Verified Characteristic Formulae for CakeML

Armaël Guéneau, Magnus O. Myreen, Ramana Kumar, Michael Norrish April 18, 2017

- Has: references, modules, datatypes, exceptions, a FFI, ...
- Doesn't have: functors, module nesting, let-polymorphism

CakeML concrete syntax Compiler function Machine code

Compiler theorem

CakeML concrete syntax

Compiler function

Machine code

How do we get verified CakeML programs?

Verified translation: Myreen & Owens, ICFP'12

- Define and verify the program as a function in the logic.
- The translator automatically produces CakeML code. . .
- ...and a certificate theorem.

- Used to verify most of the compiler
- Drawback: it can only produce pure CakeML programs

Characteristic Formulae for CakeML: this work

A program logic for CakeML, based on the Characteristic Formulae approach.

- Based on the work of Arthur Charguéraud
- Handles all CakeML features, including I/O and exceptions
- Formally proved sound
- Interoperates with the proof-producing translator

Main contributions

New verification framework for CakeML.

We developed a significant addition to the CakeML ecosystem of verification tools.

Validating the CF approach.

Arthur Charguéraud's work on CF was only partly proved in Coq. We showed that CF can be proved completely sound in a theorem prover, and one can extend the framework to do more, exceptions and I/O.

Outline

Background on CF

Soundness theorem: connecting CF to CakeML semantics

Sound extensions of CF

Support for I/O through the CakeML FFI

Support for exceptions

Interoperating with the proof-producing translator

Background on CF

Program verification using Characteristic Formulae

CFML: program verification framework based on CF (Charguéraud, ICFP'11)

- for OCaml programs
- using the Coq proof assistant

This work: "CFML for CakeML" (and the HOL4 proof assistant)

How does a CF framework works?

The main workhorse: the cf function.

• Source-level expression $e \rightarrow$ its characteristic formula (cf e)

(cf e):

- logical formula that doesn't mention the syntax of e
- abstracted away from the details of the semantics
- akin to a total correctness Hoare triple

CFML: cf defined outside the logic; our framework: cf defined and proved in the logic.

How does a CF framework works? (2)

(cf e) env H Q:

- "e can have H as pre-condition and Q as post-condition in environment env"
- H, Q: heap predicates (separation logic assertions)
- H: heap \rightarrow bool
- $\bullet \ \ Q: {\tt v} \to {\tt heap} \to {\tt bool}$

Examples

```
cf (Var name) env = local (\lambda H Q.
  \exists v. lookup\_var\_id name env = Some v \land
        H \triangleright Q v
cf (Let (Some x) e_1 e_2) env = local (\lambda H Q).
  \exists Q'.
    cf e_1 H Q' \wedge
   \forall xv. \text{ cf } e_2((x,xv) :: env)(Q'xv)Q)
cf (If cond e_1 e_2) env = local (\lambda H Q.
  \exists condy b.
    exp_is_val\ env\ cond = Some\ condv\ \land\ BOOL\ b\ condv\ \land
    ((b \iff T) \Rightarrow cf e_1 env H Q) \land
    ((b \iff F) \Rightarrow cf e_2 env H Q))
```

Program specifications

Specifications:

- Stated using app: Hoare-triple for functional applications
- Written $\{|H|\}$ $f \cdot args \{|Q|\}$
- Related to cf via a consequence of the soundness theorem:

Example: a specification for cat

```
fun do_onefile fname =
  let
    val fd = CharIO.openIn fname
    fun recurse () =
      case CharIO.fgetc fd of
           NONE \Rightarrow ()
          SOME c \Rightarrow
           CharIO.write c:
           recurse ()
  in recurse ();
     CharIO close fd
  end
fun cat fnames =
  case fnames of
    [] \Rightarrow ()
  | f::fs ⇒ do_onefile f; cat fs
```

```
\vdash \text{ LIST FILENAME } \textit{fns } \textit{fnsv} \ \land \\ \text{ every } (\lambda \textit{fnm. inFS\_fname } \textit{fnm } \textit{fs}) \textit{ fns } \land \\ \text{ numOpenFDs } \textit{fs} < 255 \Rightarrow \\ \{|\text{CATFS } \textit{fs} * \text{ STDOUT } \textit{out}|\} \\ \text{ cat\_v} \cdot [\textit{fnsv}] \\ \{|\lambda \textit{u.}| \\ \langle \text{UNIT ()} \textit{u}\rangle * \text{ CATFS } \textit{fs} * \\ \text{ STDOUT } (\textit{out @ catfiles\_string } \textit{fs } \textit{fns})|\}
```

Soundness theorem: connecting CF to CakeML semantics

Soundness of a CF framework

"Proving properties on a characteristic formula gives equivalent properties about the program itself"

CFML:

- no formal semantics of OCaml
- assumes idealized semantics
- some parts are axiomatized

CF for CakeML:

- Re-implement CF generation as in CFML
- Realize CFML axioms wrt. CakeML semantics
- Prove an end-to-end correctness theorem

Heap predicates and semantic store

"(cf e) $env\ H\ Q$ ": H and Q are assertions about the memory heap

Examples:

- $(r \rightsquigarrow v)$: heap containing one reference cell r pointing to value v
- $(r_1 \leadsto v_1 * r_2 \leadsto v_2)$: heap containing two *distinct* reference cells ("*": separating conjunction of separation logic)

Heap predicates and semantic store

CakeML semantics describe the memory heap in the state record:

```
state =
    <| clock : num
    ; refs : v store_v list
    ; ffi : θ ffi_state
    ; defined_types : tid_or_exn set
    ; defined_mods : (modN list) set
    |>
```

```
'a store_v =
  (* A ref cell *)
   Refv of 'a
  (* A byte array *)
  | W8array of word8 list
  (* An array of values *)
  | Varray of 'a list
```

Heap predicates and semantic store

Define heaps holding CakeML values:

$$\mathtt{heap} = (\mathtt{num} \times \mathtt{v} \ \mathtt{store}_{\mathtt{v}}) \ \mathtt{set}$$

$$r \rightsquigarrow v = (\lambda h. \exists loc. r = Loc loc \land h = \{ (loc, Refv v) \})$$

 $p * q = (\lambda h. \exists u v. split h (u, v) \land p u \land q v)$

Define $state_to_set : state \rightarrow heap.$

For a state st with $st.refs = [Refv v_1; Refv v_2]$:

- state_to_set $st = \{(0, v_1); (1, v_2)\}$
- $(\text{Loc } 0 \rightsquigarrow v_1 * \text{Loc } 1 \rightsquigarrow v_2) \text{ (state_to_set } st)$

Logical values and deep-embedded values

CakeML values:

```
v =
   Litv lit
| Conv ((conN × tid_or_exn) option) (v list)
| Closure (v sem_env) string exp
| Recclosure (v sem_env) ((string × string × exp) list) string
| Loc num
| Vectorv (v list)
```

We reuse the *refinement invariants* used by the translator:

```
INT i = (\lambda v. v = \text{Litv (IntLit } i))

BOOL T = (\lambda v. v = \text{Conv (Some ("true", TypeId (Short "bool"))) [])}

\vdash \text{INT } x_0 \ v_0 \land \text{INT } x_1 \ v_1 \Rightarrow \{\text{emp}\} \ \text{plus\_v} \cdot [v_0; \ v_1] \ \{|\lambda v. \langle \text{INT } (x_0 + x_1) \ v \rangle\}
```

Give an implementation for app, written " $\{|H|\}\ f \cdot args\ \{|Q|\}$ ", which is axiomatized in CFML.

Extract from CakeML big-step semantics:

```
evaluate st env [Lit /] = (st, Rval [Litv /])
evaluate st env [Var n] =
 case lookup_var_id n env of
   None ⇒ (st, Rerr (Rabort Rtype_error))
 | Some v \Rightarrow (st, Rval[v])
evaluate st env [Fun \times e] = (st, Rval [Closure env \times e])
evaluate st env [App Opapp [f; v]] =
 case evaluate st env [v; f] of
  (st', Rval [v; f]) \Rightarrow
                                                                           evaluate:
       case do_opapp [f; v] of
        None \Rightarrow (st', Rerr (Rabort Rtype_error))
                                                                              state \rightarrow
       | Some (env', e) \Rightarrow
                                                                              v sem_env \rightarrow
            if st'.clock = 0 then
                                                                              	extsf{exp list} 
ightarrow
              (st', Rerr (Rabort Rtimeout_error))
                                                                              state \times (v list, v) result
            else evaluate (dec_clock st') env' [e]
 | res \Rightarrow res
do_opapp vs =
 case vs of
   [Closure env n e; v] \Rightarrow Some ((n, v) :: env, e)
 | [Recclosure env funs n; v] \Rightarrow \dots
 | _ ⇒ None
```

Semantics of Hoare-triples for expressions

Hoare-triple for an expression *e* in environment *env*:

```
"env \vdash \{|H|\} \ e \ \{|Q|\}"
```

```
\begin{array}{l} env \vdash \{ |H| \} \ e \ \{ |Q| \} \\ \forall \ st \ h_i \ h_k. \\ \\ \text{split} \ ( \text{state\_to\_set} \ st ) \ (h_i, h_k) \ \Rightarrow \\ \\ H \ h_i \ \Rightarrow \\ \\ \exists \ v \ st' \ h_f \ h_g \ ck. \\ \\ \text{evaluate} \ ( st \ \text{with} \ \text{clock} \ := \ ck) \ env \ [e] \ = \ (st', \text{Rval} \ [v]) \ \land \\ \\ \text{split3} \ ( \text{state\_to\_set} \ st') \ (h_f, h_k, h_g) \ \land \ Q \ v \ h_f \end{array}
```

Integrates the frame rule with GC: h_k is the frame, h_g is the garbage

Semantics of Hoare-triples for unary application

Hoare-triple for the application of a closure to a single argument: " $\{|H|\} f \cdot x \{|Q|\}$ "

Semantics of Hoare-triples for n-ary application

Hoare-triple for the application of a closure to multiple arguments: " $\{H\}$ $f \cdot args \{Q\}$ "

Specifications are modular: app integrates the frame rule

Proving CF soundness

Soundness for an arbitrary formula F:

sound
$$e \ F \iff \forall \ env \ H \ Q. \ F \ env \ H \ Q \Rightarrow \ env \ \vdash \ \{|H|\} \ e \ \{|Q|\}$$

Theorem (CF are sound wrt. CakeML semantics):

$$\vdash$$
 sound e (cf e)

Proof: by induction on the size of e.

Sound extensions of CF

Sound extensions of CF

Support for I/O through the CakeML FFI

Performing I/O in CakeML

CakeML programs do I/O using a byte-array-based foreign-function interface (FFI).

- "App (FFI name) [array]": a CakeML expression
- Calls the external function "name" (typically implemented in C) with "array" as a parameter
- Reads back the result in "array"

For example: read a character from stdin, open a file, ...

CakeML I/O semantics

- The state of the "external world" is modeled by the semantics FFI state (what has been printed to stdout, which files are open, ...)
- Executing an FFI operation updates the state of the FFI
- FFI state changes are modeled by an oracle function

```
\begin{array}{l} \theta \ \ \text{ffi\_state} = \\ <| \ \text{oracle} : \\ \quad \text{string} \to \theta \to \text{byte list} \to \\ \quad \theta \ \ \text{oracle\_result} \\ \text{; ffi\_state} : \theta \\ \text{; final\_event} : \text{final\_event option} \\ \text{; io\_events} : \text{io\_event list} \\ |> \end{array}
```

Reasoning about I/O in CF

- Modify (state_to_set : state → heap) to expose the FFI to preand post-conditions
- Modular proofs: need to be able to split the FFI state using "*"
 (proofs about stdout should be independent from proofs about the file-system...)

Problem: we know nothing about the type variable θ !

Splitting the FFI state

Solution: parametrize state_to_set with information on how to split the FFI state into "parts".

- A part represents an independent bit of the external world
- Several external functions can update the same part
- The FFI state θ can be split into separated parts
- "stdout" would be a part, "stdin" an other, the filesystem a third one...

Splitting the FFI state (2)

We parametrize state_to_set with:

- A projection function $proj: \theta \to (\mathtt{string} \mapsto \mathtt{ffi})$
- A list of FFI parts : (string list × ffi_next) list

ffi: low-level generic model for the state of a FFI part

ffi_next: "next-state
function", a part of the oracle

```
\begin{array}{ll} \texttt{ffi} &= \\ \texttt{Str} \, \texttt{string} \\ | \, \texttt{Num} \, \texttt{num} \\ | \, \texttt{Cons} \, \texttt{ffi} \, \texttt{ffi} \\ | \, \texttt{List} \, (\texttt{ffi} \, \texttt{list}) \\ | \, \texttt{Stream} \, (\texttt{num} \, \texttt{stream}) \\ \\ \texttt{ffi} \, \texttt{next} &= \\ & \, \texttt{string} \, \rightarrow \, \texttt{byte} \, \texttt{list} \, \rightarrow \, \texttt{ffi} \, \rightarrow \\ & \, (\texttt{byte} \, \texttt{list} \, \times \, \texttt{ffi}) \, \texttt{option} \end{array}
```

Splitting the FFI state (3)

Finally, we define a generic IO heap assertion:

```
IO: ffi \rightarrow ffi_next \rightarrow string list \rightarrow heap \rightarrow bool IO st u ns = (\lambda s. \exists ts. s = \{ FFI_part st u ns ts \})
```

Pre- and post-conditions can now make assertions about I/O. Users typically define more specialized assertions on top of IO.

Not described in this presentation:

- Characteristic formula for "App (FFI name) [array]"
- How the soundness proof was updated
- \bullet How CF is used in the bootstrapped CakeML compiler to verify the I/O part

Sound extensions of CF

Support for exceptions

Exception-aware post-conditions

Without support for exceptions:

- An expression must reduce to a value
- $\bullet \ \, \mathsf{Post}\text{-}\mathsf{conditions} \,\, \mathsf{have} \,\, \mathsf{type} \,\, \mathtt{v} \to \mathtt{heap} \to \mathtt{bool}$

We now allow expressions to raise an exception:

- Define datatype res = Val v | Exn v
- ullet Post-conditions have type $\mathtt{res} o \mathtt{heap} o \mathtt{bool}$
- Define wrappers for common cases:

```
(POSTv) Q_v = (\lambda r. \operatorname{case} r \operatorname{of} \operatorname{Val} v \Rightarrow Q_v v \mid \operatorname{Exn} e \Rightarrow \langle F \rangle) (POSTe) Q_e = (\lambda r. \operatorname{case} r \operatorname{of} \operatorname{Val} v \Rightarrow \langle F \rangle \mid \operatorname{Exn} e \Rightarrow Q_e e) POST Q_v Q_e = (\lambda r. \operatorname{case} r \operatorname{of} \operatorname{Val} v \Rightarrow Q_v v \mid \operatorname{Exn} e \Rightarrow Q_e e)
```

Example: a more general specification for cat1

We can remove the precondition that the input file must exist:

```
\vdash FILENAME fnm fnv \land numOpenFDs fs < 255 \Rightarrow
   {|CATFS fs * STDOUT out|}
    cat1_v · [fnv]
   {|POST
     (\lambda u.
        \exists content.
          \langle \text{UNIT}() u \rangle * \langle \text{alist\_lookup } fs. \text{files } fnm = \text{Some } content \rangle *
          CATFS fs * STDOUT (out @ content))
     (\lambda e.
        \langle BadFileName\_exn e \rangle * \langle \neg inFS\_fname fnm fs \rangle * CATFS fs *
        STDOUT out)
```

Exception-aware Hoare-triples

Hoare-triple validity "env $\vdash \{H\}\ e\ \{Q\}$ " becomes:

```
\begin{array}{l} env \vdash \{ |H| \} \ e \ \{ |Q| \} \\ \forall st \ h_i \ h_k. \\ \\ \text{split} \ (state\_to\_set \ p \ st) \ (h_i, h_k) \ \Rightarrow \\ \\ H \ h_i \ \Rightarrow \\ \\ \exists \ r \ st' \ h_f \ h_g \ ck. \\ \\ \text{split3} \ (state\_to\_set \ p \ st') \ (h_f, h_k, h_g) \ \land \ Q \ r \ h_f \ \land \\ \\ \text{case } r \ of \\ \\ \text{Val} \ v \ \Rightarrow \ \text{evaluate} \ (st \ \text{with clock} \ := \ ck) \ env \ [e] \ = \ (st', \text{Rval} \ [v]) \\ \\ \mid \ \text{Exn} \ v \ \Rightarrow \ \text{evaluate} \ (st \ \text{with clock} \ := \ ck) \ env \ [e] \ = \ (st', \text{Rerr} \ (\text{Rraise} \ v)) \end{array}
```

Note: we still rule out actual failures, where evaluate returns "Rerr (Rabort abort)".

Updating cf

Add side-conditions to characteristic formulae, to deal with exceptions:

```
cf p (Var name) env = local (\lambda H Q.
(\exists v. lookup\_var\_id name env = Some v \land H \rhd Q (Val v)) \land Q \blacktriangleright_e F)
cf p (Let (Some x) e_1 e_2) env = local (\lambda H Q.
\exists Q'.
cf <math>p e_1 env H Q' \land Q' \blacktriangleright_e Q \land \forall xv. cf p e_2 ((x, xv) :: env) (Q' (Val xv)) Q)
```

$$Q_1 \blacktriangleright_e Q_2 \iff \forall e. \ Q_1 \ (\texttt{Exn} \ e) \ \rhd \ Q_2 \ (\texttt{Exn} \ e)$$

CFs for raise and handle

Define cf for Raise and Handle: similar to the Var and Let cases

```
cf p (Raise e) env = local (\lambda H Q.
\exists v. \exp_i v = v = v \land H \rhd Q \text{ (Exn } v) \land Q \blacktriangleright_v F)
cf p (Handle e rows) env = local (\lambda H Q.
\exists Q'.
cf p e env H Q' \land Q' \blacktriangleright_v Q \land \forall ev.
cf_cases ev ev (map (I ## cf p) rows) env (Q' (Exn ev)) Q)
```

$$Q_1 \blacktriangleright_{\mathrm{v}} Q_2 \iff \forall e. \ Q_1 \ (\mathtt{Val} \ e) \ \rhd \ Q_2 \ (\mathtt{Val} \ e)$$

- Only basic automation is required (rewriting POSTv Q (Exn e) \Leftrightarrow F, POSTv Q (Val v) \Leftrightarrow Q v, ...)
- No additional proof effort for verifying programs that do not involve exceptions

Interoperating with the

proof-producing translator

Verified translation from HOL to CakeML: ICFP'12

Define and verify the program in HOL4:

```
\begin{split} & \text{(length } [] = 0) \land \\ & \text{(length } (h :: t) = 1 + \text{length } t ) \\ & \vdash \forall x \, y. \, \text{length } (x +\!\!\!\!\!+ y) = \text{length } x + \text{length } y \end{split}
```

The translator automatically produces CakeML code . . .

```
fun length_ml x = case x of  | [] \Rightarrow 0   | (h::t) \Rightarrow 1 + length t
```

...and the certificate theorems

```
    ⊢ run_prog length_ml length_env
    ⊢ lookup_var "length" length_env
    ⊢ (a LIST → NUM) length length_v
```

Translator-generated functional specifications

$$\vdash$$
 (a LIST \longrightarrow NUM) length length_v

- Relates the HOL function length to the closure value length_v
- Uses the "arrow" predicate "(a → b) f fv"
 "For xv satisfying (a x), evaluating the closure with xv produces a value satisfying b (f x)"
- This gives a specification for length_v

Relating translator specifications and CF specifications

We prove equivalence between "arrow" specifications and a particular shape of CF specifications.

This allows:

- Using translated functions in CF-verified programs, and get a specification "for free"
- Provide programs certified using CF as drop-in replacements for translated functions

Relating translator specifications and CF specifications (2)

Formally, we prove:

$$\vdash (a \longrightarrow b) f fv \iff \\ \forall x \ xv. \ a \ x \ xv \ \Rightarrow \ \{|emp|\} \ fv \cdot xv \ \{|POSTv \ v. \ \langle b \ (f \ x) \ v\rangle\}\}$$

A function satisfying such a spec:

- Can be called on any heap
- Cannot assume anything about the heap or access it
- Can still allocate heap objects (references, arrays,...) for internal use

Translator-CF interoperability applications

- Used to connect the purely functional part and the I/O part of the CakeML compiler
- ullet "Translator o CF" direction is used pervasively in any non-trivial CF-verified program, e.g. for basic functions like +
- \bullet Future work: use "CF \to translator" to implement more efficiently parts of the compiler e.g. the register allocator

Conclusion

- Verification framework for CakeML, with support for all language features
- Formal proof of characteristic formulae soundness