Verified Characteristic Formulae for CakeML

Armaél Guéneau, Magnus O. Myreen, Ramana Kumar, Michael Norrish

April 18, 2017

CakeML

e Has: references, modules, datatypes, exceptions, a FFI, ...

e Doesn't have: functors, module nesting, let-polymorphism

1/44

CakeML Compiler function
> Machine code

concrete syntax

2/44

Compiler theorem

CakeML Compiler function .
> Machine code

concrete syntax

2/44

Source-level
specification

A

CakeML
concrete syntax

Compilertheorem'

Compiler function

Binary-level
specification

»

Machine code

2/44

Source-level
specification

A

CakeML
concrete syntax

Compilertheorem'

Compiler function

Binary-level
specification

»

Machine code

How do we get verified CakeML programs?

2/44

Verified translation: Myreen & Owens, ICFP’12

Define and verify the program as a function in the logic.
e The translator automatically produces CakeML code. ..

e ...and a certificate theorem.

Used to verify most of the compiler

e Drawback: it can only produce pure CakeML programs

3/44

Verified
translation

Pure CakeML

CakeML

4/44

Characteristic Formulae for CakeML: this work

A program logic for CakeML, based on the Characteristic Formulae
approach.

Based on the work of Arthur Charguéraud

Handles all CakeML features, including |/O and exceptions

Formally proved sound

Interoperates with the proof-producing translator

5/44

Main contributions

New verification framework for CakeML.
We developed a significant addition to the CakeML ecosystem of
verification tools.

Validating the CF approach.

Arthur Charguéraud's work on CF was only partly proved in Coq. We
showed that CF can be proved completely sound in a theorem prover,
and one can extend the framework to do more, exceptions and 1/0.

6/44

Background on CF
Soundness theorem: connecting CF to CakeML semantics

Sound extensions of CF
Support for 1/O through the CakeML FFI

Support for exceptions

Interoperating with the proof-producing translator

7/44

Background on CF

Program verification using Characteristic Formulae

CFML: program verification framework based on CF (Charguéraud,
ICFP'11)

e for OCaml programs

e using the Coq proof assistant

This work: “CFML for CakeML" (and the HOL4 proof assistant)

8/44

How does a CF framework works?

The main workhorse: the cf function.

e Source-level expression e — its characteristic formula (cf e)

(ctf e):

e logical formula that doesn’'t mention the syntax of e
e abstracted away from the details of the semantics

e akin to a total correctness Hoare triple

CFML: cf defined outside the logic; our framework: cf defined and
proved in the logic.

9/44

How does a CF framework works? (2)

(cfe)env HQ:
e “e can have H as pre-condition and @ as post-condition in
environment env"”

e H, Q: heap predicates (separation logic assertions)
e H :heap — bool

e @:v — heap — bool

10/44

cf (Var name) env = local (AH Q.
Jv. lookup_var_id name env = Some v A
H>Qv)

cf (Let (Some x) & e) env = local (AH Q.
3Q.
cfe HQR A
Vxv. cf e ((x,xv) 2 env) (Q' xv) Q)

cf (If cond e; e3) env = local (AH Q.
Jcondv b.
exp-is_val env cond = Some condv A BOOL b condv A
(b <= T) = cfeenvHQ) A
(b < F) = cfeenvHAQ))

11/44

Program specifications

Specifications:

e Stated using app: Hoare-triple for functional applications
e Written {|H[} f - args {Q]}
e Related to cf via a consequence of the soundness theorem:
Fons #[] =
length xvs = length ns =

cf body (extend_env ns xvs env) H Q =
{|H[} naryClosure env ns body - xvs {|Q[}

12/44

Example: a specification for cat

fun do_onefile fname =
let

val fd = CharIO.openlIn fname

fun recurse () =

case CharI0.fgetc fd of

NONE = ()
| SOME ¢ =
CharIO.write c;
recurse ()
in recurse ();
CharIO.close fd
end

fun cat fnames =
case fnames of

(l1=0

| £::fs = do_onefile f;

= LIST FILENAME fns fnsv A
every (A fam. inFS_fname fnm fs) fns A
numOpenFDs fs < 255 =
{|CATFS fs * STDOUT out|}
cat_v - [fnsv]
{Au.
(UNIT () u) * CATFS fs x
STDOUT (out @ catfiles_string fs fns)|}

cat fs

13/44

Soundness theorem: connecting
CF to CakeML semantics

Soundness of a CF framework

“Proving properties on a characteristic formula gives
equivalent properties about the program itself”

14/44

CFML:

e no formal semantics of OCaml
e assumes idealized semantics

e some parts are axiomatized

CF for CakeML:

e Re-implement CF generation as in CFML
e Realize CFML axioms wrt. CakeML semantics

e Prove an end-to-end correctness theorem

15/44

Connecting CF to Cak ics

Heap predicates and semantic store

“(cf e)env HQ": H and Q are assertions about the memory heap

Examples:

e (r ~ v): heap containing one reference cell r pointing to value v

e (L~ vi xrp ~> v»): heap containing two distinct reference cells
("«": separating conjunction of separation logic)

16/44

Connecting CF to CakeML semantics

ap predicates and semantic store

CakeML semantics describe the memory heap in the state record:

state = 'a store_v =
<| clock : num (x A ref cell x)
; refs : v store_v list Refv of 'a
; ffi @ 0 ffi_state (x A byte array)
; defined_types : tid_or_exn set | w8array of word8 list
; defined_mods : (modN list) set (* An array of values)
|

Varray of 'a list

17/44

Connecting CF to CakeML semantics

Heap predicates and semantic store

Define heaps holding CakeML values:

heap = (num X v store_v) set

r~»v = (Ah.3loc. r =Loc loc A h={ (loc, Refv V) })
pxqg = (ANh.3uv.split h(u,v) A pu A qv)

Define state_to_set : state — heap.

For a state st with st.refs = [Refv vq; Refv v

e state_to_set st = {(0,v1); (1,w)}

e (Loc 0~ vy xLoc 1~ v») (state_to_set st)

18/44

Connecting CF to CakeML semantics

Logical values and deep-embedded values

CakeML values:

v =
Litv 1lit
| Conv ((conN X tid_or_exn) option) (v 1list)
| Closure (v sem_env) string exp
| Recclosure (v sem_env) ((string X string X exp) list) string
| Loc num
| Vectorv (v list)

We reuse the refinement invariants used by the translator:

INT/ = (Av.v = Litv (IntLit /)
BOOLT = (Av.v = Conv (Some (“true”, TypeId (Short “bool”))) [])

F INT xo vo A INTx3 vi =
{lemp[} plus_v - [vo; vi] {Av. (INT (x0 + x1) v)[}

19/44

Realizing CFML axioms: app

Give an implementation for app, written “{|H[} f - args {|Q[}", which is
axiomatized in CFML.

20/44

Extract from CakeML big-step semantics:

evaluate st env [Lit /] = (st,Rval [Litv /])
evaluate st env [Var n| =

case lookup-var_id n env of

None = (st,Rerr (Rabort Rtype_error))
| Some v = (st,Rval [v])

evaluate st env [Fun x €] = (st,Rval [Closure env x e])
evaluate st env [App Opapp [f; v]] =
case evaluate st env [v; f] of
(st’,Rval [v; f]) =

case do_opapp [f; v] of

evaluate :
None = (st', Rerr (Rabort Rtype_error)) state —
| Some (env’,e) =
if st’.clock = 0 then

VvV sem_env —

exp list —
(st’,Rerr (Rabort Rtimeout_error))

else evaluate (dec_clock st’) env’ [e]
| res = res

state X (v list,v) result

do_opapp vs =
case vs of
[Closure env ne; v] = Some ((n,v) :: env, e)
| [Recclosure env funs n; v] =>
| _ = None

21/44

Realizing CFML axioms: app
Semantics of Hoare-triples for expressions

Hoare-triple for an expression e in environment env:

venv = {|H]} e | Q[

envi {Ht e {Q}

V st h; hg.
split (state_to_set st) (h, h) =
H hi =
v st he hy ck.
evaluate (st with clock := ck) env [e] = (st’,Rval [v]) A

split3 (state_to_set st’) (hr, hk, hg) A Q v hf

Integrates the frame rule with GC: hy is the frame, h, is the garbage

22/44

Realizing CFML axioms: app

Semantics of Hoare-triples for unary application

Hoare-triple for the application of a closure to a single argument:

HE - x{QL"

{H} - x{Q} <
case do_opapp [f; x] of
None = Vst hy ho. split (state_to_set p st) (hi,h2) = —H h
| Some (env,exp) = envt {H[} exp {|Q[}

23/44

Realizing CFML axioms: app

Semantics of Hoare-triples for n-ary application

Hoare-triple for the application of a closure to multiple arguments:

Hf - args QI

{H} £ -[[{Q} < F
{HL - X {QF <~ {H}f - x{Q}
{H} f - x:x" x5 {Q} +—
HL f-x{ g. IH . H * ({H'[} g-x" = xs {Q}[}

Specifications are modular: app integrates the frame rule

24 /44

Proving CF soundness

Soundness for an arbitrary formula F:

sounde F <= VenvH Q. FenvHQ = envl {{H[} e {Q]}

Theorem (CF are sound wrt. CakeML semantics):
F sound e (cf e)

Proof: by induction on the size of e.

25 /44

Sound extensions of CF

Sound extensions of CF

Support for 1/0 through the CakeML
FFI

Performing 1/0 in CakeML

CakeML programs do |/O using a byte-array-based foreign-function
interface (FFI).

e “App (FFI name) [array]’: a CakeML expression

e Calls the external function “name” (typically implemented in C)
with “array” as a parameter

e Reads back the result in “array”

For example: read a character from stdin, open a file, ...

26/44

CakeML 1/0 semantics

e The state of the “external world” is modeled by the semantics FFI
state (what has been printed to stdout, which files are open, ...)

e Executing an FFI operation updates the state of the FFI

e FFI state changes are modeled by an oracle function

state =
<| clock : num
refs : v store_v list
ffi : 6 ffi_state
defined_types
tid_or_exn set

0 ffi_state =
<| oracle
string — 0 — byte list —
0 oracle_result
ffi_state : 6

. ; final_event : final_event option
; defined_mods

. ; lio_events : io_event list
(modN 1list) set

> >

27/44

Reasoning about 1/0 in CF

e Modify (state_to_set : state — heap) to expose the FFl to pre-

and post-conditions

e Modular proofs: need to be able to split the FFI state using “x
(proofs about stdout should be independent from proofs about the

file-system...)

0 ffi_state =
<| oracle
string — 0 — byte list —

6 oracle_result Problem: we know nothing

; ffi_state : O g
))) about the type variable 0!
; final_event : final_event option
io_events : io_event list

[>

28 /44

Splitting the FFI state

Solution: parametrize state_to_set with information on how to split the
FFI state into “parts”.

e A part represents an independent bit of the external world
e Several external functions can update the same part
e The FFI state 6 can be split into separated parts

e “stdout” would be a part, “stdin” an other, the filesystem a third
one...

20/44

Splitting the FFI state (2)

We parametrize state_to_set with:

e A projection function proj : 0 — (string > ££i)
e A list of FFI parts : (string list x ffi next) list

ffi =
Str string

ffi: low-level generic model for | Num num
the state of a FFI part | Cons £fi £fi

| List (ffi list)
ffi next: “next-state | Stream (num stream)
function”, a part of the oracle _

ffi next =

string — byte list — ffi —
(byte list x £fi) option

30/44

Splitting the FFI state (3)

Finally, we define a generic I0 heap assertion:

I0: ffi — ffi next — string list — heap — bool
I0stuns = (As.3Jts.s = {FFIpartstunsts})

Pre- and post-conditions can now make assertions about 1/0. Users
typically define more specialized assertions on top of I0.

31/44

Not described in this presentation:

e Characteristic formula for “App (FFI name) [array]"
e How the soundness proof was updated

e How CF is used in the bootstrapped CakeML compiler to verify the
[/O part

32/44

Sound extensions of CF

Support for exceptions

Exception-aware post-conditions

Without support for exceptions:

e An expression must reduce to a value

e Post-conditions have type v — heap — bool

We now allow expressions to raise an exception:

e Define datatype res =Valv | Exnv
e Post-conditions have type res — heap — bool

e Define wrappers for common cases:

(POSTv) @, = (Ar.caserofValv = Q, v | Exne = (F))
(POSTe) Q. = (Ar.caserofValv = (F) | Exne = Q. e€)
POST Q, Q. = (Ar.caserofValv = Q, v |Exne = Q. ¢€)

33/44

Example: a more general specification for cat1

We can remove the precondition that the input file must exist:

F FILENAME fnm fnv A numOpenFDs fs < 255 =
{|CATFS fs * STDOUT out[}
catl.v - [fnv]
{|POST
(Au.
3 content.
(UNIT () u) = (alist_lookup fs.files fnm = Some content) x
CATFS fs * STDOUT (out @ content))
(Me.
(BadFileName_exn e) * (—inFS_fname fnm fs) % CATFS fs x
STDOUT out)[}

34/44

Exception-aware Hoare-triples

Hoare-triple validity “env F {|H[} e {Q[}" becomes:

envi {H} e {Q}

Vst h; hg.
split (state_to_set p st) (h;, hy) =
H h; =
3r st’ he hg ck.
split3 (state_to_set p st’) (hf, he, hg) A Q r he A
case r of
Val v = evaluate (st with clock := ck) env [e] = (st’,Rval [v])

| Exn v = evaluate (st with clock := ck) env [e] = (st/,Rerr (Rraise v))

Note: we still rule out actual failures, where evaluate returns “Rerr

(Rabort abort)”.
35/44

Updating cf

Add side-conditions to characteristic formulae, to deal with exceptions:

cf p (Var name) env = local (AH Q.
(Fv. lookup_var_id name env = Some v A H > Q (Val v)) A
Q ». F)

cf p (Let (Some x) e1 e2) env = local (AH Q.
3Q".
cfperenvHQ AN Q »e QA
Vxv. cf p e ((x,xv) :: env) (Q' (Val xv)) Q)

Q1 »e @ <— Ve. (EXl’l e) > @ (EXH e)

36/44

CFs for raise and handle

Define cf for Raise and Handle: similar to the Var and Let cases

cf p (Raise e) env = local (AH Q.
Jv.expisvalenve = Somev A H > Q(Exnv) A Q », F)

cf p (Handle e rows) env = local (AH Q.
31Q".
ctpeenvHQ AN Q », Q A
Vev.
cf_cases ev ev (map (I ## cf p) rows) env (Q' (Exn ev)) Q)

Q1 »y @ < Ve. @y (Vale) > @, (Vale)

37/44

e Only basic automation is required (rewriting POSTv Q (Exn e) < F,
POSTv Q (Val v) & Q v, ...)

e No additional proof effort for verifying programs that do not involve
exceptions

38/44

Interoperating with the
proof-producing translator

Verified translation from HOL to CakeML: ICFP’12

e Define and verify the program in HOL4:

(length [] =0) A
(length (h :: t) = 1+ length t)

F Vxy.length (x ++ y) = length x + length y

e The translator automatically produces CakeML code ...

fun length_ml x =
case x of
I [T =0
| (h::t) = 1 + length t

e ...and the certificate theorems

I run_prog length ml length env
F lookup_var “length” length_env = Some length_v
F (aLIST — NUM) length length_v

39/44

Translator-generated functional specifications

F (aLIST — NUM) length length v

e Relates the HOL function length to the closure value length_ v

e Uses the “arrow” predicate “(a — b) f fv"
“For xv satisfying (a x), evaluating the closure with xv produces a
value satisfying b (f x)"

e This gives a specification for length_v

40/44

Relating translator specifications and CF specifications

We prove equivalence between “arrow” specifications and a particular
shape of CF specifications.

This allows:

e Using translated functions in CF-verified programs, and get a
specification “for free”
e Provide programs certified using CF as drop-in replacements for

translated functions

41/44

Relating translator specifications and CF specifications (2)

Formally, we prove:

F(a—b)ffv <
Vx xv.axxv = {lempl} fv - xv {{POSTv v. (b (f x) v)[}

A function satisfying such a spec:

e Can be called on any heap
e Cannot assume anything about the heap or access it

e Can still allocate heap objects (references, arrays,...) for internal use

42/44

Translator-CF interoperability applications

e Used to connect the purely functional part and the |/O part of the
CakeML compiler

e “Translator — CF" direction is used pervasively in any non-trivial
CF-verified program, e.g. for basic functions like +

e Future work: use “CF — translator” to implement more efficiently
parts of the compiler e.g. the register allocator

43/44

Conclusion

e Verification framework for CakeML, with support for all language
features

e Formal proof of characteristic formulae soundness

44/44

	Background on CF
	Soundness theorem: connecting CF to CakeML semantics
	Sound extensions of CF
	Support for I/O through the CakeML FFI
	Support for exceptions

	Interoperating with the proof-producing translator

