
Kindly Bent To Free Us

Gabriel Radanne Hannes Saffrich Peter Thiemann

February 3, 2020



Simplified API from the library ocaml-tls:

1 val channels : Tls.fd −→ in_channel * out_channel
2 (* Turn a file descr into input/output channels *)

1 let fd : Tls.fd = .....
2 let input, output = Tls.channels fd
3 let x = read_stuff input in
4 let () = close input in
5 ...
6 let c = write output "thing" in (*Oups*)
7 ...

The default behavior is to close the underlying file descriptor when
a channel is closed.

This bug was found in the wild, and then fixed in ocaml-tls.
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Many partial solutions

• Closures

• Monads

• Existential types

• . . .

What we really need is to enforce linearity.
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Many places in OCaml where enforcing linearity is useful:

• IO (File handle, channels, network connections, . . . )

• Protocols (With session types! Mirage libraries)

• One-shot continuations (effects!)

• Transient data-structures

• C-style “struct parsing”

• . . .

4



Goals:

• Complete and principal type inference

• Impure and strict context

• Support both functional and imperative styles

• Works well with type abstraction

Non Goals:

• Support every linear code pattern under the sun

• Design associated compiler optimisations/GC integration (yet)
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The Affe language



Let’s create an LinArray API together!

In Affe, the behavior of a variable is determined by its type:

1 module LinArray : sig
2 type (α : un) t : lin (* LinArrays are linear! *)
3 val create : int −→ α −→ α t
4 val free : α t −→ unit
5 end
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Let’s create an LinArray API together!

In Affe, the behavior of a variable is determined by its type:

1 module LinArray : sig
2 type (α : un) t : lin (* LinArrays are linear! *)
3 val create : int −→ α −→ α t
4 val free : α t −→ unit
5 end

1 let main () =
2 let a = LinArray.create 3 "foo" (* : string t *)
3 .... (* a is linear *)
4 LinArray.free a ;

No type annotation!
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Let’s create an LinArray API together!

In Affe, the behavior of a variable is determined by its type:

1 module LinArray : sig
2 type (α : un) t : lin (* LinArrays are linear! *)
3 val create : int −→ α −→ α t
4 val free : α t −→ unit
5 end

1 let main () =
2 let a = LinArray.create 3 "foo" (* : string t *)
3 .... (* a is linear *)
4 LinArray.free a ;
5 f a (* 8 No! *)
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How to read the array ?

1 module LinArray : sig
2 type (α : un) t : lin
3 val create : int −→ α −→ α t
4 val free : α t −→ unit
5 val get : α t * int −→ α (* ? *)
6 end

1 let main () =
2 let a = LinArray.create 3 "foo"
3 let x = LinArray.get (a, 2) in
4 LinArray.free a (* 8 No! *)
5 print x

This doesn’t work!
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How to read the array ?

1 module LinArray : sig
2 type (α : un) t : lin
3 val create : int −→ α −→ α t
4 val free : α t −→ unit
5 val get : α t * int −→ α * α t (* ?? *)
6 end

1 let main () =
2 let a = LinArray.create 3 "foo"
3 let x, a = LinArray.get (a, 2) in
4 LinArray.free a ;
5 print x

This works, but is inconvenient!
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How to read the array ?

1 module LinArray : sig
2 type (α : un) t : lin
3 val create : int −→ α −→ α t
4 val free : α t −→ unit
5 val get : &(α t) * int −→ α

6 end

1 let main () =
2 let a = LinArray.create 3 "foo"
3 let x = LinArray.get (&a, 2) in (* Borrow *)
4 LinArray.free a

We use borrows!

We temporarily give &a to LinArray.get.
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A recap on borrows

Borrows allow to lend usage of something to someone else.

There are different types of borrows:

• Shared borrows &a which are Unrestricted (un)

• Exclusive borrows &!a which are Affine (aff)

We cannot use a borrow of a and a itself at the same time.
A borrow must not escape.
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1 module LinArray : sig
2 type (α : un) t : lin
3 val create : int −→ α −→ α t
4 val free : α t −→ unit
5 val get : &(α t) * int −→ α

6 val set : &!(α t) * int * α −→ unit
7 end

1 let main () =
2 let a = create 3 "foo"
3 let x = get (&a, 0) ^ get (&a, 1) in
4 (* 4 Multiple Shared borrows *)
5 set (&!a, 2, x);
6 (* 4 One Exclusive borrow *)
7 free a

9



1 module LinArray : sig
2 type (α : un) t : lin
3 val create : int −→ α −→ α t
4 val free : α t −→ unit
5 val get : &(α t) * int −→ α

6 val set : &!(α t) * int * α −→ unit
7 end

1 let main () =
2 let a = create 3 "foo"
3 f (a, &a, 42)
4 (* 8 Using a and a borrow simultaneously! *)
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1 module LinArray : sig
2 type (α : un) t : lin
3 val create : int −→ α −→ α t
4 val free : α t −→ unit
5 val get : &(α t) * int −→ α

6 val set : &!(α t) * int * α −→ unit
7 end

1 let main () =
2 let a = create 3 "foo"
3 f (&!a, &a, 42)
4 (* 8 Conflicting borrows *)
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1 module LinArray : sig
2 type (α : un) t : lin
3 val create : int −→ α −→ α t
4 val free : α t −→ unit
5 val get : &(α t) * int −→ α

6 val set : &!(α t) * int * α −→ unit
7 end

A slightly bigger piece of code:

1 let mk_fib_array n =
2 let a = create n 1 in
3 for i = 2 to n - 1 do
4 let x = get (&a, i-1) + get (&a, i-2) in
5 set (&!a, i, x)
6 done;
7 a
8 # mk_fib_array : int −→ int Array.t

Still no type annotations: everything is inferred.

Borrows must not escape =⇒ What is their scope ?
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1 module LinArray : sig
2 type (α : un) t : lin
3 val create : int −→ α −→ α t
4 val free : α t −→ unit
5 val get : &(α t) * int −→ α

6 val set : &!(α t) * int * α −→ unit
7 end

A slightly bigger piece of code:

1 let mk_fib_array n =
2 let a = create n 1 in
3 for i = 2 to n - 1 do {|
4 let x = {| get (&a, i-1) + get (&a, i-2) |} in
5 set (&!,a, i) x
6 |} done;
7 a
8 # mk_fib_array : int −→ int Array.t

A borrow cannot escape a region {| .... |}.
Regions are inferred automatically, but can be manually provided.
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Closures

Closures can capture linear and affine values:

1 let a = LinArray.create 10 "foo"
2 let f i = LinArray.set(&!a,i,"bar")

If f can be used multiple times, we violate the usage of &!a.

We infer:

1 val f : int aff−−→ unit

Arrows are annotated with a kind (here, Affine) denoting their use.

−→ is equivalent to un−→.
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Inference and polymorphism

So far, we have seen limited polymorphism.

What is the type of compose ?

1 let compose f g x = f (g x)

The type of compose f g depends on the linearity of f and g.
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Inference and polymorphism

So far, we have seen limited polymorphism.

What is the type of compose ?

1 let compose f g x = f (g x)

The type of compose f g depends on the linearity of f and g.

1 val compose :

2 (β
κ1−−→ α) −→ (γ

κ2−−→ β) ?−→ γ
?−→ α

We would expect something of the form κ1 t κ2
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Inference and polymorphism

So far, we have seen limited polymorphism.

What is the type of compose ?

1 let compose f g x = f (g x)

The type of compose f g depends on the linearity of f and g.

1 val compose :
2 (κ1 ≤ κ2)⇒
3 (β

κ1−−→ α) −→ (γ
κ2−−→ β)

κ1−−→ γ
κ2−−→ α

We use kind inequalities and subkinding to express such constraints.

This type is the most general and is inferred.
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A more general API

We can now generalize LinArray to arbitrary content:

1 module LinArray : sig
2 type (α : κ) t : lin
3 val create : (α : un)⇒ int −→ α −→ α t
4 val init : (int −→ α) −→ int −→ α t
5

6 val free : (α : aff)⇒ α t −→ unit
7

8 val length : &(α t) −→ int
9

10 val get : (α : un)⇒ &(α t) * int −→ α

11 val set : (α : aff)⇒ &!(α t) * int * α −→ unit
12 end

Each operation quantifies the type of element it accepts.

What about iterations ?
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Iterators and linearity

A naive fold function only works on unrestricted elements

1 val fold :
2 (α : un)⇒ (α −→ β −→ β) −→ α LinArray.t −→ β −→ β

Ideally, we would like to borrow the element while folding . . .
But the borrow shouldn’t be captured!

1 val fold :
2 (β:κ),(κ ≤ aff r )⇒

3 (&(affr+1,α) −→ β
affr+1−−−−→ β) −→ &(κ1,α LinArray.t) −→ β

κ1−−→ β

We can express such types using region variables.
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A glimpse at the theory



A glimpse at the theory

In the rest of this talk, we will take a closer look at:

• Kinds and constraints

• Inference
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More precise syntax

Let’s clarify some syntax:

• Kind constants are composed of a “quality” (unrestricted U,
Affine A, Linear L) and a “level” n ∈ N.

• Borrows are noted &Aa (Exclusive) and &Ua (Shared).

• Borrow types are annotated with their kind: &b(k , τ).

• Regions annotated with their “nesting” and inner borrows.

Example of code:

λa.{| let x = (f &Aa) in
{|g (&Ax)|}2{x 7→A};

{|f (&Ux) (&Ux)|}2{x 7→U}
|}1{a 7→A}
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Subkinding lattice

Affe has subkinding. Kind constants respects the following lattice:

U0

A0

L0

Un

An

Ln

U∞

A∞

L∞
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Resource management

To model resource management in the theory, we consider we
consider the type R τ of content τ : U0

• create: ∀κα(α : κα). (κα ≤ U0)⇒α−→R α

• observe: ∀κκα(α : κα). (κα ≤ U0)⇒&U(κ,R α)−→α

• update:
∀κκα(α : κα). (κα ≤ U0)⇒&A(κ,R α)−→α

A−→Unit

• destroy: ∀κα(α : κα). (κα ≤ U0)⇒R α−→Unit
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Regions

Regions follow lexical scoping. For every borrow &x or &!x, We
define a region such that:

1. The region contains at least &x/&!x.

2. The region is never larger than the scope of x.

3. An exclusive borrow &!x never share a region with any other
borrow of x.

4. A use of x is never in the region of &x/&!x.
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Region inference

The region inference algorithm in practice:

λa. let x = (f &Aa) in
g (&Ax);

f (&Ux) (&Ux)
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Region inference

The region inference algorithm in practice:

λa.{| let x = (f &Aa) in
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Region inference

Another example with explicit region annotations:

let r = ref 0 in
λa. set r {|g (&Ua)|};

f (&Ua)

 

let r = ref 0 in
λa. set r {|g (&Ua)|}1{a 7→U};

{|f (&Ua)|}1{a 7→U}
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Kinds during typing

A traditional linear rule for pairs:

Γ = Γ1 n Γ2 Γ1 ` e1 : τ1 Γ2 ` e2 : τ2

Γ ` (e1, e2) : τ1 × τ2

How to take kinds into account ?

22



Kinds during typing

We propagate constraints:

C `e Γ = Γ1 n Γ2 C | Γ1 `s e1 : τ1 C | Γ2 `s e2 : τ2

C | Γ`s(e1, e2) : τ1 × τ2

And use a constraint-aware split:

(σ ≤ U∞) `e (x : σ) = (x : σ) n (x : σ) Both
True `e Bx = Bx n ∅ Left
True `e Bx = ∅ n Bx Right

...
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How to split with regions

To handle regions and borrows, we need special binders:

· `e (&Ux : σ) = (&Ux : σ) n (&Ux : σ) Borrow
· `e (x : σ) = [x : σ]nb n (x : σ) Susp
· `e (&bx : σ) = [x : σ]nU n (&bx : σ) SuspB
· `e [x : σ]b = [x : σ]nU n [x : σ]b SuspS

(&bx : σ) means a borrow is usable.

[x : σ]nb means a borrow will be usable when we enter a region.

When we enter a region {| . . . |}n{x 7→b}, we transform the binders of
x in the environment:

(bn ≤ k) ∧ (k ≤ b∞) `e [x : τ ]nb  n (&bx : &b(k, τ))
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Constraints

Constraints are a list of inequalities: (k ≤ k ′)∗

We can only use constraints in schemes:

σ ::= ∀κ∗∀(α : k)∗.(C⇒ τ) Type schemes

θ ::= ∀κ∗.(C⇒ k∗i → k) Kind schemes

We use these constraints to verify everything!
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Constraint and regions

Consider the following program :

let x = create() in
{|g (&Ax)|}n{x 7→A}

We deduce the following:

(x : τ) ∧ (&Ax : &b(k , τ)) ∧ (An ≤ k) ∧ (k ≤ A∞)

(g : &A(k, τ)
κ−→ τ ′) ∧ (τ ′ : k ′) ∧ (k ′ ≤ Ln−1)

Finally, we must verify and normalize the constraints
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Constraints Normalization

Example : λf .λx .((f x), x)

Raw constraints:

(αf : κf )(αx : κx) . . .

(αf ≤ γ
κ1−→β) ∧ (γ ≤ αx) ∧ (β ∗ αx ≤ αr ) ∧ (κx ≤ U)

We unify the types and discover new constraints:

αr = (γ
κ3−→β)

κ2−→ γ
κ1−→β ∗ γ

(κx ≤ U) ∧ (κγ ≤ κx) ∧ (κx ≤ κr ) ∧ (κβ ≤ κr ) ∧ (κ3 ≤ κf ) ∧ (κf ≤ κ1)
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(γ : κγ)(β : κβ). (γ
κ3−→β)

κ2−→ γ
κ1−→β ∗ γ

κγ = κx = U ∧ κ3 ≤ κ1

U

κx

κr

κγ κβ κ3

κf

κ1

L

κ

κ1κ2

`1`2

`1 ∧ `2
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Constraints Normalization

Normalization is complete and principal.

λf .λx .((f x), x) :

∀κβκ1κ2κ3(γ : U)(β : κβ). (κ3 ≤ κ1)⇒(γ
κ3−→β)

κ2−→ γ
κ1−→β ∗ γ
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Constraints Simplification rules

Well known simplifications on constraints:

• Replace variable in positive position by their lower bound

• Replace variable in negative position by their upper bound
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Constraints Simplification rules

Well known simplifications on constraints:

• Replace variable in positive position by their lower bound

• Replace variable in negative position by their upper bound

∀κβκ(γ : U)(β : κβ).(γ
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Constraints – Tricky bits

Some tricky bits on constraints:

• Kinds might be polymorphic, and not all instances will have
the same kinds

• Constraint solving is perf-sensitive! Adding too much power
there (notably, disjunctions) is problematic.
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Conclusion

I presented Affe:

• Support functional and imperative programming styles
thanks to linear types, borrows and regions.

• Novel use of kinds and constraints to verify these properties
• Complete and principal type inference
• Design compatible with OCaml

In the paper “Kindly bent to free us” (on Arxiv), you can find:

• Several examples of functional, imperative or mixed
programming

• Complete account of the theory:
• A “logical” version of the type system
• A resource-aware semantics and the proof of soundness
• An inference algorithm based on HM(X) and the proofs of

completeness/principality 32
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Future work

Area of future work:

• Mechanizing the formalization
=⇒ Ongoing work by Hannes Saffrich

• Design associated optimisations
=⇒ Collaboration with Guillaume Munch-Maccagnoni

• Investigate pattern matching

• Extend the expressivity further (at the price of inference ?)

Finally, this kind system should be able to support other features
(unboxing, for instance)
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Close(Talk)



Really??

Do you really think adding kinds, subkinding and qualified
types to OCaml is a good idea?

Yes, I do!

• Qualified types are coming for modular implicits anyway.

• Having proper kinds would fix many weirdness (rows, . . . ) and
enable nice extensions (units of measures).

• I could make Eliom even better with them! ,
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Constraints Extensions

Constraints in a similar style have been applied to:

• (Relaxed) value restriction

• GADTs

• Rows

• Type elaboration

• . . .
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Modules

Several distinct problematic:

• Type abstraction

• Linear/affine values in modules

• Functors

• Separate compilation
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• Type abstraction

• Linear/affine values in modules
Behave like tuples: take the LUB of the kinds of the exposed
values.
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Which kind of linearity?

• Ownership approaches

• Capabilities and typestates

• Substructural type systems

• . . .
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• Capabilities and typestates
Often use in Object-Oriented contexts (Wyvern, Plaid,
Hopkins Objects Group, . . . ).
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Which kind of linearity?

• Ownership approaches

• Capabilities and typestates

• Substructural type systems
Many variations, mostly in functional languages:

• Inspired directly from linear logic (Linear Haskell, Walker, . . . )
• Uniqueness (Clean)
• Kinds (Alms, Clean, F◦)
• Constraints (Quill)

• . . .
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Which kind of linearity?

• Ownership approaches

• Capabilities and typestates

• Substructural type systems

• . . .
Mix of everything: Mezzo
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The HM(X) framework

HM(X) (Odersky et al., 1999) is a framework to build an HM type
system (with inference) based on a given constraint system.

We provide two additions:

• A small extension of HM(X) that tracks kinds and linearity

• An appropriate constraint system
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