Partial Graph Reduction: A New Optimization Technique for Higher-Order Programs

Lionel Parreaux

January 8, 2020

INRIA Paris

Inlining in Optimizing Compilers

Basics of inlining

Consider this program:

```
let f x = x + 7
in f 3 * f 4
```

Basics of inlining

Consider this program:

An optimizing ompiler will inline f, giving:

$$(3 + 7) * (4 + 7)$$

Basics of inlining

Consider this program:

```
let f x = x + 7 in f 3 * f 4
```

An optimizing ompiler will inline f, giving:

$$(3 + 7) * (4 + 7)$$

Exposing constant folding optimization; resulting in:

110

Question: how to optimize this (Haskell) program?

```
let f x = let z = E3\langleisJust x\rangle in E0\langle case x of Just a \rightarrow E1\langlea, z\rangle Nothing \rightarrow E2\langlez\rangle \rangle in f (Just 2) + f Nothing
```

Original program:

```
let f x = let z = E3\langleisJust x\rangle in E0\langle case x of Just a \rightarrow E1\langlea, z\rangle Nothing \rightarrow E2\langlez\rangle\rangle in f (Just 2) + f Nothing
```

After inlining:

```
let f x =
   let z = E3 \langle isJust x \rangle
   in E0⟨ case x of
      Just a \rightarrow E1\langlea, z\rangle
      Nothing \rightarrow E2\langle z \rangle
in
(let z0 = E3 \langle isJust (Just 2) \rangle
      in E0 case Just 2 of
         Just a \rightarrow E1\langlea, z0\rangle
         Nothing \rightarrow E2(z0))
(let z1 = E3\langleisJust (Nothing)\rangle
      in E0 case Nothing of
         Just a \rightarrow E1\langle a, z1 \rangle
         Nothing \rightarrow E2\langle z1 \rangle \rangle)
```

Original program:

```
let f x = let z = E3\langleisJust x\rangle in E0\langle case x of Just a \rightarrow E1\langlea, z\rangle Nothing \rightarrow E2\langlez\rangle \rangle in f (Just 2) + f Nothing
```

After reduction:

```
let f x =
  let z = E3⟨isJust x⟩
  in E0⟨ case x of
    Just a → E1⟨a, z⟩
    Nothing → E2⟨z⟩ ⟩

in
(let z0 = E3⟨True⟩
  in E0⟨ E1⟨2 + z0⟩ ⟩)
+
(let z1 = E3⟨False⟩
  in E0⟨ E2⟨z1⟩ ⟩)
```

Original program:

```
let f x =
   let z = E3 \langle isJust x \rangle
   in E\emptyset \langle case \times of
      Just a \rightarrow E1\langle a, z \rangle (let z1 = E3\langle False \rangle
      Nothing \rightarrow E2\langle z \rangle
in f (Just 2) + f Nothing
```

After dead code elimination:

```
(let z0 = E3 \langle True \rangle
    in E0 \langle E1 \langle 2 + z0 \rangle \rangle)
in E0\langle E2\langlez1\rangle\rangle)
```

Original program:

```
let f x = let z = E3\langleisJust x\rangle in E0\langle case x of Just a \rightarrow E1\langlea, z\rangle Nothing \rightarrow E2\langlez\rangle \rangle in f (Just 2) + f Nothing
```

After dead code elimination:

```
(let z0 = E3⟨True⟩

in E0⟨ E1⟨2 + z0⟩ ⟩)

+

(let z1 = E3⟨False⟩

in E0⟨ E2⟨z1⟩ ⟩)
```

Problem: Duplication!

Original program:

```
let f x =
   let z = E3 \langle isJust x \rangle
   in E0\langle case \times of
      Just a \rightarrow E1\langle a, z \rangle (let z1 = E3\langleFalse\rangle
      Nothing \rightarrow E2\langle z \rangle
in f (Just 2) + f Nothing
```

After dead code elimination:

```
(let z0 = E3 \langle True \rangle
    in E0 \langle E1 \langle 2 + z0 \rangle \rangle)
in E0\langle E2\langlez1\rangle\rangle)
```

Problem: Duplication!

What we would really like:

```
let f0 x0 = E0\langlex0\rangle in let f1 x1 = E3\langlex1\rangle in
f0 (E1\langle 2, f1 | False \rangle) + f0 (E2\langle f1 | True \rangle)
```

Problems of Inlining

Traditional inlining:

- needs heuristics to avoid code explosion
- causes code duplication (loss of sharing)
- can't handle optimization across recursive calls

Underlying problem: inlining is all-or-nothing.

A Graph-Based Approach for

Partial/Incremental Inlining

A Graph-Based Approach for Partial Inlining

Ideas:

- Represent functional programs as graphs
- Use special nodes to encode sharing contexts
- Adapt the graphs to expose optimizations, without duplicating entire function bodies
- Reconstruct functional programs at the end

A Graph-Based Approach for Partial Inlining

Ideas:

- Represent functional programs as graphs
- Use special nodes to encode sharing contexts
- Adapt the graphs to expose optimizations, without duplicating entire function bodies
- Reconstruct functional programs at the end

Generalizes several existing optimizations.

Functional Programs as Graphs

Original program:

```
let f x = let z = E3\langleisJust x\rangle in E0\langle case x of Just a \rightarrow E1\langlea, z\rangle Nothing \rightarrow E2\langlez\rangle \rangle in f (Just 2) + f Nothing
```


Beta Reduction Without Copying

Beta Reduction Without Copying

Motivating Example: Beta Reduction

Commuting and Reducing Copy Nodes

Copying applications

Commuting and Reducing Copy Nodes

Copying applications

Resolving branches

Commuting and Reducing Copy Nodes

Copying applications

Resolving branches

Moreover, copy nodes annihilate with drop nodes: $[\alpha \uparrow] [\varnothing] u \to u$

Optimizing Across Function Call Boundaries

Pushing copy nodes down:

Optimizing Across Function Call Boundaries

Pushing copy nodes down:

Pulling branch nodes up:

Motivating Example: Commuting

Motivating Example: Reducing

Scopes and Variable Capture

$$f_1 = \lambda x. (\lambda y. x + y) (x + 1)$$

Scopes and Variable Capture

Scopes and Variable Capture

Uses "stop" nodes $[\downarrow]$ to delimit scopes.

More commuting for control nodes

Control nodes [i] are: "copy" $[\alpha \uparrow]$, "drop" $[\varnothing]$, "stop" $[\downarrow]$

More commuting for control nodes

Control nodes [i] are: "copy" $[\alpha \uparrow]$, "drop" $[\varnothing]$, "stop" $[\downarrow]$

More commuting for control nodes

Control nodes [i] are: "copy" $[\alpha \uparrow]$, "drop" $[\varnothing]$, "stop" $[\downarrow]$

Copy nodes can be parameterized by a control node instruction i:

Commuting control noes across lambdas

Instruction parameter introduced when commuting with lambda:

Commuting control noes across lambdas

Instruction parameter introduced when commuting with lambda:

 $[\alpha \!\!\uparrow\!\! [i]]$ releases i when meeting $[\downarrow]$; drops it when meeting $[\varnothing]$.

Properties of PGR

IGR formalized as $\lambda^{\{\mapsto\}}$.

Theorem (Small step rewrites preserve semantics)

Reduction defined in $\lambda^{\{\mapsto\}}$ is no stronger than strong reduction in λ calculus: if $\mathbf{P}_0 \to \mathbf{P}_1$ with \mathbf{P}_0 VVS, then $\mathcal{U}[\![\mathbf{P}_0]\!] \equiv \mathcal{U}[\![\mathbf{P}_1]\!]$.

Theorem (Exhaustiveness of Reduction)

 $\mathcal{U}[\![\cdot]\!]$ is a simulation: if $\mathcal{U}[\![P_0]\!] \to e_1$ then there exists a P_1 such that $P_0 \to^* P_1$ and $\mathcal{U}[\![P_1]\!] = e_1$.

Theorem (Maximal Sharing)

We do not duplicate applications: in a program's graph after rewriting, there will be at most as many applications as in the original program.

Properties of PGR

IGR formalized as $\lambda^{\{\mapsto\}}$.

Theorem (Small step rewrites preserve semantics)

Reduction defined in $\lambda^{\{\mapsto\}}$ is no stronger than strong reduction in λ calculus: if $\mathbf{P}_0 \to \mathbf{P}_1$ with \mathbf{P}_0 VVS, then $\mathcal{U}[\![\mathbf{P}_0]\!] \equiv \mathcal{U}[\![\mathbf{P}_1]\!]$.

Theorem (Exhaustiveness of Reduction)

 $\mathcal{U}[\![\cdot]\!]$ is a simulation: if $\mathcal{U}[\![P_0]\!] \to e_1$ then there exists a P_1 such that $P_0 \to^* P_1$ and $\mathcal{U}[\![P_1]\!] = e_1$.

Theorem (Maximal Sharing)

We do not duplicate applications: in a program's graph after rewriting, there will be at most as many applications as in the original program.

Incidental result: IGR is a β -optimal evaluator

Scheduling

Ideas:

- each copy identifier denotes a scope, in which runtime work is shared
 - copy node: function return
 - drop node: function parameter
 - stop node: variable capture
- reconstitute scopes as corresponding functions
- branches that cannot be solved locally use a flag
 - consider: $[[\varnothing] \ [\varnothing]] \alpha$?...
- use undefined when no argument make sense

Scheduling

Ideas:

- each copy identifier denotes a scope, in which runtime work is shared
 - copy node: function return
 - drop node: function parameter
 - stop node: variable capture
- reconstitute scopes as corresponding functions
- branches that cannot be solved locally use a flag
 - consider: $[[\varnothing] \ [\varnothing]] \alpha$?...
- use undefined when no argument make sense

```
Example: f a = let tmp = g a in (tmp + 1, tmp - 1) with usage: case f a of (u,v) \rightarrow u + v
```

Motivating Example: Scheduling

After scheduling:

```
let f0 x0 = E0\langlex0\rangle in
let f1 x1 = E3\langlex1\rangle in
f0 (E1\langle2, f1 False\rangle)
+ f0 (E2\langlef1 True\rangle)
```

Enabled Optimizations

Generalized optimization techniques:

- Function outlining, partial inlining
- Uncurrying and efficient multiple returns
- Call-pattern specialisation
- Return-pattern specialisation (new)

Enabled Optimizations

Generalized optimization techniques:

- Function outlining, partial inlining
- Uncurrying and efficient multiple returns
- Call-pattern specialisation
- Return-pattern specialisation (new)

A new approach to:

- Online partial evaluation
- Rewrite rule application
- Handling of join points (immediate or "obvious" in the graph)
- Lambda lifting and defunctionalization
- Deforestation

Uncurrying and efficient multiple returns

After reductions, P and Q have equivalent PGR representations:

```
P: let f x y = x : f y x

in ... f a b ... f c d ...

Q: let f (x, y) = x : f (y, x)

in ... f (a, b) ... f (c, d) ...
```

Uncurrying and efficient multiple returns

After reductions, P and Q have equivalent PGR representations:

```
P: let f x y = x : f y x

in ... f a b ... f c d ...

Q: let f (x, y) = x : f (y, x)

in ... f (a, b) ... f (c, d) ...
```

Use the most efficient implementation of argument-passing available — in Haskell, unboxed tuples:

```
let f (# x, y #) = x : f (# y, x #)
in ... f (# a, b #) ... f (# c, d #) ...
```

Return-pattern Specialisation

Out of the box: optimize across recursive calls:

Return-pattern Specialisation

Out of the box: optimize across recursive calls:

Program name	GHC	PGR + GHC
maxMaybe	136.0 (6.176)	33.41 (3.297)

(All optimized with GHC -O3.)

Online Partial Evaluation

Uses recursion markers; allows reducing recursive functions with non-recursive subgraphs

```
max3 x y z = fromJust (maxMaybe [x, y, z])
```

Optimized to:

Online Partial Evaluation

Uses recursion markers; allows reducing recursive functions with non-recursive subgraphs

```
max3 x y z = fromJust (maxMaybe [x, y, z])
```

Optimized to:

Program name	GHC	PGR + GHC
max3	52.49 (1.039)	29.23 (0.191)

Conclusions

Partial graph reduction (PGR)
makes inlining not "all-or-nothing"

Generalizes and facilitates existing optimizations, making them more robust (no heuristics)

Uses context sharing, similar to optimal reduction

(but cannot be expressed with interaction nets due to some commutings)