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Inlining in Optimizing Compilers
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Basics of inlining

Consider this program:

let f x = x + 7
in f 3 x f 4

An optimizing ompiler will inline £, giving:

(3 +7) = (4 +7)

Exposing constant folding optimization; resulting in:
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Question: how to optimize this (Haskell) program?

let f x =
let z = E3(isJust x)
in E0( case x of
Just a — El(a, z)
Nothing — E2(z) )
in f (Just 2) + f Nothing



Original program: After inlining:
let f x = let f x =
let z = E3(isJust x) let z = E3(isJust x)
in E@( case x of in E@( case x of
Just a — El(a, z) Just a — El(a, z)
Nothing — E2(z) ) Nothing — E2(z) )
in f (Just 2) + f Nothing in

(let z0@ = E3(isJust (Just 2))
in E0(case Just 2 of
Just a — El(a, z0)
Nothing — E2(z0)))
+
(let z1 = E3(isJust (Nothing))
in E@(case Nothing of
Just a — El(a, z1)
Nothing — E2(z1)))



Original program:

let f x
let z = E3(isJust x)
in E@( case x of
Just a — El(a, z)
Nothing — E2(z) )
in f (Just 2) + f Nothing

After reduction:

let f x
let z = E3(isJust x)
in E0( case x of

Just a — El(a, z)
Nothing — E2(z) )

in

(let z0 = E3(True)

in Eo( E1(2 + z0) ))
o

(let z1 = E3(False)
in E@( E2(z1) ))



Original program: After dead code elimination:
let f x = (let z0 = E3(True)
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in f (Just 2) + f Nothing
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Original program: After dead code elimination:
let f x = (let z0 = E3(True)
let z = E3(isJust x) in EQ( E1(2 + z0) ))
in E@( case x of +
Just a — El(a, z) (let z1 = E3(False)
Nothing — E2(z) ) in Eo( E2(z1) ))

in f (Just 2) + f Nothing

Problem: Duplication!

What we would really like:

let fo x0 = E0(x0@) in let f1 x1 = E3(x1) in
fo (E1(2, f1 False)) + fo (E2(f1 True))



Problems of Inlining

Traditional inlining:

e needs heuristics to avoid code explosion
e causes code duplication (loss of sharing)

e can't handle optimization across recursive calls

Underlying problem: inlining is all-or-nothing.



A Graph-Based Approach for
Partial /Incremental Inlining
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|deas:

e Represent functional programs as graphs
e Use special nodes to encode sharing contexts

e Adapt the graphs to expose optimizations,
without duplicating entire function bodies

e Reconstruct functional programs at the end



A Graph-Based Approach for Partial Inlining

|deas:

e Represent functional programs as graphs
e Use special nodes to encode sharing contexts

e Adapt the graphs to expose optimizations,
without duplicating entire function bodies

e Reconstruct functional programs at the end

Generalizes several existing optimizations.



Functional Programs as Graphs

Original program:

let f x =
let z = E3(isJust x)
in EQ( case x of
Just a — El(a, z)
Nothing — E2(z) )
in f (Just 2) + f Nothing




Beta Reduction Without Copying
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Motivating Example: Beta Reduction
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Commuting and Reducing Copy Nodes

Copying applications

«(o[])
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Commuting and Reducing Copy Nodes

Copying applications

copy/app
o) s
commuting

Resolving branches

branch red. branch red.
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u u u2
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Commuting and Reducing Copy Nodes

Copying applications

copy/app
o) s
commuting

Resolving branches

branch red. branch red.
o[ <,
(a ;é o)

(a =d)
u up

Moreover, copy nodes annihilate with drop nodes: [af] [9]u — u
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Optimizing Across Function Call Boundaries

Pushing copy nodes down:
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Optimizing Across Function Call Boundaries

Pushing copy nodes down:
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o R S o B ey TS
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Pulling branch nodes up:

Uo

branch commuting
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Motivating Example: Commuting

Nohing )
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Motivating Example: Reducing

14



Scopes and Variable Capture

=X (\y.x+y)(x+1)
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Scopes and Variable Capture

=X (\y.x+y)(x+1)

Uses “stop” nodes [|] to delimit scopes.

ii5)



More commuting for control nodes

Control nodes [i] are: “copy” [af], “drop” [@], “stop” [/]
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More commuting for control nodes

Control nodes [i] are: “copy” [af], “drop” [@], “stop” [/]

wo | [[io]...[i] @2

commuting - -

yes | no

to control /branch
-
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More commuting for control nodes

Control nodes [i] are: “copy” [af], “drop” [@], “stop” [/]

to control /branch [1li]...[ic] a7

commuting - -

to

yes | no

Copy nodes can be parameterized by a control node instruction i:

u3 QTB

Ug

payload-copy/stop

reduction
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Commuting control noes across lambdas

Instruction parameter introduced when commuting with lambda:
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Commuting control noes across lambdas

Instruction parameter introduced when commuting with lambda:

o) ()
\

\

\

control/lambda

é

commuting

[af[i]] releases i when meeting []]; drops it when meeting [2] .
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Properties of PGR

IGR formalized as A1

Theorem (Small step rewrites preserve semantics)
Reduction defined in A=} is no stronger than strong reduction in

A calculus: if Py — Py with Po WS, then U[Po] = U[P1].
Theorem (Exhaustiveness of Reduction)

U[-] is a simulation: if U[Py]| — e1 then there exists a Py such
that Py —* Py and U[P1] = e1.

Theorem (Maximal Sharing)

We do not duplicate applications: in a program’s graph after
rewriting, there will be at most as many applications as in the

original program.
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Properties of PGR

IGR formalized as A1

Theorem (Small step rewrites preserve semantics)
Reduction defined in A=} is no stronger than strong reduction in

A calculus: if Py — Py with Po WS, then U[Po] = U[P1].

Theorem (Exhaustiveness of Reduction)

U[-] is a simulation: if U[Py]| — e1 then there exists a Py such
that Py —* Py and U[P1] = e1.

Theorem (Maximal Sharing)

We do not duplicate applications: in a program’s graph after
rewriting, there will be at most as many applications as in the

original program.
Incidental result: IGR is a S-optimal evaluator
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Scheduling

Ideas:

e each copy identifier denotes a scope, in which
runtime work is shared
e copy node: function return
e drop node: function parameter
e stop node: variable capture

e reconstitute scopes as corresponding functions
e branches that cannot be solved locally use a flag
— consider: [[2] [9]]a?...

e use undefined when no argument make sense
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Scheduling

Ideas:

e each copy identifier denotes a scope, in which
runtime work is shared
e copy node: function return
e drop node: function parameter
e stop node: variable capture

e reconstitute scopes as corresponding functions
e branches that cannot be solved locally use a flag
— consider: [[2] [9]]a?...

e use undefined when no argument make sense

Example: f a = let tmp = g a in (tmp + 1, tmp - 1)

with usage:. case f a of (u,v) — u + v 19



Motivating Example: Scheduling

After scheduling:

let fo x0 = EO(x@) in
let f1 x1 = E3(x1) in
fo (E1(2, f1 False))
+ fo (E2(f1 True))
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Enabled Optimizations

Generalized optimization techniques:

e Function outlining, partial inlining
e Uncurrying and efficient multiple returns
o Call-pattern specialisation

e Return-pattern specialisation (new)
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Enabled Optimizations

Generalized optimization techniques:

e Function outlining, partial inlining
e Uncurrying and efficient multiple returns
o Call-pattern specialisation

e Return-pattern specialisation (new)
A new approach to:

e Online partial evaluation

Rewrite rule application

Handling of join points (immediate or “obvious” in the graph)

Lambda lifting and defunctionalization

Deforestation
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Uncurrying and efficient multiple returns

After reductions, P and Q have equivalent PGR representations:

P: let f x y = x f vy x
in ... f a b ... f ¢ d
Q: let f (x, y) = x : f (y, x)
in ... f (a, b) f (c, d)
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Uncurrying and efficient multiple returns

After reductions, P and Q have equivalent PGR representations:

P: let f x y = x f vy x

in ... f a b ... f ¢ d
Q: let f (x, y) = x : f (y, x)

in ... f (a, b) ... f (c, d)

Use the most efficient implementation of argument-passing
available — in Haskell, unboxed tuples:

let f (# x, vy #) = x : f (#y, x #)
in ... f (#a, b#) ... f (#c, di#)
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Return-pattern Specialisation

Out of the box: optimize across recursive calls:

maxMaybe [] = Nothing
maxMaybe (x

Xs) = case maxMaybe xs of
Just m — Just (if x > m then x else m)
Nothing — Just x
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Return-pattern Specialisation

Out of the box: optimize across recursive calls:

maxMaybe [] = Nothing

maxMaybe (x : xs) = case maxMaybe xs of
Just m — Just (if x > m then x else m)
Nothing — Just x

Program name GHC PGR + GHC
maxMaybe 136.0 (6.176) 33.41 (3.297)

(All optimized with GHC -03.)
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Online Partial Evaluation

Uses recursion markers; allows reducing recursive functions with

non-recursive subgraphs
max3 x y z = fromJust (maxMaybe [x, y, z1)
Optimized to:

max3 X y z =
let ¢ = case y > z of {True — y; False — 1z}
in case x > ¢ of {True — x; False — c}
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Online Partial Evaluation

Uses recursion markers; allows reducing recursive functions with

non-recursive subgraphs
max3 x y z = fromJust (maxMaybe [x, y, z1)
Optimized to:

max3 X y z =
let ¢ = case y > z of {True — y; False — 1z}
in case x > ¢ of {True — x; False — c}

Program name GHC PGR + GHC
max3 52.49 (1.039) 29.23 (0.191)
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Conclusions

Partial graph reduction (PGR)
makes inlining not “all-or-nothing”

Generalizes and facilitates existing optimizations,

making them more robust (no heuristics)

Uses context sharing, similar to optimal reduction

(but cannot be expressed with interaction nets due to some commutings)
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