Partial Graph Reduction:
A New Optimization Technique
for Higher-Order Programs

Lionel Parreaux
January 8, 2020

INRIA Paris

Inlining in Optimizing Compilers

Basics of inlining

Consider this program:

let f x = x + 7
in f 3 x f 4

Basics of inlining

Consider this program:

let f x = x + 7
in f 3 x f 4

An optimizing ompiler will inline £, giving:

(3 +7) = (4 +7)

Basics of inlining

Consider this program:

let f x = x + 7
in f 3 x f 4

An optimizing ompiler will inline £, giving:

(3 +7) = (4 +7)

Exposing constant folding optimization; resulting in:

110

Question: how to optimize this (Haskell) program?

let f x =
let z = E3(isJust x)
in E0(case x of
Just a — El(a, z)
Nothing — E2(z))
in f (Just 2) + f Nothing

Original program: After inlining:
let f x = let f x =
let z = E3(isJust x) let z = E3(isJust x)
in E@(case x of in E@(case x of
Just a — El(a, z) Just a — El(a, z)
Nothing — E2(z)) Nothing — E2(z))
in f (Just 2) + f Nothing in

(let z0@ = E3(isJust (Just 2))
in E0(case Just 2 of
Just a — El(a, z0)
Nothing — E2(z0)))
+
(let z1 = E3(isJust (Nothing))
in E@(case Nothing of
Just a — El(a, z1)
Nothing — E2(z1)))

Original program:

let f x
let z = E3(isJust x)
in E@(case x of
Just a — El(a, z)
Nothing — E2(z))
in f (Just 2) + f Nothing

After reduction:

let f x
let z = E3(isJust x)
in E0(case x of

Just a — El(a, z)
Nothing — E2(z))

in

(let z0 = E3(True)

in Eo(E1(2 + z0)))
o

(let z1 = E3(False)
in E@(E2(z1)))

Original program: After dead code elimination:
let f x = (let z0 = E3(True)
let z = E3(isJust x) in EQ(E1(2 + z0)))
in E@(case x of +
Just a — El(a, z) (let z1 = E3(False)
Nothing — E2(z)) in Eo(E2(z1)))

in f (Just 2) + f Nothing

Original program: After dead code elimination:
let f x = (let z0 = E3(True)
let z = E3(isJust x) in EQ(E1(2 + z0)))
in E@(case x of +
Just a — El(a, z) (let z1 = E3(False)
Nothing — E2(z)) in Eo(E2(z1)))

in f (Just 2) + f Nothing

Problem: Duplication!

Original program: After dead code elimination:
let f x = (let z0 = E3(True)
let z = E3(isJust x) in EQ(E1(2 + z0)))
in E@(case x of +
Just a — El(a, z) (let z1 = E3(False)
Nothing — E2(z)) in Eo(E2(z1)))

in f (Just 2) + f Nothing

Problem: Duplication!

What we would really like:

let fo x0 = E0(x0@) in let f1 x1 = E3(x1) in
fo (E1(2, f1 False)) + fo (E2(f1 True))

Problems of Inlining

Traditional inlining:

e needs heuristics to avoid code explosion
e causes code duplication (loss of sharing)

e can't handle optimization across recursive calls

Underlying problem: inlining is all-or-nothing.

A Graph-Based Approach for
Partial /Incremental Inlining

A Graph-Based Approach for Partial Inlining

|deas:

e Represent functional programs as graphs
e Use special nodes to encode sharing contexts

e Adapt the graphs to expose optimizations,
without duplicating entire function bodies

e Reconstruct functional programs at the end

A Graph-Based Approach for Partial Inlining

|deas:

e Represent functional programs as graphs
e Use special nodes to encode sharing contexts

e Adapt the graphs to expose optimizations,
without duplicating entire function bodies

e Reconstruct functional programs at the end

Generalizes several existing optimizations.

Functional Programs as Graphs

Original program:

let f x =
let z = E3(isJust x)
in EQ(case x of
Just a — El(a, z)
Nothing — E2(z))
in f (Just 2) + f Nothing

Beta Reduction Without Copying

B

b —
'\ (copying)
(]
a

%
(non-copying)

Beta Reduction Without Copying

u

I
]
| b
(/D (copying)

b

ﬁg

R
N

B

%
(non-copying)

Motivating Example: Beta Reduction

10

Commuting and Reducing Copy Nodes

Copying applications

«(o[])
ol [Jn —rs e[[

commuting !

11

Commuting and Reducing Copy Nodes

Copying applications

copy/app
o) s
commuting

Resolving branches

branch red. branch red.
ofi] s, el
(a =d) (a#)

u u u2

11

Commuting and Reducing Copy Nodes

Copying applications

copy/app
o) s
commuting

Resolving branches

branch red. branch red.
o[<,
(a ;é o)

(a =d)
u up

Moreover, copy nodes annihilate with drop nodes: [af] [9]u — u

11

Optimizing Across Function Call Boundaries

Pushing copy nodes down:

)
u u
to ! exposing a redex 0

R (= oy W BT

via commuting

[isJust

12

Optimizing Across Function Call Boundaries

Pushing copy nodes down:

)
u u
to ! exposing a redex 0

o R S o B ey TS

via commuting

[isJust

Pulling branch nodes up:

Uo

branch commuting

12

Motivating Example: Commuting

Nohing)

13

Motivating Example: Reducing

14

Scopes and Variable Capture

=X (\y.x+y)(x+1)

ii5)

Scopes and Variable Capture

=X (\y.x+y)(x+1)

ii5)

Scopes and Variable Capture

=X (\y.x+y)(x+1)

Uses “stop” nodes [|] to delimit scopes.

ii5)

More commuting for control nodes

Control nodes [i] are: “copy” [af], “drop” [@], “stop” [/]

16

More commuting for control nodes

Control nodes [i] are: “copy” [af], “drop” [@], “stop” [/]

wo | [[io]...[i] @2

commuting - -

yes | no

to control /branch
-

16

More commuting for control nodes

Control nodes [i] are: “copy” [af], “drop” [@], “stop” [/]

to control /branch [1li]...[ic] a7

commuting - -

to

yes | no

Copy nodes can be parameterized by a control node instruction i:

u3 QTB

Ug

payload-copy/stop

reduction

16

Commuting control noes across lambdas

Instruction parameter introduced when commuting with lambda:

o) ()

é

1
1
1
control/lambda !
1
) commuting U

\
\

\

17

Commuting control noes across lambdas

Instruction parameter introduced when commuting with lambda:

o) ()
\

\

\

control/lambda

é

commuting

[af[i]] releases i when meeting []]; drops it when meeting [2] .

17

Properties of PGR

IGR formalized as A1

Theorem (Small step rewrites preserve semantics)
Reduction defined in A=} is no stronger than strong reduction in

A calculus: if Py — Py with Po WS, then U[Po] = U[P1].
Theorem (Exhaustiveness of Reduction)

U[-] is a simulation: if U[Py]| — e1 then there exists a Py such
that Py —* Py and U[P1] = e1.

Theorem (Maximal Sharing)

We do not duplicate applications: in a program’s graph after
rewriting, there will be at most as many applications as in the

original program.

18

Properties of PGR

IGR formalized as A1

Theorem (Small step rewrites preserve semantics)
Reduction defined in A=} is no stronger than strong reduction in

A calculus: if Py — Py with Po WS, then U[Po] = U[P1].

Theorem (Exhaustiveness of Reduction)

U[-] is a simulation: if U[Py]| — e1 then there exists a Py such
that Py —* Py and U[P1] = e1.

Theorem (Maximal Sharing)

We do not duplicate applications: in a program’s graph after
rewriting, there will be at most as many applications as in the

original program.
Incidental result: IGR is a S-optimal evaluator

18

Scheduling

Ideas:

e each copy identifier denotes a scope, in which
runtime work is shared
e copy node: function return
e drop node: function parameter
e stop node: variable capture

e reconstitute scopes as corresponding functions
e branches that cannot be solved locally use a flag
— consider: [[2] [9]]a?...

e use undefined when no argument make sense

19

Scheduling

Ideas:

e each copy identifier denotes a scope, in which
runtime work is shared
e copy node: function return
e drop node: function parameter
e stop node: variable capture

e reconstitute scopes as corresponding functions
e branches that cannot be solved locally use a flag
— consider: [[2] [9]]a?...

e use undefined when no argument make sense

Example: f a = let tmp = g a in (tmp + 1, tmp - 1)

with usage:. case f a of (u,v) — u + v 19

Motivating Example: Scheduling

After scheduling:

let fo x0 = EO(x@) in
let f1 x1 = E3(x1) in
fo (E1(2, f1 False))
+ fo (E2(f1 True))

20

Enabled Optimizations

Generalized optimization techniques:

e Function outlining, partial inlining
e Uncurrying and efficient multiple returns
o Call-pattern specialisation

e Return-pattern specialisation (new)

21

Enabled Optimizations

Generalized optimization techniques:

e Function outlining, partial inlining
e Uncurrying and efficient multiple returns
o Call-pattern specialisation

e Return-pattern specialisation (new)
A new approach to:

e Online partial evaluation

Rewrite rule application

Handling of join points (immediate or “obvious” in the graph)

Lambda lifting and defunctionalization

Deforestation

21

Uncurrying and efficient multiple returns

After reductions, P and Q have equivalent PGR representations:

P: let f x y = x f vy x
in ... f a b ... f ¢ d
Q: let f (x, y) = x : f (y, x)
in ... f (a, b) f (c, d)

22

Uncurrying and efficient multiple returns

After reductions, P and Q have equivalent PGR representations:

P: let f x y = x f vy x

in ... f a b ... f ¢ d
Q: let f (x, y) = x : f (y, x)

in ... f (a, b) ... f (c, d)

Use the most efficient implementation of argument-passing
available — in Haskell, unboxed tuples:

let f (# x, vy #) = x : f (#y, x #)
in ... f (#a, b#) ... f (#c, di#)

22

Return-pattern Specialisation

Out of the box: optimize across recursive calls:

maxMaybe [] = Nothing
maxMaybe (x

Xs) = case maxMaybe xs of
Just m — Just (if x > m then x else m)
Nothing — Just x

23

Return-pattern Specialisation

Out of the box: optimize across recursive calls:

maxMaybe [] = Nothing

maxMaybe (x : xs) = case maxMaybe xs of
Just m — Just (if x > m then x else m)
Nothing — Just x

Program name GHC PGR + GHC
maxMaybe 136.0 (6.176) 33.41 (3.297)

(All optimized with GHC -03.)

23

Online Partial Evaluation

Uses recursion markers; allows reducing recursive functions with

non-recursive subgraphs
max3 x y z = fromJust (maxMaybe [x, y, z1)
Optimized to:

max3 X y z =
let ¢ = case y > z of {True — y; False — 1z}
in case x > ¢ of {True — x; False — c}

24

Online Partial Evaluation

Uses recursion markers; allows reducing recursive functions with

non-recursive subgraphs
max3 x y z = fromJust (maxMaybe [x, y, z1)
Optimized to:

max3 X y z =
let ¢ = case y > z of {True — y; False — 1z}
in case x > ¢ of {True — x; False — c}

Program name GHC PGR + GHC
max3 52.49 (1.039) 29.23 (0.191)

24

Conclusions

Partial graph reduction (PGR)
makes inlining not “all-or-nothing”

Generalizes and facilitates existing optimizations,

making them more robust (no heuristics)

Uses context sharing, similar to optimal reduction

(but cannot be expressed with interaction nets due to some commutings)

25

	Inlining in Optimizing Compilers
	A Graph-Based Approach for Partial/Incremental Inlining

