the pair of its current value
and a “borrow name” reminiscent of a prophecy variable. When a borrow is
resolved, a Separation Logic assertion is produced relating the borrow name to
its final value. RefinedRust works on a core calculus much closer to MIR than
RustHornBelt; in particular, RefinedRust works on “places”, just like our work.
RefinedRust does not support ghost code, but supports type invariants. Like us,
it needs to account for their interaction with borrows; because they are working
in Separation Logic, they are able to track borrows for which an invariant needs
to be restored using a dedicated resource. In contrast to our work, RefinedRust
is a foundational framework embedded into Coq using the Iris separation logic.
This allows for greater expressivity and the ability to reason about unsafe code.
However, RefinedRust supports a more restricted set of Rust features compared
to Creusot and supports less powerful proof automation.

Deductive verification of Rust code using other approaches. Verus [12] is a de-
ductive verification tool with a design closely related to Creusot. Verus relies on
a simpler functional translation of code written in a verification language much
closer to Rust. It does not use prophecies and only supports mutable borrows
passed as function parameters, not in return positions (this rules out functions
like index_mut). Verus has type invariants and expressive ghost code; their inter-
action with borrows is much simpler than in our case because of their restricted
encoding. Interestingly, the Verus developers seem to be considering adopting a
prophecy-based encoding of borrows8: the present work should be relevant.

8 https://github.com/verus-lang/verus/discussions/35#discussioncomment-4925078

https://github.com/verus-lang/verus/discussions/35#discussioncomment-4925078
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Aeneas [9] translates Rust programs to purely functional programs that can
be loaded and verified in a proof assistant. Mutable borrows are translated using
“backward functions”, which appear to be closely related to prophecies. Aeneas’
encoding is very general on paper, but implementation is still ongoing to han-
dle certain more complex situations that Creusot and our work handle (e.g.,
borrows in types, nested loops, nested borrows in signatures). Aeneas currently
has no dedicated specification language or features such as ghost code or type
invariants: program verification tasks are carried out using the proof assistant’s
usual reasoning tools.

Prusti [1] translates Rust programs to the Viper [17] verification language,
by encoding Rust’s ownership discipline (including borrows) into affine capa-
bilities [3]. Compared to Creusot’s prophetic encoding and its model in RHB,
the soundness of Prusti’s encoding is easier to justify (but puts more burden
on the verification infrastructure which needs to handle a flavor of Separation
Logic). We believe this is why Prusti supports type invariants without many of
the challenges we faced. On the other hand, Prusti does not yet support ghost
code or mutable borrows in their full generality, though we don’t expect them
to face the same soundness challenges performing these extensions. In Prusti,
specifications involving borrows use “pledges”, assertions deferred to the end of
a lifetime. This is similar in spirit to Creusot post-conditions that refer to the
“final” value of a borrow.

Verification using borrows in SPARK/Ada. SPARK, a verification enabled sub-
set of Ada, has recently been extended with the ability to reason about pointers
using borrows [10,7]. SPARK’s logical encoding of borrows has similarities with
RustHorn’s prophetic encoding: a borrow is represented by its current value and
a borrow relation which ties the borrow’s value to its lender—similar to how
the prophetic translation allows collecting facts relating a borrow’s current and
final value. Specifications about borrows are expressed using pledges similar to
Prusti’s. SPARK borrows are however much less expressive than Rust borrows;
the location they alias must be statically known, and they cannot be stored in
records. SPARK by design keeps clear of many of the challenges that we tackled
in our work.
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