FORMAL VERIFICATION OF ASYMPTOTIC
COMPLEXITY BOUNDS FOR OCAML
PROGRAMS

Armaél Guéneau
supervised by Francois Pottier & Arthur Charguéeraud

November 12, 2015

Formal Verification of Asymptotic Complexity Bounds November 12, 2015

COUNTING PROGRAM STEPS WITH TIME CREDITS

Time complexity can be formalized in separation logic,
thanks to time credits.

Example of specification:

{UFNDR+$(3*(alpha N)+6)}
union X vy
{Az:>UFND(funw:>Iwa=RXVRw=Rythenzelse
Rwx[z=Rxvz=Ryl}

Amortized cost for union: 3 x a(N) + 6.

Formal Verification of Asymptotic Complexity Bounds November 12, 2015 2/35

FORMALIZING BIG-0OS: MOTIVATION

Counting credits explicitly quickly becomes impractical,
compared to using the “O()" notation:

© n? x m+3nm+3n+6m+5log(n) +2log(m) +
5log(n) log(m) + 8 instead of O(n? x m)

- Specifications using explicit credits count are not
modular

- Credits count are to be considered up to a constant
factor anyway

Formal Verification of Asymptotic Complexity Bounds November 12, 2015

OUR CONTRIBUTION

We present “CFML+credits+big-0s”, an extension of
“CFML+credits” which formalizes (in Coq) the big-O
notation, to be used in program specifications.

Formal Verification of Asymptotic Complexity Bounds November 12, 2015

OUTLINE OF THIS TALK

Formalizing big-Os: challenges and proposed solutions

Proof automation

Case studies

Formal Verification of Asymptotic Complexity Bounds November 12, 2015 5/35

FORMALIZING BIG-0OS: CHALLENGES
AND PROPOSED SOLUTIONS

BIG-OS TEXTBOOK DEFINITION

Recall the standard textbook definition for “O()"

fe 0(g) =3c,3ne, Vn = no, |f(n)] < ¢ x |g(n)]

Why is this not trivial to formalize?

Formal Verification of Asymptotic Complexity Bounds November 12, 2015 7/35

CHALLENGE 1: BINDING VARIABLES

We often informally write “fis O(n?)".

However O() is a relation on functions, not expressions.

= We should write “fis O(An.n?)" instead.

Formal Verification of Asymptotic Complexity Bounds November 12, 2015

CHALLENGE 2: GOING TO INFINITY

How do we handle cost functions with multiple
parameters?

let fill_rect nm =
for j = 1 to m do Concrete cost:
for i = 1 to n do
draw_pixel i j
done
done

flnnm) = mx(1+n)+1
= mxn+m+1

Formal Verification of Asymptotic Complexity Bounds November 12, 2015

CHALLENGE 2: GOING TO INFINITY

Is fill_rect O(A(n,m).m x n)?
- If n.and m go to infinity, then indeed
fn,m) e O(A(n,m).m x n)

What about the asymptotic cost of “fill_rect 0 m"?

- Concrete cost: f(0,m) =m +1
- Clearly not O(Am.m x 0) = O(0)

= We cannot reuse the previous asymptotic bound

Formal Verification of Asymptotic Complexity Bounds November 12, 2015 [EIJEE]

CHALLENGE 2: GOING TO INFINITY

- Big-O bounds are proved for one given notion of
“going to infinity”
- There are multiple, non-equivalent ones

= Let the user choose, while keeping a lightweight
notation for the common cases.

Formal Verification of Asymptotic Complexity Bounds November 12,2015 [IREVES]

CHALLENGE 2 SOLUTION: FILTERS, A FORMAL NOTION OF

“GOING TO INFINITY"

A filter on a set A:

- is of type (A - Prop)— Prop, named filter A;
- represents the set of neighborhoods of infinity;

- must satisfy additional properties, bundled in a
Filter Coq class.

E.g. the standard filter on Z is:

Definition towards_infinity_z: filter Z :=
fun (P: Z —» Prop) = 3x0, ¥x, X0 < X — P x

Formal Verification of Asymptotic Complexity Bounds November 12,2015 [IRPYES]

CHALLENGE 2 SOLUTION: FILTERS, A FORMAL NOTION OF

“GOING TO INFINITY"

“O()" definition parameterized by a filter ultimately:

Definition dominated
(uUltimately: filter A)
(f g:A— Z) =
dc, ultimately (fun x = norm (f x) < c * norm (g x)).

We use Coq typeclasses to allow the filter to be inferred
in standard cases.

Formal Verification of Asymptotic Complexity Bounds November 12, 2015

CHALLENGE 2 SOLUTION: FILTERS ON Z°

What were the filters involved in our fill _rect
example?

- “Both components go to infinity”:

Definition towards_infinity_ZZ:=
fun (P: Z*Z — Prop) =
P1 P2, towards_infinity_Z P1 A
towards_infinity_Z P2 A
¥x1 x2, P1 x1 — P2 x2 — P (x1, x2)

- “The first component is fixed to x0, the second goes
to infinity”:
Definition towards_infinity_xZ (x0: Z) :=

fun (P:{p:2*Z | fst p=x0}—Prop) =

towards_infinity_Z (funy =P (x0,y))
Formal Verification of Asymptotic Complexity Bounds November 12, 2015

CHALLENGE 3: EXISTENTIAL QUANTIFICATIONS

“The cost of p is O(g)” hides an additional existential
quantification.

“The cost of p is O(g)" is in fact “there exists a cost
function fst. fe O(g) and running p(n) takes f(n) steps”.

- Convenient informal notation

- But more error prone: some incorrect proofs are
harder to detect syntactically

Formal Verification of Asymptotic Complexity Bounds November 12, 2015 [IREYES]

CHALLENGE 3: A FLAWED PROOF

let rec loop n =
if n <= 0 then () else loop (n-1)

Lemma (incorrect)

The asymptotic complexity of Loop is O(1).

Proof.
(flawed, but not so obviously). By induction on n,

- n < 0: Loop terminates in O(1);

- n > 1: the cost of Loop(n) is the cost of Loop(n-1)
plus O(1). By induction, the cost of Loop(n-1) is
O(1). O(1) + O(1) = O(1) = total cost of O(1).

Formal Verification of Asymptotic Complexity Bounds November 12, 2o[r5m

CHALLENGE 3: A FLAWED PROOF

The mistake: an invalid quantifier permutation.

- “there exists a cost function f st. for all n, ..", is not
- “for all n, there exists a cost function f..".

The explicit cost function must be instantiated before
entering the induction.

Coq is able to reject this kind of incorrect reasoning; the
challenge is to keep a lightweight presentation.

Formal Verification of Asymptotic Complexity Bounds November 12, 2015

CHALLENGE 3 (IMPERFECT) SOLUTION

We define Speco, in order to write specifications using
big-0Os:

Definition SpecO (ultimately: filter A)
(g: A —Z)(spec: (A —Z) —Prop)

3(f: A —2Z), dominated _ f g A spec f.

vn, {$ (3 * n2+ 2 * n + 5)x H} t(n){Q}

becomes

SpecO _ (An = n2)(\F = Vn, {$ F n «H} t(n){Q})

A. Guéneau

Formal Verification of Asymptotic Complexity Bounds

November 12, 2015 [REYES

CHALLENGE 3 (IMPERFECT) SOLUTION

Remark: arguments of the cost function do not have to
be the arguments of the program.

Example: specification for List.length

v,
SpecO _ (An =n) (\F =
{SF(length 1)} List.length 1 {An =[n = length 1]})

Formal Verification of Asymptotic Complexity Bounds November 12, 2015

CHALLENGE 3 (IMPERFECT) SOLUTION

It does not cover all usages though, e.g. quantifying over
a class of filters for the same cost function.

Af:A—2),

(v x0, dominated (towards_infinity_xZ x0) f g) A
spec f

= More general version of Speco parameterized by any
relation on f, g.

Formal Verification of Asymptotic Complexity Bounds November 12, 2015

CHALLENGE 4: MONOTONIC COST FUNCTIONS

Paper proofs assume extensively that cost functions are
non-decreasing.

Formal Verification of Asymptotic Complexity Bounds November 12, 2015

CHALLENGE 4: MONOTONIC COST FUNCTIONS

Example:

L h < log(N) + 1

{$ Fr0)} p {} — {$6n)}p{}
Fe O(Ah.h) G e O(AN. log(N))

G(N):= F(Log(N)+ 1)

= We need to prove F(h)< G(N).

= We need F to be non-decreasing.
Formal Verification of Asymptotic Complexity Bounds November 12, 2015

CHALLENGE 4 SOLUTION: NEW DEFINITION OF SPECO

Definition SpecO (ultimately: filter A) le
(g: A —2Z)(spec: (A —2Z) —Prop)

A(f:A—2),
(Vx,0<fx)A
monotonic _ _f A
dominated _f g A
spec f.

Formal Verification of Asymptotic Complexity Bounds November 12, 2015

CHALLENGE 5: 0(0) AND UNDESIRABLE SIDE-CONDITIONS

We would like to have:

“if fis O(g), then f+ cis also O(g) (with ¢ a constant)”.

Yet, this is false for g = 0.

Formal Verification of Asymptotic Complexity Bounds November 12, 2015 [PZYER

CHALLENGE 5: 0(0) AND UNDESIRABLE SIDE-CONDITIONS

We would like to have:

“if fis O(g), then An.log(f(n)) is O(An.log(g(n))".

Yet, this is false forg = 1and f > 2.

Formal Verification of Asymptotic Complexity Bounds November 12, 2015

CHALLENGE 5 SOLUTION

Alternative notion of O(): idominated.

- Matches dominated on the interesting cases:
when costs functions go to infinity;

- Handles more pathological cases.

Definition idominated
(uUltimately: filter A) (leA:A — A —Prop)
(fg:A—2)

ultimately (monotonic_after leAleZ g) A
((bounded _ f A bounded _ g) vdominated _ f g).

Formal Verification of Asymptotic Complexity Bounds November 12, 2015

CHALLENGE 5 SOLUTION

The following lemmas are now true:

idominated _ _f g —
idominated _ _(funn=c+fn)g

idominated _ _f g —
idominated _ _ (fun x = Z.1log2 (f x))
(fun x = Z.10g2 (g x))

We also adapt Spec0 to use idominated in place of
dominated.

Formal Verification of Asymptotic Complexity Bounds November 12, 2015 [EPIES]

PROOF AUTOMATION

PROOF AUTOMATION

Goal-directed tactics to solve / simplify idominated,
monotonic, monotonic_after goals.

Able to prove or simplify automatically goals involving
+, x, log,”.
Goal idominated _ _

(funn=5*Z10g2(3*n+2)+8)Zlog2.
Proof. idominated_Z_auto; math. Qed.

Formal Verification of Asymptotic Complexity Bounds November 12, 2015

PROOF AUTOMATION

Auxiliary tactics to deal with n-equivalence for n-ary
functions (still imperfect).

- We have to reason modulo n-equivalence.
- O(log) vs O(An. log(n))
- feO(h)=ge O0(h)= Anf(n) +g(n) e O(h)
- Not automatic on n-ary (uncurried) functions.
- They are of the form Ap.let (n,m) = pin ...
- feO(h)=geO(h) =
Ap-(let (n,m) = pin f((n,m)) + g((n,m))) € O(h)

Formal Verification of Asymptotic Complexity Bounds November 12, 2015

PROOF AUTOMATION

WIP: a set of tactics to elaborate the cost function
through the proof.

xcfo. [...]
xcfO (funn=3*n+12). . add_credits (An =1).[..]
[...] add_credits (An =2 *n).

[..]

Formal Verification of Asymptotic Complexity Bounds November 12, 2015

CASE STUDIES

CASE STUDIES

We used the resulting library to formalize two non-trivial
data structures:

- Dynamic Arrays, an imperative structure with
amortized O(1) costs;

- Binary Random Access Lists, a purely functional data
structure with O(logn) costs, parameter
transformation and filters on Z2.

Formal Verification of Asymptotic Complexity Bounds November 12, 2015

BINARY RANDOM ACCESS LISTS

Why a parameter transformation and filters on Z??

|AiAA

Figure 1: Induction for lookup and update

Formal Verification of Asymptotic Complexity Bounds November 12, 2015

CONCLUSION: SOME NUMBERS

- Binary Random Access Lists:
- Code: 80 lines, proof: 630 lines
- Whole complexity analysis (credits + big-0s): ~ 40%
- Reasoning on big-0s: ~ 25%
- Dynamic Arrays:
- Code: 95 lines, proof: 520 lines
- Whole complexity analysis (credits + big-0s): ~ 50%
- Reasoning on big-0s: ~ 6%)
- Size of the library: ~ 2300 lines of Coq
- dominated, idominated (definition, lemmas, tactics):
1260 lines
- Filters (definitions, instances): 730 lines
- Monotonicity (tactics): 250 lines
- SpecO (definition, lemmas, tactics): 70 lines

Formal Verification of Asymptotic Complexity Bounds November 12, 2015

	Formalizing big-Os: challenges and proposed solutions
	Proof automation
	Case studies

