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COUNTING PROGRAM STEPS WITH TIME CREDITS

Time complexity can be formalized in separation logic,
thanks to time credits.

Example of specification:

{UFNDR+$(3*(alpha N)+6)}
union X vy
{Az:>UFND(funw:>Iwa=RXVRw=Rythenzelse
Rwx[z=Rxvz=Ryl}

Amortized cost for union: 3 x a(N) + 6.
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FORMALIZING BIG-0OS: MOTIVATION

Counting credits explicitly quickly becomes impractical,
compared to using the “O()" notation:

© n? x m+3nm+3n+6m+5log(n) +2log(m) +
5log(n) log(m) + 8 instead of O(n? x m)

- Specifications using explicit credits count are not
modular

- Credits count are to be considered up to a constant
factor anyway
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OUR CONTRIBUTION

We present “CFML+credits+big-0s”, an extension of
“CFML+credits” which formalizes (in Coq) the big-O
notation, to be used in program specifications.
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OUTLINE OF THIS TALK

Formalizing big-Os: challenges and proposed solutions

Proof automation

Case studies
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FORMALIZING BIG-0OS: CHALLENGES
AND PROPOSED SOLUTIONS




BIG-OS TEXTBOOK DEFINITION

Recall the standard textbook definition for “O()"

fe 0(g) =3c,3ne, Vn = no, |f(n)] < ¢ x |g(n)]

Why is this not trivial to formalize?
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CHALLENGE 1: BINDING VARIABLES

We often informally write “fis O(n?)".

However O() is a relation on functions, not expressions.

= We should write “fis O(An.n?)" instead.
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CHALLENGE 2: GOING TO INFINITY

How do we handle cost functions with multiple
parameters?

let fill_rect nm =
for j = 1 to m do Concrete cost:
for i = 1 to n do
draw_pixel i j
done
done

flnnm) = mx(1+n)+1
= mxn+m+1
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CHALLENGE 2: GOING TO INFINITY

Is fill_rect O(A(n,m).m x n)?
- If n.and m go to infinity, then indeed
fn,m) e O(A(n,m).m x n)

What about the asymptotic cost of “fill_rect 0 m"?

- Concrete cost: f(0,m) =m +1
- Clearly not O(Am.m x 0) = O(0)

= We cannot reuse the previous asymptotic bound
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CHALLENGE 2: GOING TO INFINITY

- Big-O bounds are proved for one given notion of
“going to infinity”
- There are multiple, non-equivalent ones

= Let the user choose, while keeping a lightweight
notation for the common cases.
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CHALLENGE 2 SOLUTION: FILTERS, A FORMAL NOTION OF

“GOING TO INFINITY"

A filter on a set A:

- is of type (A - Prop)— Prop, named filter A;
- represents the set of neighborhoods of infinity;

- must satisfy additional properties, bundled in a
Filter Coq class.

E.g. the standard filter on Z is:

Definition towards_infinity_z: filter Z :=
fun (P: Z —» Prop) = 3x0, ¥x, X0 < X — P x
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CHALLENGE 2 SOLUTION: FILTERS, A FORMAL NOTION OF

“GOING TO INFINITY"

“O()" definition parameterized by a filter ultimately:

Definition dominated
(uUltimately: filter A)
(f g:A— Z) =
dc, ultimately (fun x = norm (f x) < c * norm (g x)).

We use Coq typeclasses to allow the filter to be inferred
in standard cases.
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CHALLENGE 2 SOLUTION: FILTERS ON Z°

What were the filters involved in our fill _rect
example?

- “Both components go to infinity”:

Definition towards_infinity_ZZ:=
fun (P: Z*Z — Prop) =
P1 P2, towards_infinity_Z P1 A
towards_infinity_Z P2 A
¥x1 x2, P1 x1 — P2 x2 — P (x1, x2)

- “The first component is fixed to x0, the second goes
to infinity”:
Definition towards_infinity_xZ (x0: Z) :=

fun (P:{p:2*Z | fst p=x0}—Prop) =

towards_infinity_Z (funy =P (x0,y))
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CHALLENGE 3: EXISTENTIAL QUANTIFICATIONS

“The cost of p is O(g)” hides an additional existential
quantification.

“The cost of p is O(g)" is in fact “there exists a cost
function fst. fe O(g) and running p(n) takes f(n) steps”.

- Convenient informal notation

- But more error prone: some incorrect proofs are
harder to detect syntactically
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CHALLENGE 3: A FLAWED PROOF

let rec loop n =
if n <= 0 then () else loop (n-1)

Lemma (incorrect)

The asymptotic complexity of Loop is O(1).

Proof.
(flawed, but not so obviously). By induction on n,

- n < 0: Loop terminates in O(1);

- n > 1: the cost of Loop(n) is the cost of Loop(n-1)
plus O(1). By induction, the cost of Loop(n-1) is
O(1). O(1) + O(1) = O(1) = total cost of O(1).
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CHALLENGE 3: A FLAWED PROOF

The mistake: an invalid quantifier permutation.

- “there exists a cost function f st. for all n, ..", is not
- “for all n, there exists a cost function f..".

The explicit cost function must be instantiated before
entering the induction.

Coq is able to reject this kind of incorrect reasoning; the
challenge is to keep a lightweight presentation.
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CHALLENGE 3 (IMPERFECT) SOLUTION

We define Speco, in order to write specifications using
big-0Os:

Definition SpecO (ultimately: filter A)
(g: A —Z)(spec: (A —Z) —Prop)

3(f: A —2Z), dominated _ f g A spec f.

vn, {$ (3 * n2+ 2 * n + 5)x H} t(n){Q}

becomes

SpecO _ (An = n2)(\F = Vn, {$ F n «H} t(n){Q})

A. Guéneau
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CHALLENGE 3 (IMPERFECT) SOLUTION

Remark: arguments of the cost function do not have to
be the arguments of the program.

Example: specification for List.length

v,
SpecO _ (An =n) (\F =
{SF(length 1)} List.length 1 {An =[n = length 1]})

Formal Verification of Asymptotic Complexity Bounds November 12, 2015



CHALLENGE 3 (IMPERFECT) SOLUTION

It does not cover all usages though, e.g. quantifying over
a class of filters for the same cost function.

Af:A—2),

(v x0, dominated (towards_infinity_xZ x0) f g) A
spec f

= More general version of Speco parameterized by any
relation on f, g.
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CHALLENGE 4: MONOTONIC COST FUNCTIONS

Paper proofs assume extensively that cost functions are
non-decreasing.
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CHALLENGE 4: MONOTONIC COST FUNCTIONS

Example:

L h < log(N) + 1

{$ Fr0)} p {} — {$6n)}p{}
Fe O(Ah.h) G e O(AN. log(N))

G(N):= F(Log(N)+ 1)

= We need to prove F(h)< G(N).

= We need F to be non-decreasing.
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CHALLENGE 4 SOLUTION: NEW DEFINITION OF SPECO

Definition SpecO (ultimately: filter A) le
(g: A —2Z)(spec: (A —2Z) —Prop)

A(f:A—2),
(Vx,0<fx)A
monotonic _ _f A
dominated _f g A
spec f.
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CHALLENGE 5: 0(0) AND UNDESIRABLE SIDE-CONDITIONS

We would like to have:

“if fis O(g), then f+ cis also O(g) (with ¢ a constant)”.

Yet, this is false for g = 0.
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CHALLENGE 5: 0(0) AND UNDESIRABLE SIDE-CONDITIONS

We would like to have:

“if fis O(g), then An.log(f(n)) is O(An.log(g(n))".

Yet, this is false forg = 1and f > 2.
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CHALLENGE 5 SOLUTION

Alternative notion of O(): idominated.

- Matches dominated on the interesting cases:
when costs functions go to infinity;

- Handles more pathological cases.

Definition idominated
(uUltimately: filter A) (leA:A — A —Prop)
(fg:A—2)

ultimately (monotonic_after leAleZ g) A
((bounded _ f A bounded _ g) vdominated _ f g).
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CHALLENGE 5 SOLUTION

The following lemmas are now true:

idominated _ _f g —
idominated _ _(funn=c+fn)g

idominated _ _f g —
idominated _ _ (fun x = Z.1log2 (f x))
(fun x = Z.10g2 (g x))

We also adapt Spec0 to use idominated in place of
dominated.
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PROOF AUTOMATION




PROOF AUTOMATION

Goal-directed tactics to solve / simplify idominated,
monotonic, monotonic_after goals.

Able to prove or simplify automatically goals involving
+, x, log,”.
Goal idominated _ _

(funn=5*Z10g2(3*n+2)+8)Zlog2.
Proof. idominated_Z_auto; math. Qed.
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PROOF AUTOMATION

Auxiliary tactics to deal with n-equivalence for n-ary
functions (still imperfect).

- We have to reason modulo n-equivalence.
- O(log) vs O(An. log(n))
- feO(h)=ge O0(h)= Anf(n) +g(n) e O(h)
- Not automatic on n-ary (uncurried) functions.
- They are of the form Ap.let (n,m) = pin ...
- feO(h)=geO(h) =
Ap-(let (n,m) = pin f((n,m)) + g((n,m))) € O(h)
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PROOF AUTOMATION

WIP: a set of tactics to elaborate the cost function
through the proof.

xcfo. [...]
xcfO (funn=3*n+12). . add_credits (An =1).[..]
[...] add_credits (An =2 *n).

[..]
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CASE STUDIES




CASE STUDIES

We used the resulting library to formalize two non-trivial
data structures:

- Dynamic Arrays, an imperative structure with
amortized O(1) costs;

- Binary Random Access Lists, a purely functional data
structure with O(logn) costs, parameter
transformation and filters on Z2.
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BINARY RANDOM ACCESS LISTS

Why a parameter transformation and filters on Z??

|AiAA

Figure 1: Induction for lookup and update
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CONCLUSION: SOME NUMBERS

- Binary Random Access Lists:
- Code: 80 lines, proof: 630 lines
- Whole complexity analysis (credits + big-0s): ~ 40%
- Reasoning on big-0s: ~ 25%
- Dynamic Arrays:
- Code: 95 lines, proof: 520 lines
- Whole complexity analysis (credits + big-0s): ~ 50%
- Reasoning on big-0s: ~ 6%)
- Size of the library: ~ 2300 lines of Coq
- dominated, idominated (definition, lemmas, tactics):
1260 lines
- Filters (definitions, instances): 730 lines
- Monotonicity (tactics): 250 lines
- SpecO (definition, lemmas, tactics): 70 lines
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