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Abstract

A capability machine is a type of CPU allowing fine-grained privilege separation using
capabilities, machine words that represent certain kinds of authority. We present Cerise, a
mathematical model and accompanying proof methods that can be used for formal verifi-
cation of functional correctness of programs running on a capability machine, even when
they invoke and are invoked by unknown (and possibly malicious) code. Our work has been
entirely mechanized in the Coq proof assistant using the Iris program logic framework.

The methodology we present underlies recent work of the authors on formal reasoning
about capability machines [5, 9, 11], but was left somewhat implicit in those publications.
This extended abstract is intended as a teaser for a longer paper currently under submis-
sion [4], which exposes in further details a pedagogical introduction to the methodology,
in a simple setting (no exotic capabilities), and starting from minimal examples.

1 Introduction

A capability machine is a type of CPU that enables fine-grained memory compartmentalization
and privilege separation through the use of capabilities. This type of hardware architecture
has been studied since the 60ies [2, 8], and in particular more recently as part of the CHERI
project [13], including a commitment from Arm to develop industrial prototypes of capability
machines based on CHERI1. Capability machines are promising both as a way of improving the
security of existing software systems [6], and as the basis for the design of new systems built
with security in mind (e.g. as a target for secure compilation [10, 3, 12, 1]).

Capability machines provide fine-grained and scalable privilege separation mechanisms.
They distinguish, at the level of hardware, between machine integers and capabilities. Ca-
pabilities can be understood as pointers with associated metadata—such as a range in memory
and permission over this range (read-only, read-write, ...). A capability is a native machine
word, and can be stored in a CPU register or in memory. Then, a machine word containing a
capability can be used to access a given portion of memory, depending on the metadata con-
tained in the capability. On the other hand, a machine word containing a bare integer can only
be used for numerical computations and cannot be used as a pointer to access memory.

Capabilities therefore allow a piece of code to interact securely with untrusted third-party
code, even within the same address space, by restricting the set of capabilities the untrusted
code (transitively) has access to. In a system composed of mutually untrusted components
(which might even contain malicious code), capabilities provide a way of enforcing that the
overall system nevertheless satisfies some security properties.

Note, however, that capabilities are low-level, flexible, building blocks, which operate at the
level of the machine code and whose metadata “just” trigger some additional runtime checks by

1https://morello-project.org
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the machine. This means that the properties we can actually enforce using capabilities crucially
depend on how we use capabilities: the variety of properties that can be enforced stems from
how one can use and combine capabilities.

Figure 1: Scenario where a trusted
component (plain background) in-
teracts with its untrusted context
(dotted background). The compo-
nent may call or be called by the
context, possibly many times.

In this work we show how we can formally prove that
security properties are enforced for some known verified
code, even when that code is linked with unverified un-
trusted third-party code. Our model of interaction be-
tween the known and unknown code is very simple: we
assume the code is in the same address space and that
control is transferred from one to the other using an ordi-
nary jump instruction (see Figure 1). The security prop-
erties we focus on are centered around memory compart-
mentalization, in particular, local state encapsulation. In
other words, we wish to formally reason about the fact
that a trusted component can protect the integrity of
some private data while interacting with untrusted code.

The key components of our methodology are as follows:

– We define the formal operational semantics of a capability machine, for which we then
define a program logic based on separation logic, using the Iris framework [7]. This gives
us an expressive framework to verify the correctness of trusted low-level programs running
on the machine, and in particular to establish logical invariants they satisfy.

– We define, using our program logic, the specification of what a “safe” capability and
a “safe” program is. These are our key tools for reasoning about untrusted code. A
capability (resp. program) is “safe” if it cannot be used to invalidate an invariant at
the logical level. We then show that if a program only has access to “safe” values, then
running the program itself is also “safe”. This is a global property of the machine, which
effectively provides us with a universal contract that holds for arbitrary code.

– We illustrate, on concrete scenarios, how manual proofs for trusted code can be combined
in the program logic with our universal contract. As a result, one obtains a full-execution
theorem about the execution of both trusted and untrusted code, which only depends on
the operational semantics of the machine (not on the program logic).

We focus here on a restricted set of capabilities, but the same methodology has been deployed
to reason about more advanced security properties, in presence of additional kinds of capabilities
or their combination with architectural features such as MMIO [5, 9, 11]. Our work has been
fully formalized in Coq, and is available online: https://github.com/logsem/cerise.

2 Reasoning about Untrusted Code in Cerise

Let us give a preview of the key concepts that we define to reason about untrusted code. A
noteworthy fact is that these can be elegantly defined in a few lines using our program logic and
standard Iris constructs. This is quite remarkable, given that these definitions allow reason-
ing about arbitrary low-level machine-code programs, which for instance make no distinction
between code and data or have no notion of structured control flow.

Figure 2 shows the (mutually recursive) definitions of “safe to share” (V) and “safe to
execute” (E) machine words. A machine word is either an integer z, or a capability (p, b, e, a)
giving access to memory range [b; e) with permission p, and pointing to address a.
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V(w)
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}
 •

Figure 2: Logical relation defining “safe to share” and “safe to execute” values.

The first case of the definition of V asserts that all integers are safe to share: indeed, they
do not give access to memory. Capabilities with permission e correspond to so-called “sentry”
capabilities, which provide a form of low-level closures with data abstraction guarantees. A
sentry capability is thus safe to share as long as it contains code that is safe to execute (by
jumping to the sentry capability). Then, capabilities giving direct access to memory (with
permission rw/rwx) are safe to share as long as they give access to words that are themselves
safe to share at every point of the execution (where . . . denotes an Iris invariant).

A machine word w that is safe to execute (E(w)) allows the machine to run while preserving
logical invariants, provided the registers contain safe values. ({·; ·}  • is defined by our
program logic and specifies a full execution of the machine.)

Then, the Fundamental Theorem of our Logical Relation (Theorem 1) establishes that any
capability that is “safe to share” is in fact “safe to execute”. In other words, if a capability only
gives transitive access to safe capabilities, then it is safe to use it as a program counter capability
and execute it. Since the theorem is independent of the actual code that the capability points
to, this results is used to specify the execution of arbitrary code.

Theorem 1 (FTLR). If V(p, b, e, a), then E(p, b, e, a).

Theorem 1 directly entails the following reasoning principles, which are key for reasoning
about interactions between trusted and untrusted code:

– A capability pointing to a memory region containing arbitrary instructions (encoded as
integers) is always safe to execute;

– It is always safe to jump to an unknown safe machine word (e.g. a “return pointer”
provided by the untrusted context) as long as machine registers contain only safe values;

– A sentry (e) capability pointing to trusted code is always safe to share with untrusted
code, as long as the encapsulated trusted code only assumes that it receives safe values,
and always returns safe values.

3 Case Studies

We apply our methodology to a number of case studies of increasing complexity. These demon-
strate how one reasons about security guarantees upheld by concrete programs, but also show
that our approach scales up to the (modular) verification of larger programs.

Simpler examples demonstrate how to protect the integrity of a static memory location: by
simply not giving a capability to it to the context (effectively proving the impossibility of a buffer
overflow attack), or by encapsulating it in a sentry capability, which allows (only) trusted code
to update the protected value. We then consider more sophisticated examples, which involve
dynamic memory allocation, and build up higher-level constructs such as a heap-based calling
convention and so-called object capability patterns.
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[4] Aı̈na Linn Georges, Armaël Guéneau, Thomas Van Strydonck, Amin Timany, Alix Trieu, Do-
minique Devriese, and Lars Birkedal. Cerise: Program verification on a capability machine in the
presence of untrusted code. Submitted for publication, 2021. https://cs.au.dk/~birke/papers/

cerise.pdf.
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