
Thunks and Debits in Separation Logic with Time Credits

FRANÇOIS POTTIER, Inria, France
ARMAËL GUÉNEAU, Université Paris-Saclay, CNRS, ENS Paris-Saclay, Inria, LMF, France

JACQUES-HENRI JOURDAN, Université Paris-Saclay, CNRS, ENS Paris-Saclay, LMF, France

GLEN MÉVEL, Université Paris-Saclay, CNRS, ENS Paris-Saclay, Inria, LMF, France

A thunk is a mutable data structure that offers a simple memoization service: it stores either a suspended

computation or the result of this computation. Okasaki [1999] presents many data structures that exploit

thunks to achieve good amortized time complexity. He analyzes their complexity by associating a debit with

every thunk. A debit can be paid off in several increments; a thunk whose debit has been fully paid off can be

forced. Quite strikingly, a debit is associated also with future thunks, which do not yet exist in memory. Some

of the debit of a faraway future thunk can be transferred to a nearer future thunk. We present a complete

machine-checked reconstruction of Okasaki’s reasoning rules in Iris
$
, a rich separation logic with time credits.

We demonstrate the applicability of the rules by verifying a few operations on streams as well as several of

Okasaki’s data structures, namely the physicist’s queue, implicit queues, and the banker’s queue.

CCS Concepts: • Theory of computation→ Separation logic; Program verification.

Additional Key Words and Phrases: program verification, separation logic, time complexity

ACM Reference Format:
François Pottier, Armaël Guéneau, Jacques-Henri Jourdan, and Glen Mével. 2024. Thunks and Debits in

Separation Logic with Time Credits. Proc. ACM Program. Lang. 8, POPL, Article 50 (January 2024), 27 pages.

https://doi.org/10.1145/3632892

1 INTRODUCTION
In a famous book, Okasaki [1999] presents several data structures for purely functional programs.

These data structures are persistent [Driscoll et al. 1989], that is, apparently immutable. Instead of

mutating its argument, an update operation returns a new data structure, leaving the observable

content of the original data structure intact.

In order to achieve good time complexity, Okasaki uses thunks, also known as suspensions.

A thunk is a mutable data structure that offers a simple memoization service: it stores either a

suspended computation or the result of this computation. The use of thunks does not affect the

functional behavior of a program, but allows delaying a computation until the moment where

its result is definitely needed, while still sharing this result. Thus, the use of thunks can improve

the time complexity of a program, without impacting its final result. For this reason, thunks are

accepted as an essential part of the “functional programming” toolbox [Hughes 1989]. In fact, in

the functional programming language Haskell, creating and forcing thunks are implicit operations.

Thunks are a basic building block in the construction of streams, whose definition appears in

Figure 1. A stream is a lazy list: each stream cell is wrapped in a thunk, so it is evaluated only

Authors’ addresses: François Pottier, francois.pottier@inria.fr, Inria, Paris, France; Armaël Guéneau, armael.gueneau@

inria.fr, Université Paris-Saclay, CNRS, ENS Paris-Saclay, Inria, LMF, 91190, Gif-sur-Yvette, France; Jacques-Henri Jourdan,

jacques-henri.jourdan@cnrs.fr, Université Paris-Saclay, CNRS, ENS Paris-Saclay, LMF, 91190, Gif-sur-Yvette, France; Glen

Mével, glen.mevel@crans.org, Université Paris-Saclay, CNRS, ENS Paris-Saclay, Inria, LMF, 91190, Gif-sur-Yvette, France.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses,

contact the owner/author(s).

© 2024 Copyright held by the owner/author(s).

ACM 2475-1421/2024/1-ART50

https://doi.org/10.1145/3632892

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 50. Publication date: January 2024.

HTTPS://ORCID.ORG/0000-0002-4069-1235
HTTPS://ORCID.ORG/0000-0003-3072-4045
HTTPS://ORCID.ORG/0000-0002-9781-7097
HTTPS://ORCID.ORG/0000-0002-1816-7605
https://doi.org/10.1145/3632892
https://orcid.org/0000-0002-4069-1235
https://orcid.org/0000-0003-3072-4045
https://orcid.org/0000-0002-9781-7097
https://orcid.org/0000-0002-1816-7605
https://orcid.org/0000-0002-1816-7605
https://doi.org/10.1145/3632892

50:2 François Pottier, Armaël Guéneau, Jacques-Henri Jourdan, and Glen Mével

1 type 'a stream = ('a cell) thunk

2 and 'a cell = Nil | Cons of 'a * 'a stream

3

4 let nil () : 'a stream =

5 Thunk.create @@ fun () -> Nil

6

7 let uncons (s : 'a stream) : 'a * 'a stream =

8 match Thunk.force s with

9 | Nil -> assert false (* dead branch *)

10 | Cons (x, s) -> x, s

11

12 let rec append (s1 : 'a stream) (s2 : 'a stream) : 'a stream =

13 Thunk.create @@ fun () -> match Thunk.force s1 with

14 | Nil -> Thunk.force s2

15 | Cons (x, s1) -> Cons (x, append s1 s2)

16

17 let rec revl_append (l : 'a list) (c : 'a cell) : 'a cell =

18 match l with

19 | [] -> c

20 | x :: l -> revl_append l (Cons (x, Thunk.create @@ fun () -> c))

21

22 let revl (l : 'a list) : 'a stream =

23 Thunk.create @@ fun () -> revl_append l Nil

Fig. 1. Streams: OCaml Code

on demand. Figure 1 presents several functions on streams. The functions Thunk.create and

Thunk.force are used to create and force thunks. The function append (line 12) lazily appends

two streams: a thunk in the stream s1 and s2 is forced only when needed, that is, only when the

corresponding thunk in the result stream is forced. revl (line 22) reverses a list, returning a stream.

It is also lazy, insofar as possible: the expensive list reversal operation (performed by the auxiliary

function revl_append) is carried out only when the first thunk of the result stream is forced.

Okasaki’s complexity bounds are amortized [Tarjan 1985]: that is, the actual cost of an operation

may be higher than its advertised cost. Still, the advertised complexity bounds are sound, and can

be used to compute a safe bound on the global execution time of a program. The basic idea of

amortization [Tarjan 1985] is simple: if the advertised cost of some operations is slightly higher

than their actual cost, then a sequence of operations accumulates a certain amount of credit, which
can be used to justify an occasional “expensive” operation, whose actual cost exceeds its advertised

cost. One must stress, however, that Okasaki does not reason in terms of credit, and cannot do so,

because he needs thunks to be shareable. Sharing credit leads to an unsound analysis, as credit can

then be spent twice. Instead, Okasaki reasons in terms of debit. With every thunk, he associates a

debit, a nonnegative integer number, which indicates how much one must pay before this thunk
can be forced. In other words, Okasaki ensures that the actual cost of forcing a thunk is always

paid for in advance. Once its debt has been paid off, a thunk can be forced as many times as one

wishes, essentially “for free”, that is, at cost 𝑂 (1). Even if thunks are shared, this analysis is sound:

indeed, duplicating a debt leads to an over-approximation of a program’s time complexity.

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 50. Publication date: January 2024.

Thunks and Debits in Separation Logic with Time Credits 50:3

In summary, Okasaki’s thunks with debits support three main operations: creation, forcing, and

paying. When a new thunk is created, its debit is the cost of the suspended computation. If the debit

associated with this thunk becomes zero, then this thunk can be forced. Between these two points

in time, this thunk’s debit can be reduced by paying, in one or more increments. Paying is a ghost

operation: it has no runtime effect, as there is no runtime accounting of debits. Paying decreases

the debit of a thunk from 𝑛 down to 𝑛 − 𝑘 and is itself regarded as an operation that costs 𝑘 units.

Danielsson [2008] must be credited for this crisp explanation of Okasaki’s analysis technique.

Because every cell in a stream involves a thunk, it is natural to represent the “cost” of a stream

as a sequence of debits, recording the cost of forcing each stream cell, or, more accurately, the

remaining debt associated with each stream cell. The “cost” of each operation on streams can then

be expressed in terms of sequences of debits. For example, the debit sequence of the stream returned

by append is roughly the concatenation of the debit sequences of the two argument streams, plus

an extra debit of 𝑂 (1) that is added to every thunk in the first segment of the new debit sequence,

so as to account for the cost of concatenation. (Details appear in §6.3 and Figure 16.) As another

example, in the stream returned by revl, the first thunk has debit 𝑂 (𝑛), where 𝑛 is the length of

the list l, while the following thunks have debit zero: indeed, the expensive list reversal operation

is performed when the first thunk is forced, and the remaining thunks require no computation.

Challenges. In this paper, we wish to give a mechanized and foundational account of Okasaki’s

debit-based reasoning discipline. We want our reasoning rules to be expressive enough to verify the

functional correctness and time complexity of Okasaki’s functional data structures and of (possibly

imperative) client programs that use them. This requires addressing several challenges:

(1) We need a program logic that can express and verify worst-case bounds on execution time.

This logic must allow debit-based reasoning about thunks, but must not be restricted to this

style: code that does not involve thunks typically requires credit-based reasoning.

(2) This logic must allow reasoning not only about purely functional data structures, but also

about imperative data structures and algorithms.

(3) As demonstrated by append, it is common to construct a thunk which (when forced) forces

another thunk. Unfortunately, in the presence of mutable state, one can also construct a

reentrant thunk, that is, a thunk that attempts to force itself, resulting (at best) in a graceful

runtime error or (at worst) in undesirable behavior, such as divergence. We want the logic to

statically forbid reentrancy, thereby offering a strong guarantee: a verified program cannot
fail at runtime and must terminate within the advertised time bound.

(4) Although we have written that it is “natural” to associate a sequence of debits with a stream,

this style of reasoning is in fact highly nontrivial, as it involves keeping track of and updating

the debt of future thunks. That is, a thunk’s debit conceptually exists and can be updated before
this thunk actually exists in the machine’s memory! This is known as a deep payment. As a
key example, we show that streams enjoy an intuitively simple debit forwarding rule, which

allows shifting debits towards the left in a sequence of debits. To illustrate this rule, consider

append f (revl r), where f is a stream of length 𝑛 and r is a list of length 𝑛. Suppose

that every thunk in the stream f has debit 𝑂 (1). According to the specifications of revl and

append that we have sketched, this expression produces a stream whose debit sequence is

𝑂 (1) everywhere, except for the central thunk, whose debit is𝑂 (𝑛). Debit forwarding allows
us to change our view of this stream by distributing the high debt of the central thunk onto

the preceding thunks. The debit of every thunk in the first half of the sequence is increased

by𝑂 (1), therefore remains𝑂 (1), while the debit of the central thunk is reduced to𝑂 (1). This
nontrivial reasoning step is carried out before the stream constructed by append f (revl r)
is forced. It plays a crucial role in the verification of the banker’s queue (§7).

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 50. Publication date: January 2024.

50:4 François Pottier, Armaël Guéneau, Jacques-Henri Jourdan, and Glen Mével

State of the Art. Several papers in the literature address some, but not all, of these challenges.

Danielsson [2008] proposes a type system, embedded in Agda, featuring an abstract typeThunk 𝑛 𝑎

and operations on this type. The parameter 𝑛 is the debit associated with this thunk; the parameter 𝑎

is the type of its result. This pioneering work exhibits several major limitations: it is limited to

purely functional programs and debit-based reasoning; it does not seem to prevent reentrancy or

nontermination (§9); and the proof of type soundness is not formally connected with the API that

a user of the library relies upon. Furthermore, deep payment appears in the API but is not covered

by the soundness proof. Thus, Danielsson addresses Challenge 4, but not Challenges 1 to 3.

Several authors [Atkey 2011; Hoffmann et al. 2013; Charguéraud and Pottier 2017; Haslbeck

and Nipkow 2018; Zhan and Haslbeck 2018; Mével et al. 2019; Haslbeck and Lammich 2021]

use separation logic with time credits to verify worst-case amortized time complexity bounds for

possibly imperative programs. The basic idea is simple: one arranges for every step of computation

to consume one time credit, where a time credit is a ghost resource. Because credits cannot be

forged or duplicated, the amount of credit that is initially made available (in the precondition of

a closed program) bounds the total execution time of this program. Among these authors, only

Mével et al. [2019] formalize thunks and debits; however, their reasoning rules support neither

thunks that force thunks nor debit forwarding. Thus, they address Challenges 1 and 2, but not

Challenges 3 or 4. Their work is discussed in greater detail at the end of the paper (§9).

Contributions. In this paper, we address challenges 1–4 and carry out a foundational verification

of the time complexity of three of Okasaki’s notorious algorithms [1999]. To address Challenges 1

and 2, we use Iris
$
[Mével et al. 2019], a Separation Logic with time credits that is implemented

inside the Coq proof assistant on top of the Iris framework [Jung et al. 2018]. Inside this existing

logic, we verify a “thunk” library, equipped with a rich “debit” API, which supports nested thunks

and deep payment, addressing Challenges 3 and 4. Using this library, we verify several of Okasaki’s

data structures, namely the banker’s queue [Okasaki 1999, §6.3.2] (§7), the physicist’s queue

[Okasaki 1999, §6.4.2], and implicit queues [Okasaki 1999, §11.1] (§8). In each case, we verify

functional correctness, termination, and worst-case amortized time complexity. Thanks to the

modularity of Iris
$
, our verified data structures can be used as part of verified programs that involve

time-credit-based reasoning, mutable state, or shared-memory concurrency.

On Thread Safety. Although our thunks can be used in a concurrent program, they are not

thread-safe: two threads must never race to force a thunk. Our thunk API enforces this restriction

by using affine tokens that represent a permission to force a thunk. Nevertheless, we are able to

verify Okasaki’s data structures, because they are sequential data structures. Our verified APIs

use affine tokens, where needed, to enforce sequential access. For instance, the reasoning rule

Banker-Extract in Figure 18 uses the token E∞ to forbid concurrent calls to extract.
Haskell’s thunks, in comparison, are thread-safe: it is permitted for two threads to concurrently

attempt to force a thunk. This implies that one must be prepared to accept duplication of work

(where the suspended computation is performed twice) or blocking (where one thread waits for

another thread to complete the computation and update the thunk). Haskell’s implementation

involves a combination of duplication and blocking [Marlow et al. 2009]. However, our time

complexity analysis allows neither duplication nor blocking: we do not know how to bound the

extra time that would be spent performing duplicated work or waiting for a thunk to be updated.

For this reason, in this paper, we stick with a simple view of thunks as a sequential data structure.

Hoffmann et al. [2013] propose reasoning about lock-free data structures using time credits.

Their key insight is that a thread that is able to make progress (typically via a successful CAS) must

pay for the cost of CAS failures and retries in other threads. It is not clear whether this idea could

be exploited to reason about the worst-case time complexity of concurrent thunks.

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 50. Publication date: January 2024.

Thunks and Debits in Separation Logic with Time Credits 50:5

Road Map. Our thunk library is organized in three layers of abstraction. After recalling some

of the concepts of Iris (§2), we present the bottom layer, a novel ghost data structure, the piggy
bank (§3). None of the operations on piggy banks has a runtime effect. The main three operations

on piggy banks, namely creating, paying, and breaking (forcing) a bank, are ghost updates. In

the second layer (§4), we implement thunks and establish reasoning rules that match Okasaki’s

informal rules. These rules include Thunk-Conseqence (Figure 5), which, together with Thunk-

Pay (Figure 6), justifies deep payment. Our construction of thunks relies on piggy banks in two

distinct places and can associate many piggy banks with a single thunk. In the third and last

layer (§5), we equip thunks with a notion of height that simplifies the way in which we rule out

reentrancy while still allowing thunks to force thunks.

On top of thunks, we implement streams (§6). We establish a number of reasoning rules about

streams, including the debit forwarding rule Stream-Forward-Debit (Figure 13), which distributes

a debit over several thunks in a stream, by moving parts of this debit from the right toward the left,

that is, from thunks that are more distant in the future towards thunks that are closer in the future.

After presenting our proofs of three of Okasaki’s data structures (§7, §8), we review the related

work (§9) and conclude (§10). All of our results are machine-checked [Pottier et al. 2023]. For

readability, in the paper, we present code in OCaml syntax. The code that we actually verify is

expressed in HeapLang, an untyped call-by-value 𝜆-calculus with dynamically allocated mutable

state, whose definition is bundled with Iris.

2 A REFRESHER ON IRIS AND IRIS$

Even a basic introduction to Iris [Jung et al. 2018] could occupy a whole paper. We recall some of

the key concepts, intuition, and notation of Iris, and we hope that a reader who is not an expert in

Iris can grasp the intuition behind the abstractions that we build. For example, a reader who looks

at the reasoning rule Thunk-Pay (Figure 6) should at least understand that it is a ghost update (⇛)

that consumes 𝑘 time credits ($𝑘) and decreases the debit of a thunk from 𝑛 down to 𝑛 − 𝑘 .

Assertions. Separation logic uses assertions to describe certain knowledge about the world and to

encode permissions to change the world in certain ways. By “the world”, we mean both the physical

state of the machine and the ghost state that has been allocated as part of the proof. Some assertions

are pure, that is, independent of the world. For example, the assertion ⌜𝑥 = 0⌝ asserts that the
equation 𝑥 = 0, which involves the mathematical variable 𝑥 , holds. Pure assertions are a special

case of persistent assertions. Although persistent assertions may depend on the world, once they

hold, they hold forever. For instance, the assertionThunk F 𝑡 n 𝑅 𝜙 , which asserts (among other

things) that 𝑡 is the address of a valid thunk in memory, is persistent. This reflects the fact that a

thunk cannot be destroyed.
1
A persistent assertion is duplicable: if 𝑃 is persistent, then 𝑃 entails the

conjunction 𝑃 ∗ 𝑃 . The fact that Thunk is persistent reflects that it is safe to share a thunk. Finally,

an assertion that is neither pure nor persistent is affine. An affine assertion typically represents a

combination of knowledge and permission. For instance, the points-to assertion 𝑡 ↦→ 𝑣 represents

both the exclusive knowledge that the memory location 𝑡 currently contains the value 𝑣 and an

exclusive permission to write a new value at this location.

The natural notions of conjunction and implication are the separating conjunction ∗ and the

magic wand −∗. (The non-separating conjunction ∧ and implication ⇒ are not used in this paper.)

A magic wand 𝑃 −∗ 𝑄 can be read as an implication; however, one must keep in mind that (unless 𝑃

is persistent) applying this magic wand consumes 𝑃 . A magic wand itself is not persistent, so it can

be applied only once. It can be made persistent by using the persistence modality: □(𝑃 −∗ 𝑄) is a
magic wand that can be used as many times as one wishes.

1
HeapLang does not have explicit memory deallocation. We assume that a garbage collector reclaims unreachable objects.

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 50. Publication date: January 2024.

50:6 François Pottier, Armaël Guéneau, Jacques-Henri Jourdan, and Glen Mével

Ghost State. Like physical state, ghost state is dynamically allocated. The law True ⇛ ∃𝛾 . 𝛾 ↦→𝑚

(provided by Iris) allocates a fresh ghost cell, at address 𝛾 , whose initial content is𝑚. We write 𝛾, 𝛿, 𝜋

for ghost addresses. A ghost update assertion 𝑃 ⇛ 𝑄 means that, by consuming 𝑃 and by updating

the ghost state, it is possible to reach a state where 𝑄 holds. A ghost update is applied as part of a

proof; such an application is not visible in the code. The content𝑚 of a ghost cell 𝛾 is an element of

a camera 𝑀 that is implicitly associated with 𝛾 and that is chosen when this ghost cell is allocated.

For our purposes, a camera is a commutative monoid (𝑀, ·) equipped with a notion of validity,
such that valid (𝑚1 ·𝑚2) implies valid 𝑚1 ∧ valid 𝑚2. By design, the logic guarantees that the

content of a ghost cell is always a valid element. This is expressed by the law 𝛾 ↦→𝑚 ⊢ ⌜valid 𝑚⌝.
The ghost points-to assertion 𝛾 ↦→𝑚 means that𝑚 is one fragment of the content of the ghost
cell 𝛾 , and represents the ownership of just this fragment. This is reflected by the composition

law 𝛾 ↦→𝑚1 ·𝑚2 ≡ 𝛾 ↦→𝑚1 ∗ 𝛾 ↦→𝑚2 , which allows ghost points-to assertions to be split

and joined, and by the frame-preserving update law, which is stated as follows: if for every 𝑚′

valid (𝑚1 ·𝑚′) implies valid (𝑚2 ·𝑚′) then 𝛾 ↦→𝑚1 ⇛ 𝛾 ↦→𝑚2 .

Ameta witness 𝑡 ⇝ 𝛾 , a persistent assertion, indicates that the ghost address𝛾 has been associated

with the physical memory location 𝑡 . The law 𝑡 ⇝ 𝛾1 ∗ 𝑡 ⇝ 𝛾2 ⊢ ⌜𝛾1 = 𝛾2⌝ (provided by Iris) states

that this association is unique: it forms a (partial) map of physical locations to ghost addresses.

Invariants. Roughly speaking, an invariant is an assertionwhich, by convention and from a certain

point on, must hold “at all times”. The assertion 𝐼 indicates that the assertion 𝐼 has been made an

invariant. The law 𝐼 ⇛ 𝐼 dynamically establishes a new invariant. Even if 𝐼 is not persistent, 𝐼

is persistent: the knowledge that an invariant exists can be shared. This knowledge allows accessing
the invariant, that is, opening and closing it. Opening an invariant produces the assertion 𝐼 , allowing

the user to exploit 𝐼 and possibly to destroy it, thereby temporarily violating the invariant. Closing

an invariant requires the user to provide 𝐼 and consumes it, thereby re-establishing the invariant.

Thus, the claim that an invariant holds “at all times” is a white lie. An invariant holds at all times

except while it is being accessed. Therefore, the logic must forbid reentrant access to an invariant,

that is, forbid opening an invariant that is already open. To this end, the use of invariants is subject

to two constraints.

First, invariant accesses are atomic: opening and closing an invariant must take place during

a single physical computation step. This guarantees that, under an interleaving semantics, two

distinct threads cannot access an invariant at the same time.

Second, invariants 𝐼 𝑁
are in fact labeled with a namespace 𝑁 . This annotation is used to forbid

reentrant access within a thread: two invariants can be simultaneously opened only if they are

labeled with disjoint namespaces.
2
Enforcing this policy requires keeping track, at all times, of

which invariants can currently be accessed. We omit the details, but note that the ghost update
connective⇛E must be indexed with a mask E. In short, 𝑃 ⇛E 𝑄 means that 𝑃 can be transformed

into 𝑄 while accessing only those invariants whose namespace 𝑁 is in the set E. One may omit

this mask when it is ⊤.
The later modality ⊲ weakens an assertion. Roughly, the assertion ⊲ 𝑃 means that the assertion 𝑃

will hold in the next time step, that is, after the next atomic instruction is executed. This modality

appears in the reasoning rules for invariants, where it serves to forbid certain logical paradoxes.

Our claim that opening an invariant produces 𝐼 and closing it consumes 𝐼 was another white lie:

these operations actually produce and consume ⊲ 𝐼 . This is visible in some of our reasoning rules,

such as PiggyBank-Break (Figure 2), but can otherwise be ignored.

2
A namespace 𝑁,𝑇 is a string. A mask E, F is a set of such strings. If𝑇 is a namespace, then its upward closure ↑𝑇 , a mask,

is the set of all strings that admit𝑇 as a prefix. The full mask ⊤ is the set of all strings. We write E1 # E2 when the masks E1

and E2 are disjoint. We say that two namespaces𝑇1 and𝑇2 are disjoint when ↑𝑇1 # ↑𝑇2 holds.

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 50. Publication date: January 2024.

Thunks and Debits in Separation Logic with Time Credits 50:7

Hoare Triples. A specification traditionally takes the form {𝑃} 𝑒 {𝜙}, where the precondition 𝑃

is an assertion about the initial state, the expression 𝑒 is the program fragment of interest, and

the postcondition 𝜙 describes the result value and the final state: if 𝑣 is the result value then

𝜙 𝑣 is an assertion about the final state. We typically write {𝑃} 𝑒 {𝜆𝑣 .𝑄} in order to bind the

result value in the postcondition. This can be read as follows: “provided the initial state satisfies 𝑃 ,

executing 𝑒 cannot crash, and if it terminates, then it returns some value 𝑣 such that the final state

satisfies 𝑄”. A triple is persistent: it allows executing the expression 𝑒 as many times as one wishes.

We occasionally need a one-shot triple, written once {𝑃 } 𝑒 {𝜙} . Its meaning is the same as that of a

persistent triple, except that it allows 𝑒 to be executed at most once. It is an affine assertion. An

ordinary triple is a one-shot triple wrapped in the persistence modality □.

Time Credits. Iris$ [Mével et al. 2019] extends Iris with time credits. The assertion $n represents

n time credits. It is affine: time credits can be discarded but not duplicated. The reasoning rules of

the logic ensure that every instruction consumes one time credit. As a result, if the triple {$𝑛} 𝑒 {𝜙}
holds, where 𝑒 is a closed expression (a complete program), then 𝑒 does not crash andmust terminate
in at most 𝑛 steps. In other words, the logic offers a worst-case time complexity guarantee.

In general, a specification provides a worst-case amortized time complexity guarantee. For

instance, Thunk-Force (Figure 6) does not guarantee that force 𝑡 runs in at most F steps. Although

only F time credits are ostensibly visible in the precondition, the assertionThunk F 𝑡 0 𝑅 𝜙 , which

is also part of the precondition, offers access to an invariant which possibly contains more credits.

Thus, this specification means that the amortized time complexity of force is F .
Abstract literal constants, such as N and F , hide concrete numeric constants. For instance, N ,

the cost of creating a new thunk, is 3, while F , the cost of forcing a thunk, is 11. In our Coq proofs,

these literal constants are defined at the top level and are made opaque as soon as possible. In the

paper, their definitions are omitted. Every literal constant is denoted by an underlined capital letter.

3 PIGGY BANKS
Once upon a time, in a faraway university, a class of students wanted to throw a big party. Alas,

food, drinks, disguises, and other equipment were then and there very expensive. So, the students’

first action was to install in the classrooms, in the students’ lounge, in the dormitories, and in

several other locations, a number of porcelain piggy banks. The students declared that everyone

could contribute whatever amount he or she desired, in whatever location and at whatever time he

or she desired. They agreed that, once the total accumulated amount reached a hundred sovereigns,

they would break all piggy banks and throw a big party.

Alas, because one could not see through a piggy bank, one could not tell how much money

was inside it. And because piggy banks were installed in many places, there was no coordination

between contributors. No student could be reliably informed of all contributions, and there was

no way of maintaining a registry of all contributions. Faced with these difficulties, the students

adopted a habit of telling each other how much money they thought remained to be collected. One

morning, in the students’ lounge, Charles was told by Brian, “97 to go”. There, Charles put one

sovereign into the piggy bank. As he exited the room, he ran into Sophie and Sara, whom he told,

“96 to go”. Later on during that day, at different times and in different places, Sophie and Sara each

contributed one sovereign. In the evening, each of them independently told Brian, “95 to go”.

When the students finally determined that the piggy banks could safely be broken, they found

that they had accumulated much more than a hundred sovereigns. It was a big party.

This fable is meant to suggest that, independently of physical mechanisms such as a distributed

piggy bank in a university or a thunk in a computer’s memory, there is a sound and useful pattern

of reasoning about credit that is accumulated via uncoordinated payments. This pattern involves

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 50. Publication date: January 2024.

50:8 François Pottier, Armaël Guéneau, Jacques-Henri Jourdan, and Glen Mével

true debit, or “how much really is still missing”, apparent debit, or “how much Sophie thinks is still

missing”, and the property that an apparent debit is always an over-approximation of the true debit.

To isolate this pattern and to establish its logical soundness, we develop the piggy bank, a ghost
data structure, and show that it supports the desired reasoning rules. There is no code: a piggy

bank is a purely logical concept. Our construction of thunks (§4.2.1, §4.2.2) uses piggy banks in two

distinct places and can cause an unbounded number of piggy banks to be associated with a single

thunk. This suggests that it is worthwhile to make piggy banks a stand-alone abstraction.

3.1 Piggy Banks: Interface
A piggy bank can be abstractly described as a ghost data structure that is in one of two states:

“pending” or “forced”. Furthermore, the transition from the pending state to the forced state is not

instantaneous, and may require executing some user code: meanwhile, the piggy bank is in a third

state, the “transient” state. Executing this user code has a certain cost: the time credits accumulated

in the piggy bank are intended to pay for this.

There is no need for concrete descriptions of the pending state and of the forced state. We assume

that these states are described by two parameters 𝑃 : N→ iProp and 𝑄 : iProp, where iProp is the
type of Iris assertions. The assertion 𝑃 nc means that the piggy bank is in the pending state and

that nc, standing for “necessary credits”, is the number of credits that we aim to accumulate before

transitioning to the forced state. The assertion 𝑄 means that the piggy bank is in the forced state.

We want a piggy bank to be shared between several participants, so it must be described by a

persistent predicate, PiggyBank. Participants must be allowed to pay, that is, to insert time credits

into the piggy bank. This is a ghost operation. Each participant must be able to pay independently,

without coordinating with other participants, so, as suggested by the fable, the PiggyBank assertion

must keep track of an apparent debit, that is, a nonnegative number of debits, n. Once a participant
sees an apparent debit of zero, we want this participant to be able to deduce that enough credit has

been accumulated to allow the transition to take place. We want this participant to be allowed to

break (or force) the bank and either perform the transition, or discover that the transition has been

performed already by another participant.

Paying and breaking the bank have rather different characteristics. We wish to think of paying as

an atomic update of the ghost state of the piggy bank; and wewould like paying to be permitted at all

times. The act of breaking the bank, on the other hand, cannot be regarded as atomic. A participant

who breaks the bank and finds it in the pending state is expected to perform a transition to the

forced state, that is, to update the physical state from 𝑃 nc to 𝑄 . This can require many steps of

computation. For instance, forcing a thunk requires calling a user-supplied function and updating

the physical state of the thunk. These considerations suggest that breaking the bank must be viewed

as a sequence of two ghost updates, between which the user may execute some physical code. One

update causes a transition from the pending state to the transient state; another update causes a

transition from the transient state to the forced state.

Between these updates, the piggy bank is in the transient state, where neither 𝑃 nc nor 𝑄 holds.

So, while the piggy bank is being forced, one must forbid any attempt to force it again. This is

made possible by the use of an exclusive token EF . The transition that enters the transient state

consumes this token, while the transition that leaves the transient state produces it again. As we

will see (§4), piggy banks are used in a nested manner, with unbounded nesting depth: this calls for

an infinite number of distinct tokens. Taking inspiration from Iris’s invariants, we organize these

tokens using namespaces and masks. (In fact, we reuse the tokens of Iris’s non-atomic invariant

library.) The token EF denotes the ownership of all tokens in the possibly infinite set F . The full

token E⊤ is created once and for all at the beginning of the execution of the program.

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 50. Publication date: January 2024.

Thunks and Debits in Separation Logic with Time Credits 50:9

PiggyBank-Persist

persistent(PiggyBank 𝑃 𝑄 𝑁 𝑇 n)
PiggyBank-Create

𝑃 n ⇛E PiggyBank 𝑃 𝑄 𝑁 𝑇 n

PiggyBank-Increase-Debit

n1 ≤ n2

PiggyBank 𝑃 𝑄 𝑁 𝑇 n1 −∗
PiggyBank 𝑃 𝑄 𝑁 𝑇 n2

PiggyBank-Pay

↑𝑁 ⊆ E
PiggyBank 𝑃 𝑄 𝑁 𝑇 n ∗ $𝑘 ⇛E
PiggyBank 𝑃 𝑄 𝑁 𝑇 (n − 𝑘)

PiggyBank-Break

↑𝑁 ⊆ E ↑𝑇 ⊆ F
PiggyBank 𝑃 𝑄 𝑁 𝑇 0 ∗ EF ⇛E

∃nc.
(
((⊲ 𝑃 nc ∗ $nc) ∨ ⊲𝑄) ∗
(⊲𝑄 ⇛E EF)

)
PiggyBank-Peek

↑𝑁 ⊆ E ↑𝑇 ⊆ F
PiggyBank 𝑃 𝑄 𝑁 𝑇 n ∗ EF −∗
(∀nc, ⊲ 𝑃 nc −∗ ⊲ False) −∗
(⊲𝑄 −∗ ⊲□𝑄 ′) ⇛E
PiggyBank 𝑃 𝑄 𝑁 𝑇 0 ∗ ⊲□𝑄 ′ ∗ EF

Fig. 2. Piggy Banks: Reasoning Rules

A piggy bank is parameterized with two namespaces 𝑁 and 𝑇 . The namespace 𝑁 decorates

an invariant that is opened when paying and when forcing the piggy bank. The namespace 𝑇

determines what token EF must be supplied when the piggy bank is forced. Together, the parameters

𝑁,𝑇 can be thought of as a “region” in which the piggy bank exists.

Our reasoning rules for piggy banks appear in Figure 2. The assertion PiggyBank 𝑃 𝑄 𝑁 𝑇 n
means that there exists a piggy bank whose pending and forced states are described by 𝑃 and 𝑄 ,

whose region is 𝑁,𝑇 , and whose number of debits is n. The parameter n is the most interesting

one: in the rules of Figure 2, the four other parameters are fixed.

The rule PiggyBank-Persist states that a PiggyBank assertion is persistent. That is, a piggy

bank can be shared. PiggyBank-Create allocates a new piggy bank. It is a ghost update. The

piggy bank must initially be in its pending state: the user must establish the assertion 𝑃 n, which is

consumed. The user chooses n, the number of credits that must be accumulated before the piggy

bank can be broken. Thus, n is the initial value of the true debit and is also the initial apparent

debit. PiggyBank-Increase-Debit states that PiggyBank is covariant in the parameter n. In other

words, it is safe to increase an apparent debit. This rule is intuitively sound because it preserves

the fact that an apparent debit is an over-approximation of the true debit. PiggyBank-Pay, also

a ghost update, allows contributing 𝑘 time credits to a piggy bank. The apparent debit decreases

from n to n − 𝑘 . (This is subtraction in the natural numbers, so n − 𝑘 ≥ 0 holds.) This rule does not

require any affine token.

We now come to the most complex rule, PiggyBank-Break. This rule allows the user to break

a piggy bank whose apparent debit is 0. This is intuitively permitted because, if the apparent debit

is 0, then the true debit must be 0 as well. As explained earlier, this rule is expressed via two nested

ghost updates. The user has the freedom to apply these updates at two distinct points in time and

to execute some code between them. The outermost update initiates the process of breaking the

bank. It consumes the affine token EF , where ↑𝑇 ⊆ F must hold: this forbids an attempt to break

this piggy bank again while it is already being broken. It produces the following situation: for some

value of nc, both of the following assertions hold:

(1) either the piggy bank is in its pending state 𝑃 nc, in which case nc time credits are available

(because the true debit is zero), or the piggy bank is already in its forced state 𝑄 ;

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 50. Publication date: January 2024.

50:10 François Pottier, Armaël Guéneau, Jacques-Henri Jourdan, and Glen Mével

PiggyBank 𝑃 𝑄 𝑁 𝑇 n ≜

∃ 𝑖, 𝜋, nc.

∃ac. 𝜋 ↦→ • ac ∗
⋄𝑖 ∗ 𝑃 nc ∗ $ac

∨ E↑𝑇 ∗ ⌜nc ≤ ac⌝
∨ ⋄𝑖 ∗ 𝑄 ∗ ⌜nc ≤ ac⌝

𝑁

∗ 𝜋 ↦→ ◦ (nc − n)

Fig. 3. Piggy Banks: Internal Definition

(2) whatever state the piggy bank is currently in, the user must bring it into the forced state 𝑄

so as to be able to apply the innermost ghost update, which ends the process of breaking the

bank and causes the affine token EF to re-appear.

The variable nc is existentially quantified because the cost of moving from the pending state to

the forced state is unknown: it cannot be deduced from the PiggyBank assertion. The fact that this

variable is shared between the conjuncts 𝑃 nc and $nc guarantees that “enough” credit is available.
Whereas forcing requires an affine token (which disappears while forcing is in progress, and

re-appears when the process is complete), paying does not require a token. Therefore, while a bank

is being forced, forcing it again is disallowed, but paying remains permitted.

PiggyBank-Peek states that if the user is somehow able to prove that this piggy bank cannot be in

its pending state (that is, 𝑃 nc implies false), then it must be in its forced state and the piggy bank’s

apparent debit can be set to 0. This rule is later exploited to establish the rule ThunkVal-Force.

3.2 Piggy Banks: Construction
The definition of the predicate PiggyBank appears in Figure 3. It may be of interest mainly to

readers who are familiar with Iris; other readers may wish to skip this part.

A ghost cell, 𝜋 , appears in the definition. This cell keeps track of the total amount of the

payments that the piggy bank has received. This amount grows in a monotonic manner: it can

never decrease. Two kinds of assertions control this cell. The affine assertion 𝜋 ↦→ • ac represents

the exact knowledge of the current value of the cell and the authority to increase this value.

The persistent assertion 𝜋 ↦→ ◦𝑘 is a witness that the value of the cell is at least 𝑘 . These assertions

satisfy the agreement law 𝜋 ↦→ • ac ∗ 𝜋 ↦→ ◦𝑘 ⊢ ⌜𝑘 ≤ ac⌝, the update law 𝜋 ↦→ • ac ⇛
𝜋 ↦→ • (ac + 𝑘) , and the witness creation law 𝜋 ↦→ • ac ⇛ 𝜋 ↦→ ◦ ac .

The invariant that appears in Figure 3 holds the authoritative view 𝜋 ↦→ • ac , which guarantees

that ac (for “available credit”) is the total amount of payment received so far. Furthermore, this

invariant contains a three-way disjunction: the piggy bank must be in the pending state ⋄𝑖 ∗ 𝑃 nc ∗
$ac, in the transient state EF ∗ ⌜nc ≤ ac⌝, or in the forced state ⋄𝑖 ∗ 𝑄 ∗ ⌜nc ≤ ac⌝.
The exclusive tokens ⋄𝑖 and E↑𝑇 allow maintaining some knowledge, outside of the invariant,

about which of these three states the invariant must be in. More precisely, if (while the invariant

is closed) one holds the token E↑𝑇 then one can deduce that the invariant must be in the pending

state or in the forced state, but cannot be in the transient state, because the conjunction E↑𝑇 ∗ E↑𝑇
implies a contradiction. Dually, if one holds the transient token ⋄𝑖 then one can deduce that the

invariant must be in the transient state. A fresh transient token ⋄𝑖 together with its identifier 𝑖 are

created when a new piggy bank is created.

In the pending state, the invariant contains the assertion 𝑃 nc, where nc stands for “necessary
credit”, as well as ac time credits. In the transient and forced states, where forcing has already

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 50. Publication date: January 2024.

Thunks and Debits in Separation Logic with Time Credits 50:11

1 type 'a state = UNEVALUATED of (unit -> 'a) | EVALUATED of 'a

2 type 'a thunk = 'a state ref

3 let create f = ref (UNEVALUATED f)

4 let force t =

5 match !t with

6 | UNEVALUATED f -> let v = f() in t := EVALUATED v; v (* evaluate and memoize *)

7 | EVALUATED v -> v (* return memoized value *)

Fig. 4. Thunks: OCaml Code

begun, the invariant guarantees nc ≤ ac, which means that the available credit has exceeded the

necessary credit. In the forced state, the invariant contains the assertion 𝑄 .

The last part of Figure 3 is the persistent witness 𝜋 ↦→ ◦ (nc − n) . By opening the invariant and
by exploiting the agreement law, this witness allows obtaining the inequality nc − n ≤ ac. If the
apparent debit n is zero, then one obtains nc ≤ ac: that is, there is enough accumulated credit to

cover the cost of the transition from the pending state to the forced state.

Theorem 3.1. The predicate PiggyBank satisfies the reasoning rules of Figure 2.

4 THUNKS
Our implementation of thunks appears in Figure 4. In the following, we first present the reasoning

rules that we wish to establish about thunks (§4.1). Then, we present the nontrivial construction

that lets us obtain these rules (§4.2).

4.1 Thunks: Interface
The predicateThunk F 𝑡 n 𝑅 𝜙 describes a thunk at location 𝑡 in memory. The mask F plays the

same role as in the previous section (§3): in short, it determines which token EF is required to force

this thunk. The parameter n also plays the same role as in the previous section: it is an apparent

debit associated with this thunk. The parameter 𝑅 is a resource that is required and preserved by the

suspended computation. The presence of this parameter allows us to describe thunks that have side

effects and thunks whose execution requires a certain token. The latter category includes thunks

that force other thunks, something that is commonly needed. The parameter 𝜙 : Val → iProp
determines the postcondition of the thunk: once this thunk is forced and produces a value 𝑣 , the

assertion □ 𝜙 𝑣 can be expected to hold.
3

The full set of reasoning rules for thunks appears in Figures 5, 6, and 7. The rules are split in

three groups for reasons that will be apparent in the next subsection (§4.2).

Thunk-Create (Figure 5) describes the creation of a new thunk via the function call create 𝑓 .

The behavior of 𝑓 is specified by the premise isAction 𝑓 n 𝑅 𝜙 , which denotes the one-shot

triple once {𝑅 ∗ $n} 𝑓 () {𝜆𝑣 . 𝑅 ∗ □ 𝜙 𝑣} . This assertion is a permission to call 𝑓 () at most once.

It indicates that the call 𝑓 () consumes n time credits and must return a value 𝑣 such that □ 𝜙 𝑣

holds. The resource 𝑅 is required, but not consumed, by this call. Under this hypothesis on 𝑓 ,

Thunk-Create states that create 𝑓 costs a constant amount of credits $N and returns a thunk

whose apparent debit, resource requirement, and postcondition are described by n, 𝑅, 𝜙 . The abstract
integer constant N is part of the thunk API; its concrete value is not revealed. The mask F is chosen

3
Instead of requiring the postcondition to be in the syntactic form □𝜙 , we could equivalently allow an arbitrary persistent
postcondition. The postcondition of a thunk must be persistent because a thunk can be forced arbitrarily many times yet

always returns the same value.

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 50. Publication date: January 2024.

50:12 François Pottier, Armaël Guéneau, Jacques-Henri Jourdan, and Glen Mével

Thunk-Create

↑𝑇 ⊆ F
{$N ∗ isAction 𝑓 n 𝑅 𝜙} create 𝑓 {𝜆𝑡 . Thunk F 𝑡 n 𝑅 𝜙}

Thunk-Conseqence

Thunk F 𝑡 n1 𝑅 𝜙 −∗
isUpdate n2 𝑅 𝜙 𝜓 ⇛E
Thunk F 𝑡 (n1 + n2) 𝑅 𝜓

Fig. 5. Thunks: Creation Rule and Consequence Rule

Thunk-Persist

persistent(Thunk F 𝑡 n 𝑅 𝜙)

Thunk-Increase-Debit

n1 ≤ n2

Thunk F 𝑡 n1 𝑅 𝜙 −∗
Thunk F 𝑡 n2 𝑅 𝜙

Thunk-Pay

↑ThunkPayment ⊆ E
Thunk F 𝑡 n 𝑅 𝜙 ∗ $𝑘 ⇛E
Thunk F 𝑡 (n − 𝑘) 𝑅 𝜙

Thunk-Force

{Thunk F 𝑡 0 𝑅 𝜙 ∗ $F ∗ EF ∗ 𝑅} force 𝑡 {𝜆𝑣. ThunkVal 𝑡 𝑣 ∗ □ 𝜙 𝑣 ∗ EF ∗ 𝑅}

Fig. 6. Thunks: Common Reasoning Rules

ThunkVal-Persist

persistent(ThunkVal 𝑡 𝑣)
ThunkVal-Timeless

timeless(ThunkVal 𝑡 𝑣)

ThunkVal-Confront

ThunkVal 𝑡 𝑣1 ∗ ThunkVal 𝑡 𝑣2 ⊢ ⌜𝑣1 = 𝑣2⌝
ThunkVal-Force

{ThunkVal 𝑡 𝑣 ∗ $F } force 𝑡 {𝜆𝑣 ′ . ⌜𝑣 ′ = 𝑣⌝}

Fig. 7. Forced-Thunk Witnesses: Reasoning Rules

by the user. It determines which token EF is required when forcing this thunk. A systematic way

of instantiating this parameter is discussed in the next section (§5).

The rules Thunk-Persist, Thunk-Increase-Debit, and Thunk-Pay (Figure 6) are analogous to

PiggyBank-Persist, PiggyBank-Increase-Debit, and PiggyBank-Pay. They state that thunks

can be shared, that it is permitted to over-approximate an apparent debit, and that an apparent

debit can be reduced by paying. (In Thunk-Pay, one can see that the parameter 𝑁 of piggy banks

has been instantiated with a fixed namespace ThunkPayment.)
Thunk-Force allows forcing a thunk whose apparent debit is zero. This consumes $F , a constant

number of time credits. In other words, the amortized time complexity of this operation is 𝑂 (1),
because the cost of the suspended computation has been paid for in advance. The token EF and the

resource 𝑅 are required and preserved. The token EF is required to force the thunk itself, whereas

the token 𝑅 is required by the suspended computation. These two assertions are separately required:

that is, they cannot be the same token. Indeed, as will be evident in the next subsection (§4.2), the

process of breaking the thunk’s piggy bank begins (therefore, the token EF disappears) before the

suspended computation is executed, and ends after the suspended computation terminates.

Forcing a thunk produces a value 𝑣 such that the persistent assertionsThunkVal 𝑡 𝑣 and □ 𝜙 𝑣

hold. The assertionThunkVal 𝑡 𝑣 is a witness that the value of the thunk 𝑡 has been forever decided

and that it is 𝑣 . The assertion □ 𝜙 𝑣 means that 𝜙 𝑣 holds now and forever and can be exploited as

many times as one wishes.

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 50. Publication date: January 2024.

Thunks and Debits in Separation Logic with Time Credits 50:13

The predicateThunkVal satisfies the reasoning rules in Figure 7. The rule ThunkVal-Persist

reflects the fact that once the association between 𝑡 and 𝑣 has been decided, it remains fixed forever.

The rule ThunkVal-Timeless states that ⊲ThunkVal 𝑡 𝑣 is essentially the same as ThunkVal 𝑡 𝑣 ;
this is of technical interest only. The agreement law ThunkVal-Confront states that if a thunk

has been forced twice in the past then the same value must have been returned twice. Finally,

ThunkVal-Force allows forcing a thunk that has been forced already. This assumption is reflected

by the appearance of the assertion ThunkVal 𝑡 𝑣 in the precondition. There is no requirement that

the thunk’s apparent debit be zero. As in Thunk-Force, forcing consumes $F . The value that is
obtained by forcing this thunk must be 𝑣 , the value that was predicted by the witnessThunkVal 𝑡 𝑣 .
Unlike Thunk-Force, this rule requires neither the token EF nor the resource 𝑅. They are not

necessary because no suspended computation is executed. Also unlike Thunk-Force, and perhaps

surprisingly, this rule does not guarantee □ 𝜙 𝑣 . In the presence of Thunk-Conseqence, this

cannot be guaranteed. In short, the assumptionThunkVal 𝑡 𝑣 guarantees that this physical thunk
has been forced already; but it could be wrapped in a number of (ghost) proxy thunks (§4.2.2) that

have not been forced yet.

The rule Thunk-Conseqence (Figure 5) allows changing the postcondition of a thunk from

□𝜙 to □𝜓 . In the special case where n2 is zero, this rule weakens the postcondition of a thunk,

which is why we name it the consequence rule. In the case where n2 is nonzero, this rule increases
the apparent debit of the thunk from n1 to n1 + n2. In return, the update

4
from □ 𝜙 𝑣 to □ 𝜓 𝑣 is

allowed to consume n2 time credits.

4.2 Thunks: Construction
It is not easy to define the predicates Thunk and ThunkVal in such a way that all of the rules of

Figures 5, 6, and 7 are satisfied. A key contribution of this paper is to propose a definition of

Thunk that validates all of the desired rules. Although it is technically possible to give a monolithic

definition, we prefer to approach the problem in three stages, as follows.

(1) We define a predicate BasicThunk that satisfies all of the desired rules except the consequence

rule. It is analogous to Mével et al.’s isThunk, but instead of relying directly on Iris’s “non-

atomic invariant” construction, it is built on top of our “piggy bank” abstraction. As a result,

BasicThunk validates Thunk-Pay.

(2) We remark that applying the reasoning rule Thunk-Conseqence to an existing thunk 𝑡

seems closely related to constructing a new thunk 𝑡 ′ via the expression create (𝜆(). force 𝑡).
The difference is that the consequence rule is a ghost operation and does not create a new

thunk at runtime. Still, this analogy suggests that applying the consequence rule should allocate
a new piggy bank. Guided by this idea, we propose a construction that supports one application
of the consequence rule. Assuming that we have a predicate Thunk that satisfies the rules of

Figure 6, we construct a new predicate ProxyThunk, which also satisfies these rules, and we

establish a version of the consequence rule that expects a Thunk and produces a ProxyThunk.
(3) We show that this construction can be iterated as many times as desired. By building on top

of BasicThunk and ProxyThunk, we are able to propose a definition of Thunk that satisfies all

of the desired rules, including Thunk-Conseqence.

This three-stage construction is presented in the next three subsections (§4.2.1, §4.2.2, §4.2.3). We

remark that the definition of the predicate ThunkVal is not problematic. We give a definition of

ThunkVal in the first stage (§4.2.1) and keep this definition in the following stages.

4
We write isUpdate n 𝑅 𝜙 𝜓 for the assertion ∀𝑣. (𝑅 ∗ $n ∗ □ 𝜙 𝑣) ⇛⊤ (𝑅 ∗ □ 𝜓 𝑣) . This update is affine; it can be used

only once. It consumes n time credits, requires □ 𝜙 𝑣, and establishes □ 𝜓 𝑣. The resource 𝑅 is required, but not consumed.

The full mask ⊤ allows this update to access all atomic invariants. In particular, Thunk-Pay can be exploited.

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 50. Publication date: January 2024.

50:14 François Pottier, Armaël Guéneau, Jacques-Henri Jourdan, and Glen Mével

BasicThunk F 𝑡 n 𝑅 𝜙 ≜

∃𝛿, 𝑇 . ⌜↑𝑇 ⊆ F ⌝ ∗ 𝑡 ⇝ 𝛿 ∗
PiggyBank

(𝜆nc. ∃𝑓 . 𝛿 ↦→ ? ∗ 𝑡 ↦→ UNEVALUATED 𝑓 ∗ isAction 𝑓 nc 𝑅 𝜙) — pending state

(∃𝑣 . 𝛿 ↦→ 𝑣 ∗ 𝑡 ↦→ EVALUATED 𝑣 ∗ □ 𝜙 𝑣) — forced state

ThunkPayment 𝑇 n
ThunkVal 𝑡 𝑣 ≜
∃𝛿. 𝑡 ⇝ 𝛿 ∗ 𝛿 ↦→ 𝑣

Fig. 8. Basic Thunks and Forced-Thunk Witnesses: Definitions

4.2.1 Basic Thunks. The definition of the predicate BasicThunk appears in Figure 8. Although this

definition may at first sight seem somewhat cryptic, it is actually fairly straightforward. It involves

two main ingredients: a ghost cell 𝛿 and a piggy bank.

The ghost cell 𝛿 records whether the value of this thunk is still undecided or decided. This

ghost cell inhabits the camera Ex(()) + Ag(Val), also known as the “one-shot” camera [Jung et al.

2018, §2.1]. This gives rise to the following assertions and laws. The assertion 𝛿 ↦→ ? means that

the value is not decided yet. This assertion is affine: it represents a unique permission to make

a decision. The assertion 𝛿 ↦→ 𝑣 means that the value has been decided and that this value is 𝑣 .

This assertion is persistent: once a value has been decided, this decision cannot be undone, so the

information that the value is 𝑣 remains valid forever and can be shared. These assertions satisfy

the decision law 𝛿 ↦→ ? ⇛ 𝛿 ↦→ 𝑣 , the agreement law 𝛿 ↦→ 𝑣1 ∗ 𝛿 ↦→ 𝑣2 ⊢ ⌜𝑣1 = 𝑣2⌝, and the

disagreement law 𝛿 ↦→ ? ∗ 𝛿 ↦→ 𝑣 ⊢ False. A meta witness 𝑡 ⇝ 𝛿 records that the ghost cell 𝛿 is

uniquely associated with the thunk 𝑡 . This ensures that all BasicThunk and ThunkVal assertions for
the thunk 𝑡 refer to the same ghost cell 𝛿 .

The concept of a piggy bank has been presented already (§3). There remains to explain how

the parameters 𝑃 and 𝑄 , which represent the pending and forced states of the piggy bank, are

instantiated in Figure 8. In the pending state, the ghost cell 𝛿 is undecided; the physical cell 𝑡

contains the value UNEVALUATED 𝑓 ; and there exists a unique permission to invoke 𝑓 (). The cost
of this invocation, nc, is not known, but the piggy bank is set up so that this cost must be fully paid

for before the piggy bank can be forced. The apparent debit n of the piggy bank is also the apparent

debit of the thunk. In the forced state, the ghost cell 𝛿 has been set to 𝑣 , for some value 𝑣 ; the

physical memory cell 𝑡 contains the value EVALUATED 𝑣 ; and the postcondition □ 𝜙 𝑣 is satisfied.

Theorem 4.1. The predicate BasicThunk satisfies the rule Thunk-Create in Figure 5, whereThunk
is replaced with BasicThunk. Furthermore, it satisfies all of the rules in Figure 6, where the same
replacement is made. Finally, the predicate ThunkVal satisfies the rules in Figure 7.

4.2.2 Proxy Thunks. Alas, basic thunks do not satisfy the consequence rule. The problem can be

traced back to the piggy bank invariants, which fix the postcondition 𝜙 and the number of necessary

credits nc. This forbids installing a new postcondition and a new number of necessary credits.

Fortunately, there is a simple way of working around this problem. The idea is to allocate a new
piggy bank when the consequence rule is applied to an existing thunk 𝑡 . If the existing thunk has

an apparent debit of n1 and if the update from 𝜙 to 𝜓 has a cost of n2, then the number of time

credits that the new piggy bank aims to collect is set to n1 + n2. Thus, the apparent debit of the new
piggy bank is n1 + n2. Once the new piggy bank has reached its aim, breaking it produces n1 + n2

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 50. Publication date: January 2024.

Thunks and Debits in Separation Logic with Time Credits 50:15

ProxyThunk F 𝑡 n 𝑅 𝜓 ≜

∃n1, n2, 𝜙, F1, 𝑇 . ⌜F1 ⊎ ↑𝑇 ⊆ F ⌝ ∗
Thunk F1 𝑡 n1 𝑅 𝜙 ∗
PiggyBank

(𝜆nc. ⌜nc = n1 + n2⌝ ∗ isUpdate n2 𝑅 𝜙 𝜓)
(∃𝑣 .ThunkVal 𝑡 𝑣 ∗ □ 𝜓 𝑣)
ThunkPayment 𝑇 n

Proxy-Create

F1 ⊎ ↑𝑇 ⊆ F
Thunk F1 𝑡 n1 𝑅 𝜙 −∗
isUpdate n2 𝑅 𝜙 𝜓 ⇛E
ProxyThunk F 𝑡 (n1 + n2) 𝑅 𝜓

Fig. 9. Proxy Thunks: Definition and Creation Rule

RecThunk 0 F 𝑡 n 𝑅 𝜙 ≜ BasicThunk F 𝑡 n 𝑅 𝜙

RecThunk (𝑑 + 1) F 𝑡 n 𝑅 𝜙 ≜ ProxyThunk [Thunk := RecThunk 𝑑] F 𝑡 n 𝑅 𝜙

Thunk F 𝑡 n 𝑅 𝜙 ≜ ∃𝑇, 𝑑, F ′ . ⌜∀𝑑 ′ . 𝑑 < 𝑑 ′ ⇒ F ′
↑(𝑇 . 𝑑 ′)⌝ ∗

⌜F ′ ⊆ ↑𝑇 ⊆ F ⌝ ∗
RecThunk 𝑑 F ′ 𝑡 n 𝑅 𝜙

Fig. 10. Thunks: Definition

credits. Out of these, n1 credits are used to force the thunk, producing a value 𝑣 such that □ 𝜙 𝑣

holds. The remaining n2 credits are then used to execute the ghost update and obtain □ 𝜓 𝑣 .

In this subsection, for simplicity, we focus on one application of the consequence rule. We assume

that we have a predicateThunk that satisfies the rules of Figure 6. We refer to this set of rules as the

“common thunk API”. We construct a new predicate ProxyThunk, which also satisfies the common

thunk API. Its definition appears in Figure 9. The “creation rule” for proxy thunks, also shown in

Figure 9, is a consequence rule that expects a Thunk and produces a ProxyThunk. The term “proxy

thunk” is meant to suggest that a proxy thunk is a ghost wrapper around a pre-existing thunk.

The main components in the definition of proxy thunks are the underlying thunk, whose apparent

debit is n1, and the proxy thunk’s piggy bank. The apparent debit n of the piggy bank is the apparent
debit of the proxy thunk. The pending state of this piggy bank contains a one-shot ghost update

from 𝜙 to 𝜓 , whose cost is n2. The equation nc = n1 + n2 records the fact that this piggy bank

aims to collect enough credit to force the underlying thunk and apply this update. The forced state

contains just a forced-thunk witness ThunkVal 𝑡 𝑣 together with the postcondition □ 𝜓 𝑣 .

The side condition F1 ⊎ ↑𝑇 ⊆ F guarantees that out of the token EF , which the user supplies

when forcing the proxy thunk, we can extract the tokens EF1 ∗ E↑𝑇 , which are required in order to

simultaneously break the proxy’s piggy bank and force the underlying thunk.

Theorem 4.2. The predicate ProxyThunk satisfies the rule Proxy-Create in Figure 9. Furthermore,
it satisfies all of the rules in Figure 6, where Thunk is replaced with ProxyThunk.

4.2.3 Thunks. The construction of the previous subsection is heterogeneous and allows applying

the consequence rule once: when applied to a thunk, it produces a proxy thunk. Fortunately, this

construction is generic: it can be applied to an arbitrary predicate Thunk, provided this predicate is

persistent and satisfies the common thunk API in Figure 6. Both BasicThunk and ProxyThunk meet

these requirements. Thus, the construction can be iterated. We do so in Figure 10.

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 50. Publication date: January 2024.

50:16 François Pottier, Armaël Guéneau, Jacques-Henri Jourdan, and Glen Mével

HThunk-Persist

persistent(HThunk ℎ 𝑡 n 𝜙)
HThunk-Create

{$N ∗ isAction 𝑓 n (Eℎ) 𝜙} create 𝑓 {𝜆𝑡 . HThunk ℎ 𝑡 n 𝜙}

HThunk-Inc-Height-Debit

ℎ1 ≤ ℎ2 n1 ≤ n2

HThunk ℎ1 𝑡 n1 𝜙 −∗
HThunk ℎ2 𝑡 n2 𝜙

HThunk-Pay

↑ThunkPayment ⊆ E
HThunk ℎ 𝑡 n 𝜙 ∗ $𝑘 ⇛E
HThunk ℎ 𝑡 (n − 𝑘) 𝜙

HThunk-Conseqence

HThunk ℎ 𝑡 n1 𝜙 −∗
(∀𝑣 . $n2 −∗ □ 𝜙 𝑣 ⇛⊤ □ 𝜓 𝑣) ⇛E
HThunk ℎ 𝑡 (n1 + n2) 𝜓

HThunk-Force

{ HThunk ℎ 𝑡 0 𝜙 ∗
$F ∗ Eℎ

′ ∗ ⌜ℎ < ℎ′⌝ }
force 𝑡

{𝜆𝑣 . □ 𝜙 𝑣 ∗ ThunkVal 𝑡 𝑣 ∗ Eℎ
′ }

Fig. 11. Height-Indexed Thunks: Reasoning Rules

The definition is conceptually straightforward. First, we inductively define a predicate RecThunk 𝑑 ,
which layers 𝑑 proxy thunks on top of a base thunk. Then, we define the predicateThunk via an

existential quantification over 𝑑 : that is, we say that a “thunk” is a basic thunk wrapped in an

arbitrary number of proxy thunks. Two technical formulae involving masks record that (1) we have

an infinite family of pairwise disjoint masks, namely ↑(𝑇 . 𝑑), where 𝑑 is an integer index; and (2)

after 𝑑 levels of proxy thunks have been stacked above a basic thunk, the masks up to level 𝑑 have

been used up, but the masks above level 𝑑 are still available for use.

Theorem 4.3. The predicateThunk satisfies all of the rules in Figures 5 and 6.

A new piggy bank is created at two different times: when a thunk is first created, and when the

consequence rule is applied to an existing thunk. Thus, an arbitrary number of piggy banks can be

simultaneously associated with a single thunk, and can be simultaneously active. Fortunately, in

our proofs, this global view is never needed.

5 HEIGHT-INDEXED THUNKS
The predicate Thunk is quite general but can be a little difficult to use. When a thunk is forced, one

must separately supply the token EF , which allows forcing the thunk itself, and the resource 𝑅,

which allows the suspended computation to have certain effects. When one wishes to construct a

thunk that forces one or more other thunks, the parameter 𝑅 must typically be instantiated with a

token of the form EF
′
where F and F ′

are disjoint. In short, we have set up a token-based discipline

that forbids reentrant thunks. This is good, but this discipline can be heavy and confusing.

In order to address this difficulty once and for all and to save the end user some pain, we set

up a simple system based on natural integer heights ℎ. On top of the predicateThunk, we define
a new predicate HThunk ℎ 𝑡 n 𝜙 where the two parameters F and 𝑅 are replaced with a single

parameter ℎ. Our intent is to allow a thunk at height ℎ to force thunks at lower heights only.

A thunk cannot force a thunk that lies at the same height as itself or higher. A thunk at height ℎ

can construct or return a thunk at an arbitrary height: no constraint relates the parameters ℎ and 𝜙 .

For simplicity, this API removes the ability for a suspended computation to have side effects

other than forcing thunks: that is, the parameter 𝑅 disappears. It could be preserved if desired.

We omit the definition of the predicate HThunk, which is fairly administrative. Its reasoning

rules appear in Figure 11. The affine token Eℎ allows forcing thunks whose height is less than ℎ

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 50. Publication date: January 2024.

Thunks and Debits in Separation Logic with Time Credits 50:17

Stream ℎ 𝑠 [] xs ≜ False
Stream ℎ 𝑠 (d :: ds) xs ≜ HThunk ℎ 𝑠 d (𝜆𝑐.StreamCell ℎ 𝑐 ds xs)
StreamCell ℎ 𝑐 ds [] ≜ ⌜𝑐 = Nil⌝ ∗ ⌜ds = []⌝

StreamCell ℎ 𝑐 ds (x :: xs) ≜ ∃𝑠 . ⌜𝑐 = Cons(x, 𝑠)⌝ ∗ Stream ℎ 𝑠 ds xs

Fig. 12. Streams: Definition

(HThunk-Force). When a thunk is created at height ℎ, the token that is passed to the suspended

computation is Eℎ (HThunk-Create). Thus, the new thunk can force thunks at lower heights only.

A height is not a creation time: indeed, a thunk at height 0 can be created after or created by a thunk

at height 1. Instead, a height represents the length of a dependency chain: a thunk at height 2 is

a thunk that can force a thunk that can force a thunk. Heights can be safely over-approximated: this

is stated by HThunk-Inc-Height-Debit. In a token, ℎ can be instantiated with ∞. The token E∞

can force thunks of arbitrary height. It appears in the API of the banker’s queue (Figure 18).

6 STREAMS
A stream is a list whose elements are computed on demand and memoized. In lazy programming

languages, such as Haskell, this data structure is referred to simply as a “list”. In a strict programming

language, such as OCaml, lists and streams are distinct (albeit closely related) data structures. The

definition of streams as an algebraic data type appears in the first two lines of Figure 1. In short,

a stream 𝑠 is a thunk, which, once forced, produces a cell; and a cell is either the value Nil or a value
of the form Cons(x, 𝑠′), where x is an element and 𝑠′ is again a stream. A stream can be thought of

as a chain of thunks, where each thunk produces the next thunk in the chain.

In the following, we define a predicate Stream ℎ 𝑠 ds xs, which describes a stream (§6.1); we

establish several reasoning rules that this predicate satisfies (§6.2); and we establish specifications

for a few common operations on streams (§6.3). We do not verify a full-fledged stream library; we

verify only the operations needed by the banker’s queue, which are shown in Figure 1.

6.1 The Predicate Stream
In the predicate Stream ℎ 𝑠 ds xs, the parameter ℎ plays the same role as in the predicate HThunk.
It is an integer height ℎ, and it indicates that the token Eℎ is required in order to force every thunk

in the stream. The parameter 𝑠 is the stream itself; it is the location in memory of the thunk that

represents the head of the stream. The parameter xs is the sequence of the elements of the stream.

It predicts the shape of the value produced by each thunk in the stream, where a shape is either Nil
or Cons(x, _). The parameter ds is the sequence of debits associated with each thunk in the stream.

It tells how much remains to be paid in order to force each thunk. It is worth noting that xs and ds
predict the value and apparent cost of each thunk in the stream possibly before this thunk is even

constructed in memory.

The definitions of the predicates Stream and StreamCell appear in Figure 12. They are mutually

inductive. They are straightforward, so we do not paraphrase them. Let us just point out that they

rely on height-indexed thunks: each section in the paper builds on the previous section. Because

a stream of 𝑛 elements involves 𝑛 + 1 thunks, in an assertion Stream ℎ 𝑠 ds xs, one can informally
5

expect |ds | = |xs | + 1. In StreamCell ℎ 𝑐 ds xs, one can informally expect |ds | = |xs |.
5
Technically, Stream ℎ 𝑠 ds xs ⊢ |ds | = |xs | + 1 does not hold. A proof attempt fails, because the postcondition of a thunk

does not hold until this thunk has been forced. One could strengthen the definition of Stream so that this entailment holds,

but we have not felt the need to do so. The weaker entailment Stream ℎ 𝑠 ds xs ⊢ |ds | > 0 does hold and has been sufficient.

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 50. Publication date: January 2024.

50:18 François Pottier, Armaël Guéneau, Jacques-Henri Jourdan, and Glen Mével

Stream-Persist

persistent(Stream ℎ 𝑠 ds xs)

Stream-Increase-Height

ℎ1 ≤ ℎ2

Stream ℎ1 𝑠 ds xs −∗
Stream ℎ2 𝑠 ds xs

Stream-Forward-Debit

↑ThunkPayment ⊆ E
(𝑚) ds1 ≤ ds2 (𝑛)

Stream ℎ 𝑠 ds1 xs ∗ $𝑚 ⇛E
Stream ℎ 𝑠 ds2 xs

Stream-Force

{ Stream ℎ 𝑠 (0 :: ds) xs ∗
$F ′ ∗ Eℎ′ ∗ ⌜ℎ < ℎ′⌝ }
force 𝑠

{𝜆𝑐. StreamCell ℎ 𝑐 ds xs ∗
ThunkVal 𝑠 𝑐 ∗ Eℎ′ }

Stream-Create

{$N ′ ∗ isCellAction ℎ d 𝑒 ds xs}
create (𝜆().𝑒)

{𝜆𝑠. Stream ℎ 𝑠 (d :: ds) xs}

Fig. 13. Streams: Reasoning Rules

Several restrictions are intentionally built into our definition of the predicate Stream. First, by

making the parameters ds and xs finite lists, we restrict our attention to finite streams. Second, by

parameterizing Stream with xs, we restrict our attention to deterministic streams, whose elements

can be predicted ahead of time. Third, by constructing streams on top of height-indexed thunks,

which do not allow a thunk to have side effects (beside forcing other thunks), we restrict our

attention to streams without side effects. Modeling potentially infinite streams, non-deterministic

streams, or effectful streams is left to future work.

To allow possibly infinite streams, one should define Stream using guarded recursion [Jung et al.

2018, §5.6], which is possible because HThunk is contractive—a fact that we have proved. Then, ds
and xs could be possibly infinite lists. We expect this approach to work, but have not investigated it.

6.2 Reasoning Rules for Streams
Our reasoning rules for streams appear in Figure 13. Most of them are reformulations of the

corresponding rules for height-indexed thunks (Figure 11), so we do not explain them again.

Stream-Force requires the head thunk to have zero debits. Stream-Create relies on the auxiliary

predicate isCellAction6 in the same way that Thunk-Create and HThunk-Create rely on isAction.
The most notable rule in Figure 13 is Stream-Forward-Debit. This rule allows managing a

stream’s debit in several ways. It allows paying (that is, consuming a number of time credits) so as

to decrease the cost of a thunk, which can be either the head thunk or a deeper thunk. Furthermore,

it allows moving debits from the right towards the left in the list ds. In other words, it allows

transferring some of the debit of a faraway thunk to a thunk that lies nearer in the future. This is

intuitively sound because this implies that one must pay earlier. Technically, the proof of soundness

of Stream-Forward-Debit relies on the consequence rule HThunk-Conseqence.

Stream-Forward-Debit involves the debit subsumption judgement (𝑚) ds1 ≤ ds2 (𝑛), whose
intuitive meaning is as follows: provided one pays𝑚 time credits now, it is safe to transform the

sequence ds1 into the sequence ds2, and this results in 𝑛 leftover time credits in the future, after the
thunks described by the lists ds1 and ds2 have been forced.

6
We write isCellAction ℎ d 𝑒 ds xs for once {Eℎ ∗ $d } 𝑒 {𝜆𝑐. StreamCell ℎ 𝑐 ds xs ∗ Eℎ } . This assertion is a permission to

execute the expression 𝑒 at most once. It indicates that 𝑒 may consume d time credits and must return a stream cell 𝑐 such

that StreamCell ℎ 𝑐 ds xs holds. The resource Eℎ may be used and must be preserved.

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 50. Publication date: January 2024.

Thunks and Debits in Separation Logic with Time Credits 50:19

Sub-Nil

𝑛 ≤ 𝑚

(𝑚) [] ≤ [] (𝑛)

Sub-Cons

d1 ≤ 𝑚 + d2 (𝑚 + d2 − d1) ds1 ≤ ds2 (𝑛)
(𝑚) d1 :: ds1 ≤ d2 :: ds2 (𝑛)

Fig. 14. Subsumption over Sequences of Debits: Definition

Sub-Variance

(𝑚) ds1 ≤ ds2 (𝑛)
𝑚 ≤ 𝑚′ 𝑛′ ≤ 𝑛

(𝑚′) ds1 ≤ ds2 (𝑛′)

Sub-Refl

(𝑚) ds ≤ ds (𝑚)

Sub-Trans

(𝑚1) ds1 ≤ ds2 (𝑛1)
(𝑚2) ds2 ≤ ds3 (𝑛2)

(𝑚1 +𝑚2) ds1 ≤ ds3 (𝑛1 + 𝑛2)

Sub-Append

(𝑚) ds1 ≤ ds2 (𝑛)
(𝑛) ds′

1
≤ ds′

2
(𝑘)

(𝑚) ds1 ++ ds′
1
≤ ds2 ++ ds′

2
(𝑘)

Sub-Add-Slack

(𝑚) ds1 ≤ ds2 (𝑛)
(𝑚 + 𝑘) ds1 ≤ ds2 (𝑛 + 𝑘)

Sub-Repeat

d1 ≤ d2
(0) d𝑛

1
≤ d𝑛

2
(𝑛 × (d2 − d1))

Fig. 15. Subsumption over Sequences of Debits: Properties

The presence of the parameter𝑛 in this judgement may seem surprising, especially since the𝑛 left-

over credits are unused (wasted) by Stream-Forward-Debit. Still, this parameter is useful because

it enables compositional proofs of subsumption; this is most visible in Sub-Append (Figure 15).

An inductive definition of the subsumption judgement appears in Figure 14. In Sub-Cons, it

may be the case that d1 is greater than d2. In this case, the premise d1 ≤ 𝑚 + d2 allows part of
the𝑚 time credits at hand to be spent on the first thunk, decreasing its apparent cost from d1 to d2.
It may also be the case that d1 is less than or equal to d2. In that case, the apparent cost of the

first thunk is increased, causing more than𝑚 time credits to become available for spending on the

thunks that follow. In either case, the number of credits that can be spent on the tail of the stream

is (𝑚 + d2) − d1, which is why this number appears in the second premise of Sub-Cons.

An alternative characterization of the subsumption judgement, which helps see why Stream-

Forward-Debit is sound, is the following. Intuitively, for this rule to be sound, it must be the case

that, by applying this rule, one promises to pay no less and to pay no later. Thus, for every index 𝑖 ,

it must be the case that forcing the first 𝑖 thunks in the stream appears no less expensive after the

rule is applied than it did before the rule was applied. The subsumption judgement indeed satisfies

a property of this kind: it is expressed by the following lemma.

Lemma 6.1 (Subsumption of Seqences of Debits, expressed in terms of Partial Sums).

Suppose the lists ds1 and ds2 have the same length. Then the judgement ∃𝑛. (𝑚) ds1 ≤ ds2 (𝑛) is
equivalent to ∀𝑖 . ∑(take 𝑖 ds1) ≤ 𝑚 + ∑(take 𝑖 ds2).

The subsumption judgement enjoys a number of reasoning rules, which are presented in Figure 15.

The judgement (𝑚) ds1 ≤ ds2 (𝑛) is covariant in𝑚 and contravariant and 𝑛 (Sub-Variance). It is

reflexive (Sub-Refl), transitive (Sub-Trans), and compatible with list concatenation (Sub-Append).

Extra credit at the left end translates to extra credit at the right end (Sub-Add-Slack). Finally,

increasing the apparent cost of the first 𝑛 thunks from d1 to d2 results in 𝑛 × (d2 − d1) extra credit
at the right end (Sub-Repeat). As a more readable special case, an increase of 1 in the debit of the

first 𝑛 thunks justifies a decrease of 𝑛 in the debit of the thunk that follows. In other words, an

expensive thunk can be made to appear cheap provided it lies far enough away in the future. This

reasoning rule plays a key role in Okasaki’s amortized analysis of the banker’s queue (§7).

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 50. Publication date: January 2024.

50:20 François Pottier, Armaël Guéneau, Jacques-Henri Jourdan, and Glen Mével

Stream-Revl

{List 𝑙 xs ∗ $R′ ∗ ⌜𝑛 = |xs |⌝}
revl 𝑙

{𝜆𝑠. Stream ℎ 𝑠 (R𝑛 :: 0
𝑛) (rev xs)}

Stream-Append

{ Stream ℎ 𝑠1 ds1 xs1 ∗
Stream ℎ 𝑠2 ds2 xs2 ∗ $P }
append 𝑠1 𝑠2

{𝜆𝑠. Stream (ℎ + 1) 𝑠 (ds1 ⊲⊳ ds2) (xs1 ++ xs2)}

Fig. 16. Streams: Specifications of revl and append

6.3 Operations on Streams
There remains to present the specifications of the operations on streams whose code appears in

Figure 1. For the sake of brevity, we omit the specifications of the tiny functions nil and uncons: they
are similar to Stream-Create and Stream-Force. We also omit the specification of revl_append.
We present the specifications of the last two functions, revl and append, in Figure 16.

Stream-Revl states that revl transforms an immutable list 𝑙 whose elements form the sequence xs
into a stream 𝑠 whose elements form the sequence rev xs. (The pure assertion List 𝑙 xs indicates
that the value 𝑙 is an immutable list whose elements form the sequence xs.) If the sequence xs
has length 𝑛, then this stream involves 𝑛 + 1 thunks. The postcondition in Stream-Revl indicates

that the first thunk is expensive, while the remaining 𝑛 thunks are cheap: the first thunk carries

debit R𝑛 (where R is a constant), while every other thunk carries debit zero. The first thunk is

expensive because, when it is forced, revl_append 𝑙 Nil is invoked (line 23 in Figure 1). This

function call requires linear time because it eagerly traverses the list 𝑙 and immediately constructs

the remaining 𝑛 thunks. These thunks are cheap because they immediately return a pre-existing

value. The function call revl 𝑙 itself has constant time complexity: Stream-Revl requires a constant

amount R′ of time credits.

Stream-Append states that append 𝑠1 𝑠2 has constant complexity: it consumes P time credits. If

the streams 𝑠1 and 𝑠2 represent the sequences of elements xs1 and xs2 then the stream returned by

append represents the sequence xs1 ++ xs2. More crucially, if the sequences of debits associated

with 𝑠1 and 𝑠2 are ds1 and ds2, then the sequence of debits associated with this stream is ds1 ⊲⊳ ds2.
The debit join operation ⊲⊳ is defined as follows, where A and B are integer constants:

(ds1 ++ [d1]) ⊲⊳ (d2 :: ds2) ≜ map (A + _) ds1 ++ (A + d1 + B + d2) :: ds2

If ds1 has length 𝑛1+1 and ds2 has length 1+𝑛2 then ds1 ⊲⊳ds2 has length 𝑛1+1+𝑛2. The computation

of ds1 ⊲⊳ ds2 can be informally described as follows: first, add A to every element of ds1; then, meld

the two sequences, by fusing (adding) the last element of the first sequence with the first element

of the second sequence; finally, add B to this fused element. This specification reflects the fact that

(1) the overall cost of a stream concatenation operation is A(𝑛1 + 1) + B, where 𝑛1 is the number of

elements of the first stream; and (2) the cost of concatenation is distributed across the first 𝑛1 + 1

thunks of the result stream: each of the first 𝑛1 thunks bears a cost of A; the next thunk bears a

cost of A + B; and the remaining 𝑛2 thunks bear no cost.

Stream-Append states that if the streams 𝑠1 and 𝑠2 have height ℎ then the stream returned by

append has height ℎ + 1. This reflects the fact that a thunk in this new stream can depend on (force)

a thunk in the stream 𝑠1 or in the stream 𝑠2. Such precise height information is necessary during

the inductive proof of append, and can be necessary also in some usage scenarios of append. In the

banker’s queue (§7), it is not needed: there, we work with streams of unknown height.

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 50. Publication date: January 2024.

Thunks and Debits in Separation Logic with Time Credits 50:21

1 type 'a queue =

2 { lenf: int; f: 'a stream; lenr: int; r: 'a list }

3

4 let empty () =

5 { lenf = 0; f = nil(); lenr = 0; r = [] }

6

7 let check ({ lenf = lenf ; f = f; lenr = lenr; r = r } as q) =

8 if lenf >= lenr then q

9 else { lenf = lenf + lenr; f = append f (revl r); lenr = 0; r = [] }

10

11 let snoc q x =

12 check { q with lenr = q.lenr + 1; r = x :: q.r }

13

14 let extract q =

15 let x, f = uncons q.f in

16 x, check { q with f = f; lenf = q.lenf - 1 }

Fig. 17. The Banker’s Queue: OCaml Code

7 THE BANKER’S QUEUE
The banker’s queue [Okasaki 1999, §6.3.2] is a persistent FIFO queue whose main operations, snoc
and extract, have constant amortized time complexity. In the following, we present a specification

for the banker’s queue, explain how the banker’s queue is implemented, and verify that the code

satisfies the specification. Because the implementation involves a stream,
7
we rely on the stream

library presented in the previous section (§6).

It is worth pointing out that we do not simply replicate Okasaki’s analysis of the queue. Instead,

we propose a simpler analysis, which is made possible by the powerful reasoning rule Stream-

Forward-Debit. Instead of workingwith iterated sums of debits, as Okasaki does, we use a sequence

of elementary proof steps that rely on the properties of debit subsumption (Figures 14 and 15).

Interface and Specification of the Banker’s Queue. Three functions make up the main entry points

of the library: empty creates a new empty queue; snoc inserts an element at the rear end of a queue;

extract extracts an element at the front end of a queue.

Every operation has constant amortized time complexity. This implies that every sequence of

operations on queues has linear cost in the number of operations. This is true even if queues are

used in a non-linear manner, that is, even if operations are applied not only to the newest version

of a queue, but also to old versions.

Our formal specification of the banker’s queue appears in Figure 18. The assertion BQueue q xs
means that q is a queue whose elements form the sequence xs. This assertion is persistent. This

means that queues can be shared and that the queue operations are not destructive: one may apply

an operation to an old queue. The rules Banker-Empty, Banker-Snoc and Banker-Extract

provide specifications for empty, snoc, and extract. Each of them requires a constant amount of

time credits in its precondition (E, S and X respectively). The specification of extract requires and
preserves the token E∞, which allows forcing thunks of arbitrary height (§5). Requiring this token is

7
In Okasaki’s code, for uniformity, two streams are used. However, only the front stream actually must be a stream: as

noted by Okasaki [1999] in a footnote on page 64, the rear stream can be a list. We use a rear list and verify that Okasaki’s

footnote is correct. We believe that there would be no difficulty in verifying Okasaki’s version, where a rear stream is used.

Every suspension in the rear stream would be fully paid for upon construction and would therefore have debit zero.

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 50. Publication date: January 2024.

50:22 François Pottier, Armaël Guéneau, Jacques-Henri Jourdan, and Glen Mével

Banker-Persistent

persistent(BQueue q xs)
Banker-Empty

{$E} empty () {𝜆q. BQueue q []}

Banker-Snoc

{$S ∗ BQueue q xs} snoc q x {𝜆q′ . BQueue q′ (xs ++ [x])}

Banker-Extract

{$X ∗ BQueue q (x :: xs) ∗ E∞} extract q {𝜆(x′, q′). ⌜x′ = x⌝ ∗ BQueue q′ xs ∗ E∞}

Fig. 18. Banker’s Queue: Public Interface

bqueueDebits nf nr ≜ Knf −nr ++ 0
min(nf ,nr)+1

BQueueRaw q fs rs ≜ ∃𝑠, ℎ, 𝑙 .
{
⌜q = (|fs |, 𝑠, |rs |, 𝑙)⌝ ∗
Stream ℎ 𝑠 (bqueueDebits |fs | |rs |) fs ∗ List 𝑙 rs

BQueue q xs ≜ ∃fs, rs. BQueueRaw q fs rs ∗ ⌜xs = fs ++ rev rs ∧ |rs | ≤ |fs |⌝

Fig. 19. Banker’s Queue: Definitions

rs

fs
K K· · · 0 0· · ·

Fig. 20. A balanced banker’s queue. The front
stream is annotated with debits. The arrow
indicates the logical order of elements.

Banker-Check

{$H ∗ BQueueRaw q fs rs ∗ ⌜ |rs | ≤ |fs | + 1⌝}
check q

{𝜆q′ . BQueue q′ (fs ++ rev rs)}
Fig. 21. Banker’s Queue: Specification of check

necessary because HeapLang has shared-memory concurrency and our implementation of thunks

is (by design) not thread-safe. The token discipline prevents two threads from racing on a thunk.

Implementation of the Banker’s Queue. The implementation appears in Figure 17. A queue is a

record of four fields: a “front” stream of elements f, a “rear” list of elements r, and their respective

lengths, lenf and lenr. Elements are inserted into the queue by prepending to the rear list, and are

extracted from the queue by extracting from the front stream. As a result, the elements of the rear

list are stored in logically reverse order: if the elements of the front stream form the sequence fs
and if the elements of the rear list form the sequence rs, then the sequence of elements contained

in the queue is fs ++ rev rs. The inequality |rs | ≤ |fs | is maintained: the rear list never contains

more elements than the front stream.

When the length of the rear list exceeds the length of the front stream, the queue must be

rebalanced. This is done by the auxiliary function check. Rebalancing involves reversing the rear
list, converting it into a stream, and appending this stream at the end of the front stream. The

reversal and conversion into a stream are performed by revl. According to Stream-Revl (Figure 16),
an invocation of revl has constant time complexity, but returns a stream whose first thunk has linear

cost. Thus, rebalancing itself is cheap, but constructs an expensive thunk, which (after rebalancing)

appears in the middle of the front stream. Okasaki’s insight is that the cost of this expensive thunk

can be distributed onto the linear number of thunks that appear in front of it. This translates to a

constant amount of extra debit per thunk, which is acceptable.

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 50. Publication date: January 2024.

Thunks and Debits in Separation Logic with Time Credits 50:23

rs
fs

K KK· · · 0 0· · ·

rs
fs

K K K· · · 0 0· · ·

Fig. 22. Left: after snoc has inserted an element in the rear list. Right: before extract removes an element of
the front stream. Highlighted in red: the thunk whose debit must be paid off.

fs
rs

0 0· · · (𝐴) The queue is unbalanced.

|fs | = 𝑛 ∧ |rs | = 𝑛 + 1

rs
fs

A A· · ·
K +
R𝑛 0 0· · · (𝐵) Reverse and append the rear list

to the front stream.

rs
fs

A +
R

A +
R· · · K

0 0· · · (𝐶) Redistribute debits by adding R
to the first 𝑛 debits.

Fig. 23. Rebalancing. In red: the costly thunk whose debit must be distributed among the front thunks.

The Predicate BQueue. Figure 19 presents the definition of BQueue q xs. It is constructed by

combining the assertions xs = fs ++ rev rs and |rs | ≤ |fs |, which we have explained already, with

a lower-level assertion, BQueueRaw q fs rs. This assertion states that q is a 4-tuple, requires the two
length fields to contain the integer values |fs | and |rs |, and uses the predicates Stream and List to
describe the front stream and rear list. The most noteworthy aspect is that the debit sequence of the

front stream is fully determined: it is bqueueDebits |fs | |rs |. The definition of bqueueDebits states
that the first nf − nr thunks in the front stream carry debit K , where K ≜ A + B + R, whereas the
remaining thunks carry debit zero. This is illustrated in Figure 20. In our illustrations (Figures 20,

22, and 23), the debit associated with the very last thunk of the front stream, which is always 0, is

never shown.

Specification of check. The specification of the function check, which rebalances a queue, appears

in Figure 21. It states that check accepts an imbalanced queue and returns a balanced queue. Because

check is called by every operation, check can expect that the length of the rear list exceeds the

length of the front stream by at most one.

Verifying snoc and extract. snoc causes the rear list to grow by one element. To preserve the

debit invariant (Figure 20), one must pay for the last thunk in the front stream whose debit is

nonzero. This is illustrated in Figure 22 (left). This is done by applying Stream-Forward-Debit.

This requires proving the subsumption judgement (K) K𝑛 ++ K :: 0
𝑚 ≤ K𝑛 ++ 0 :: 0

𝑚 (0), which
follows from Sub-Append, Sub-Cons, and Sub-Refl.

The function extract forces and discards the first thunk of the front stream, as pictured in Figure 22

(right). Thus, it is necessary to first pay for this thunk. This can be done by applying Stream-

Forward-Debit and proving the subsumption judgement (K) K :: K𝑛 ++ 0
𝑚 ≤ 0 :: K𝑛 ++ 0

𝑚 (0),
which follows from Sub-Cons and Sub-Refl. This is a trivial instance of Stream-Forward-Debit,

that is, an ordinary payment as opposed to a deep payment.

Verifying check. Because check empties the rear list, it is clear that it restores the invariant

|rs | ≤ |fs |. How check restores the debit invariant is more subtle. Let us consider an unbalanced

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 50. Publication date: January 2024.

50:24 François Pottier, Armaël Guéneau, Jacques-Henri Jourdan, and Glen Mével

queue whose front and rear sequences of elements are fs and rs. Let us write 𝑛 for |fs |, so that we

have |rs | = 𝑛 + 1. According to the debit invariant, every thunk in the front stream has debit zero.

This situation is represented in step (A) of Figure 23. The proof proceeds as follows:

(1) According to Stream-Revl and Stream-Append, reversing the rear list and appending the

result to the front stream produces a stream whose debits are 0
𝑛+1 ⊲⊳R(𝑛+1) :: 0𝑛+1. This debit

sequence has length 2𝑛+2: this is consistent with the fact that the new front stream has 2𝑛+1
elements. By definition of the debit join operator ⊲⊳, this is: A𝑛 ++ (A + B + R(𝑛 + 1)) :: 0𝑛+1.
Because K is A + B + R, this sequence of debits is also A𝑛 ++(K + R𝑛) :: 0𝑛+1. It is depicted in

step (B) of Figure 23.

(2) Then, the key step of the proof is to distribute the expensive debit K + R𝑛 onto earlier debits.

We increase each of the first 𝑛 debits by R, so as to be allowed to reduce the expensive debit

from K + R𝑛 down to K . The result is illustrated in step (C) of Figure 23. This redistribution

of debit is permitted by Stream-Forward-Debit provided we establish the subsumption

judgement (0) A𝑛 ++ (K + R𝑛) :: 0𝑛+1 ≤ (A + R)𝑛 ++ K :: 0
𝑛+1 (0). This judgement follows

from Sub-Append, Sub-Repeat, Sub-Cons, and Sub-Refl.

(3) Because A+R ≤ K holds, we can now over-approximate every debit by K , except the last one,
which must remain zero. We exploit the subsumption judgement (0) (A + R)𝑛 ++ K :: 0

𝑛+1 ≤
K2𝑛+1 ++ [0] (0). The debit sequence K2𝑛+1 ++[0] is equal to bqueueDebits (2𝑛 + 1) 0, which
is the expected sequence of debits for a balanced queue whose front stream has length 2𝑛 + 1

and whose rear list is empty.

8 THE PHYSICIST’S QUEUE; IMPLICIT QUEUES
We verify two additional persistent data structures found in Okasaki’s book. Both exploit thunks to

achieve amortized constant time complexity.

The physicist’s queue [Okasaki 1999, §6.4.2] is similar to the banker’s queue insofar as it involves

front and rear lists of elements and rebalances them when necessary. However, a physicist’s queue

involves a single thunk, which lies at the root of the data structure, whereas the banker’s queue

involves nested thunks (a stream). For this reason, the analysis of the physicist’s queue is easier: in

particular, the rule Thunk-Conseqence is not needed. Okasaki analyzes the physicist’s queue

using the physicist’s method, which associates a “potential function” with the data structure. We

use the banker’s method, which associates a debit with each thunk. Because this data structure

involves only one thunk, the two methods essentially coincide in this case. The physicist’s queue

does involve a thunk that forces another thunk. Our height-indexed thunks (§5) allow this.

Implicit queues [Okasaki 1999, §11.1] are a more complex data structure. They rely on thunks

directly, and do not use streams. Their implementation involves recursive slowdown: the queue

is structured in layers, where each layer stores twice as many elements as the previous layer.

When one layer is at hand, accessing the next layer requires forcing a thunk. Therefore, an implicit

queue has the same general structure as a stream: it involves a sequence of nested thunks. Our

implementation and our debit invariant closely follow Okasaki’s. They match Danielsson’s as

well [Danielsson 2008, §8.1], although Danielsson chooses a slightly different way of defining the

data structure. To carry out the complexity analysis, we make full use of the height-indexed thunk

API (§5). Here, the use of Thunk-Conseqence is crucial.

9 RELATEDWORK
Okasaki [1999] invents the debit-based approach to the amortized time complexity analysis of lazy,

purely functional data structures. He describes this approach in a clear but informal way. Danielsson

[2008] uses Agda to define a formal complexity analysis, to prove its soundness, and to verify some

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 50. Publication date: January 2024.

Thunks and Debits in Separation Logic with Time Credits 50:25

of Okasaki’s data structures, including the banker’s queue and implicit queues. Deep payment is

used in the verification of the banker’s queue, but is not supported in the proof of soundness of

the analysis. Like Okasaki’s informal discipline, Danielsson’s system is purely based on debits and

does not include a subsystem that aims to forbid reentrancy, such as our “height” discipline (§5). It

could be that he does not need such a subsystem because his type system guarantees termination.

However, in the presence of the fixed point combinator fix, it is not clear whether this is true.
Danielsson does not prove that every well-typed program terminates. He establishes a weak time

complexity guarantee: if a program has type 𝜏 and if this program reaches a weak head normal
form in 𝑛 steps then 𝑛 ≤ time(𝜏) holds. Thus, the possibility that the program diverges remains

open. Atkey [2011] suggests extending separation logic with time credits and using it to carry out

amortized time complexity analyses. Pilkiewicz and Pottier [2011] independently introduce the

concept of time credit in an affine type system and suggest that time credits, in combination with

monotonic ghost state and a form of invariant, can be used to reconstruct Okasaki’s debit-based

analysis of thunks. Their work is however informal.

Mével et al. [2019] carry out a similar programme in the formal setting of Iris
$
, which they

construct on top of Iris. They do not verify any of Okasaki’s algorithms. In fact, their reasoning

rules exhibit three main shortcomings, which limit their expressive power.

First, their specification of force [Mével et al. 2019, Figure 6] requires and returns an affine token E
that is not transmitted to the suspended computation: this prevents a thunk from forcing a thunk.

They acknowledge this restriction and note that they have implemented “a more flexible discipline”

based on more fine-grained tokens, but do not describe it. We develop such a discipline. In our

low-level thunk API, the rule Thunk-Force requires and returns an affine token EF and transmits

a resource 𝑅 to the suspended computation. Instantiating 𝑅 with suitable tokens allows a thunk

to force other thunks. Our high-level thunk API, which is novel, takes advantage of this. There,

thunks and tokens are indexed with heights, and the token Eℎ allows forcing thunks whose height

is less than ℎ: this is visible in the rule HThunk-Force.

Second, Mével et al.’s construction of the predicate isThunk [Mével et al. 2019, §7.4] does not

validate deep payment, which allows shifting debits from the far future to the near future. A 2-debit

thunk whose result is a 1-debit thunk can be viewed, via a deep payment, as a 3-debit thunk whose

result is a 0-debit thunk. Deep payment changes both the debit 𝑛 and the postcondition 𝜙 of a

thunk: in the previous example, a thunk whose debit is 2 and whose promise (postcondition) is to

return a 1-debit thunk becomes a thunk whose debit is 3 and whose promise is to return a 0-debit

thunk. Yet, in Mével et al.’s construction, the parameters 𝑛 and 𝜙 appear inside an Iris non-atomic

invariant. This forbids any change in 𝑛 or 𝜙 and precludes deep payment. Coming up with an

alternative construction that removes this restriction is not easy: one must keep in mind that, so

that sharing thunks is permitted, the predicate Thunk must be persistent. We justify deep payment,

which we obtain as a combination of the rules Thunk-Conseqence and Thunk-Pay. Our key

insight is to separate thunks, a data structure that exists at runtime, and piggy banks, a ghost data
structure. In our construction, an application of the rule Thunk-Conseqence creates a new piggy

bank for an existing thunk, so, in the end, many piggy banks can be associated with a single thunk.

This may seem mind-boggling; fortunately, by virtue of working in Separation Logic, we reason in

a local manner, and never need to think about more than one piggy bank at a time.

Third, in Mével et al.’s construction, both force and pay require an affine token. This forbids

not only a thunk that forces another thunk, but also a thunk that performs a payment on another

thunk. This is inconvenient, potentially problematic, and seems intuitively unnecessary, because

payment is a ghost operation. Our rule Thunk-Pay does not require any token.

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 50. Publication date: January 2024.

50:26 François Pottier, Armaël Guéneau, Jacques-Henri Jourdan, and Glen Mével

Inspired by Danielsson’s work, McCarthy et al. [2016] define in Coq a monad that keeps track of

costs. They place emphasis on obtaining clean OCaml code via Coq’s extraction facility. They use

the pure, call-by-value fragment of OCaml; no thunks are involved. Also inspired by Danielsson,

Handley et al. [2020] develop a semi-automated system, based on Liquid Haskell, to verify the

time complexity of Haskell programs. A pay combinator is supported; deep payment is not. The

soundness of the system is stated but not formally verified. Madhavan et al. [2017] present a system

that infers and verifies resource bounds for higher-order functional programs that involve thunks

or memoization tables. Nipkow and Brinkop [2019] verify the amortized complexity of several

functional data structures in Isabelle/HOL. These data structures do not involve thunks, and the

analysis is credit-based, not debit-based. Hackett and Hutton [2019] propose both an operational

semantics and a denotational cost semantics for lazy (call-by-need) programs, based on the idea of

clairvoyant evaluation, where the mutable state inherent in thunks is replaced with nondeterminism.

Inspired by this idea, Li et al. [2021] define the clairvoyance monad, a model of laziness that is

shallowly embedded inside Coq, and develop two program logics of over- and under-approximation

to reason about the cost of lazy programs. They do not reason in terms of debits.

10 CONCLUSION
We have proposed a set of debit-based reasoning rules for thunks and proved their soundness in a

foundational, machine-checked setting, namely separation logic with time credits. We have checked

that our rules suffice to verify three of Okasaki’s data structures, namely the banker’s queue, the

physicist’s queue, and implicit queues. We believe that our rules capture all of Okasaki’s informal

reasoning principles and that they should suffice to verify the rest of Okasaki’s book. However,

this can be ascertained only by actually performing this work!

We view this result as an enlightening and useful bridge between the worlds of purely functional

programming and imperative programming.

From a technical point of view, ghost piggy banks are an original concept. Our modular con-

struction of thunks on top of piggy banks, in several steps, is also original. A monolithic definition

could be given, but we believe that it would be much more difficult to understand.

Our proofs are available online [Pottier et al. 2023]. One area where engineering work is needed

is in the quality of the implementation of Iris
$
[Mével et al. 2019]. The fact that Iris

$
is implemented

on top of Iris via a program transformation, the tick translation, should be an implementation detail;

yet it is currently apparent. We find that this creates unnecessary difficulty for the end user.

ACKNOWLEDGMENT
We thank the anonymous reviewers for their remarks and suggestions. In particular, a suggestion by

one of the reviewers led to a simplified definition of piggy banks, which involves a single invariant

(Figure 3). Our earlier definition used two distinct invariants and was slightly more complex.

DATA AVAILABILITY STATEMENT
Our mechanized proofs are available in our repository [Pottier et al. 2023] and as an artifact at

https://zenodo.org/doi/10.5281/zenodo.8425002.

REFERENCES
Robert Atkey. 2011. Amortised Resource Analysis with Separation Logic. Logical Methods in Computer Science 7, 2:17 (2011).
Arthur Charguéraud and François Pottier. 2017. Verifying the Correctness and Amortized Complexity of a Union-Find

Implementation in Separation Logic with Time Credits. Journal of Automated Reasoning (Sept. 2017).

Nils Anders Danielsson. 2008. Lightweight Semiformal Time Complexity Analysis for Purely Functional Data Structures. In

Principles of Programming Languages (POPL).

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 50. Publication date: January 2024.

https://zenodo.org/doi/10.5281/zenodo.8425002
http://bentnib.org/amortised-sep-logic-journal.pdf
http://cambium.inria.fr/~fpottier/publis/chargueraud-pottier-uf-sltc.pdf
http://cambium.inria.fr/~fpottier/publis/chargueraud-pottier-uf-sltc.pdf
http://www.cse.chalmers.se/~nad/publications/danielsson-popl2008.pdf

Thunks and Debits in Separation Logic with Time Credits 50:27

James R. Driscoll, Neil Sarnak, Daniel Dominic Sleator, and Robert Endre Tarjan. 1989. Making Data Structures Persistent. J.
Comput. System Sci. 38, 1 (1989), 86–124.

Jennifer Hackett and GrahamHutton. 2019. Call-by-need is clairvoyant call-by-value. Proceedings of the ACM on Programming
Languages 3, ICFP (2019), 114:1–114:23.

Martin A. T. Handley, Niki Vazou, and Graham Hutton. 2020. Liquidate your assets: reasoning about resource usage in

Liquid Haskell. Proceedings of the ACM on Programming Languages 4, POPL (2020), 24:1–24:27.

Maximilian P. L. Haslbeck and Peter Lammich. 2021. For a Few Dollars More - Verified Fine-Grained Algorithm Analysis

Down to LLVM. In European Symposium on Programming (ESOP) (Lecture Notes in Computer Science, Vol. 12648). Springer,
292–319.

Maximilian P. L. Haslbeck and Tobias Nipkow. 2018. Hoare Logics for Time Bounds: A Study in Meta Theory. In Tools and
Algorithms for Construction and Analysis of Systems (TACAS) (Lecture Notes in Computer Science, Vol. 10805). Springer,
155–171.

Jan Hoffmann, Michael Marmar, and Zhong Shao. 2013. Quantitative Reasoning for Proving Lock-Freedom. In Logic in
Computer Science (LICS). 124–133.

John Hughes. 1989. Why Functional Programming Matters. Computer Journal 32, 2 (1989), 98–107.
Ralf Jung, Robbert Krebbers, Jacques-Henri Jourdan, Aleš Bizjak, Lars Birkedal, and Derek Dreyer. 2018. Iris from the ground

up: A modular foundation for higher-order concurrent separation logic. Journal of Functional Programming 28 (2018),

e20.

Yao Li, Li-yao Xia, and Stephanie Weirich. 2021. Reasoning about the garden of forking paths. Proceedings of the ACM on
Programming Languages 5, ICFP (2021), 1–28.

Ravichandhran Madhavan, Sumith Kulal, and Viktor Kuncak. 2017. Contract-based resource verification for higher-order

functions with memoization. In Principles of Programming Languages (POPL). 330–343.
Simon Marlow, Simon L. Peyton Jones, and Satnam Singh. 2009. Runtime support for multicore Haskell. In International

Conference on Functional Programming (ICFP). 65–78.
Jay A. McCarthy, Burke Fetscher, Max S. New, Daniel Feltey, and Robert Bruce Findler. 2016. A Coq Library for Internal

Verification of Running-Times. In Functional and Logic Programming (Lecture Notes in Computer Science, Vol. 9613).
Springer, 144–162.

Glen Mével, Jacques-Henri Jourdan, and François Pottier. 2019. Time credits and time receipts in Iris. In European Symposium
on Programming (ESOP) (Lecture Notes in Computer Science, Vol. 11423). Springer, 1–27.

Tobias Nipkow and Hauke Brinkop. 2019. Amortized Complexity Verified. Journal of Automated Reasoning 62, 3 (2019),

367–391.

Chris Okasaki. 1999. Purely Functional Data Structures. Cambridge University Press.

Alexandre Pilkiewicz and François Pottier. 2011. The essence of monotonic state. In Types in Language Design and
Implementation (TLDI).

François Pottier, Armaël Guéneau, Jacques-Henri Jourdan, and Glen Mével. 2023. Thunks and Debits in Separation Logic

with Time Credits: Coq Formalization. https://gitlab.inria.fr/cambium/iris-time-proofs.

Robert Endre Tarjan. 1985. Amortized Computational Complexity. SIAM J. Algebraic Discrete Methods 6, 2 (1985), 306–318.
Bohua Zhan and Maximilian P. L. Haslbeck. 2018. Verifying Asymptotic Time Complexity of Imperative Programs in Isabelle.

In International Joint Conference on Automated Reasoning.

Received 2023-07-11; accepted 2023-11-07

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 50. Publication date: January 2024.

https://doi.org/10.1016/0022-0000(89)90034-2
https://doi.org/10.1145/3341718
https://doi.org/10.1145/3371092
https://doi.org/10.1145/3371092
https://www21.in.tum.de/~haslbema/documents/Haslbeck_Lammich_LLVM_with_Time.pdf
https://www21.in.tum.de/~haslbema/documents/Haslbeck_Lammich_LLVM_with_Time.pdf
https://www21.in.tum.de/~nipkow/pubs/tacas18.pdf
http://www.cs.cmu.edu/~janh/papers/lockfree2013.pdf
http://www.cse.chalmers.se/~rjmh/Papers/whyfp.pdf
https://people.mpi-sws.org/~dreyer/papers/iris-ground-up/paper.pdf
https://people.mpi-sws.org/~dreyer/papers/iris-ground-up/paper.pdf
https://doi.org/10.1145/3473585
https://doi.org/10.1145/3009837.3009874
https://doi.org/10.1145/3009837.3009874
https://www.microsoft.com/en-us/research/wp-content/uploads/2009/09/multicore-ghc.pdf
https://users.cs.northwestern.edu/~robby/publications/papers/flops2016-mfnff.pdf
https://users.cs.northwestern.edu/~robby/publications/papers/flops2016-mfnff.pdf
http://cambium.inria.fr/~fpottier/publis/mevel-jourdan-pottier-time-in-iris-2019.pdf
https://www21.in.tum.de/~nipkow/pubs/jar18.pdf
https://doi.org/10.1017/CBO9780511530104
http://cambium.inria.fr/~fpottier/publis/pilkiewicz-pottier-monotonicity.pdf
https://gitlab.inria.fr/cambium/iris-time-proofs
http://dx.doi.org/10.1137/0606031
http://arxiv.org/abs/1802.01336

	Abstract
	1 Introduction
	2 A Refresher on Iris and Iris$
	3 Piggy Banks
	3.1 Piggy Banks: Interface
	3.2 Piggy Banks: Construction

	4 Thunks
	4.1 Thunks: Interface
	4.2 Thunks: Construction

	5 Height-Indexed Thunks
	6 Streams
	6.1 The Predicate Stream
	6.2 Reasoning Rules for Streams
	6.3 Operations on Streams

	7 The Banker's Queue
	8 The Physicist's Queue; Implicit Queues
	9 Related Work
	10 Conclusion
	References

