
Stephanie Balzer, Ankush Das, Jan Hoffmann, and Frank Pfenning

Nomos: Resource-Aware Session Types for  
Programming Digital Contracts

Inria Paris

Programming language
developed at Carnegie Mellon

With some slides
from Ankush.

Digital Contracts (or Smart Contracts)

Smart contracts (Ethereum): programs stored on a blockchain

• Carry out (financial) transactions between (untrusted) agents

• Cannot be modified but have state

‣ Community needs to reach consensus on the result of execution

‣ Users need to pay for the execution cost upfront

Digital Contracts (or Smart Contracts)

Smart contracts (Ethereum): programs stored on a blockchain

• Carry out (financial) transactions between (untrusted) agents

• Cannot be modified but have state

‣ Community needs to reach consensus on the result of execution

‣ Users need to pay for the execution cost upfront

smart contract

user miner
money (estimated gas cost)

transaction

new block

sufficient
gas?remaining gas

Bugs in Digital Contracts are Expensive

• Bugs result in financial disasters (DAO, Parity Wallet, King of Ether, …)

• Bugs are difficult to fix because they alter the contract

Can Programming Languages Prevent Bugs?

Can Programming Languages Prevent Bugs?
Yes!

Can Programming Languages Prevent Bugs?

Example: memory safety

• Most security vulnerabilities are based on memory safety issues 
(Microsoft: 70% over past in the past 12 years in MS products)

• Why stick with unsafe languages? 
Legacy code, developers (training, social factors, …)

Yes!

Can Programming Languages Prevent Bugs?

Example: memory safety

• Most security vulnerabilities are based on memory safety issues 
(Microsoft: 70% over past in the past 12 years in MS products)

• Why stick with unsafe languages? 
Legacy code, developers (training, social factors, …)

Yes!

Languages for Digital Contracts

• Great opportunity to start from a clean slate

• Correctness and readability of contracts are priorities

Can Programming Languages Prevent Bugs?

Example: memory safety

• Most security vulnerabilities are based on memory safety issues 
(Microsoft: 70% over past in the past 12 years in MS products)

• Why stick with unsafe languages? 
Legacy code, developers (training, social factors, …)

Yes!

Languages for Digital Contracts

• Great opportunity to start from a clean slate

• Correctness and readability of contracts are priorities

Nomos

• Build on state-of-the art: statically-typed, strict, functional language

• Address domain-specific issues

Domain Specific Bugs: Auction Contract

status: running

Domain Specific Bugs: Auction Contract

Bidder 1

Bidder 3

Bidder 2

Bid 1

Bid 2

Bid 3

status: running

Domain Specific Bugs: Auction Contract

Bidder 1

Bidder 3

Bidder 2

Bid 1

Bid 2

Bid 3

status: running

Domain Specific Bugs: Auction Contract

Bidder 1

Bidder 3

Bidder 2

Bid 1

Bid 2

Bid 3

status: ended

Domain Specific Bugs: Auction Contract

Bidder 1

Bidder 3

Bidder 2

Bid 1

Bid 2

Bid 3

status: ended

Domain Specific Bugs: Auction Contract

Bidder 1

Bidder 3

Bidder 2

Bid 1

Bid 2 Bid 3

status: ended

Auction Contract in Solidity

Auction in Solidity

Auction in Solidity

Auction in Solidity

What happens if
collect is called when
auction is running?

Auction in Solidity

What happens if
collect is called when
auction is running?

add require (status == ended);

Auction in Solidity

What happens if
collect is called when
auction is running?

add require (status == ended);

Protocol is not
statically enforced!

Auction in Solidity

Auction in Solidity

Auction in Solidity

What happens if
collect is called

twice?

Auction in Solidity

What happens if
collect is called

twice?

set pendingReturns[msg.sender] = 0

Auction in Solidity

What happens if
collect is called

twice?

set pendingReturns[msg.sender] = 0

Linearity is not
enforced!

Auction in Solidity

Auction in Solidity

Auction in Solidity

Method ‘send’ potentially
transfers control to other

contract.

Auction in Solidity

Method ‘send’ potentially
transfers control to other

contract.

‘send’ should be the last instruction.

Auction in Solidity

Method ‘send’ potentially
transfers control to other

contract.

‘send’ should be the last instruction.

Re-entrancy attack

Auction in Solidity

Auction in Solidity

Auction in Solidity

Method ‘send’ potentially
transfers control to other

contract.

Auction in Solidity

Method ‘send’ potentially
transfers control to other

contract.

Need to check return value of ‘send’.

Auction in Solidity

Method ‘send’ potentially
transfers control to other

contract.

Need to check return value of ‘send’.

Out-of-gas exception.

Bugs in Digital Contracts are Expensive

• Bugs result in financial disasters (DAO, Parity Wallet, King of Ether, …)

• Bugs are difficult to fix because they alter the contract

Parity Wallet: Unintended Interaction

Bug: Initialization function could be called by unauthorized user

• Ownership of the wallet could be changed after initialization

• Funds can be extracted by owner

• Damage: ~$280 million

Problem: Interaction protocol with contracts

• Protocols of interaction not explicit in the language

• Protocols of interaction not enforced

The DAO: Reentrancy

Bug: Function can be called again during its ongoing execution

• A money transfer to a contract triggers a function call

• The called function can call the function that initiated the transfer

➡ DAO: money gets transferred without updating the balance

Problem 2: Failure to keep track of assets

‣ Incorrect book-keeping of stored founds (returned payment)

Problem 1: Unnecessary permissiveness in communication

‣ Violation of function invariants

Domain-Specific Issues with Digital Contracts

1. Resource consumption (gas cost)

• Participants have to agree on the result of a computation

➡ Denial of service attacks

➡ Would like to have static gas bounds

Domain-Specific Issues with Digital Contracts

1. Resource consumption (gas cost)

• Participants have to agree on the result of a computation

➡ Denial of service attacks

➡ Would like to have static gas bounds

2. Contract protocols and interfaces

• Contract protocols should be described and enforced

➡ Prevent issues like reentrancy bugs (DAO)

Domain-Specific Issues with Digital Contracts

1. Resource consumption (gas cost)

• Participants have to agree on the result of a computation

➡ Denial of service attacks

➡ Would like to have static gas bounds

2. Contract protocols and interfaces

• Contract protocols should be described and enforced

➡ Prevent issues like reentrancy bugs (DAO)

3. Keeping track of assets (crypto coins)

• Assets should not be duplicated

• Assets should not be lost

Nomos: A Type-Based Approach

A statically-typed, strict, functional language

• Functional fragment of ML

Additional features for domain-specific requirements

Language feature Expertise

Gas bounds Automatic amortized resource analysis Jan Hoffmann

Tracking assets Linear type system Frank Pfenning

Contract interfaces Shared binary session types Stephanie Balzer 
Frank Pfenning

Lead developer:
Ankush Das

Nomos: A Type-Based Approach

A statically-typed, strict, functional language

• Functional fragment of ML

Additional features for domain-specific requirements

Language feature Expertise

Gas bounds Automatic amortized resource analysis Jan Hoffmann

Tracking assets Linear type system Frank Pfenning

Contract interfaces Shared binary session types Stephanie Balzer 
Frank Pfenning

Lead developer:
Ankush Das

Based on a linear type system

1. Automatic amortized resource analysis (AARA)

 Resource Bound Analysis

Given: A (functional) program P

Question: What is the (worst-case) resource
consumption of P as a function of
the size of its inputs?

 Resource Bound Analysis

Given: A (functional) program P

Question: What is the (worst-case) resource
consumption of P as a function of
the size of its inputs?

Clock cycles, heap
space, gas, ...

 Resource Bound Analysis

Given: A (functional) program P

Question: What is the (worst-case) resource
consumption of P as a function of
the size of its inputs?

Clock cycles, heap
space, gas, ...

Not only
asymptotic bounds

but concrete
constant factors.

 Resource Bound Analysis

Given: A (functional) program P

Question: What is the (worst-case) resource
consumption of P as a function of
the size of its inputs?

Clock cycles, heap
space, gas, ...

Not only
asymptotic bounds

but concrete
constant factors.

Automatic

 Resource Bound Analysis

Given: A (functional) program P

Question: What is the (worst-case) resource
consumption of P as a function of
the size of its inputs?

Clock cycles, heap
space, gas, ...

Not only
asymptotic bounds

but concrete
constant factors.

Automatic

Goal: produce proofs
(easily checkable)

• Assign potential functions to data structures

➡ States are mapped to non-negative numbers

• Potential pays the resource consumption and
the potential at the following program point

• Initial potential is an upper bound

AARA: Use Potential Method

�(state) � 0

�(before) � �(after) + cost

�(initial state) �
P

cost

telescoping

• Assign potential functions to data structures

➡ States are mapped to non-negative numbers

• Potential pays the resource consumption and
the potential at the following program point

• Initial potential is an upper bound

AARA: Use Potential Method

�(state) � 0

�(before) � �(after) + cost

�(initial state) �
P

cost

Type systems for automatic analysis

• Fix a format of potential functions (basis like in linear algebra)

• Type rules introduce linear constraint on coefficients

telescoping

• Assign potential functions to data structures

➡ States are mapped to non-negative numbers

• Potential pays the resource consumption and
the potential at the following program point

• Initial potential is an upper bound

AARA: Use Potential Method

�(state) � 0

�(before) � �(after) + cost

�(initial state) �
P

cost

Type systems for automatic analysis

• Fix a format of potential functions (basis like in linear algebra)

• Type rules introduce linear constraint on coefficients

telescoping

Clear soundness theorem.
Compositional. Efficient inference.

Example: Append for Persistent Lists

Heap-space usage is 2n if

‣ n is the length of list x

‣ One list element requires two heap cells 
(data and pointer)

append(x,y)

Example: Append for Persistent Lists

Heap-space usage is 2n if

‣ n is the length of list x

‣ One list element requires two heap cells 
(data and pointer)

Example evaluation:

append(x,y)

Example: Append for Persistent Lists

c

b

x a y d

e

Heap-space usage is 2n if

‣ n is the length of list x

‣ One list element requires two heap cells 
(data and pointer)

Example evaluation:

append(x,y)

Example: Append for Persistent Lists

c

b

x a y d

e

c

Heap-space usage is 2n if

‣ n is the length of list x

‣ One list element requires two heap cells 
(data and pointer)

Example evaluation:

append(x,y)

Example: Append for Persistent Lists

c

b

x a y d

e

c b

Heap-space usage is 2n if

‣ n is the length of list x

‣ One list element requires two heap cells 
(data and pointer)

Example evaluation:

append(x,y)

Example: Append for Persistent Lists

c

b

x a y d

e

c b a

Heap-space usage is 2n if

‣ n is the length of list x

‣ One list element requires two heap cells 
(data and pointer)

Example evaluation:

append(x,y)

Example: Append for Persistent Lists

c

b

x a y d

e

c b a append(x,y)

Heap-space usage is 2n if

‣ n is the length of list x

‣ One list element requires two heap cells 
(data and pointer)

Example evaluation:

append(x,y)

Example: Append for Persistent Lists

c

b

x a y d

e

c b a append(x,y)

Heap usage: 2*n = 2*3 = 6

Heap-space usage is 2n if

‣ n is the length of list x

‣ One list element requires two heap cells 
(data and pointer)

Example evaluation:

append(x,y)

Example: Composing Calls of Append
Heap usage of f(x,y,z) is 2n + 2(n+m) if

‣ n is the length of list x

‣ m is the length of list y

f(x,y,z) =
 let t = append(x,y) in
 append(t,z)

Example: Composing Calls of Append

c

b

x a y d

e

Initial potential: 4*n + 2*m = 4*3 + 2*2 = 16

4

4

4

2

2

z f

Heap usage of f(x,y,z) is 2n + 2(n+m) if

‣ n is the length of list x

‣ m is the length of list y

f(x,y,z) =
 let t = append(x,y) in
 append(t,z)

Example: Composing Calls of Append

c

b

x a y d

e

Initial potential: 4*n + 2*m = 4*3 + 2*2 = 16

4

4

4

append(x,y)
2

2

z f

Heap usage of f(x,y,z) is 2n + 2(n+m) if

‣ n is the length of list x

‣ m is the length of list y

f(x,y,z) =
 let t = append(x,y) in
 append(t,z)

Example: Composing Calls of Append

c

b

x a y d

e

Initial potential: 4*n + 2*m = 4*3 + 2*2 = 16

4

4
append(x,y)

2

2

z f

c
2

Heap usage of f(x,y,z) is 2n + 2(n+m) if

‣ n is the length of list x

‣ m is the length of list y

f(x,y,z) =
 let t = append(x,y) in
 append(t,z)

Example: Composing Calls of Append

c

b

x a y d

e

Initial potential: 4*n + 2*m = 4*3 + 2*2 = 16

4
append(x,y)

2

2

z f

c
2

b
2

Heap usage of f(x,y,z) is 2n + 2(n+m) if

‣ n is the length of list x

‣ m is the length of list y

f(x,y,z) =
 let t = append(x,y) in
 append(t,z)

Example: Composing Calls of Append

c

b

x a y d

e

Initial potential: 4*n + 2*m = 4*3 + 2*2 = 16

append(x,y)
2

2

z f

c
2

b
2

a
2

Heap usage of f(x,y,z) is 2n + 2(n+m) if

‣ n is the length of list x

‣ m is the length of list y

f(x,y,z) =
 let t = append(x,y) in
 append(t,z)

Example: Composing Calls of Append

c

b

x a y d

e

t

Initial potential: 4*n + 2*m = 4*3 + 2*2 = 16

2

2

z f

c
2

b
2

a
2

Heap usage of f(x,y,z) is 2n + 2(n+m) if

‣ n is the length of list x

‣ m is the length of list y

f(x,y,z) =
 let t = append(x,y) in
 append(t,z)

Example: Composing Calls of Append

c

b

x a y d

e

t

Initial potential: 4*n + 2*m = 4*3 + 2*2 = 16

2

2

z f

c
2

b
2

a
2

append(t,z)

Heap usage of f(x,y,z) is 2n + 2(n+m) if

‣ n is the length of list x

‣ m is the length of list y

f(x,y,z) =
 let t = append(x,y) in
 append(t,z)

Example: Composing Calls of Append

c

b

x a y d

e

t

Initial potential: 4*n + 2*m = 4*3 + 2*2 = 16

2

z f

c
2

b
2

a
2

e

append(t,z)

Heap usage of f(x,y,z) is 2n + 2(n+m) if

‣ n is the length of list x

‣ m is the length of list y

f(x,y,z) =
 let t = append(x,y) in
 append(t,z)

Example: Composing Calls of Append

c

b

x a y d

e

t

Initial potential: 4*n + 2*m = 4*3 + 2*2 = 16

z f

c
2

b
2

a
2

e d

append(t,z)

Heap usage of f(x,y,z) is 2n + 2(n+m) if

‣ n is the length of list x

‣ m is the length of list y

f(x,y,z) =
 let t = append(x,y) in
 append(t,z)

Example: Composing Calls of Append

c

b

x a y d

e

t

Initial potential: 4*n + 2*m = 4*3 + 2*2 = 16

z f

c b
2

a
2

e d c

append(t,z)

Heap usage of f(x,y,z) is 2n + 2(n+m) if

‣ n is the length of list x

‣ m is the length of list y

f(x,y,z) =
 let t = append(x,y) in
 append(t,z)

Example: Composing Calls of Append

c

b

x a y d

e

t

Initial potential: 4*n + 2*m = 4*3 + 2*2 = 16

z f

c b a
2

e d c b

append(t,z)

Heap usage of f(x,y,z) is 2n + 2(n+m) if

‣ n is the length of list x

‣ m is the length of list y

f(x,y,z) =
 let t = append(x,y) in
 append(t,z)

Example: Composing Calls of Append

c

b

x a y d

e

t

Initial potential: 4*n + 2*m = 4*3 + 2*2 = 16

z f

c b a

e d c b a

append(t,z)

Heap usage of f(x,y,z) is 2n + 2(n+m) if

‣ n is the length of list x

‣ m is the length of list y

f(x,y,z) =
 let t = append(x,y) in
 append(t,z)

Example: Composing Calls of Append

c

b

x a y d

e

t

Initial potential: 4*n + 2*m = 4*3 + 2*2 = 16

z f

c b a

append(t,z)e d c b a

Heap usage of f(x,y,z) is 2n + 2(n+m) if

‣ n is the length of list x

‣ m is the length of list y

f(x,y,z) =
 let t = append(x,y) in
 append(t,z)

Example: Composing Calls of Append

c

b

x a y d

e

t

Initial potential: 4*n + 2*m = 4*3 + 2*2 = 16

z f

c b a

append(t,z)e d c b a

Implicit reasoning
about size-changes.

Heap usage of f(x,y,z) is 2n + 2(n+m) if

‣ n is the length of list x

‣ m is the length of list y

f(x,y,z) =
 let t = append(x,y) in
 append(t,z)

Example: Composing Calls of Append

The most general type of append is specialized at call-sites:

f(x,y,z) = {

 let t = append(x,y) in

 append(t,z)

} append: (L (int),L (int)) ----> L (int)2 00/00

append: (L (int),L (int)) ----> L (int)4 20/02

append: (L (int),L (int)) ----> L (int) | Φq rs/tp Linear
constraints.

Polynomial Potential
Functions

User-defined resource metrics  
(i.e., by tick(q) in the code)

Naturally compositional: tracks size
changes, types are specifications

Bound inference by reduction to
efficient LP solving

Type derivations prove bounds
with respect to the cost semantics

Linear Potential
Functions

✓

✓

✓

✓

Polynomial Potential
Functions

User-defined resource metrics  
(i.e., by tick(q) in the code)

Naturally compositional: tracks size
changes, types are specifications

Bound inference by reduction to
efficient LP solving

Type derivations prove bounds
with respect to the cost semantics

Linear Potential
Functions

✓

✓

✓

✓
Strong soundness

theorem.

Polynomial Potential
Functions

User-defined resource metrics  
(i.e., by tick(q) in the code)

Naturally compositional: tracks size
changes, types are specifications

Bound inference by reduction to
efficient LP solving

Type derivations prove bounds
with respect to the cost semantics

Linear Potential
Functions

✓

✓

✓

✓

Multivariate Polynomial
Potential Functions

✓

✓

✓

✓
Strong soundness

theorem.

Polynomial Potential
Functions

User-defined resource metrics  
(i.e., by tick(q) in the code)

Naturally compositional: tracks size
changes, types are specifications

Bound inference by reduction to
efficient LP solving

Type derivations prove bounds
with respect to the cost semantics

Linear Potential
Functions

✓

✓

✓

✓

Multivariate Polynomial
Potential Functions

✓

✓

✓

✓

For example m*n2.

Strong soundness
theorem.

Implementations: RaML and Absynth

Resource Aware ML (RaML)

‣ Based on Inria’s OCaml compiler

‣ Polymorphic and higher-order functions

‣ User-defined data types

‣ Side effects (arrays and references)

Absynth

‣ Based on control-flow graph IR

‣ Different front ends

‣ Bounds are integer expressions

‣ Supports probabilistic programs

http://raml.co

Micro Benchmarks Evaluation-Step Bounds

Computed Bound Actual
Behavior

Analysis 
Runtime Constraints

Sorting A-nodes (asort) 11+22kn +13k2nv+13m +15n O(k2n+m) 0.14 s 5656

Quick sort (lists of lists) 3 -7.5nm +7.5nm2 +19.5m +16.5m2 O(nm2) 0.27 s 8712

Merge sort (list.ml) 43 + 30.5n + 8.5n2 O(n log n) 0.11 s 3066

Split and sort 11 + 47n + 29n2 O(n2) 0.69 s 3793

Longest common
subsequence 23 + 10n + 52nm + 25m O(nm) 0.16 s 901

Matrix multiplication 3 + 2nm +18m + 22mxy +16my O(mxy) 1.11 s 3901

Evaluator for boolean
expressions (tutorial) 10+11n+16m+16mx+16my+20x+20y O(mx+my) 0.33 s 1864

Dijkstra’s shortest-path
algorithm 46 + 33n +111n2 O(n2) 0.11 s 2808

Echelon form 8 + 43m2n + 59m + 63m2 O(nm2) 1.81 s 8838

Binary multiplication
(CompCert) 2+17kr+10ks+25k +8l+2+7r+8 O(kr+ks) 14.04 s 89,507

Square root (CompCert) 13+66m+16mn +4m2 +59n +4n2 O(n2) 18.25 s 135,529

Quick Sort for Integers Evaluation-step bound vs.
measured behavior

Longest Common
Subsequence	

Evaluation-step bound vs.
measured behavior

Longest Common
Subsequence	

Evaluation-step bound vs.
measured behavior

First automatically
derived bound for

LCS.

Automatic Amortized Resource Analysis (AARA)

Type system for deriving symbolic resource bounds

‣ Compositional: Integrated with type systems or program logics

‣ Expressive: Bounds are multivariate resource polynomials

‣ Reliable: Formal soundness proof wrt. cost semantics

‣ Verifiable: Produces easily-checkable certificates

‣ Automatic: No user interaction required

Applicable in practice

‣ Implemented: Resource Aware ML and Absynth

‣ Effective: Works for many typical programs

‣ Efficient: Inference via linear programming

Automatic Amortized Resource Analysis (AARA)

Type system for deriving symbolic resource bounds

‣ Compositional: Integrated with type systems or program logics

‣ Expressive: Bounds are multivariate resource polynomials

‣ Reliable: Formal soundness proof wrt. cost semantics

‣ Verifiable: Produces easily-checkable certificates

‣ Automatic: No user interaction required

Applicable in practice

‣ Implemented: Resource Aware ML and Absynth

‣ Effective: Works for many typical programs

‣ Efficient: Inference via linear programming
Type checking in

linear time!

2. Shared (resource-aware) binary session types

Binary Session Types

• Implement message-passing concurrent programs

• Communication via typed bidirectional channels

• Curry-Howard correspondence with intuitionistic linear logic

• Client and provider have dual types

Example type: queueA = &{ins : A (queueA,

del : �{none : 1,
some : A⌦ queueA}}

Binary Session Types

• Implement message-passing concurrent programs

• Communication via typed bidirectional channels

• Curry-Howard correspondence with intuitionistic linear logic

• Client and provider have dual types

Example type: queueA = &{ins : A (queueA,

del : �{none : 1,
some : A⌦ queueA}}Internal choice

External choice

Binary Session Types

• Implement message-passing concurrent programs

• Communication via typed bidirectional channels

• Curry-Howard correspondence with intuitionistic linear logic

• Client and provider have dual types

Example type: queueA = &{ins : A (queueA,

del : �{none : 1,
some : A⌦ queueA}}

Receive msg of type A

Send msg of type A

Binary Session Types

• Implement message-passing concurrent programs

• Communication via typed bidirectional channels

• Curry-Howard correspondence with intuitionistic linear logic

• Client and provider have dual types

Example type: queueA = &{ins : A (queueA,

del : �{none : 1,
some : A⌦ queueA}}

Type soundness (progress and preservation) implies deadlock freedom

Receive msg of type A

Send msg of type A

Example: Queue

elemx

x : A

s : queueAt : queueA
tail of queue head of queue

(element stored)

empty elemz

queueA = &{ins : A (queueA,

del : �{none : 1,
some : A⌦ queueA}}

Example: Queue

elemx

x : A

s : queueAt : queueA
tail of queue head of queue

(element stored)

empty elemz

recv ‘ins’ and y

queueA = &{ins : A (queueA,

del : �{none : 1,
some : A⌦ queueA}}

Example: Queue

elemx

x : A

s : queueAt : queueA
tail of queue head of queue

(element stored)

empty elemz

recv ‘ins’ and y

send ‘ins’ and y

queueA = &{ins : A (queueA,

del : �{none : 1,
some : A⌦ queueA}}

Example: Queue

elemx

x : A

s : queueAt : queueA
tail of queue head of queue

(element stored)

empty elemz

recv ‘ins’ and y

send ‘ins’ and y

recurse

queueA = &{ins : A (queueA,

del : �{none : 1,
some : A⌦ queueA}}

Example: Queue

elemx

x : A

s : queueAt : queueA
tail of queue head of queue

(element stored)

empty elemz

recv ‘ins’ and y

send ‘ins’ and y

recurse

send ‘some’, x

queueA = &{ins : A (queueA,

del : �{none : 1,
some : A⌦ queueA}}

Example: Queue

elemx

x : A

s : queueAt : queueA
tail of queue head of queue

(element stored)

empty elemz

recv ‘ins’ and y

send ‘ins’ and y

recurse

send ‘some’, x

terminate

queueA = &{ins : A (queueA,

del : �{none : 1,
some : A⌦ queueA}}

Example: Queue

elemx

x : A

s : queueAt : queueA
tail of queue head of queue

(element stored)

empty elemz

recv ‘ins’ and y

send ‘ins’ and y

recurse

send ‘some’, x

terminate

queueA = &{ins : A (queueA,

del : �{none : 1,
some : A⌦ queueA}}

Type checking in
linear time!

Example: Auction

Example: Auction

sends status
of auction

Example: Auction

sends status
of auction

offers choice
of bidding

Example: Auction

sends status
of auction

offers choice
of bidding

receive id
and money

Example: Auction

sends status
of auction

offers choice
of bidding

receive id
and money

recurse

Example: Auction

sends status
of auction

offers choice
of bidding

receive id
and money

recurse

offers choice
to collect

Example: Auction

sends status
of auction

offers choice
of bidding

receive id
and money

recurse

offers choice
to collect

sends result
of bidding

Example: Auction

sends status
of auction

offers choice
of bidding

receive id
and money

recurse

offers choice
to collect

sends result
of bidding

send
Mona Lisa

Example: Auction

sends status
of auction

offers choice
of bidding

receive id
and money

recurse

offers choice
to collect

sends result
of bidding

send
Mona Lisa

send back
money

Type Rules

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

Parallel Complexity Analysis 1:5

Expression Action Continuation Rules
P ,Q ::= x f e ; Q spawn process named f [a/x]Q def

| x :A P ; Q spawn [a/x]P [a/x]Q cut

| c d identify c and d none id

| c .k ; P send label k along c P �R,NL

| case c (`) P`)`2L receive label k along c Pk �L,NR

| close c close c none 1R
| wait c ; P wait for c to close P 1L
| send c d ; P send d along c P ⌦R,(L

| x recv c ; P receive d along c [d/x]P ⌦L,(R

Fig. 2. Basic Process Expressions

P is the continuation. This typing is formalized by the right rule �R in our sequent calculus. The
corresponding client branches on the label received along x as speci�ed by the left rule �L.

(k 2 L) � ` P :: (x : Ak)
� ` (x .k ; P) :: (x : �{` : A`}`2L)

�R
(8` 2 L) �,x :A` ` Q` :: (z : C)

�,x :�{` : A`}`2L ` case x (`) Q`)`2L :: (z : C)
�L

We formalize the operational semantics as a system ofmultiset rewriting rules [Cervesato and Scedrov
2009]. We introduce semantic objects proc(c, t , P) and msg(c, t ,M) which mean that process P or
messageM provide along channel c and are at an integral time t . A process con�guration is a multiset
of such objects, where any two o�ered channels are distinct. Communication is asynchronous, so
that a process (c .k ; P) sends a message k along c and continues as P without waiting for it to be
received. As a technical device to ensure that consecutive messages on a channel arrive in order,
the sender also creates a fresh continuation channel c 0 so that the message k is actually represented
as (c .k ; c c 0) (read: send k along c and continue as c 0).

(�S) proc(c, t , c .k ; P) 7! proc(c 0, t , [c 0/c]P),msg(c, t , c .k ; c c 0) (c 0 fresh)

When the message k is received along c , we select branch k and also substitute the continuation
channel c 0 for c .

(�C) msg(c, t , c .k ; c c 0), proc(d, t , case c (`) Q`)`2L) 7! proc(d, t , [c 0/c]Qk)

Themessage (c .k ; c c 0) is just a particular form of process, where c c 0 is identity or forwarding,
explained in Section 2.3. Therefore no separate typing rules for messages are needed; they can be
typed as processes [Balzer and Pfenning 2017].
In the receiving rule we require the time t of the message and receiver process to match. Until

we introduce temporal types, this is trivially satis�ed since all actions are considered instantaneous
and processes will always remain at time t = 0.
The dual of internal choice is external choice N{` : A`}`2L , which just reverses the role of

provider and client and reuses the same process notation. It is the n-ary labeled generalization of
the linear logic connective AN B.

Proceedings of the ACM on Programming Languages, Vol. 1, No. ICFP, Article 1. Publication date: January 2018.

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

Parallel Complexity Analysis 1:5

Expression Action Continuation Rules
P ,Q ::= x f e ; Q spawn process named f [a/x]Q def

| x :A P ; Q spawn [a/x]P [a/x]Q cut

| c d identify c and d none id

| c .k ; P send label k along c P �R,NL

| case c (`) P`)`2L receive label k along c Pk �L,NR

| close c close c none 1R
| wait c ; P wait for c to close P 1L
| send c d ; P send d along c P ⌦R,(L

| x recv c ; P receive d along c [d/x]P ⌦L,(R

Fig. 2. Basic Process Expressions

P is the continuation. This typing is formalized by the right rule �R in our sequent calculus. The
corresponding client branches on the label received along x as speci�ed by the left rule �L.

(k 2 L) � ` P :: (x : Ak)
� ` (x .k ; P) :: (x : �{` : A`}`2L)

�R
(8` 2 L) �,x :A` ` Q` :: (z : C)

�,x :�{` : A`}`2L ` case x (`) Q`)`2L :: (z : C)
�L

We formalize the operational semantics as a system ofmultiset rewriting rules [Cervesato and Scedrov
2009]. We introduce semantic objects proc(c, t , P) and msg(c, t ,M) which mean that process P or
messageM provide along channel c and are at an integral time t . A process con�guration is a multiset
of such objects, where any two o�ered channels are distinct. Communication is asynchronous, so
that a process (c .k ; P) sends a message k along c and continues as P without waiting for it to be
received. As a technical device to ensure that consecutive messages on a channel arrive in order,
the sender also creates a fresh continuation channel c 0 so that the message k is actually represented
as (c .k ; c c 0) (read: send k along c and continue as c 0).

(�S) proc(c, t , c .k ; P) 7! proc(c 0, t , [c 0/c]P),msg(c, t , c .k ; c c 0) (c 0 fresh)

When the message k is received along c , we select branch k and also substitute the continuation
channel c 0 for c .

(�C) msg(c, t , c .k ; c c 0), proc(d, t , case c (`) Q`)`2L) 7! proc(d, t , [c 0/c]Qk)

Themessage (c .k ; c c 0) is just a particular form of process, where c c 0 is identity or forwarding,
explained in Section 2.3. Therefore no separate typing rules for messages are needed; they can be
typed as processes [Balzer and Pfenning 2017].
In the receiving rule we require the time t of the message and receiver process to match. Until

we introduce temporal types, this is trivially satis�ed since all actions are considered instantaneous
and processes will always remain at time t = 0.
The dual of internal choice is external choice N{` : A`}`2L , which just reverses the role of

provider and client and reuses the same process notation. It is the n-ary labeled generalization of
the linear logic connective AN B.

Proceedings of the ACM on Programming Languages, Vol. 1, No. ICFP, Article 1. Publication date: January 2018.

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

1:6 Anon.

�0 ` P :: (x : A) �,x : A ` Q :: (z : C)
�,�0 ` (x :A P ; Q) :: (z : C)

cut
� : A ` (x �) :: (x : A)

id

(k 2 L) � ` P :: (x : Ak)
� ` (x .k ; P) :: (x : �{` : A`}`2L)

�R
(8` 2 L) �,x :A` ` Q` :: (z : C)

�,x :�{` : A`}`2L ` case x (`) Q`)`2L :: (z : C)
�L

(8` 2 L) � ` P` :: (x : A`)
� ` case x (`) P`)`2L :: (x : N{` : A`}`2L)

NR
�,x :Ak ` Q :: (z : C)

�,x :N{` : A`}`2L ` (x .k ; Q) :: (z : C)
NL

· ` (close x) :: (x : 1)
1R

� ` Q :: (z : C)
�,x :1 ` (wait x ; Q) :: (z : C)

1L

� ` P :: (x : B)
�,�:A ` (send x � ; P) :: (x : A ⌦ B)

⌦R
�,�:A,x :B ` Q :: (z : C)

�,x :A ⌦ B ` (� recv x ; Q) :: (z : C)
⌦L

�,�:A ` P :: (x : B)
� ` (� recv x ; P) :: (x : A (B)

(R
�,x :B ` Q :: (z : C)

�,x :A (B,�:A ` (send x � ; Q) :: (z : C)
(L

(�0 ` f = Pf :: (x : A)) 2 � �,x :A ` Q :: (z : C)

�,�0 ` (x f �0 ; Q) :: (z : C)
def

Fig. 3. Basic Typing Rules

2.2 Termination
The type 1, the multiplicative unit of linear logic, represents termination of a process, which (due
to linearity) is not allowed to use any channels.

· ` close x :: (x : 1)
1R

� ` Q :: (z : C)
�,x :1 ` (wait x ; Q) :: (z : C)

1L

Operationally, a client has to wait for the corresponding closing message, which has no continuation
since the provider terminates.

(1S) proc(c, t , close c) 7! msg(c, t , close c)
(1C) msg(c, t , close c), proc(d, t ,wait c ; Q) 7! proc(d, t ,Q)

2.3 Forwarding
A process x � identi�es the channels x and � so that any further communication along either x
or � will be along the uni�ed channel. Its typing rule corresponds to the logical rule of identity.

� : A ` (x �) :: (x : A)
id

We have already seen this form in the continuations of message objects. Operationally, the intuition
is realized by forwarding: a process c d forwards any messageM that arrives along d to c and
vice versa. Because channels are used linearly the forwarding process can then terminate, making
sure to apply the proper renaming. The corresponding rules of operational semantics are as follows.

(id+C) msg(d, t ,M), proc(c, s, c d) 7! msg(c, t , [c/d]M) (t � s)
(id�C) proc(c, s, c d),msg(e, t ,M(c)) 7! msg(e, t , [d/c]M(c)) (s t)

Proceedings of the ACM on Programming Languages, Vol. 1, No. ICFP, Article 1. Publication date: January 2018.

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

1:6 Anon.

�0 ` P :: (x : A) �,x : A ` Q :: (z : C)
�,�0 ` (x :A P ; Q) :: (z : C)

cut
� : A ` (x �) :: (x : A)

id

(k 2 L) � ` P :: (x : Ak)
� ` (x .k ; P) :: (x : �{` : A`}`2L)

�R
(8` 2 L) �,x :A` ` Q` :: (z : C)

�,x :�{` : A`}`2L ` case x (`) Q`)`2L :: (z : C)
�L

(8` 2 L) � ` P` :: (x : A`)
� ` case x (`) P`)`2L :: (x : N{` : A`}`2L)

NR
�,x :Ak ` Q :: (z : C)

�,x :N{` : A`}`2L ` (x .k ; Q) :: (z : C)
NL

· ` (close x) :: (x : 1)
1R

� ` Q :: (z : C)
�,x :1 ` (wait x ; Q) :: (z : C)

1L

� ` P :: (x : B)
�,�:A ` (send x � ; P) :: (x : A ⌦ B)

⌦R
�,�:A,x :B ` Q :: (z : C)

�,x :A ⌦ B ` (� recv x ; Q) :: (z : C)
⌦L

�,�:A ` P :: (x : B)
� ` (� recv x ; P) :: (x : A (B)

(R
�,x :B ` Q :: (z : C)

�,x :A (B,�:A ` (send x � ; Q) :: (z : C)
(L

(�0 ` f = Pf :: (x : A)) 2 � �,x :A ` Q :: (z : C)

�,�0 ` (x f �0 ; Q) :: (z : C)
def

Fig. 3. Basic Typing Rules

2.2 Termination
The type 1, the multiplicative unit of linear logic, represents termination of a process, which (due
to linearity) is not allowed to use any channels.

· ` close x :: (x : 1)
1R

� ` Q :: (z : C)
�,x :1 ` (wait x ; Q) :: (z : C)

1L

Operationally, a client has to wait for the corresponding closing message, which has no continuation
since the provider terminates.

(1S) proc(c, t , close c) 7! msg(c, t , close c)
(1C) msg(c, t , close c), proc(d, t ,wait c ; Q) 7! proc(d, t ,Q)

2.3 Forwarding
A process x � identi�es the channels x and � so that any further communication along either x
or � will be along the uni�ed channel. Its typing rule corresponds to the logical rule of identity.

� : A ` (x �) :: (x : A)
id

We have already seen this form in the continuations of message objects. Operationally, the intuition
is realized by forwarding: a process c d forwards any messageM that arrives along d to c and
vice versa. Because channels are used linearly the forwarding process can then terminate, making
sure to apply the proper renaming. The corresponding rules of operational semantics are as follows.

(id+C) msg(d, t ,M), proc(c, s, c d) 7! msg(c, t , [c/d]M) (t � s)
(id�C) proc(c, s, c d),msg(e, t ,M(c)) 7! msg(e, t , [d/c]M(c)) (s t)

Proceedings of the ACM on Programming Languages, Vol. 1, No. ICFP, Article 1. Publication date: January 2018.

Resource-Aware Session Types

• Each process stores potential in functional data

• Potential can be transferred via messages

• Potential is used to pay for performed work

Resource-Aware Session Types

• Each process stores potential in functional data

• Potential can be transferred via messages

• Potential is used to pay for performed work

Potential transfer
only at the type level,

not at runtime.

Resource-Aware Session Types

• Each process stores potential in functional data

• Potential can be transferred via messages

• Potential is used to pay for performed work

Potential transfer
only at the type level,

not at runtime.

User-defined
cost metric.

Resource-Aware Session Types

• Each process stores potential in functional data

• Potential can be transferred via messages

• Potential is used to pay for performed work

Potential transfer
only at the type level,

not at runtime.

User-defined
cost metric.

• Message potential is a function of (functional) payload

Higher-Order Processes, Functions, and Sessions: A Monadic Integration 3

Our solution is to encapsulate processes in a contextual monad so that each
process is bundled with all channels (both linear and shared – the latter we cover
in Section 3.9) it uses and the one that it o↵ers. This is a linear counterpart to
the contextual comonad presented in [15].

In our presentation in the following sections, we specify execution of concur-
rent programs in the form of a substructural operational semantics [17], for con-
venience of presentation. We rely on the following predicates: the linear propo-
sition execP denotes the state of a linear process expression P ; !execP denotes
the state of a persistent process (which must always be a replicating input); and
!evalM V expresses that the functional term M evaluates to value V without
using linear resources.

The rules that make up our substructural operational semantics, for those
unfamiliar with this style, can be seen as a form of multiset rewrite rules [7] where
the pattern to the left of the (arrow describes a state which is consumed and
transformed into the one to the right. Existentials are used to generate names.
Names or predicates marked with ! are not linear and thus not consumed as part
of the rewrite (aptly modeling replication). The use of connectives from linear
logic in this style of presentation, namely (to denote the state transformation,
⌦ to combine linear propositions from the context, and ! to denote persistence
should not be confused with our session type constructors.

3 Combining Sessions and Functions

In this section we provide first an overview of the constructs of our language
and then some details on each. The types of the language are separated into a
functional part and a concurrent part, which are mutually dependent on each
other. In types, we refer to functional type variables t, process type variables X,
labels lj , and channel names a. We briefly note the meaning of the each session
type from the perspective of a provider.

⌧,� ::= ⌧ ! � | . . . | 8t. ⌧ | µt. ⌧ | t (ordinary functional types)
| {a:A ai:Ai} process o↵ering A along channel a,

using channels ai o↵ering Ai

A,B,C ::= ⌧ � A input value of type ⌧ and continue as A
| ⌧ ^A output value of type ⌧ and continue as A
| A (B input channel of type A and continue as B
| A⌦B output fresh channel of type A and continue as B
| 1 terminate
| N{lj : Aj} o↵er choice between lj and continue as Aj

| �{lj : Aj} provide one of the lj and continue as Aj

| !A provide replicable service A
| µX.A | X recursive process type

a ::= c | !u linear and shared channels

L (int)2
tb

2
a
2

Resource-Aware Session Types

• Each process stores potential in functional data

• Potential can be transferred via messages

• Potential is used to pay for performed work

Potential transfer
only at the type level,

not at runtime.

User-defined
cost metric.

1:12 Ankush Das, Stephanie Balzer, Jan Ho�mann, and Frank Pfenning

expression is su�cient to cover the cost of the evaluation and the potential de�ned by the return
type. This posterior potential can then be used to pay for resource usage in the continuation of the
program. For example, we can derive the following resource-annotated type.

applyInterest : L1(int) ���!0/0 L0(int)
The type L1(int) denotes a list of integers assigning a unit potential to each element in the list. The
return value, on the other hand has no potential. The annotation on the function arrow indicates
that we do not need any potential to call the function and that no constant potential is left after the
function call has returned.
In a larger program, we might want to call the function applyInterest again on the result of a

call to the function. In this case, we would need to assign the type L1(int) to the resulting list
and require L2(int) for the argument. In general, the type for the function can be described with
symbolic annotations with linear constraints between them. To derive a worst-case bound for a
function the constraints can be solved by an o�-the-shelf LP solver, even if the potential functions
are polynomial [Ho�mann et al. 2011, 2017].

In Nomos, we simply adopt the standard typing judgment of AARA for functional programs.
� �q M : �

It states that under the resource-annotated functional context �, with constant potential q, the
expressionM has the resource-aware type � .

The operational cost semantics is de�ned by the judgment
M + V | µ

which states that the closed expressionM evaluates to the valueV with cost µ. The type soundness
theorem states that if · �q M : � andM + V | µ then q � µ.
More details about AARA can be found in the literature [Ho�mann et al. 2017; Hofmann and

Jost 2003] and the supplementary material.

Process Layer. To bound resource usage of a process, Nomos features recently introduced
resource-aware session types [Das et al. 2018] for work analysis. Resource-aware session types
describe resource contracts for inter-process communication. The type system supports amortized
analysis by assigning potential to both messages and processes. The derived resource bounds are
functions of interactions between processes. As an illustration, consider the following resource-
aware list interface from prior work [Das et al. 2018].

listA = �{nil0 : 10, cons1 : A
0
⌦ listA}

The type prescribes that the provider of a list must send one unit of potential with every cons
message that it sends. Dually, a client of this list will receive a unit potential with every consmessage.
All other type constructors aremarkedwith potential 0, and exchanging the correspondingmessages
does not lead to transfer of potential.
While resource-aware session types in Nomos are equivalent to the existing formulation [Das

et al. 2018], our version is simpler and more streamlined. Instead of requiring every message to
carry a potential (and potentially tagging several messages with 0 potential), we introduce two
new type constructors for exchanging potential.

A ::= . . . | .rA | /rA
The type .rA requires the provider to pay r units of potential which are transferred to the client.
Dually, the type /rA requires the client to pay r units of potential that are received by the provider.
Thus, the reformulated list type becomes
listA = �{nil : 1, cons : .1(A ⌦ listA)}

Proc. ACM Program. Lang., Vol. 1, No. CONF, Article 1. Publication date: January 2018.

Resource-Aware Session Types 1:13

� ; � ; � `q P :: (x : A) Process P has potential q and provides type A along channel x .

p = q + r � ; � ; � `p P :: (xm : A)
� ; � ; � `q get xm {r } ; P :: (xm : /rA) /R

q = p + r � ; � ; �, (xm : A) `p P :: (zk : C)
� ; � ; �, (xm : /rA) `q pay xm {r } ; P :: (zk : C) /L

q = p + r � ; � ; � `p P :: (xm : A)
� ; � ; � `q tick (r) ; P :: (xm : A) tick

Fig. 3. Selected typing rules corresponding to potential.

The reformulation is more compact since we need to account for potential in only the typing rules
corresponding to .rA and /rA. Consider again our typing judgment

� ; � ; � `q P :: (xm : A)
for Nomos processes. The non-negative number q in the judgment denotes the potential that is
stored in the process. Figure 3 shows the rules that interact with the potential annotations. In the
rule /R, process P storing potential q receives r units along the o�ered channel xm using the get
construct and the continuation executes with p = q + r units of potential. In the dual rule /L, a
process storing potential q = p + r sends r units along the channel xm in its context using the pay
construct, and the continuation remains with p units of potential. The typing rules for the dual
constructor .rA are the exact inverse. Finally, executing the tick (r) construct consumes r potential
from the stored process potential q, and the continuation remains with p = q � r units, as described
in the tick rule in Figure 3.

Integration. Since both AARA for functional programs and resource-aware session types are
based on the integration of the potential method into their type systems, their combination is
natural. The two points of integration of the functional and process layer are (i) spawning a process,
and (ii) sending/receiving a value from the functional layer. Recall the spawn rule {}EPP from
Figure 2. A process storing potential r = p + q can spawn a process corresponding to the monadic
valueM , ifM needs p units of potential to evaluate, while the continuation needs q units of potential
to execute. Moreover, the functional context � is shared in the two premises as �1 and �2 using
the judgment � . (�1,�2). This judgment, already explored in prior work [Ho�mann et al. 2017]
describes that the base types in � are copied to both �1 and �2, but the potential is split up. For
instance, Lq1+q2 (�) . (Lq1 (�),Lq2 (�)). The rule! L follows a similar pattern. Thus, the combination
of the two type systems is smooth, assigning a uniform meaning to potential, both for the functional
and process layer.
Remarkably, this technical device of exchanging functional values can be used to exchange

non-constant potential with messages. As an illustration, we revisit the auction protocol introduced
in Section 2. Suppose the bids were stored in a list, instead of a hash map, thus making the cost of
collection of winnings linear in the worst case, instead of a constant. A user would then be required
to send a linear potential after acquiring the contract. This can be done by sending a natural number
n : natq , storing potential q · |n | (like a unary list), where q is the cost of iterating over an element
in the list of bids. The contract would then iterate over the �rst n elements of the list and refund the
remaining gas if n exceeds the length. Since the auction has ended, a user can view the size of the
list of bids, compute the required potential, store it in a natural number, and transfer it. It would
still be possible that a user does not provide enough fuel to reach the sought-after element in the

Proc. ACM Program. Lang., Vol. 1, No. CONF, Article 1. Publication date: January 2018.

Resource-Aware Session Types 1:13

� ; � ; � `q P :: (x : A) Process P has potential q and provides type A along channel x .

p = q + r � ; � ; � `p P :: (xm : A)
� ; � ; � `q get xm {r } ; P :: (xm : /rA) /R

q = p + r � ; � ; �, (xm : A) `p P :: (zk : C)
� ; � ; �, (xm : /rA) `q pay xm {r } ; P :: (zk : C) /L

q = p + r � ; � ; � `p P :: (xm : A)
� ; � ; � `q tick (r) ; P :: (xm : A) tick

Fig. 3. Selected typing rules corresponding to potential.

The reformulation is more compact since we need to account for potential in only the typing rules
corresponding to .rA and /rA. Consider again our typing judgment

� ; � ; � `q P :: (xm : A)
for Nomos processes. The non-negative number q in the judgment denotes the potential that is
stored in the process. Figure 3 shows the rules that interact with the potential annotations. In the
rule /R, process P storing potential q receives r units along the o�ered channel xm using the get
construct and the continuation executes with p = q + r units of potential. In the dual rule /L, a
process storing potential q = p + r sends r units along the channel xm in its context using the pay
construct, and the continuation remains with p units of potential. The typing rules for the dual
constructor .rA are the exact inverse. Finally, executing the tick (r) construct consumes r potential
from the stored process potential q, and the continuation remains with p = q � r units, as described
in the tick rule in Figure 3.

Integration. Since both AARA for functional programs and resource-aware session types are
based on the integration of the potential method into their type systems, their combination is
natural. The two points of integration of the functional and process layer are (i) spawning a process,
and (ii) sending/receiving a value from the functional layer. Recall the spawn rule {}EPP from
Figure 2. A process storing potential r = p + q can spawn a process corresponding to the monadic
valueM , ifM needs p units of potential to evaluate, while the continuation needs q units of potential
to execute. Moreover, the functional context � is shared in the two premises as �1 and �2 using
the judgment � . (�1,�2). This judgment, already explored in prior work [Ho�mann et al. 2017]
describes that the base types in � are copied to both �1 and �2, but the potential is split up. For
instance, Lq1+q2 (�) . (Lq1 (�),Lq2 (�)). The rule! L follows a similar pattern. Thus, the combination
of the two type systems is smooth, assigning a uniform meaning to potential, both for the functional
and process layer.
Remarkably, this technical device of exchanging functional values can be used to exchange

non-constant potential with messages. As an illustration, we revisit the auction protocol introduced
in Section 2. Suppose the bids were stored in a list, instead of a hash map, thus making the cost of
collection of winnings linear in the worst case, instead of a constant. A user would then be required
to send a linear potential after acquiring the contract. This can be done by sending a natural number
n : natq , storing potential q · |n | (like a unary list), where q is the cost of iterating over an element
in the list of bids. The contract would then iterate over the �rst n elements of the list and refund the
remaining gas if n exceeds the length. Since the auction has ended, a user can view the size of the
list of bids, compute the required potential, store it in a natural number, and transfer it. It would
still be possible that a user does not provide enough fuel to reach the sought-after element in the

Proc. ACM Program. Lang., Vol. 1, No. CONF, Article 1. Publication date: January 2018.

• Only in intermediate language:• Syntactic sugar (no payload)

• Message potential is a function of (functional) payload

Higher-Order Processes, Functions, and Sessions: A Monadic Integration 3

Our solution is to encapsulate processes in a contextual monad so that each
process is bundled with all channels (both linear and shared – the latter we cover
in Section 3.9) it uses and the one that it o↵ers. This is a linear counterpart to
the contextual comonad presented in [15].

In our presentation in the following sections, we specify execution of concur-
rent programs in the form of a substructural operational semantics [17], for con-
venience of presentation. We rely on the following predicates: the linear propo-
sition execP denotes the state of a linear process expression P ; !execP denotes
the state of a persistent process (which must always be a replicating input); and
!evalM V expresses that the functional term M evaluates to value V without
using linear resources.

The rules that make up our substructural operational semantics, for those
unfamiliar with this style, can be seen as a form of multiset rewrite rules [7] where
the pattern to the left of the (arrow describes a state which is consumed and
transformed into the one to the right. Existentials are used to generate names.
Names or predicates marked with ! are not linear and thus not consumed as part
of the rewrite (aptly modeling replication). The use of connectives from linear
logic in this style of presentation, namely (to denote the state transformation,
⌦ to combine linear propositions from the context, and ! to denote persistence
should not be confused with our session type constructors.

3 Combining Sessions and Functions

In this section we provide first an overview of the constructs of our language
and then some details on each. The types of the language are separated into a
functional part and a concurrent part, which are mutually dependent on each
other. In types, we refer to functional type variables t, process type variables X,
labels lj , and channel names a. We briefly note the meaning of the each session
type from the perspective of a provider.

⌧,� ::= ⌧ ! � | . . . | 8t. ⌧ | µt. ⌧ | t (ordinary functional types)
| {a:A ai:Ai} process o↵ering A along channel a,

using channels ai o↵ering Ai

A,B,C ::= ⌧ � A input value of type ⌧ and continue as A
| ⌧ ^A output value of type ⌧ and continue as A
| A (B input channel of type A and continue as B
| A⌦B output fresh channel of type A and continue as B
| 1 terminate
| N{lj : Aj} o↵er choice between lj and continue as Aj

| �{lj : Aj} provide one of the lj and continue as Aj

| !A provide replicable service A
| µX.A | X recursive process type

a ::= c | !u linear and shared channels

L (int)2
tb

2
a
2

Resource-Aware Session Types

• Each process stores potential in functional data

• Potential can be transferred via messages

• Potential is used to pay for performed work

Potential transfer
only at the type level,

not at runtime.

User-defined
cost metric.

Efficient type inference
via LP solving

1:12 Ankush Das, Stephanie Balzer, Jan Ho�mann, and Frank Pfenning

expression is su�cient to cover the cost of the evaluation and the potential de�ned by the return
type. This posterior potential can then be used to pay for resource usage in the continuation of the
program. For example, we can derive the following resource-annotated type.

applyInterest : L1(int) ���!0/0 L0(int)
The type L1(int) denotes a list of integers assigning a unit potential to each element in the list. The
return value, on the other hand has no potential. The annotation on the function arrow indicates
that we do not need any potential to call the function and that no constant potential is left after the
function call has returned.
In a larger program, we might want to call the function applyInterest again on the result of a

call to the function. In this case, we would need to assign the type L1(int) to the resulting list
and require L2(int) for the argument. In general, the type for the function can be described with
symbolic annotations with linear constraints between them. To derive a worst-case bound for a
function the constraints can be solved by an o�-the-shelf LP solver, even if the potential functions
are polynomial [Ho�mann et al. 2011, 2017].

In Nomos, we simply adopt the standard typing judgment of AARA for functional programs.
� �q M : �

It states that under the resource-annotated functional context �, with constant potential q, the
expressionM has the resource-aware type � .

The operational cost semantics is de�ned by the judgment
M + V | µ

which states that the closed expressionM evaluates to the valueV with cost µ. The type soundness
theorem states that if · �q M : � andM + V | µ then q � µ.
More details about AARA can be found in the literature [Ho�mann et al. 2017; Hofmann and

Jost 2003] and the supplementary material.

Process Layer. To bound resource usage of a process, Nomos features recently introduced
resource-aware session types [Das et al. 2018] for work analysis. Resource-aware session types
describe resource contracts for inter-process communication. The type system supports amortized
analysis by assigning potential to both messages and processes. The derived resource bounds are
functions of interactions between processes. As an illustration, consider the following resource-
aware list interface from prior work [Das et al. 2018].

listA = �{nil0 : 10, cons1 : A
0
⌦ listA}

The type prescribes that the provider of a list must send one unit of potential with every cons
message that it sends. Dually, a client of this list will receive a unit potential with every consmessage.
All other type constructors aremarkedwith potential 0, and exchanging the correspondingmessages
does not lead to transfer of potential.
While resource-aware session types in Nomos are equivalent to the existing formulation [Das

et al. 2018], our version is simpler and more streamlined. Instead of requiring every message to
carry a potential (and potentially tagging several messages with 0 potential), we introduce two
new type constructors for exchanging potential.

A ::= . . . | .rA | /rA
The type .rA requires the provider to pay r units of potential which are transferred to the client.
Dually, the type /rA requires the client to pay r units of potential that are received by the provider.
Thus, the reformulated list type becomes
listA = �{nil : 1, cons : .1(A ⌦ listA)}

Proc. ACM Program. Lang., Vol. 1, No. CONF, Article 1. Publication date: January 2018.

Resource-Aware Session Types 1:13

� ; � ; � `q P :: (x : A) Process P has potential q and provides type A along channel x .

p = q + r � ; � ; � `p P :: (xm : A)
� ; � ; � `q get xm {r } ; P :: (xm : /rA) /R

q = p + r � ; � ; �, (xm : A) `p P :: (zk : C)
� ; � ; �, (xm : /rA) `q pay xm {r } ; P :: (zk : C) /L

q = p + r � ; � ; � `p P :: (xm : A)
� ; � ; � `q tick (r) ; P :: (xm : A) tick

Fig. 3. Selected typing rules corresponding to potential.

The reformulation is more compact since we need to account for potential in only the typing rules
corresponding to .rA and /rA. Consider again our typing judgment

� ; � ; � `q P :: (xm : A)
for Nomos processes. The non-negative number q in the judgment denotes the potential that is
stored in the process. Figure 3 shows the rules that interact with the potential annotations. In the
rule /R, process P storing potential q receives r units along the o�ered channel xm using the get
construct and the continuation executes with p = q + r units of potential. In the dual rule /L, a
process storing potential q = p + r sends r units along the channel xm in its context using the pay
construct, and the continuation remains with p units of potential. The typing rules for the dual
constructor .rA are the exact inverse. Finally, executing the tick (r) construct consumes r potential
from the stored process potential q, and the continuation remains with p = q � r units, as described
in the tick rule in Figure 3.

Integration. Since both AARA for functional programs and resource-aware session types are
based on the integration of the potential method into their type systems, their combination is
natural. The two points of integration of the functional and process layer are (i) spawning a process,
and (ii) sending/receiving a value from the functional layer. Recall the spawn rule {}EPP from
Figure 2. A process storing potential r = p + q can spawn a process corresponding to the monadic
valueM , ifM needs p units of potential to evaluate, while the continuation needs q units of potential
to execute. Moreover, the functional context � is shared in the two premises as �1 and �2 using
the judgment � . (�1,�2). This judgment, already explored in prior work [Ho�mann et al. 2017]
describes that the base types in � are copied to both �1 and �2, but the potential is split up. For
instance, Lq1+q2 (�) . (Lq1 (�),Lq2 (�)). The rule! L follows a similar pattern. Thus, the combination
of the two type systems is smooth, assigning a uniform meaning to potential, both for the functional
and process layer.
Remarkably, this technical device of exchanging functional values can be used to exchange

non-constant potential with messages. As an illustration, we revisit the auction protocol introduced
in Section 2. Suppose the bids were stored in a list, instead of a hash map, thus making the cost of
collection of winnings linear in the worst case, instead of a constant. A user would then be required
to send a linear potential after acquiring the contract. This can be done by sending a natural number
n : natq , storing potential q · |n | (like a unary list), where q is the cost of iterating over an element
in the list of bids. The contract would then iterate over the �rst n elements of the list and refund the
remaining gas if n exceeds the length. Since the auction has ended, a user can view the size of the
list of bids, compute the required potential, store it in a natural number, and transfer it. It would
still be possible that a user does not provide enough fuel to reach the sought-after element in the

Proc. ACM Program. Lang., Vol. 1, No. CONF, Article 1. Publication date: January 2018.

Resource-Aware Session Types 1:13

� ; � ; � `q P :: (x : A) Process P has potential q and provides type A along channel x .

p = q + r � ; � ; � `p P :: (xm : A)
� ; � ; � `q get xm {r } ; P :: (xm : /rA) /R

q = p + r � ; � ; �, (xm : A) `p P :: (zk : C)
� ; � ; �, (xm : /rA) `q pay xm {r } ; P :: (zk : C) /L

q = p + r � ; � ; � `p P :: (xm : A)
� ; � ; � `q tick (r) ; P :: (xm : A) tick

Fig. 3. Selected typing rules corresponding to potential.

The reformulation is more compact since we need to account for potential in only the typing rules
corresponding to .rA and /rA. Consider again our typing judgment

� ; � ; � `q P :: (xm : A)
for Nomos processes. The non-negative number q in the judgment denotes the potential that is
stored in the process. Figure 3 shows the rules that interact with the potential annotations. In the
rule /R, process P storing potential q receives r units along the o�ered channel xm using the get
construct and the continuation executes with p = q + r units of potential. In the dual rule /L, a
process storing potential q = p + r sends r units along the channel xm in its context using the pay
construct, and the continuation remains with p units of potential. The typing rules for the dual
constructor .rA are the exact inverse. Finally, executing the tick (r) construct consumes r potential
from the stored process potential q, and the continuation remains with p = q � r units, as described
in the tick rule in Figure 3.

Integration. Since both AARA for functional programs and resource-aware session types are
based on the integration of the potential method into their type systems, their combination is
natural. The two points of integration of the functional and process layer are (i) spawning a process,
and (ii) sending/receiving a value from the functional layer. Recall the spawn rule {}EPP from
Figure 2. A process storing potential r = p + q can spawn a process corresponding to the monadic
valueM , ifM needs p units of potential to evaluate, while the continuation needs q units of potential
to execute. Moreover, the functional context � is shared in the two premises as �1 and �2 using
the judgment � . (�1,�2). This judgment, already explored in prior work [Ho�mann et al. 2017]
describes that the base types in � are copied to both �1 and �2, but the potential is split up. For
instance, Lq1+q2 (�) . (Lq1 (�),Lq2 (�)). The rule! L follows a similar pattern. Thus, the combination
of the two type systems is smooth, assigning a uniform meaning to potential, both for the functional
and process layer.
Remarkably, this technical device of exchanging functional values can be used to exchange

non-constant potential with messages. As an illustration, we revisit the auction protocol introduced
in Section 2. Suppose the bids were stored in a list, instead of a hash map, thus making the cost of
collection of winnings linear in the worst case, instead of a constant. A user would then be required
to send a linear potential after acquiring the contract. This can be done by sending a natural number
n : natq , storing potential q · |n | (like a unary list), where q is the cost of iterating over an element
in the list of bids. The contract would then iterate over the �rst n elements of the list and refund the
remaining gas if n exceeds the length. Since the auction has ended, a user can view the size of the
list of bids, compute the required potential, store it in a natural number, and transfer it. It would
still be possible that a user does not provide enough fuel to reach the sought-after element in the

Proc. ACM Program. Lang., Vol. 1, No. CONF, Article 1. Publication date: January 2018.

• Only in intermediate language:• Syntactic sugar (no payload)

• Message potential is a function of (functional) payload

Higher-Order Processes, Functions, and Sessions: A Monadic Integration 3

Our solution is to encapsulate processes in a contextual monad so that each
process is bundled with all channels (both linear and shared – the latter we cover
in Section 3.9) it uses and the one that it o↵ers. This is a linear counterpart to
the contextual comonad presented in [15].

In our presentation in the following sections, we specify execution of concur-
rent programs in the form of a substructural operational semantics [17], for con-
venience of presentation. We rely on the following predicates: the linear propo-
sition execP denotes the state of a linear process expression P ; !execP denotes
the state of a persistent process (which must always be a replicating input); and
!evalM V expresses that the functional term M evaluates to value V without
using linear resources.

The rules that make up our substructural operational semantics, for those
unfamiliar with this style, can be seen as a form of multiset rewrite rules [7] where
the pattern to the left of the (arrow describes a state which is consumed and
transformed into the one to the right. Existentials are used to generate names.
Names or predicates marked with ! are not linear and thus not consumed as part
of the rewrite (aptly modeling replication). The use of connectives from linear
logic in this style of presentation, namely (to denote the state transformation,
⌦ to combine linear propositions from the context, and ! to denote persistence
should not be confused with our session type constructors.

3 Combining Sessions and Functions

In this section we provide first an overview of the constructs of our language
and then some details on each. The types of the language are separated into a
functional part and a concurrent part, which are mutually dependent on each
other. In types, we refer to functional type variables t, process type variables X,
labels lj , and channel names a. We briefly note the meaning of the each session
type from the perspective of a provider.

⌧,� ::= ⌧ ! � | . . . | 8t. ⌧ | µt. ⌧ | t (ordinary functional types)
| {a:A ai:Ai} process o↵ering A along channel a,

using channels ai o↵ering Ai

A,B,C ::= ⌧ � A input value of type ⌧ and continue as A
| ⌧ ^A output value of type ⌧ and continue as A
| A (B input channel of type A and continue as B
| A⌦B output fresh channel of type A and continue as B
| 1 terminate
| N{lj : Aj} o↵er choice between lj and continue as Aj

| �{lj : Aj} provide one of the lj and continue as Aj

| !A provide replicable service A
| µX.A | X recursive process type

a ::= c | !u linear and shared channels

L (int)2
tb

2
a
2

Example: Type of an
Auction Contract

PL’18, January 01–03, 2018, New York, NY, USA Ankush Das, Stephanie Balzer, Jan Ho�mann, and Frank Pfenning

In the future, typed Nomos code could safely interact with
untyped or untrusted code through monitors, which can be
automatically synthesized from the session type [23].

To make transaction cost in Nomos predictable and trans-
parent, and to prevent bugs and vulnerabilities in contracts
based on excessive resource usage, we apply and further
develop automatic amortized resource analysis (AARA), a
type-based technique for automatically inferring symbolic
resource bounds [15, 25–27, 32]. AARA is parametric in the
cost model, which makes it directly applicable to track gas
consumption of Nomos contracts. Other advantages of the
technique include natural compositionality, a formal sound-
ness proof with respect to a cost semantics, and reduction of
(non-linear) bound inference to o�-the-shelf LP solving.

To eliminate a class of bugs in which the internal state of
a contract loses track of its assets or performs unintended
transactions, Nomos integrates a linear type system [45] into
a functional language. Linear type systems use the ideas of
Girard’s linear logic [22] to ensure that certain data is neither
duplicated nor discarded by a program. Programming lan-
guages such as Rust [5] have demonstrated that substructural
type systems are practical in industrial-strength languages.
Moreover, linear types are compatible with session types,
which are themselves based on linear logic [10, 14, 39, 44, 46].

In addition to the design of the Nomos language, we make
the following technical contributions.
1. We integrate linear session types that support controlled

sharing [10, 11] into a conventional functional type sys-
tem. To leave the logical foundation intact, the integra-
tion is achieved by a contextual monad [44] (Section 4)
that gives process expressions �rst-class status in the
functional language. Moreover, we recast shared session
types [10] to accommodate the explicit notions of contracts
and clients (Section 5).

2. We smoothly integrate AARA for functional programs
with session types for work analysis [20] (Section 6).

3. We prove the type soundness of Nomos with respect to
a novel asynchronous cost semantics using progress and
preservation (Section 7).

4. We translated all examples used in this paper into Concur-
rent C0 [47], which serves as proof-of-concept for evalu-
ating the performance of digital contract languages based
on session types. Our preliminary results indicate that the
performance of language based on session types is ade-
quate for implementation of digital contracts (Section 9).

This article illustrates the key concepts and functionality of
Nomos. The supplementary material formalizes the complete
language with typing rules, cost semantics and the type
soundness theorem and proof.
2 Nomos by Example
Nomos is a programming language based on resource-aware
[20] and shared [10] session types for writing safe digital
contracts. This section uses a simple auction contract to

showcase the most signi�cant features of the language. The
subsequent sections explain each feature in technical detail.

Explicit Protocols of Interaction Digital contracts, like
ordinary contracts, follow a prede�ned protocol. For in-
stance, an auction contract follows the protocol that the
bidders �rst submit their bids to the auctioneer, and then
the highest bidder receives the lot while all other bidders
receive their bids back. In existing smart contract languages
like Solidity [1], this protocol is neither made explicit in
the contract program nor enforced statically. Without such
an explicit protocol, there is no guarantee that the parties
involved in the contract will follow the protocol. As a re-
sult, contracts in these languages have to resort to explicit
runtime checks to prevent undesirable behavior. This is a
common source of bugs in contracts as accounting for all
possible unwanted behavior is challenging, especially in a
distributed system with distrusting parties.
Contracts in Nomos, on the other hand, are typed with

a session type [10, 14, 28–30, 39, 44, 46], which speci�es the
contract’s protocol of interaction. Type-checking then makes
sure that the program implements the protocol de�ned by the
session type correctly. For instance, consider the following
protocol prescribed by the auction session type (ignore the
annotations on / and . , discussed later).

"SL /11 � {running : N{bid : id � money (.1 #SL auction,
cancel : .8 #SL auction},

ended : N{collect : id �
�{won : lot ⌦ .3 #SL auction,

lost : money⌦ #SL auction},
cancel : .8 #SL auction}}

Since there exist multiple bidders in an auction, we use a
shared session type [10] to de�ne the auction protocol. To
guarantee that bidders interact with the auction in mutual
exclusion, the session type demarcates the parts of the pro-
tocol that become a critical section. The "SL type modality
denotes the beginning of a critical section, the #SL modality
its end. Programmatically, "SL translates into an acquire of the
auction session and #SL into the release of the session. Shared
session types guarantee that inside a critical section there
exists exactly one client, whose interaction is described by a
linear session type.
Once a client has acquired the auction session, the auc-

tion will indicate whether it is still running (running) or not
(ended). This protocol is expressed by the internal choice
type constructor (�), describing the provider’s (aka con-
tract’s) choice. An external choice (N), on the other hand,
leaves the choice to the client. For example, in case the lot-
tery is still running, the client can choose between placing
a bid (bid) or backing out (cancel). If the client chooses to
place a bid, they have to indicate their identi�er, followed by
a payment, after which they release the session. Nomos ses-
sion types allow exchange of both functional values (e.g. id),

2

PL’18, January 01–03, 2018, New York, NY, USA Ankush Das, Stephanie Balzer, Jan Ho�mann, and Frank Pfenning

In the future, typed Nomos code could safely interact with
untyped or untrusted code through monitors, which can be
automatically synthesized from the session type [23].

To make transaction cost in Nomos predictable and trans-
parent, and to prevent bugs and vulnerabilities in contracts
based on excessive resource usage, we apply and further
develop automatic amortized resource analysis (AARA), a
type-based technique for automatically inferring symbolic
resource bounds [15, 25–27, 32]. AARA is parametric in the
cost model, which makes it directly applicable to track gas
consumption of Nomos contracts. Other advantages of the
technique include natural compositionality, a formal sound-
ness proof with respect to a cost semantics, and reduction of
(non-linear) bound inference to o�-the-shelf LP solving.

To eliminate a class of bugs in which the internal state of
a contract loses track of its assets or performs unintended
transactions, Nomos integrates a linear type system [45] into
a functional language. Linear type systems use the ideas of
Girard’s linear logic [22] to ensure that certain data is neither
duplicated nor discarded by a program. Programming lan-
guages such as Rust [5] have demonstrated that substructural
type systems are practical in industrial-strength languages.
Moreover, linear types are compatible with session types,
which are themselves based on linear logic [10, 14, 39, 44, 46].

In addition to the design of the Nomos language, we make
the following technical contributions.
1. We integrate linear session types that support controlled

sharing [10, 11] into a conventional functional type sys-
tem. To leave the logical foundation intact, the integra-
tion is achieved by a contextual monad [44] (Section 4)
that gives process expressions �rst-class status in the
functional language. Moreover, we recast shared session
types [10] to accommodate the explicit notions of contracts
and clients (Section 5).

2. We smoothly integrate AARA for functional programs
with session types for work analysis [20] (Section 6).

3. We prove the type soundness of Nomos with respect to
a novel asynchronous cost semantics using progress and
preservation (Section 7).

4. We translated all examples used in this paper into Concur-
rent C0 [47], which serves as proof-of-concept for evalu-
ating the performance of digital contract languages based
on session types. Our preliminary results indicate that the
performance of language based on session types is ade-
quate for implementation of digital contracts (Section 9).

This article illustrates the key concepts and functionality of
Nomos. The supplementary material formalizes the complete
language with typing rules, cost semantics and the type
soundness theorem and proof.
2 Nomos by Example
Nomos is a programming language based on resource-aware
[20] and shared [10] session types for writing safe digital
contracts. This section uses a simple auction contract to

showcase the most signi�cant features of the language. The
subsequent sections explain each feature in technical detail.

Explicit Protocols of Interaction Digital contracts, like
ordinary contracts, follow a prede�ned protocol. For in-
stance, an auction contract follows the protocol that the
bidders �rst submit their bids to the auctioneer, and then
the highest bidder receives the lot while all other bidders
receive their bids back. In existing smart contract languages
like Solidity [1], this protocol is neither made explicit in
the contract program nor enforced statically. Without such
an explicit protocol, there is no guarantee that the parties
involved in the contract will follow the protocol. As a re-
sult, contracts in these languages have to resort to explicit
runtime checks to prevent undesirable behavior. This is a
common source of bugs in contracts as accounting for all
possible unwanted behavior is challenging, especially in a
distributed system with distrusting parties.
Contracts in Nomos, on the other hand, are typed with

a session type [10, 14, 28–30, 39, 44, 46], which speci�es the
contract’s protocol of interaction. Type-checking then makes
sure that the program implements the protocol de�ned by the
session type correctly. For instance, consider the following
protocol prescribed by the auction session type (ignore the
annotations on / and . , discussed later).

"SL /11 � {running : N{bid : id � money (.1 #SL auction,
cancel : .8 #SL auction},

ended : N{collect : id �
�{won : lot ⌦ .3 #SL auction,

lost : money⌦ #SL auction},
cancel : .8 #SL auction}}

Since there exist multiple bidders in an auction, we use a
shared session type [10] to de�ne the auction protocol. To
guarantee that bidders interact with the auction in mutual
exclusion, the session type demarcates the parts of the pro-
tocol that become a critical section. The "SL type modality
denotes the beginning of a critical section, the #SL modality
its end. Programmatically, "SL translates into an acquire of the
auction session and #SL into the release of the session. Shared
session types guarantee that inside a critical section there
exists exactly one client, whose interaction is described by a
linear session type.
Once a client has acquired the auction session, the auc-

tion will indicate whether it is still running (running) or not
(ended). This protocol is expressed by the internal choice
type constructor (�), describing the provider’s (aka con-
tract’s) choice. An external choice (N), on the other hand,
leaves the choice to the client. For example, in case the lot-
tery is still running, the client can choose between placing
a bid (bid) or backing out (cancel). If the client chooses to
place a bid, they have to indicate their identi�er, followed by
a payment, after which they release the session. Nomos ses-
sion types allow exchange of both functional values (e.g. id),

2

=

Example: Type of an
Auction Contract

Sharing: Need to acquire
contract before use.

PL’18, January 01–03, 2018, New York, NY, USA Ankush Das, Stephanie Balzer, Jan Ho�mann, and Frank Pfenning

In the future, typed Nomos code could safely interact with
untyped or untrusted code through monitors, which can be
automatically synthesized from the session type [23].

To make transaction cost in Nomos predictable and trans-
parent, and to prevent bugs and vulnerabilities in contracts
based on excessive resource usage, we apply and further
develop automatic amortized resource analysis (AARA), a
type-based technique for automatically inferring symbolic
resource bounds [15, 25–27, 32]. AARA is parametric in the
cost model, which makes it directly applicable to track gas
consumption of Nomos contracts. Other advantages of the
technique include natural compositionality, a formal sound-
ness proof with respect to a cost semantics, and reduction of
(non-linear) bound inference to o�-the-shelf LP solving.

To eliminate a class of bugs in which the internal state of
a contract loses track of its assets or performs unintended
transactions, Nomos integrates a linear type system [45] into
a functional language. Linear type systems use the ideas of
Girard’s linear logic [22] to ensure that certain data is neither
duplicated nor discarded by a program. Programming lan-
guages such as Rust [5] have demonstrated that substructural
type systems are practical in industrial-strength languages.
Moreover, linear types are compatible with session types,
which are themselves based on linear logic [10, 14, 39, 44, 46].

In addition to the design of the Nomos language, we make
the following technical contributions.
1. We integrate linear session types that support controlled

sharing [10, 11] into a conventional functional type sys-
tem. To leave the logical foundation intact, the integra-
tion is achieved by a contextual monad [44] (Section 4)
that gives process expressions �rst-class status in the
functional language. Moreover, we recast shared session
types [10] to accommodate the explicit notions of contracts
and clients (Section 5).

2. We smoothly integrate AARA for functional programs
with session types for work analysis [20] (Section 6).

3. We prove the type soundness of Nomos with respect to
a novel asynchronous cost semantics using progress and
preservation (Section 7).

4. We translated all examples used in this paper into Concur-
rent C0 [47], which serves as proof-of-concept for evalu-
ating the performance of digital contract languages based
on session types. Our preliminary results indicate that the
performance of language based on session types is ade-
quate for implementation of digital contracts (Section 9).

This article illustrates the key concepts and functionality of
Nomos. The supplementary material formalizes the complete
language with typing rules, cost semantics and the type
soundness theorem and proof.
2 Nomos by Example
Nomos is a programming language based on resource-aware
[20] and shared [10] session types for writing safe digital
contracts. This section uses a simple auction contract to

showcase the most signi�cant features of the language. The
subsequent sections explain each feature in technical detail.

Explicit Protocols of Interaction Digital contracts, like
ordinary contracts, follow a prede�ned protocol. For in-
stance, an auction contract follows the protocol that the
bidders �rst submit their bids to the auctioneer, and then
the highest bidder receives the lot while all other bidders
receive their bids back. In existing smart contract languages
like Solidity [1], this protocol is neither made explicit in
the contract program nor enforced statically. Without such
an explicit protocol, there is no guarantee that the parties
involved in the contract will follow the protocol. As a re-
sult, contracts in these languages have to resort to explicit
runtime checks to prevent undesirable behavior. This is a
common source of bugs in contracts as accounting for all
possible unwanted behavior is challenging, especially in a
distributed system with distrusting parties.
Contracts in Nomos, on the other hand, are typed with

a session type [10, 14, 28–30, 39, 44, 46], which speci�es the
contract’s protocol of interaction. Type-checking then makes
sure that the program implements the protocol de�ned by the
session type correctly. For instance, consider the following
protocol prescribed by the auction session type (ignore the
annotations on / and . , discussed later).

"SL /11 � {running : N{bid : id � money (.1 #SL auction,
cancel : .8 #SL auction},

ended : N{collect : id �
�{won : lot ⌦ .3 #SL auction,

lost : money⌦ #SL auction},
cancel : .8 #SL auction}}

Since there exist multiple bidders in an auction, we use a
shared session type [10] to de�ne the auction protocol. To
guarantee that bidders interact with the auction in mutual
exclusion, the session type demarcates the parts of the pro-
tocol that become a critical section. The "SL type modality
denotes the beginning of a critical section, the #SL modality
its end. Programmatically, "SL translates into an acquire of the
auction session and #SL into the release of the session. Shared
session types guarantee that inside a critical section there
exists exactly one client, whose interaction is described by a
linear session type.
Once a client has acquired the auction session, the auc-

tion will indicate whether it is still running (running) or not
(ended). This protocol is expressed by the internal choice
type constructor (�), describing the provider’s (aka con-
tract’s) choice. An external choice (N), on the other hand,
leaves the choice to the client. For example, in case the lot-
tery is still running, the client can choose between placing
a bid (bid) or backing out (cancel). If the client chooses to
place a bid, they have to indicate their identi�er, followed by
a payment, after which they release the session. Nomos ses-
sion types allow exchange of both functional values (e.g. id),

2

PL’18, January 01–03, 2018, New York, NY, USA Ankush Das, Stephanie Balzer, Jan Ho�mann, and Frank Pfenning

In the future, typed Nomos code could safely interact with
untyped or untrusted code through monitors, which can be
automatically synthesized from the session type [23].

To make transaction cost in Nomos predictable and trans-
parent, and to prevent bugs and vulnerabilities in contracts
based on excessive resource usage, we apply and further
develop automatic amortized resource analysis (AARA), a
type-based technique for automatically inferring symbolic
resource bounds [15, 25–27, 32]. AARA is parametric in the
cost model, which makes it directly applicable to track gas
consumption of Nomos contracts. Other advantages of the
technique include natural compositionality, a formal sound-
ness proof with respect to a cost semantics, and reduction of
(non-linear) bound inference to o�-the-shelf LP solving.

To eliminate a class of bugs in which the internal state of
a contract loses track of its assets or performs unintended
transactions, Nomos integrates a linear type system [45] into
a functional language. Linear type systems use the ideas of
Girard’s linear logic [22] to ensure that certain data is neither
duplicated nor discarded by a program. Programming lan-
guages such as Rust [5] have demonstrated that substructural
type systems are practical in industrial-strength languages.
Moreover, linear types are compatible with session types,
which are themselves based on linear logic [10, 14, 39, 44, 46].

In addition to the design of the Nomos language, we make
the following technical contributions.
1. We integrate linear session types that support controlled

sharing [10, 11] into a conventional functional type sys-
tem. To leave the logical foundation intact, the integra-
tion is achieved by a contextual monad [44] (Section 4)
that gives process expressions �rst-class status in the
functional language. Moreover, we recast shared session
types [10] to accommodate the explicit notions of contracts
and clients (Section 5).

2. We smoothly integrate AARA for functional programs
with session types for work analysis [20] (Section 6).

3. We prove the type soundness of Nomos with respect to
a novel asynchronous cost semantics using progress and
preservation (Section 7).

4. We translated all examples used in this paper into Concur-
rent C0 [47], which serves as proof-of-concept for evalu-
ating the performance of digital contract languages based
on session types. Our preliminary results indicate that the
performance of language based on session types is ade-
quate for implementation of digital contracts (Section 9).

This article illustrates the key concepts and functionality of
Nomos. The supplementary material formalizes the complete
language with typing rules, cost semantics and the type
soundness theorem and proof.
2 Nomos by Example
Nomos is a programming language based on resource-aware
[20] and shared [10] session types for writing safe digital
contracts. This section uses a simple auction contract to

showcase the most signi�cant features of the language. The
subsequent sections explain each feature in technical detail.

Explicit Protocols of Interaction Digital contracts, like
ordinary contracts, follow a prede�ned protocol. For in-
stance, an auction contract follows the protocol that the
bidders �rst submit their bids to the auctioneer, and then
the highest bidder receives the lot while all other bidders
receive their bids back. In existing smart contract languages
like Solidity [1], this protocol is neither made explicit in
the contract program nor enforced statically. Without such
an explicit protocol, there is no guarantee that the parties
involved in the contract will follow the protocol. As a re-
sult, contracts in these languages have to resort to explicit
runtime checks to prevent undesirable behavior. This is a
common source of bugs in contracts as accounting for all
possible unwanted behavior is challenging, especially in a
distributed system with distrusting parties.
Contracts in Nomos, on the other hand, are typed with

a session type [10, 14, 28–30, 39, 44, 46], which speci�es the
contract’s protocol of interaction. Type-checking then makes
sure that the program implements the protocol de�ned by the
session type correctly. For instance, consider the following
protocol prescribed by the auction session type (ignore the
annotations on / and . , discussed later).

"SL /11 � {running : N{bid : id � money (.1 #SL auction,
cancel : .8 #SL auction},

ended : N{collect : id �
�{won : lot ⌦ .3 #SL auction,

lost : money⌦ #SL auction},
cancel : .8 #SL auction}}

Since there exist multiple bidders in an auction, we use a
shared session type [10] to de�ne the auction protocol. To
guarantee that bidders interact with the auction in mutual
exclusion, the session type demarcates the parts of the pro-
tocol that become a critical section. The "SL type modality
denotes the beginning of a critical section, the #SL modality
its end. Programmatically, "SL translates into an acquire of the
auction session and #SL into the release of the session. Shared
session types guarantee that inside a critical section there
exists exactly one client, whose interaction is described by a
linear session type.
Once a client has acquired the auction session, the auc-

tion will indicate whether it is still running (running) or not
(ended). This protocol is expressed by the internal choice
type constructor (�), describing the provider’s (aka con-
tract’s) choice. An external choice (N), on the other hand,
leaves the choice to the client. For example, in case the lot-
tery is still running, the client can choose between placing
a bid (bid) or backing out (cancel). If the client chooses to
place a bid, they have to indicate their identi�er, followed by
a payment, after which they release the session. Nomos ses-
sion types allow exchange of both functional values (e.g. id),

2

=

Example: Type of an
Auction Contract

Sharing: Need to acquire
contract before use.

Equi-synchronizing:
Release contract at the

same type.

PL’18, January 01–03, 2018, New York, NY, USA Ankush Das, Stephanie Balzer, Jan Ho�mann, and Frank Pfenning

In the future, typed Nomos code could safely interact with
untyped or untrusted code through monitors, which can be
automatically synthesized from the session type [23].

To make transaction cost in Nomos predictable and trans-
parent, and to prevent bugs and vulnerabilities in contracts
based on excessive resource usage, we apply and further
develop automatic amortized resource analysis (AARA), a
type-based technique for automatically inferring symbolic
resource bounds [15, 25–27, 32]. AARA is parametric in the
cost model, which makes it directly applicable to track gas
consumption of Nomos contracts. Other advantages of the
technique include natural compositionality, a formal sound-
ness proof with respect to a cost semantics, and reduction of
(non-linear) bound inference to o�-the-shelf LP solving.

To eliminate a class of bugs in which the internal state of
a contract loses track of its assets or performs unintended
transactions, Nomos integrates a linear type system [45] into
a functional language. Linear type systems use the ideas of
Girard’s linear logic [22] to ensure that certain data is neither
duplicated nor discarded by a program. Programming lan-
guages such as Rust [5] have demonstrated that substructural
type systems are practical in industrial-strength languages.
Moreover, linear types are compatible with session types,
which are themselves based on linear logic [10, 14, 39, 44, 46].

In addition to the design of the Nomos language, we make
the following technical contributions.
1. We integrate linear session types that support controlled

sharing [10, 11] into a conventional functional type sys-
tem. To leave the logical foundation intact, the integra-
tion is achieved by a contextual monad [44] (Section 4)
that gives process expressions �rst-class status in the
functional language. Moreover, we recast shared session
types [10] to accommodate the explicit notions of contracts
and clients (Section 5).

2. We smoothly integrate AARA for functional programs
with session types for work analysis [20] (Section 6).

3. We prove the type soundness of Nomos with respect to
a novel asynchronous cost semantics using progress and
preservation (Section 7).

4. We translated all examples used in this paper into Concur-
rent C0 [47], which serves as proof-of-concept for evalu-
ating the performance of digital contract languages based
on session types. Our preliminary results indicate that the
performance of language based on session types is ade-
quate for implementation of digital contracts (Section 9).

This article illustrates the key concepts and functionality of
Nomos. The supplementary material formalizes the complete
language with typing rules, cost semantics and the type
soundness theorem and proof.
2 Nomos by Example
Nomos is a programming language based on resource-aware
[20] and shared [10] session types for writing safe digital
contracts. This section uses a simple auction contract to

showcase the most signi�cant features of the language. The
subsequent sections explain each feature in technical detail.

Explicit Protocols of Interaction Digital contracts, like
ordinary contracts, follow a prede�ned protocol. For in-
stance, an auction contract follows the protocol that the
bidders �rst submit their bids to the auctioneer, and then
the highest bidder receives the lot while all other bidders
receive their bids back. In existing smart contract languages
like Solidity [1], this protocol is neither made explicit in
the contract program nor enforced statically. Without such
an explicit protocol, there is no guarantee that the parties
involved in the contract will follow the protocol. As a re-
sult, contracts in these languages have to resort to explicit
runtime checks to prevent undesirable behavior. This is a
common source of bugs in contracts as accounting for all
possible unwanted behavior is challenging, especially in a
distributed system with distrusting parties.
Contracts in Nomos, on the other hand, are typed with

a session type [10, 14, 28–30, 39, 44, 46], which speci�es the
contract’s protocol of interaction. Type-checking then makes
sure that the program implements the protocol de�ned by the
session type correctly. For instance, consider the following
protocol prescribed by the auction session type (ignore the
annotations on / and . , discussed later).

"SL /11 � {running : N{bid : id � money (.1 #SL auction,
cancel : .8 #SL auction},

ended : N{collect : id �
�{won : lot ⌦ .3 #SL auction,

lost : money⌦ #SL auction},
cancel : .8 #SL auction}}

Since there exist multiple bidders in an auction, we use a
shared session type [10] to de�ne the auction protocol. To
guarantee that bidders interact with the auction in mutual
exclusion, the session type demarcates the parts of the pro-
tocol that become a critical section. The "SL type modality
denotes the beginning of a critical section, the #SL modality
its end. Programmatically, "SL translates into an acquire of the
auction session and #SL into the release of the session. Shared
session types guarantee that inside a critical section there
exists exactly one client, whose interaction is described by a
linear session type.
Once a client has acquired the auction session, the auc-

tion will indicate whether it is still running (running) or not
(ended). This protocol is expressed by the internal choice
type constructor (�), describing the provider’s (aka con-
tract’s) choice. An external choice (N), on the other hand,
leaves the choice to the client. For example, in case the lot-
tery is still running, the client can choose between placing
a bid (bid) or backing out (cancel). If the client chooses to
place a bid, they have to indicate their identi�er, followed by
a payment, after which they release the session. Nomos ses-
sion types allow exchange of both functional values (e.g. id),

2

PL’18, January 01–03, 2018, New York, NY, USA Ankush Das, Stephanie Balzer, Jan Ho�mann, and Frank Pfenning

In the future, typed Nomos code could safely interact with
untyped or untrusted code through monitors, which can be
automatically synthesized from the session type [23].

To make transaction cost in Nomos predictable and trans-
parent, and to prevent bugs and vulnerabilities in contracts
based on excessive resource usage, we apply and further
develop automatic amortized resource analysis (AARA), a
type-based technique for automatically inferring symbolic
resource bounds [15, 25–27, 32]. AARA is parametric in the
cost model, which makes it directly applicable to track gas
consumption of Nomos contracts. Other advantages of the
technique include natural compositionality, a formal sound-
ness proof with respect to a cost semantics, and reduction of
(non-linear) bound inference to o�-the-shelf LP solving.

To eliminate a class of bugs in which the internal state of
a contract loses track of its assets or performs unintended
transactions, Nomos integrates a linear type system [45] into
a functional language. Linear type systems use the ideas of
Girard’s linear logic [22] to ensure that certain data is neither
duplicated nor discarded by a program. Programming lan-
guages such as Rust [5] have demonstrated that substructural
type systems are practical in industrial-strength languages.
Moreover, linear types are compatible with session types,
which are themselves based on linear logic [10, 14, 39, 44, 46].

In addition to the design of the Nomos language, we make
the following technical contributions.
1. We integrate linear session types that support controlled

sharing [10, 11] into a conventional functional type sys-
tem. To leave the logical foundation intact, the integra-
tion is achieved by a contextual monad [44] (Section 4)
that gives process expressions �rst-class status in the
functional language. Moreover, we recast shared session
types [10] to accommodate the explicit notions of contracts
and clients (Section 5).

2. We smoothly integrate AARA for functional programs
with session types for work analysis [20] (Section 6).

3. We prove the type soundness of Nomos with respect to
a novel asynchronous cost semantics using progress and
preservation (Section 7).

4. We translated all examples used in this paper into Concur-
rent C0 [47], which serves as proof-of-concept for evalu-
ating the performance of digital contract languages based
on session types. Our preliminary results indicate that the
performance of language based on session types is ade-
quate for implementation of digital contracts (Section 9).

This article illustrates the key concepts and functionality of
Nomos. The supplementary material formalizes the complete
language with typing rules, cost semantics and the type
soundness theorem and proof.
2 Nomos by Example
Nomos is a programming language based on resource-aware
[20] and shared [10] session types for writing safe digital
contracts. This section uses a simple auction contract to

showcase the most signi�cant features of the language. The
subsequent sections explain each feature in technical detail.

Explicit Protocols of Interaction Digital contracts, like
ordinary contracts, follow a prede�ned protocol. For in-
stance, an auction contract follows the protocol that the
bidders �rst submit their bids to the auctioneer, and then
the highest bidder receives the lot while all other bidders
receive their bids back. In existing smart contract languages
like Solidity [1], this protocol is neither made explicit in
the contract program nor enforced statically. Without such
an explicit protocol, there is no guarantee that the parties
involved in the contract will follow the protocol. As a re-
sult, contracts in these languages have to resort to explicit
runtime checks to prevent undesirable behavior. This is a
common source of bugs in contracts as accounting for all
possible unwanted behavior is challenging, especially in a
distributed system with distrusting parties.
Contracts in Nomos, on the other hand, are typed with

a session type [10, 14, 28–30, 39, 44, 46], which speci�es the
contract’s protocol of interaction. Type-checking then makes
sure that the program implements the protocol de�ned by the
session type correctly. For instance, consider the following
protocol prescribed by the auction session type (ignore the
annotations on / and . , discussed later).

"SL /11 � {running : N{bid : id � money (.1 #SL auction,
cancel : .8 #SL auction},

ended : N{collect : id �
�{won : lot ⌦ .3 #SL auction,

lost : money⌦ #SL auction},
cancel : .8 #SL auction}}

Since there exist multiple bidders in an auction, we use a
shared session type [10] to de�ne the auction protocol. To
guarantee that bidders interact with the auction in mutual
exclusion, the session type demarcates the parts of the pro-
tocol that become a critical section. The "SL type modality
denotes the beginning of a critical section, the #SL modality
its end. Programmatically, "SL translates into an acquire of the
auction session and #SL into the release of the session. Shared
session types guarantee that inside a critical section there
exists exactly one client, whose interaction is described by a
linear session type.
Once a client has acquired the auction session, the auc-

tion will indicate whether it is still running (running) or not
(ended). This protocol is expressed by the internal choice
type constructor (�), describing the provider’s (aka con-
tract’s) choice. An external choice (N), on the other hand,
leaves the choice to the client. For example, in case the lot-
tery is still running, the client can choose between placing
a bid (bid) or backing out (cancel). If the client chooses to
place a bid, they have to indicate their identi�er, followed by
a payment, after which they release the session. Nomos ses-
sion types allow exchange of both functional values (e.g. id),

2

=

Example: Type of an
Auction Contract

Action can be open
(running) or closed

(ended).

PL’18, January 01–03, 2018, New York, NY, USA Ankush Das, Stephanie Balzer, Jan Ho�mann, and Frank Pfenning

In the future, typed Nomos code could safely interact with
untyped or untrusted code through monitors, which can be
automatically synthesized from the session type [23].

To make transaction cost in Nomos predictable and trans-
parent, and to prevent bugs and vulnerabilities in contracts
based on excessive resource usage, we apply and further
develop automatic amortized resource analysis (AARA), a
type-based technique for automatically inferring symbolic
resource bounds [15, 25–27, 32]. AARA is parametric in the
cost model, which makes it directly applicable to track gas
consumption of Nomos contracts. Other advantages of the
technique include natural compositionality, a formal sound-
ness proof with respect to a cost semantics, and reduction of
(non-linear) bound inference to o�-the-shelf LP solving.

To eliminate a class of bugs in which the internal state of
a contract loses track of its assets or performs unintended
transactions, Nomos integrates a linear type system [45] into
a functional language. Linear type systems use the ideas of
Girard’s linear logic [22] to ensure that certain data is neither
duplicated nor discarded by a program. Programming lan-
guages such as Rust [5] have demonstrated that substructural
type systems are practical in industrial-strength languages.
Moreover, linear types are compatible with session types,
which are themselves based on linear logic [10, 14, 39, 44, 46].

In addition to the design of the Nomos language, we make
the following technical contributions.
1. We integrate linear session types that support controlled

sharing [10, 11] into a conventional functional type sys-
tem. To leave the logical foundation intact, the integra-
tion is achieved by a contextual monad [44] (Section 4)
that gives process expressions �rst-class status in the
functional language. Moreover, we recast shared session
types [10] to accommodate the explicit notions of contracts
and clients (Section 5).

2. We smoothly integrate AARA for functional programs
with session types for work analysis [20] (Section 6).

3. We prove the type soundness of Nomos with respect to
a novel asynchronous cost semantics using progress and
preservation (Section 7).

4. We translated all examples used in this paper into Concur-
rent C0 [47], which serves as proof-of-concept for evalu-
ating the performance of digital contract languages based
on session types. Our preliminary results indicate that the
performance of language based on session types is ade-
quate for implementation of digital contracts (Section 9).

This article illustrates the key concepts and functionality of
Nomos. The supplementary material formalizes the complete
language with typing rules, cost semantics and the type
soundness theorem and proof.
2 Nomos by Example
Nomos is a programming language based on resource-aware
[20] and shared [10] session types for writing safe digital
contracts. This section uses a simple auction contract to

showcase the most signi�cant features of the language. The
subsequent sections explain each feature in technical detail.

Explicit Protocols of Interaction Digital contracts, like
ordinary contracts, follow a prede�ned protocol. For in-
stance, an auction contract follows the protocol that the
bidders �rst submit their bids to the auctioneer, and then
the highest bidder receives the lot while all other bidders
receive their bids back. In existing smart contract languages
like Solidity [1], this protocol is neither made explicit in
the contract program nor enforced statically. Without such
an explicit protocol, there is no guarantee that the parties
involved in the contract will follow the protocol. As a re-
sult, contracts in these languages have to resort to explicit
runtime checks to prevent undesirable behavior. This is a
common source of bugs in contracts as accounting for all
possible unwanted behavior is challenging, especially in a
distributed system with distrusting parties.
Contracts in Nomos, on the other hand, are typed with

a session type [10, 14, 28–30, 39, 44, 46], which speci�es the
contract’s protocol of interaction. Type-checking then makes
sure that the program implements the protocol de�ned by the
session type correctly. For instance, consider the following
protocol prescribed by the auction session type (ignore the
annotations on / and . , discussed later).

"SL /11 � {running : N{bid : id � money (.1 #SL auction,
cancel : .8 #SL auction},

ended : N{collect : id �
�{won : lot ⌦ .3 #SL auction,

lost : money⌦ #SL auction},
cancel : .8 #SL auction}}

Since there exist multiple bidders in an auction, we use a
shared session type [10] to de�ne the auction protocol. To
guarantee that bidders interact with the auction in mutual
exclusion, the session type demarcates the parts of the pro-
tocol that become a critical section. The "SL type modality
denotes the beginning of a critical section, the #SL modality
its end. Programmatically, "SL translates into an acquire of the
auction session and #SL into the release of the session. Shared
session types guarantee that inside a critical section there
exists exactly one client, whose interaction is described by a
linear session type.
Once a client has acquired the auction session, the auc-

tion will indicate whether it is still running (running) or not
(ended). This protocol is expressed by the internal choice
type constructor (�), describing the provider’s (aka con-
tract’s) choice. An external choice (N), on the other hand,
leaves the choice to the client. For example, in case the lot-
tery is still running, the client can choose between placing
a bid (bid) or backing out (cancel). If the client chooses to
place a bid, they have to indicate their identi�er, followed by
a payment, after which they release the session. Nomos ses-
sion types allow exchange of both functional values (e.g. id),

2

PL’18, January 01–03, 2018, New York, NY, USA Ankush Das, Stephanie Balzer, Jan Ho�mann, and Frank Pfenning

In the future, typed Nomos code could safely interact with
untyped or untrusted code through monitors, which can be
automatically synthesized from the session type [23].

To make transaction cost in Nomos predictable and trans-
parent, and to prevent bugs and vulnerabilities in contracts
based on excessive resource usage, we apply and further
develop automatic amortized resource analysis (AARA), a
type-based technique for automatically inferring symbolic
resource bounds [15, 25–27, 32]. AARA is parametric in the
cost model, which makes it directly applicable to track gas
consumption of Nomos contracts. Other advantages of the
technique include natural compositionality, a formal sound-
ness proof with respect to a cost semantics, and reduction of
(non-linear) bound inference to o�-the-shelf LP solving.

To eliminate a class of bugs in which the internal state of
a contract loses track of its assets or performs unintended
transactions, Nomos integrates a linear type system [45] into
a functional language. Linear type systems use the ideas of
Girard’s linear logic [22] to ensure that certain data is neither
duplicated nor discarded by a program. Programming lan-
guages such as Rust [5] have demonstrated that substructural
type systems are practical in industrial-strength languages.
Moreover, linear types are compatible with session types,
which are themselves based on linear logic [10, 14, 39, 44, 46].

In addition to the design of the Nomos language, we make
the following technical contributions.
1. We integrate linear session types that support controlled

sharing [10, 11] into a conventional functional type sys-
tem. To leave the logical foundation intact, the integra-
tion is achieved by a contextual monad [44] (Section 4)
that gives process expressions �rst-class status in the
functional language. Moreover, we recast shared session
types [10] to accommodate the explicit notions of contracts
and clients (Section 5).

2. We smoothly integrate AARA for functional programs
with session types for work analysis [20] (Section 6).

3. We prove the type soundness of Nomos with respect to
a novel asynchronous cost semantics using progress and
preservation (Section 7).

4. We translated all examples used in this paper into Concur-
rent C0 [47], which serves as proof-of-concept for evalu-
ating the performance of digital contract languages based
on session types. Our preliminary results indicate that the
performance of language based on session types is ade-
quate for implementation of digital contracts (Section 9).

This article illustrates the key concepts and functionality of
Nomos. The supplementary material formalizes the complete
language with typing rules, cost semantics and the type
soundness theorem and proof.
2 Nomos by Example
Nomos is a programming language based on resource-aware
[20] and shared [10] session types for writing safe digital
contracts. This section uses a simple auction contract to

showcase the most signi�cant features of the language. The
subsequent sections explain each feature in technical detail.

Explicit Protocols of Interaction Digital contracts, like
ordinary contracts, follow a prede�ned protocol. For in-
stance, an auction contract follows the protocol that the
bidders �rst submit their bids to the auctioneer, and then
the highest bidder receives the lot while all other bidders
receive their bids back. In existing smart contract languages
like Solidity [1], this protocol is neither made explicit in
the contract program nor enforced statically. Without such
an explicit protocol, there is no guarantee that the parties
involved in the contract will follow the protocol. As a re-
sult, contracts in these languages have to resort to explicit
runtime checks to prevent undesirable behavior. This is a
common source of bugs in contracts as accounting for all
possible unwanted behavior is challenging, especially in a
distributed system with distrusting parties.
Contracts in Nomos, on the other hand, are typed with

a session type [10, 14, 28–30, 39, 44, 46], which speci�es the
contract’s protocol of interaction. Type-checking then makes
sure that the program implements the protocol de�ned by the
session type correctly. For instance, consider the following
protocol prescribed by the auction session type (ignore the
annotations on / and . , discussed later).

"SL /11 � {running : N{bid : id � money (.1 #SL auction,
cancel : .8 #SL auction},

ended : N{collect : id �
�{won : lot ⌦ .3 #SL auction,

lost : money⌦ #SL auction},
cancel : .8 #SL auction}}

Since there exist multiple bidders in an auction, we use a
shared session type [10] to de�ne the auction protocol. To
guarantee that bidders interact with the auction in mutual
exclusion, the session type demarcates the parts of the pro-
tocol that become a critical section. The "SL type modality
denotes the beginning of a critical section, the #SL modality
its end. Programmatically, "SL translates into an acquire of the
auction session and #SL into the release of the session. Shared
session types guarantee that inside a critical section there
exists exactly one client, whose interaction is described by a
linear session type.
Once a client has acquired the auction session, the auc-

tion will indicate whether it is still running (running) or not
(ended). This protocol is expressed by the internal choice
type constructor (�), describing the provider’s (aka con-
tract’s) choice. An external choice (N), on the other hand,
leaves the choice to the client. For example, in case the lot-
tery is still running, the client can choose between placing
a bid (bid) or backing out (cancel). If the client chooses to
place a bid, they have to indicate their identi�er, followed by
a payment, after which they release the session. Nomos ses-
sion types allow exchange of both functional values (e.g. id),

2

=

Example: Type of an
Auction Contract

Action can be open
(running) or closed

(ended).

Sending a
functional value.

PL’18, January 01–03, 2018, New York, NY, USA Ankush Das, Stephanie Balzer, Jan Ho�mann, and Frank Pfenning

In the future, typed Nomos code could safely interact with
untyped or untrusted code through monitors, which can be
automatically synthesized from the session type [23].

To make transaction cost in Nomos predictable and trans-
parent, and to prevent bugs and vulnerabilities in contracts
based on excessive resource usage, we apply and further
develop automatic amortized resource analysis (AARA), a
type-based technique for automatically inferring symbolic
resource bounds [15, 25–27, 32]. AARA is parametric in the
cost model, which makes it directly applicable to track gas
consumption of Nomos contracts. Other advantages of the
technique include natural compositionality, a formal sound-
ness proof with respect to a cost semantics, and reduction of
(non-linear) bound inference to o�-the-shelf LP solving.

To eliminate a class of bugs in which the internal state of
a contract loses track of its assets or performs unintended
transactions, Nomos integrates a linear type system [45] into
a functional language. Linear type systems use the ideas of
Girard’s linear logic [22] to ensure that certain data is neither
duplicated nor discarded by a program. Programming lan-
guages such as Rust [5] have demonstrated that substructural
type systems are practical in industrial-strength languages.
Moreover, linear types are compatible with session types,
which are themselves based on linear logic [10, 14, 39, 44, 46].

In addition to the design of the Nomos language, we make
the following technical contributions.
1. We integrate linear session types that support controlled

sharing [10, 11] into a conventional functional type sys-
tem. To leave the logical foundation intact, the integra-
tion is achieved by a contextual monad [44] (Section 4)
that gives process expressions �rst-class status in the
functional language. Moreover, we recast shared session
types [10] to accommodate the explicit notions of contracts
and clients (Section 5).

2. We smoothly integrate AARA for functional programs
with session types for work analysis [20] (Section 6).

3. We prove the type soundness of Nomos with respect to
a novel asynchronous cost semantics using progress and
preservation (Section 7).

4. We translated all examples used in this paper into Concur-
rent C0 [47], which serves as proof-of-concept for evalu-
ating the performance of digital contract languages based
on session types. Our preliminary results indicate that the
performance of language based on session types is ade-
quate for implementation of digital contracts (Section 9).

This article illustrates the key concepts and functionality of
Nomos. The supplementary material formalizes the complete
language with typing rules, cost semantics and the type
soundness theorem and proof.
2 Nomos by Example
Nomos is a programming language based on resource-aware
[20] and shared [10] session types for writing safe digital
contracts. This section uses a simple auction contract to

showcase the most signi�cant features of the language. The
subsequent sections explain each feature in technical detail.

Explicit Protocols of Interaction Digital contracts, like
ordinary contracts, follow a prede�ned protocol. For in-
stance, an auction contract follows the protocol that the
bidders �rst submit their bids to the auctioneer, and then
the highest bidder receives the lot while all other bidders
receive their bids back. In existing smart contract languages
like Solidity [1], this protocol is neither made explicit in
the contract program nor enforced statically. Without such
an explicit protocol, there is no guarantee that the parties
involved in the contract will follow the protocol. As a re-
sult, contracts in these languages have to resort to explicit
runtime checks to prevent undesirable behavior. This is a
common source of bugs in contracts as accounting for all
possible unwanted behavior is challenging, especially in a
distributed system with distrusting parties.
Contracts in Nomos, on the other hand, are typed with

a session type [10, 14, 28–30, 39, 44, 46], which speci�es the
contract’s protocol of interaction. Type-checking then makes
sure that the program implements the protocol de�ned by the
session type correctly. For instance, consider the following
protocol prescribed by the auction session type (ignore the
annotations on / and . , discussed later).

"SL /11 � {running : N{bid : id � money (.1 #SL auction,
cancel : .8 #SL auction},

ended : N{collect : id �
�{won : lot ⌦ .3 #SL auction,

lost : money⌦ #SL auction},
cancel : .8 #SL auction}}

Since there exist multiple bidders in an auction, we use a
shared session type [10] to de�ne the auction protocol. To
guarantee that bidders interact with the auction in mutual
exclusion, the session type demarcates the parts of the pro-
tocol that become a critical section. The "SL type modality
denotes the beginning of a critical section, the #SL modality
its end. Programmatically, "SL translates into an acquire of the
auction session and #SL into the release of the session. Shared
session types guarantee that inside a critical section there
exists exactly one client, whose interaction is described by a
linear session type.
Once a client has acquired the auction session, the auc-

tion will indicate whether it is still running (running) or not
(ended). This protocol is expressed by the internal choice
type constructor (�), describing the provider’s (aka con-
tract’s) choice. An external choice (N), on the other hand,
leaves the choice to the client. For example, in case the lot-
tery is still running, the client can choose between placing
a bid (bid) or backing out (cancel). If the client chooses to
place a bid, they have to indicate their identi�er, followed by
a payment, after which they release the session. Nomos ses-
sion types allow exchange of both functional values (e.g. id),

2

PL’18, January 01–03, 2018, New York, NY, USA Ankush Das, Stephanie Balzer, Jan Ho�mann, and Frank Pfenning

In the future, typed Nomos code could safely interact with
untyped or untrusted code through monitors, which can be
automatically synthesized from the session type [23].

To make transaction cost in Nomos predictable and trans-
parent, and to prevent bugs and vulnerabilities in contracts
based on excessive resource usage, we apply and further
develop automatic amortized resource analysis (AARA), a
type-based technique for automatically inferring symbolic
resource bounds [15, 25–27, 32]. AARA is parametric in the
cost model, which makes it directly applicable to track gas
consumption of Nomos contracts. Other advantages of the
technique include natural compositionality, a formal sound-
ness proof with respect to a cost semantics, and reduction of
(non-linear) bound inference to o�-the-shelf LP solving.

To eliminate a class of bugs in which the internal state of
a contract loses track of its assets or performs unintended
transactions, Nomos integrates a linear type system [45] into
a functional language. Linear type systems use the ideas of
Girard’s linear logic [22] to ensure that certain data is neither
duplicated nor discarded by a program. Programming lan-
guages such as Rust [5] have demonstrated that substructural
type systems are practical in industrial-strength languages.
Moreover, linear types are compatible with session types,
which are themselves based on linear logic [10, 14, 39, 44, 46].

In addition to the design of the Nomos language, we make
the following technical contributions.
1. We integrate linear session types that support controlled

sharing [10, 11] into a conventional functional type sys-
tem. To leave the logical foundation intact, the integra-
tion is achieved by a contextual monad [44] (Section 4)
that gives process expressions �rst-class status in the
functional language. Moreover, we recast shared session
types [10] to accommodate the explicit notions of contracts
and clients (Section 5).

2. We smoothly integrate AARA for functional programs
with session types for work analysis [20] (Section 6).

3. We prove the type soundness of Nomos with respect to
a novel asynchronous cost semantics using progress and
preservation (Section 7).

4. We translated all examples used in this paper into Concur-
rent C0 [47], which serves as proof-of-concept for evalu-
ating the performance of digital contract languages based
on session types. Our preliminary results indicate that the
performance of language based on session types is ade-
quate for implementation of digital contracts (Section 9).

This article illustrates the key concepts and functionality of
Nomos. The supplementary material formalizes the complete
language with typing rules, cost semantics and the type
soundness theorem and proof.
2 Nomos by Example
Nomos is a programming language based on resource-aware
[20] and shared [10] session types for writing safe digital
contracts. This section uses a simple auction contract to

showcase the most signi�cant features of the language. The
subsequent sections explain each feature in technical detail.

Explicit Protocols of Interaction Digital contracts, like
ordinary contracts, follow a prede�ned protocol. For in-
stance, an auction contract follows the protocol that the
bidders �rst submit their bids to the auctioneer, and then
the highest bidder receives the lot while all other bidders
receive their bids back. In existing smart contract languages
like Solidity [1], this protocol is neither made explicit in
the contract program nor enforced statically. Without such
an explicit protocol, there is no guarantee that the parties
involved in the contract will follow the protocol. As a re-
sult, contracts in these languages have to resort to explicit
runtime checks to prevent undesirable behavior. This is a
common source of bugs in contracts as accounting for all
possible unwanted behavior is challenging, especially in a
distributed system with distrusting parties.
Contracts in Nomos, on the other hand, are typed with

a session type [10, 14, 28–30, 39, 44, 46], which speci�es the
contract’s protocol of interaction. Type-checking then makes
sure that the program implements the protocol de�ned by the
session type correctly. For instance, consider the following
protocol prescribed by the auction session type (ignore the
annotations on / and . , discussed later).

"SL /11 � {running : N{bid : id � money (.1 #SL auction,
cancel : .8 #SL auction},

ended : N{collect : id �
�{won : lot ⌦ .3 #SL auction,

lost : money⌦ #SL auction},
cancel : .8 #SL auction}}

Since there exist multiple bidders in an auction, we use a
shared session type [10] to de�ne the auction protocol. To
guarantee that bidders interact with the auction in mutual
exclusion, the session type demarcates the parts of the pro-
tocol that become a critical section. The "SL type modality
denotes the beginning of a critical section, the #SL modality
its end. Programmatically, "SL translates into an acquire of the
auction session and #SL into the release of the session. Shared
session types guarantee that inside a critical section there
exists exactly one client, whose interaction is described by a
linear session type.
Once a client has acquired the auction session, the auc-

tion will indicate whether it is still running (running) or not
(ended). This protocol is expressed by the internal choice
type constructor (�), describing the provider’s (aka con-
tract’s) choice. An external choice (N), on the other hand,
leaves the choice to the client. For example, in case the lot-
tery is still running, the client can choose between placing
a bid (bid) or backing out (cancel). If the client chooses to
place a bid, they have to indicate their identi�er, followed by
a payment, after which they release the session. Nomos ses-
sion types allow exchange of both functional values (e.g. id),

2

=

Example: Type of an
Auction Contract

Action can be open
(running) or closed

(ended).

Sending a
functional value.

Sending a 
linear value.

PL’18, January 01–03, 2018, New York, NY, USA Ankush Das, Stephanie Balzer, Jan Ho�mann, and Frank Pfenning

In the future, typed Nomos code could safely interact with
untyped or untrusted code through monitors, which can be
automatically synthesized from the session type [23].

To make transaction cost in Nomos predictable and trans-
parent, and to prevent bugs and vulnerabilities in contracts
based on excessive resource usage, we apply and further
develop automatic amortized resource analysis (AARA), a
type-based technique for automatically inferring symbolic
resource bounds [15, 25–27, 32]. AARA is parametric in the
cost model, which makes it directly applicable to track gas
consumption of Nomos contracts. Other advantages of the
technique include natural compositionality, a formal sound-
ness proof with respect to a cost semantics, and reduction of
(non-linear) bound inference to o�-the-shelf LP solving.

To eliminate a class of bugs in which the internal state of
a contract loses track of its assets or performs unintended
transactions, Nomos integrates a linear type system [45] into
a functional language. Linear type systems use the ideas of
Girard’s linear logic [22] to ensure that certain data is neither
duplicated nor discarded by a program. Programming lan-
guages such as Rust [5] have demonstrated that substructural
type systems are practical in industrial-strength languages.
Moreover, linear types are compatible with session types,
which are themselves based on linear logic [10, 14, 39, 44, 46].

In addition to the design of the Nomos language, we make
the following technical contributions.
1. We integrate linear session types that support controlled

sharing [10, 11] into a conventional functional type sys-
tem. To leave the logical foundation intact, the integra-
tion is achieved by a contextual monad [44] (Section 4)
that gives process expressions �rst-class status in the
functional language. Moreover, we recast shared session
types [10] to accommodate the explicit notions of contracts
and clients (Section 5).

2. We smoothly integrate AARA for functional programs
with session types for work analysis [20] (Section 6).

3. We prove the type soundness of Nomos with respect to
a novel asynchronous cost semantics using progress and
preservation (Section 7).

4. We translated all examples used in this paper into Concur-
rent C0 [47], which serves as proof-of-concept for evalu-
ating the performance of digital contract languages based
on session types. Our preliminary results indicate that the
performance of language based on session types is ade-
quate for implementation of digital contracts (Section 9).

This article illustrates the key concepts and functionality of
Nomos. The supplementary material formalizes the complete
language with typing rules, cost semantics and the type
soundness theorem and proof.
2 Nomos by Example
Nomos is a programming language based on resource-aware
[20] and shared [10] session types for writing safe digital
contracts. This section uses a simple auction contract to

showcase the most signi�cant features of the language. The
subsequent sections explain each feature in technical detail.

Explicit Protocols of Interaction Digital contracts, like
ordinary contracts, follow a prede�ned protocol. For in-
stance, an auction contract follows the protocol that the
bidders �rst submit their bids to the auctioneer, and then
the highest bidder receives the lot while all other bidders
receive their bids back. In existing smart contract languages
like Solidity [1], this protocol is neither made explicit in
the contract program nor enforced statically. Without such
an explicit protocol, there is no guarantee that the parties
involved in the contract will follow the protocol. As a re-
sult, contracts in these languages have to resort to explicit
runtime checks to prevent undesirable behavior. This is a
common source of bugs in contracts as accounting for all
possible unwanted behavior is challenging, especially in a
distributed system with distrusting parties.
Contracts in Nomos, on the other hand, are typed with

a session type [10, 14, 28–30, 39, 44, 46], which speci�es the
contract’s protocol of interaction. Type-checking then makes
sure that the program implements the protocol de�ned by the
session type correctly. For instance, consider the following
protocol prescribed by the auction session type (ignore the
annotations on / and . , discussed later).

"SL /11 � {running : N{bid : id � money (.1 #SL auction,
cancel : .8 #SL auction},

ended : N{collect : id �
�{won : lot ⌦ .3 #SL auction,

lost : money⌦ #SL auction},
cancel : .8 #SL auction}}

Since there exist multiple bidders in an auction, we use a
shared session type [10] to de�ne the auction protocol. To
guarantee that bidders interact with the auction in mutual
exclusion, the session type demarcates the parts of the pro-
tocol that become a critical section. The "SL type modality
denotes the beginning of a critical section, the #SL modality
its end. Programmatically, "SL translates into an acquire of the
auction session and #SL into the release of the session. Shared
session types guarantee that inside a critical section there
exists exactly one client, whose interaction is described by a
linear session type.
Once a client has acquired the auction session, the auc-

tion will indicate whether it is still running (running) or not
(ended). This protocol is expressed by the internal choice
type constructor (�), describing the provider’s (aka con-
tract’s) choice. An external choice (N), on the other hand,
leaves the choice to the client. For example, in case the lot-
tery is still running, the client can choose between placing
a bid (bid) or backing out (cancel). If the client chooses to
place a bid, they have to indicate their identi�er, followed by
a payment, after which they release the session. Nomos ses-
sion types allow exchange of both functional values (e.g. id),

2

PL’18, January 01–03, 2018, New York, NY, USA Ankush Das, Stephanie Balzer, Jan Ho�mann, and Frank Pfenning

In the future, typed Nomos code could safely interact with
untyped or untrusted code through monitors, which can be
automatically synthesized from the session type [23].

To make transaction cost in Nomos predictable and trans-
parent, and to prevent bugs and vulnerabilities in contracts
based on excessive resource usage, we apply and further
develop automatic amortized resource analysis (AARA), a
type-based technique for automatically inferring symbolic
resource bounds [15, 25–27, 32]. AARA is parametric in the
cost model, which makes it directly applicable to track gas
consumption of Nomos contracts. Other advantages of the
technique include natural compositionality, a formal sound-
ness proof with respect to a cost semantics, and reduction of
(non-linear) bound inference to o�-the-shelf LP solving.

To eliminate a class of bugs in which the internal state of
a contract loses track of its assets or performs unintended
transactions, Nomos integrates a linear type system [45] into
a functional language. Linear type systems use the ideas of
Girard’s linear logic [22] to ensure that certain data is neither
duplicated nor discarded by a program. Programming lan-
guages such as Rust [5] have demonstrated that substructural
type systems are practical in industrial-strength languages.
Moreover, linear types are compatible with session types,
which are themselves based on linear logic [10, 14, 39, 44, 46].

In addition to the design of the Nomos language, we make
the following technical contributions.
1. We integrate linear session types that support controlled

sharing [10, 11] into a conventional functional type sys-
tem. To leave the logical foundation intact, the integra-
tion is achieved by a contextual monad [44] (Section 4)
that gives process expressions �rst-class status in the
functional language. Moreover, we recast shared session
types [10] to accommodate the explicit notions of contracts
and clients (Section 5).

2. We smoothly integrate AARA for functional programs
with session types for work analysis [20] (Section 6).

3. We prove the type soundness of Nomos with respect to
a novel asynchronous cost semantics using progress and
preservation (Section 7).

4. We translated all examples used in this paper into Concur-
rent C0 [47], which serves as proof-of-concept for evalu-
ating the performance of digital contract languages based
on session types. Our preliminary results indicate that the
performance of language based on session types is ade-
quate for implementation of digital contracts (Section 9).

This article illustrates the key concepts and functionality of
Nomos. The supplementary material formalizes the complete
language with typing rules, cost semantics and the type
soundness theorem and proof.
2 Nomos by Example
Nomos is a programming language based on resource-aware
[20] and shared [10] session types for writing safe digital
contracts. This section uses a simple auction contract to

showcase the most signi�cant features of the language. The
subsequent sections explain each feature in technical detail.

Explicit Protocols of Interaction Digital contracts, like
ordinary contracts, follow a prede�ned protocol. For in-
stance, an auction contract follows the protocol that the
bidders �rst submit their bids to the auctioneer, and then
the highest bidder receives the lot while all other bidders
receive their bids back. In existing smart contract languages
like Solidity [1], this protocol is neither made explicit in
the contract program nor enforced statically. Without such
an explicit protocol, there is no guarantee that the parties
involved in the contract will follow the protocol. As a re-
sult, contracts in these languages have to resort to explicit
runtime checks to prevent undesirable behavior. This is a
common source of bugs in contracts as accounting for all
possible unwanted behavior is challenging, especially in a
distributed system with distrusting parties.
Contracts in Nomos, on the other hand, are typed with

a session type [10, 14, 28–30, 39, 44, 46], which speci�es the
contract’s protocol of interaction. Type-checking then makes
sure that the program implements the protocol de�ned by the
session type correctly. For instance, consider the following
protocol prescribed by the auction session type (ignore the
annotations on / and . , discussed later).

"SL /11 � {running : N{bid : id � money (.1 #SL auction,
cancel : .8 #SL auction},

ended : N{collect : id �
�{won : lot ⌦ .3 #SL auction,

lost : money⌦ #SL auction},
cancel : .8 #SL auction}}

Since there exist multiple bidders in an auction, we use a
shared session type [10] to de�ne the auction protocol. To
guarantee that bidders interact with the auction in mutual
exclusion, the session type demarcates the parts of the pro-
tocol that become a critical section. The "SL type modality
denotes the beginning of a critical section, the #SL modality
its end. Programmatically, "SL translates into an acquire of the
auction session and #SL into the release of the session. Shared
session types guarantee that inside a critical section there
exists exactly one client, whose interaction is described by a
linear session type.
Once a client has acquired the auction session, the auc-

tion will indicate whether it is still running (running) or not
(ended). This protocol is expressed by the internal choice
type constructor (�), describing the provider’s (aka con-
tract’s) choice. An external choice (N), on the other hand,
leaves the choice to the client. For example, in case the lot-
tery is still running, the client can choose between placing
a bid (bid) or backing out (cancel). If the client chooses to
place a bid, they have to indicate their identi�er, followed by
a payment, after which they release the session. Nomos ses-
sion types allow exchange of both functional values (e.g. id),

2

=

Example: Type of an
Auction Contract

Action can be open
(running) or closed

(ended).

Sending a
functional value.

Sending a 
linear value.

Can collect lot or
reclaim your bid.

PL’18, January 01–03, 2018, New York, NY, USA Ankush Das, Stephanie Balzer, Jan Ho�mann, and Frank Pfenning

In the future, typed Nomos code could safely interact with
untyped or untrusted code through monitors, which can be
automatically synthesized from the session type [23].

To make transaction cost in Nomos predictable and trans-
parent, and to prevent bugs and vulnerabilities in contracts
based on excessive resource usage, we apply and further
develop automatic amortized resource analysis (AARA), a
type-based technique for automatically inferring symbolic
resource bounds [15, 25–27, 32]. AARA is parametric in the
cost model, which makes it directly applicable to track gas
consumption of Nomos contracts. Other advantages of the
technique include natural compositionality, a formal sound-
ness proof with respect to a cost semantics, and reduction of
(non-linear) bound inference to o�-the-shelf LP solving.

To eliminate a class of bugs in which the internal state of
a contract loses track of its assets or performs unintended
transactions, Nomos integrates a linear type system [45] into
a functional language. Linear type systems use the ideas of
Girard’s linear logic [22] to ensure that certain data is neither
duplicated nor discarded by a program. Programming lan-
guages such as Rust [5] have demonstrated that substructural
type systems are practical in industrial-strength languages.
Moreover, linear types are compatible with session types,
which are themselves based on linear logic [10, 14, 39, 44, 46].

In addition to the design of the Nomos language, we make
the following technical contributions.
1. We integrate linear session types that support controlled

sharing [10, 11] into a conventional functional type sys-
tem. To leave the logical foundation intact, the integra-
tion is achieved by a contextual monad [44] (Section 4)
that gives process expressions �rst-class status in the
functional language. Moreover, we recast shared session
types [10] to accommodate the explicit notions of contracts
and clients (Section 5).

2. We smoothly integrate AARA for functional programs
with session types for work analysis [20] (Section 6).

3. We prove the type soundness of Nomos with respect to
a novel asynchronous cost semantics using progress and
preservation (Section 7).

4. We translated all examples used in this paper into Concur-
rent C0 [47], which serves as proof-of-concept for evalu-
ating the performance of digital contract languages based
on session types. Our preliminary results indicate that the
performance of language based on session types is ade-
quate for implementation of digital contracts (Section 9).

This article illustrates the key concepts and functionality of
Nomos. The supplementary material formalizes the complete
language with typing rules, cost semantics and the type
soundness theorem and proof.
2 Nomos by Example
Nomos is a programming language based on resource-aware
[20] and shared [10] session types for writing safe digital
contracts. This section uses a simple auction contract to

showcase the most signi�cant features of the language. The
subsequent sections explain each feature in technical detail.

Explicit Protocols of Interaction Digital contracts, like
ordinary contracts, follow a prede�ned protocol. For in-
stance, an auction contract follows the protocol that the
bidders �rst submit their bids to the auctioneer, and then
the highest bidder receives the lot while all other bidders
receive their bids back. In existing smart contract languages
like Solidity [1], this protocol is neither made explicit in
the contract program nor enforced statically. Without such
an explicit protocol, there is no guarantee that the parties
involved in the contract will follow the protocol. As a re-
sult, contracts in these languages have to resort to explicit
runtime checks to prevent undesirable behavior. This is a
common source of bugs in contracts as accounting for all
possible unwanted behavior is challenging, especially in a
distributed system with distrusting parties.
Contracts in Nomos, on the other hand, are typed with

a session type [10, 14, 28–30, 39, 44, 46], which speci�es the
contract’s protocol of interaction. Type-checking then makes
sure that the program implements the protocol de�ned by the
session type correctly. For instance, consider the following
protocol prescribed by the auction session type (ignore the
annotations on / and . , discussed later).

"SL /11 � {running : N{bid : id � money (.1 #SL auction,
cancel : .8 #SL auction},

ended : N{collect : id �
�{won : lot ⌦ .3 #SL auction,

lost : money⌦ #SL auction},
cancel : .8 #SL auction}}

Since there exist multiple bidders in an auction, we use a
shared session type [10] to de�ne the auction protocol. To
guarantee that bidders interact with the auction in mutual
exclusion, the session type demarcates the parts of the pro-
tocol that become a critical section. The "SL type modality
denotes the beginning of a critical section, the #SL modality
its end. Programmatically, "SL translates into an acquire of the
auction session and #SL into the release of the session. Shared
session types guarantee that inside a critical section there
exists exactly one client, whose interaction is described by a
linear session type.
Once a client has acquired the auction session, the auc-

tion will indicate whether it is still running (running) or not
(ended). This protocol is expressed by the internal choice
type constructor (�), describing the provider’s (aka con-
tract’s) choice. An external choice (N), on the other hand,
leaves the choice to the client. For example, in case the lot-
tery is still running, the client can choose between placing
a bid (bid) or backing out (cancel). If the client chooses to
place a bid, they have to indicate their identi�er, followed by
a payment, after which they release the session. Nomos ses-
sion types allow exchange of both functional values (e.g. id),

2

PL’18, January 01–03, 2018, New York, NY, USA Ankush Das, Stephanie Balzer, Jan Ho�mann, and Frank Pfenning

In the future, typed Nomos code could safely interact with
untyped or untrusted code through monitors, which can be
automatically synthesized from the session type [23].

To make transaction cost in Nomos predictable and trans-
parent, and to prevent bugs and vulnerabilities in contracts
based on excessive resource usage, we apply and further
develop automatic amortized resource analysis (AARA), a
type-based technique for automatically inferring symbolic
resource bounds [15, 25–27, 32]. AARA is parametric in the
cost model, which makes it directly applicable to track gas
consumption of Nomos contracts. Other advantages of the
technique include natural compositionality, a formal sound-
ness proof with respect to a cost semantics, and reduction of
(non-linear) bound inference to o�-the-shelf LP solving.

To eliminate a class of bugs in which the internal state of
a contract loses track of its assets or performs unintended
transactions, Nomos integrates a linear type system [45] into
a functional language. Linear type systems use the ideas of
Girard’s linear logic [22] to ensure that certain data is neither
duplicated nor discarded by a program. Programming lan-
guages such as Rust [5] have demonstrated that substructural
type systems are practical in industrial-strength languages.
Moreover, linear types are compatible with session types,
which are themselves based on linear logic [10, 14, 39, 44, 46].

In addition to the design of the Nomos language, we make
the following technical contributions.
1. We integrate linear session types that support controlled

sharing [10, 11] into a conventional functional type sys-
tem. To leave the logical foundation intact, the integra-
tion is achieved by a contextual monad [44] (Section 4)
that gives process expressions �rst-class status in the
functional language. Moreover, we recast shared session
types [10] to accommodate the explicit notions of contracts
and clients (Section 5).

2. We smoothly integrate AARA for functional programs
with session types for work analysis [20] (Section 6).

3. We prove the type soundness of Nomos with respect to
a novel asynchronous cost semantics using progress and
preservation (Section 7).

4. We translated all examples used in this paper into Concur-
rent C0 [47], which serves as proof-of-concept for evalu-
ating the performance of digital contract languages based
on session types. Our preliminary results indicate that the
performance of language based on session types is ade-
quate for implementation of digital contracts (Section 9).

This article illustrates the key concepts and functionality of
Nomos. The supplementary material formalizes the complete
language with typing rules, cost semantics and the type
soundness theorem and proof.
2 Nomos by Example
Nomos is a programming language based on resource-aware
[20] and shared [10] session types for writing safe digital
contracts. This section uses a simple auction contract to

showcase the most signi�cant features of the language. The
subsequent sections explain each feature in technical detail.

Explicit Protocols of Interaction Digital contracts, like
ordinary contracts, follow a prede�ned protocol. For in-
stance, an auction contract follows the protocol that the
bidders �rst submit their bids to the auctioneer, and then
the highest bidder receives the lot while all other bidders
receive their bids back. In existing smart contract languages
like Solidity [1], this protocol is neither made explicit in
the contract program nor enforced statically. Without such
an explicit protocol, there is no guarantee that the parties
involved in the contract will follow the protocol. As a re-
sult, contracts in these languages have to resort to explicit
runtime checks to prevent undesirable behavior. This is a
common source of bugs in contracts as accounting for all
possible unwanted behavior is challenging, especially in a
distributed system with distrusting parties.
Contracts in Nomos, on the other hand, are typed with

a session type [10, 14, 28–30, 39, 44, 46], which speci�es the
contract’s protocol of interaction. Type-checking then makes
sure that the program implements the protocol de�ned by the
session type correctly. For instance, consider the following
protocol prescribed by the auction session type (ignore the
annotations on / and . , discussed later).

"SL /11 � {running : N{bid : id � money (.1 #SL auction,
cancel : .8 #SL auction},

ended : N{collect : id �
�{won : lot ⌦ .3 #SL auction,

lost : money⌦ #SL auction},
cancel : .8 #SL auction}}

Since there exist multiple bidders in an auction, we use a
shared session type [10] to de�ne the auction protocol. To
guarantee that bidders interact with the auction in mutual
exclusion, the session type demarcates the parts of the pro-
tocol that become a critical section. The "SL type modality
denotes the beginning of a critical section, the #SL modality
its end. Programmatically, "SL translates into an acquire of the
auction session and #SL into the release of the session. Shared
session types guarantee that inside a critical section there
exists exactly one client, whose interaction is described by a
linear session type.
Once a client has acquired the auction session, the auc-

tion will indicate whether it is still running (running) or not
(ended). This protocol is expressed by the internal choice
type constructor (�), describing the provider’s (aka con-
tract’s) choice. An external choice (N), on the other hand,
leaves the choice to the client. For example, in case the lot-
tery is still running, the client can choose between placing
a bid (bid) or backing out (cancel). If the client chooses to
place a bid, they have to indicate their identi�er, followed by
a payment, after which they release the session. Nomos ses-
sion types allow exchange of both functional values (e.g. id),

2

=

Example: Type of an
Auction Contract

PL’18, January 01–03, 2018, New York, NY, USA Ankush Das, Stephanie Balzer, Jan Ho�mann, and Frank Pfenning

In the future, typed Nomos code could safely interact with
untyped or untrusted code through monitors, which can be
automatically synthesized from the session type [23].

To make transaction cost in Nomos predictable and trans-
parent, and to prevent bugs and vulnerabilities in contracts
based on excessive resource usage, we apply and further
develop automatic amortized resource analysis (AARA), a
type-based technique for automatically inferring symbolic
resource bounds [15, 25–27, 32]. AARA is parametric in the
cost model, which makes it directly applicable to track gas
consumption of Nomos contracts. Other advantages of the
technique include natural compositionality, a formal sound-
ness proof with respect to a cost semantics, and reduction of
(non-linear) bound inference to o�-the-shelf LP solving.

To eliminate a class of bugs in which the internal state of
a contract loses track of its assets or performs unintended
transactions, Nomos integrates a linear type system [45] into
a functional language. Linear type systems use the ideas of
Girard’s linear logic [22] to ensure that certain data is neither
duplicated nor discarded by a program. Programming lan-
guages such as Rust [5] have demonstrated that substructural
type systems are practical in industrial-strength languages.
Moreover, linear types are compatible with session types,
which are themselves based on linear logic [10, 14, 39, 44, 46].

In addition to the design of the Nomos language, we make
the following technical contributions.
1. We integrate linear session types that support controlled

sharing [10, 11] into a conventional functional type sys-
tem. To leave the logical foundation intact, the integra-
tion is achieved by a contextual monad [44] (Section 4)
that gives process expressions �rst-class status in the
functional language. Moreover, we recast shared session
types [10] to accommodate the explicit notions of contracts
and clients (Section 5).

2. We smoothly integrate AARA for functional programs
with session types for work analysis [20] (Section 6).

3. We prove the type soundness of Nomos with respect to
a novel asynchronous cost semantics using progress and
preservation (Section 7).

4. We translated all examples used in this paper into Concur-
rent C0 [47], which serves as proof-of-concept for evalu-
ating the performance of digital contract languages based
on session types. Our preliminary results indicate that the
performance of language based on session types is ade-
quate for implementation of digital contracts (Section 9).

This article illustrates the key concepts and functionality of
Nomos. The supplementary material formalizes the complete
language with typing rules, cost semantics and the type
soundness theorem and proof.
2 Nomos by Example
Nomos is a programming language based on resource-aware
[20] and shared [10] session types for writing safe digital
contracts. This section uses a simple auction contract to

showcase the most signi�cant features of the language. The
subsequent sections explain each feature in technical detail.

Explicit Protocols of Interaction Digital contracts, like
ordinary contracts, follow a prede�ned protocol. For in-
stance, an auction contract follows the protocol that the
bidders �rst submit their bids to the auctioneer, and then
the highest bidder receives the lot while all other bidders
receive their bids back. In existing smart contract languages
like Solidity [1], this protocol is neither made explicit in
the contract program nor enforced statically. Without such
an explicit protocol, there is no guarantee that the parties
involved in the contract will follow the protocol. As a re-
sult, contracts in these languages have to resort to explicit
runtime checks to prevent undesirable behavior. This is a
common source of bugs in contracts as accounting for all
possible unwanted behavior is challenging, especially in a
distributed system with distrusting parties.
Contracts in Nomos, on the other hand, are typed with

a session type [10, 14, 28–30, 39, 44, 46], which speci�es the
contract’s protocol of interaction. Type-checking then makes
sure that the program implements the protocol de�ned by the
session type correctly. For instance, consider the following
protocol prescribed by the auction session type (ignore the
annotations on / and . , discussed later).

"SL /11 � {running : N{bid : id � money (.1 #SL auction,
cancel : .8 #SL auction},

ended : N{collect : id �
�{won : lot ⌦ .3 #SL auction,

lost : money⌦ #SL auction},
cancel : .8 #SL auction}}

Since there exist multiple bidders in an auction, we use a
shared session type [10] to de�ne the auction protocol. To
guarantee that bidders interact with the auction in mutual
exclusion, the session type demarcates the parts of the pro-
tocol that become a critical section. The "SL type modality
denotes the beginning of a critical section, the #SL modality
its end. Programmatically, "SL translates into an acquire of the
auction session and #SL into the release of the session. Shared
session types guarantee that inside a critical section there
exists exactly one client, whose interaction is described by a
linear session type.
Once a client has acquired the auction session, the auc-

tion will indicate whether it is still running (running) or not
(ended). This protocol is expressed by the internal choice
type constructor (�), describing the provider’s (aka con-
tract’s) choice. An external choice (N), on the other hand,
leaves the choice to the client. For example, in case the lot-
tery is still running, the client can choose between placing
a bid (bid) or backing out (cancel). If the client chooses to
place a bid, they have to indicate their identi�er, followed by
a payment, after which they release the session. Nomos ses-
sion types allow exchange of both functional values (e.g. id),

2

PL’18, January 01–03, 2018, New York, NY, USA Ankush Das, Stephanie Balzer, Jan Ho�mann, and Frank Pfenning

In the future, typed Nomos code could safely interact with
untyped or untrusted code through monitors, which can be
automatically synthesized from the session type [23].

To make transaction cost in Nomos predictable and trans-
parent, and to prevent bugs and vulnerabilities in contracts
based on excessive resource usage, we apply and further
develop automatic amortized resource analysis (AARA), a
type-based technique for automatically inferring symbolic
resource bounds [15, 25–27, 32]. AARA is parametric in the
cost model, which makes it directly applicable to track gas
consumption of Nomos contracts. Other advantages of the
technique include natural compositionality, a formal sound-
ness proof with respect to a cost semantics, and reduction of
(non-linear) bound inference to o�-the-shelf LP solving.

To eliminate a class of bugs in which the internal state of
a contract loses track of its assets or performs unintended
transactions, Nomos integrates a linear type system [45] into
a functional language. Linear type systems use the ideas of
Girard’s linear logic [22] to ensure that certain data is neither
duplicated nor discarded by a program. Programming lan-
guages such as Rust [5] have demonstrated that substructural
type systems are practical in industrial-strength languages.
Moreover, linear types are compatible with session types,
which are themselves based on linear logic [10, 14, 39, 44, 46].

In addition to the design of the Nomos language, we make
the following technical contributions.
1. We integrate linear session types that support controlled

sharing [10, 11] into a conventional functional type sys-
tem. To leave the logical foundation intact, the integra-
tion is achieved by a contextual monad [44] (Section 4)
that gives process expressions �rst-class status in the
functional language. Moreover, we recast shared session
types [10] to accommodate the explicit notions of contracts
and clients (Section 5).

2. We smoothly integrate AARA for functional programs
with session types for work analysis [20] (Section 6).

3. We prove the type soundness of Nomos with respect to
a novel asynchronous cost semantics using progress and
preservation (Section 7).

4. We translated all examples used in this paper into Concur-
rent C0 [47], which serves as proof-of-concept for evalu-
ating the performance of digital contract languages based
on session types. Our preliminary results indicate that the
performance of language based on session types is ade-
quate for implementation of digital contracts (Section 9).

This article illustrates the key concepts and functionality of
Nomos. The supplementary material formalizes the complete
language with typing rules, cost semantics and the type
soundness theorem and proof.
2 Nomos by Example
Nomos is a programming language based on resource-aware
[20] and shared [10] session types for writing safe digital
contracts. This section uses a simple auction contract to

showcase the most signi�cant features of the language. The
subsequent sections explain each feature in technical detail.

Explicit Protocols of Interaction Digital contracts, like
ordinary contracts, follow a prede�ned protocol. For in-
stance, an auction contract follows the protocol that the
bidders �rst submit their bids to the auctioneer, and then
the highest bidder receives the lot while all other bidders
receive their bids back. In existing smart contract languages
like Solidity [1], this protocol is neither made explicit in
the contract program nor enforced statically. Without such
an explicit protocol, there is no guarantee that the parties
involved in the contract will follow the protocol. As a re-
sult, contracts in these languages have to resort to explicit
runtime checks to prevent undesirable behavior. This is a
common source of bugs in contracts as accounting for all
possible unwanted behavior is challenging, especially in a
distributed system with distrusting parties.
Contracts in Nomos, on the other hand, are typed with

a session type [10, 14, 28–30, 39, 44, 46], which speci�es the
contract’s protocol of interaction. Type-checking then makes
sure that the program implements the protocol de�ned by the
session type correctly. For instance, consider the following
protocol prescribed by the auction session type (ignore the
annotations on / and . , discussed later).

"SL /11 � {running : N{bid : id � money (.1 #SL auction,
cancel : .8 #SL auction},

ended : N{collect : id �
�{won : lot ⌦ .3 #SL auction,

lost : money⌦ #SL auction},
cancel : .8 #SL auction}}

Since there exist multiple bidders in an auction, we use a
shared session type [10] to de�ne the auction protocol. To
guarantee that bidders interact with the auction in mutual
exclusion, the session type demarcates the parts of the pro-
tocol that become a critical section. The "SL type modality
denotes the beginning of a critical section, the #SL modality
its end. Programmatically, "SL translates into an acquire of the
auction session and #SL into the release of the session. Shared
session types guarantee that inside a critical section there
exists exactly one client, whose interaction is described by a
linear session type.
Once a client has acquired the auction session, the auc-

tion will indicate whether it is still running (running) or not
(ended). This protocol is expressed by the internal choice
type constructor (�), describing the provider’s (aka con-
tract’s) choice. An external choice (N), on the other hand,
leaves the choice to the client. For example, in case the lot-
tery is still running, the client can choose between placing
a bid (bid) or backing out (cancel). If the client chooses to
place a bid, they have to indicate their identi�er, followed by
a payment, after which they release the session. Nomos ses-
sion types allow exchange of both functional values (e.g. id),

2

=

Example: Type of an
Auction Contract

At the beginning, you have
to pay 11 units to cover the

worst-case gas cost.

PL’18, January 01–03, 2018, New York, NY, USA Ankush Das, Stephanie Balzer, Jan Ho�mann, and Frank Pfenning

In the future, typed Nomos code could safely interact with
untyped or untrusted code through monitors, which can be
automatically synthesized from the session type [23].

To make transaction cost in Nomos predictable and trans-
parent, and to prevent bugs and vulnerabilities in contracts
based on excessive resource usage, we apply and further
develop automatic amortized resource analysis (AARA), a
type-based technique for automatically inferring symbolic
resource bounds [15, 25–27, 32]. AARA is parametric in the
cost model, which makes it directly applicable to track gas
consumption of Nomos contracts. Other advantages of the
technique include natural compositionality, a formal sound-
ness proof with respect to a cost semantics, and reduction of
(non-linear) bound inference to o�-the-shelf LP solving.

To eliminate a class of bugs in which the internal state of
a contract loses track of its assets or performs unintended
transactions, Nomos integrates a linear type system [45] into
a functional language. Linear type systems use the ideas of
Girard’s linear logic [22] to ensure that certain data is neither
duplicated nor discarded by a program. Programming lan-
guages such as Rust [5] have demonstrated that substructural
type systems are practical in industrial-strength languages.
Moreover, linear types are compatible with session types,
which are themselves based on linear logic [10, 14, 39, 44, 46].

In addition to the design of the Nomos language, we make
the following technical contributions.
1. We integrate linear session types that support controlled

sharing [10, 11] into a conventional functional type sys-
tem. To leave the logical foundation intact, the integra-
tion is achieved by a contextual monad [44] (Section 4)
that gives process expressions �rst-class status in the
functional language. Moreover, we recast shared session
types [10] to accommodate the explicit notions of contracts
and clients (Section 5).

2. We smoothly integrate AARA for functional programs
with session types for work analysis [20] (Section 6).

3. We prove the type soundness of Nomos with respect to
a novel asynchronous cost semantics using progress and
preservation (Section 7).

4. We translated all examples used in this paper into Concur-
rent C0 [47], which serves as proof-of-concept for evalu-
ating the performance of digital contract languages based
on session types. Our preliminary results indicate that the
performance of language based on session types is ade-
quate for implementation of digital contracts (Section 9).

This article illustrates the key concepts and functionality of
Nomos. The supplementary material formalizes the complete
language with typing rules, cost semantics and the type
soundness theorem and proof.
2 Nomos by Example
Nomos is a programming language based on resource-aware
[20] and shared [10] session types for writing safe digital
contracts. This section uses a simple auction contract to

showcase the most signi�cant features of the language. The
subsequent sections explain each feature in technical detail.

Explicit Protocols of Interaction Digital contracts, like
ordinary contracts, follow a prede�ned protocol. For in-
stance, an auction contract follows the protocol that the
bidders �rst submit their bids to the auctioneer, and then
the highest bidder receives the lot while all other bidders
receive their bids back. In existing smart contract languages
like Solidity [1], this protocol is neither made explicit in
the contract program nor enforced statically. Without such
an explicit protocol, there is no guarantee that the parties
involved in the contract will follow the protocol. As a re-
sult, contracts in these languages have to resort to explicit
runtime checks to prevent undesirable behavior. This is a
common source of bugs in contracts as accounting for all
possible unwanted behavior is challenging, especially in a
distributed system with distrusting parties.
Contracts in Nomos, on the other hand, are typed with

a session type [10, 14, 28–30, 39, 44, 46], which speci�es the
contract’s protocol of interaction. Type-checking then makes
sure that the program implements the protocol de�ned by the
session type correctly. For instance, consider the following
protocol prescribed by the auction session type (ignore the
annotations on / and . , discussed later).

"SL /11 � {running : N{bid : id � money (.1 #SL auction,
cancel : .8 #SL auction},

ended : N{collect : id �
�{won : lot ⌦ .3 #SL auction,

lost : money⌦ #SL auction},
cancel : .8 #SL auction}}

Since there exist multiple bidders in an auction, we use a
shared session type [10] to de�ne the auction protocol. To
guarantee that bidders interact with the auction in mutual
exclusion, the session type demarcates the parts of the pro-
tocol that become a critical section. The "SL type modality
denotes the beginning of a critical section, the #SL modality
its end. Programmatically, "SL translates into an acquire of the
auction session and #SL into the release of the session. Shared
session types guarantee that inside a critical section there
exists exactly one client, whose interaction is described by a
linear session type.
Once a client has acquired the auction session, the auc-

tion will indicate whether it is still running (running) or not
(ended). This protocol is expressed by the internal choice
type constructor (�), describing the provider’s (aka con-
tract’s) choice. An external choice (N), on the other hand,
leaves the choice to the client. For example, in case the lot-
tery is still running, the client can choose between placing
a bid (bid) or backing out (cancel). If the client chooses to
place a bid, they have to indicate their identi�er, followed by
a payment, after which they release the session. Nomos ses-
sion types allow exchange of both functional values (e.g. id),

2

PL’18, January 01–03, 2018, New York, NY, USA Ankush Das, Stephanie Balzer, Jan Ho�mann, and Frank Pfenning

In the future, typed Nomos code could safely interact with
untyped or untrusted code through monitors, which can be
automatically synthesized from the session type [23].

To make transaction cost in Nomos predictable and trans-
parent, and to prevent bugs and vulnerabilities in contracts
based on excessive resource usage, we apply and further
develop automatic amortized resource analysis (AARA), a
type-based technique for automatically inferring symbolic
resource bounds [15, 25–27, 32]. AARA is parametric in the
cost model, which makes it directly applicable to track gas
consumption of Nomos contracts. Other advantages of the
technique include natural compositionality, a formal sound-
ness proof with respect to a cost semantics, and reduction of
(non-linear) bound inference to o�-the-shelf LP solving.

To eliminate a class of bugs in which the internal state of
a contract loses track of its assets or performs unintended
transactions, Nomos integrates a linear type system [45] into
a functional language. Linear type systems use the ideas of
Girard’s linear logic [22] to ensure that certain data is neither
duplicated nor discarded by a program. Programming lan-
guages such as Rust [5] have demonstrated that substructural
type systems are practical in industrial-strength languages.
Moreover, linear types are compatible with session types,
which are themselves based on linear logic [10, 14, 39, 44, 46].

In addition to the design of the Nomos language, we make
the following technical contributions.
1. We integrate linear session types that support controlled

sharing [10, 11] into a conventional functional type sys-
tem. To leave the logical foundation intact, the integra-
tion is achieved by a contextual monad [44] (Section 4)
that gives process expressions �rst-class status in the
functional language. Moreover, we recast shared session
types [10] to accommodate the explicit notions of contracts
and clients (Section 5).

2. We smoothly integrate AARA for functional programs
with session types for work analysis [20] (Section 6).

3. We prove the type soundness of Nomos with respect to
a novel asynchronous cost semantics using progress and
preservation (Section 7).

4. We translated all examples used in this paper into Concur-
rent C0 [47], which serves as proof-of-concept for evalu-
ating the performance of digital contract languages based
on session types. Our preliminary results indicate that the
performance of language based on session types is ade-
quate for implementation of digital contracts (Section 9).

This article illustrates the key concepts and functionality of
Nomos. The supplementary material formalizes the complete
language with typing rules, cost semantics and the type
soundness theorem and proof.
2 Nomos by Example
Nomos is a programming language based on resource-aware
[20] and shared [10] session types for writing safe digital
contracts. This section uses a simple auction contract to

showcase the most signi�cant features of the language. The
subsequent sections explain each feature in technical detail.

Explicit Protocols of Interaction Digital contracts, like
ordinary contracts, follow a prede�ned protocol. For in-
stance, an auction contract follows the protocol that the
bidders �rst submit their bids to the auctioneer, and then
the highest bidder receives the lot while all other bidders
receive their bids back. In existing smart contract languages
like Solidity [1], this protocol is neither made explicit in
the contract program nor enforced statically. Without such
an explicit protocol, there is no guarantee that the parties
involved in the contract will follow the protocol. As a re-
sult, contracts in these languages have to resort to explicit
runtime checks to prevent undesirable behavior. This is a
common source of bugs in contracts as accounting for all
possible unwanted behavior is challenging, especially in a
distributed system with distrusting parties.
Contracts in Nomos, on the other hand, are typed with

a session type [10, 14, 28–30, 39, 44, 46], which speci�es the
contract’s protocol of interaction. Type-checking then makes
sure that the program implements the protocol de�ned by the
session type correctly. For instance, consider the following
protocol prescribed by the auction session type (ignore the
annotations on / and . , discussed later).

"SL /11 � {running : N{bid : id � money (.1 #SL auction,
cancel : .8 #SL auction},

ended : N{collect : id �
�{won : lot ⌦ .3 #SL auction,

lost : money⌦ #SL auction},
cancel : .8 #SL auction}}

Since there exist multiple bidders in an auction, we use a
shared session type [10] to de�ne the auction protocol. To
guarantee that bidders interact with the auction in mutual
exclusion, the session type demarcates the parts of the pro-
tocol that become a critical section. The "SL type modality
denotes the beginning of a critical section, the #SL modality
its end. Programmatically, "SL translates into an acquire of the
auction session and #SL into the release of the session. Shared
session types guarantee that inside a critical section there
exists exactly one client, whose interaction is described by a
linear session type.
Once a client has acquired the auction session, the auc-

tion will indicate whether it is still running (running) or not
(ended). This protocol is expressed by the internal choice
type constructor (�), describing the provider’s (aka con-
tract’s) choice. An external choice (N), on the other hand,
leaves the choice to the client. For example, in case the lot-
tery is still running, the client can choose between placing
a bid (bid) or backing out (cancel). If the client chooses to
place a bid, they have to indicate their identi�er, followed by
a payment, after which they release the session. Nomos ses-
sion types allow exchange of both functional values (e.g. id),

2

=

Example: Type of an
Auction Contract

At the beginning, you have
to pay 11 units to cover the

worst-case gas cost.

Gas cost is given by a cost
semantics and the type system
ensures 11 is the worst-case.

PL’18, January 01–03, 2018, New York, NY, USA Ankush Das, Stephanie Balzer, Jan Ho�mann, and Frank Pfenning

In the future, typed Nomos code could safely interact with
untyped or untrusted code through monitors, which can be
automatically synthesized from the session type [23].

To make transaction cost in Nomos predictable and trans-
parent, and to prevent bugs and vulnerabilities in contracts
based on excessive resource usage, we apply and further
develop automatic amortized resource analysis (AARA), a
type-based technique for automatically inferring symbolic
resource bounds [15, 25–27, 32]. AARA is parametric in the
cost model, which makes it directly applicable to track gas
consumption of Nomos contracts. Other advantages of the
technique include natural compositionality, a formal sound-
ness proof with respect to a cost semantics, and reduction of
(non-linear) bound inference to o�-the-shelf LP solving.

To eliminate a class of bugs in which the internal state of
a contract loses track of its assets or performs unintended
transactions, Nomos integrates a linear type system [45] into
a functional language. Linear type systems use the ideas of
Girard’s linear logic [22] to ensure that certain data is neither
duplicated nor discarded by a program. Programming lan-
guages such as Rust [5] have demonstrated that substructural
type systems are practical in industrial-strength languages.
Moreover, linear types are compatible with session types,
which are themselves based on linear logic [10, 14, 39, 44, 46].

In addition to the design of the Nomos language, we make
the following technical contributions.
1. We integrate linear session types that support controlled

sharing [10, 11] into a conventional functional type sys-
tem. To leave the logical foundation intact, the integra-
tion is achieved by a contextual monad [44] (Section 4)
that gives process expressions �rst-class status in the
functional language. Moreover, we recast shared session
types [10] to accommodate the explicit notions of contracts
and clients (Section 5).

2. We smoothly integrate AARA for functional programs
with session types for work analysis [20] (Section 6).

3. We prove the type soundness of Nomos with respect to
a novel asynchronous cost semantics using progress and
preservation (Section 7).

4. We translated all examples used in this paper into Concur-
rent C0 [47], which serves as proof-of-concept for evalu-
ating the performance of digital contract languages based
on session types. Our preliminary results indicate that the
performance of language based on session types is ade-
quate for implementation of digital contracts (Section 9).

This article illustrates the key concepts and functionality of
Nomos. The supplementary material formalizes the complete
language with typing rules, cost semantics and the type
soundness theorem and proof.
2 Nomos by Example
Nomos is a programming language based on resource-aware
[20] and shared [10] session types for writing safe digital
contracts. This section uses a simple auction contract to

showcase the most signi�cant features of the language. The
subsequent sections explain each feature in technical detail.

Explicit Protocols of Interaction Digital contracts, like
ordinary contracts, follow a prede�ned protocol. For in-
stance, an auction contract follows the protocol that the
bidders �rst submit their bids to the auctioneer, and then
the highest bidder receives the lot while all other bidders
receive their bids back. In existing smart contract languages
like Solidity [1], this protocol is neither made explicit in
the contract program nor enforced statically. Without such
an explicit protocol, there is no guarantee that the parties
involved in the contract will follow the protocol. As a re-
sult, contracts in these languages have to resort to explicit
runtime checks to prevent undesirable behavior. This is a
common source of bugs in contracts as accounting for all
possible unwanted behavior is challenging, especially in a
distributed system with distrusting parties.
Contracts in Nomos, on the other hand, are typed with

a session type [10, 14, 28–30, 39, 44, 46], which speci�es the
contract’s protocol of interaction. Type-checking then makes
sure that the program implements the protocol de�ned by the
session type correctly. For instance, consider the following
protocol prescribed by the auction session type (ignore the
annotations on / and . , discussed later).

"SL /11 � {running : N{bid : id � money (.1 #SL auction,
cancel : .8 #SL auction},

ended : N{collect : id �
�{won : lot ⌦ .3 #SL auction,

lost : money⌦ #SL auction},
cancel : .8 #SL auction}}

Since there exist multiple bidders in an auction, we use a
shared session type [10] to de�ne the auction protocol. To
guarantee that bidders interact with the auction in mutual
exclusion, the session type demarcates the parts of the pro-
tocol that become a critical section. The "SL type modality
denotes the beginning of a critical section, the #SL modality
its end. Programmatically, "SL translates into an acquire of the
auction session and #SL into the release of the session. Shared
session types guarantee that inside a critical section there
exists exactly one client, whose interaction is described by a
linear session type.
Once a client has acquired the auction session, the auc-

tion will indicate whether it is still running (running) or not
(ended). This protocol is expressed by the internal choice
type constructor (�), describing the provider’s (aka con-
tract’s) choice. An external choice (N), on the other hand,
leaves the choice to the client. For example, in case the lot-
tery is still running, the client can choose between placing
a bid (bid) or backing out (cancel). If the client chooses to
place a bid, they have to indicate their identi�er, followed by
a payment, after which they release the session. Nomos ses-
sion types allow exchange of both functional values (e.g. id),

2

PL’18, January 01–03, 2018, New York, NY, USA Ankush Das, Stephanie Balzer, Jan Ho�mann, and Frank Pfenning

In the future, typed Nomos code could safely interact with
untyped or untrusted code through monitors, which can be
automatically synthesized from the session type [23].

To make transaction cost in Nomos predictable and trans-
parent, and to prevent bugs and vulnerabilities in contracts
based on excessive resource usage, we apply and further
develop automatic amortized resource analysis (AARA), a
type-based technique for automatically inferring symbolic
resource bounds [15, 25–27, 32]. AARA is parametric in the
cost model, which makes it directly applicable to track gas
consumption of Nomos contracts. Other advantages of the
technique include natural compositionality, a formal sound-
ness proof with respect to a cost semantics, and reduction of
(non-linear) bound inference to o�-the-shelf LP solving.

To eliminate a class of bugs in which the internal state of
a contract loses track of its assets or performs unintended
transactions, Nomos integrates a linear type system [45] into
a functional language. Linear type systems use the ideas of
Girard’s linear logic [22] to ensure that certain data is neither
duplicated nor discarded by a program. Programming lan-
guages such as Rust [5] have demonstrated that substructural
type systems are practical in industrial-strength languages.
Moreover, linear types are compatible with session types,
which are themselves based on linear logic [10, 14, 39, 44, 46].

In addition to the design of the Nomos language, we make
the following technical contributions.
1. We integrate linear session types that support controlled

sharing [10, 11] into a conventional functional type sys-
tem. To leave the logical foundation intact, the integra-
tion is achieved by a contextual monad [44] (Section 4)
that gives process expressions �rst-class status in the
functional language. Moreover, we recast shared session
types [10] to accommodate the explicit notions of contracts
and clients (Section 5).

2. We smoothly integrate AARA for functional programs
with session types for work analysis [20] (Section 6).

3. We prove the type soundness of Nomos with respect to
a novel asynchronous cost semantics using progress and
preservation (Section 7).

4. We translated all examples used in this paper into Concur-
rent C0 [47], which serves as proof-of-concept for evalu-
ating the performance of digital contract languages based
on session types. Our preliminary results indicate that the
performance of language based on session types is ade-
quate for implementation of digital contracts (Section 9).

This article illustrates the key concepts and functionality of
Nomos. The supplementary material formalizes the complete
language with typing rules, cost semantics and the type
soundness theorem and proof.
2 Nomos by Example
Nomos is a programming language based on resource-aware
[20] and shared [10] session types for writing safe digital
contracts. This section uses a simple auction contract to

showcase the most signi�cant features of the language. The
subsequent sections explain each feature in technical detail.

Explicit Protocols of Interaction Digital contracts, like
ordinary contracts, follow a prede�ned protocol. For in-
stance, an auction contract follows the protocol that the
bidders �rst submit their bids to the auctioneer, and then
the highest bidder receives the lot while all other bidders
receive their bids back. In existing smart contract languages
like Solidity [1], this protocol is neither made explicit in
the contract program nor enforced statically. Without such
an explicit protocol, there is no guarantee that the parties
involved in the contract will follow the protocol. As a re-
sult, contracts in these languages have to resort to explicit
runtime checks to prevent undesirable behavior. This is a
common source of bugs in contracts as accounting for all
possible unwanted behavior is challenging, especially in a
distributed system with distrusting parties.
Contracts in Nomos, on the other hand, are typed with

a session type [10, 14, 28–30, 39, 44, 46], which speci�es the
contract’s protocol of interaction. Type-checking then makes
sure that the program implements the protocol de�ned by the
session type correctly. For instance, consider the following
protocol prescribed by the auction session type (ignore the
annotations on / and . , discussed later).

"SL /11 � {running : N{bid : id � money (.1 #SL auction,
cancel : .8 #SL auction},

ended : N{collect : id �
�{won : lot ⌦ .3 #SL auction,

lost : money⌦ #SL auction},
cancel : .8 #SL auction}}

Since there exist multiple bidders in an auction, we use a
shared session type [10] to de�ne the auction protocol. To
guarantee that bidders interact with the auction in mutual
exclusion, the session type demarcates the parts of the pro-
tocol that become a critical section. The "SL type modality
denotes the beginning of a critical section, the #SL modality
its end. Programmatically, "SL translates into an acquire of the
auction session and #SL into the release of the session. Shared
session types guarantee that inside a critical section there
exists exactly one client, whose interaction is described by a
linear session type.
Once a client has acquired the auction session, the auc-

tion will indicate whether it is still running (running) or not
(ended). This protocol is expressed by the internal choice
type constructor (�), describing the provider’s (aka con-
tract’s) choice. An external choice (N), on the other hand,
leaves the choice to the client. For example, in case the lot-
tery is still running, the client can choose between placing
a bid (bid) or backing out (cancel). If the client chooses to
place a bid, they have to indicate their identi�er, followed by
a payment, after which they release the session. Nomos ses-
sion types allow exchange of both functional values (e.g. id),

2

=

Example: Type of an
Auction Contract

At the beginning, you have
to pay 11 units to cover the

worst-case gas cost.

Gas cost is given by a cost
semantics and the type system
ensures 11 is the worst-case.

If the worst-case path is
not taken then the
leftover is returned.

PL’18, January 01–03, 2018, New York, NY, USA Ankush Das, Stephanie Balzer, Jan Ho�mann, and Frank Pfenning

In the future, typed Nomos code could safely interact with
untyped or untrusted code through monitors, which can be
automatically synthesized from the session type [23].

To make transaction cost in Nomos predictable and trans-
parent, and to prevent bugs and vulnerabilities in contracts
based on excessive resource usage, we apply and further
develop automatic amortized resource analysis (AARA), a
type-based technique for automatically inferring symbolic
resource bounds [15, 25–27, 32]. AARA is parametric in the
cost model, which makes it directly applicable to track gas
consumption of Nomos contracts. Other advantages of the
technique include natural compositionality, a formal sound-
ness proof with respect to a cost semantics, and reduction of
(non-linear) bound inference to o�-the-shelf LP solving.

To eliminate a class of bugs in which the internal state of
a contract loses track of its assets or performs unintended
transactions, Nomos integrates a linear type system [45] into
a functional language. Linear type systems use the ideas of
Girard’s linear logic [22] to ensure that certain data is neither
duplicated nor discarded by a program. Programming lan-
guages such as Rust [5] have demonstrated that substructural
type systems are practical in industrial-strength languages.
Moreover, linear types are compatible with session types,
which are themselves based on linear logic [10, 14, 39, 44, 46].

In addition to the design of the Nomos language, we make
the following technical contributions.
1. We integrate linear session types that support controlled

sharing [10, 11] into a conventional functional type sys-
tem. To leave the logical foundation intact, the integra-
tion is achieved by a contextual monad [44] (Section 4)
that gives process expressions �rst-class status in the
functional language. Moreover, we recast shared session
types [10] to accommodate the explicit notions of contracts
and clients (Section 5).

2. We smoothly integrate AARA for functional programs
with session types for work analysis [20] (Section 6).

3. We prove the type soundness of Nomos with respect to
a novel asynchronous cost semantics using progress and
preservation (Section 7).

4. We translated all examples used in this paper into Concur-
rent C0 [47], which serves as proof-of-concept for evalu-
ating the performance of digital contract languages based
on session types. Our preliminary results indicate that the
performance of language based on session types is ade-
quate for implementation of digital contracts (Section 9).

This article illustrates the key concepts and functionality of
Nomos. The supplementary material formalizes the complete
language with typing rules, cost semantics and the type
soundness theorem and proof.
2 Nomos by Example
Nomos is a programming language based on resource-aware
[20] and shared [10] session types for writing safe digital
contracts. This section uses a simple auction contract to

showcase the most signi�cant features of the language. The
subsequent sections explain each feature in technical detail.

Explicit Protocols of Interaction Digital contracts, like
ordinary contracts, follow a prede�ned protocol. For in-
stance, an auction contract follows the protocol that the
bidders �rst submit their bids to the auctioneer, and then
the highest bidder receives the lot while all other bidders
receive their bids back. In existing smart contract languages
like Solidity [1], this protocol is neither made explicit in
the contract program nor enforced statically. Without such
an explicit protocol, there is no guarantee that the parties
involved in the contract will follow the protocol. As a re-
sult, contracts in these languages have to resort to explicit
runtime checks to prevent undesirable behavior. This is a
common source of bugs in contracts as accounting for all
possible unwanted behavior is challenging, especially in a
distributed system with distrusting parties.
Contracts in Nomos, on the other hand, are typed with

a session type [10, 14, 28–30, 39, 44, 46], which speci�es the
contract’s protocol of interaction. Type-checking then makes
sure that the program implements the protocol de�ned by the
session type correctly. For instance, consider the following
protocol prescribed by the auction session type (ignore the
annotations on / and . , discussed later).

"SL /11 � {running : N{bid : id � money (.1 #SL auction,
cancel : .8 #SL auction},

ended : N{collect : id �
�{won : lot ⌦ .3 #SL auction,

lost : money⌦ #SL auction},
cancel : .8 #SL auction}}

Since there exist multiple bidders in an auction, we use a
shared session type [10] to de�ne the auction protocol. To
guarantee that bidders interact with the auction in mutual
exclusion, the session type demarcates the parts of the pro-
tocol that become a critical section. The "SL type modality
denotes the beginning of a critical section, the #SL modality
its end. Programmatically, "SL translates into an acquire of the
auction session and #SL into the release of the session. Shared
session types guarantee that inside a critical section there
exists exactly one client, whose interaction is described by a
linear session type.
Once a client has acquired the auction session, the auc-

tion will indicate whether it is still running (running) or not
(ended). This protocol is expressed by the internal choice
type constructor (�), describing the provider’s (aka con-
tract’s) choice. An external choice (N), on the other hand,
leaves the choice to the client. For example, in case the lot-
tery is still running, the client can choose between placing
a bid (bid) or backing out (cancel). If the client chooses to
place a bid, they have to indicate their identi�er, followed by
a payment, after which they release the session. Nomos ses-
sion types allow exchange of both functional values (e.g. id),

2

PL’18, January 01–03, 2018, New York, NY, USA Ankush Das, Stephanie Balzer, Jan Ho�mann, and Frank Pfenning

In the future, typed Nomos code could safely interact with
untyped or untrusted code through monitors, which can be
automatically synthesized from the session type [23].

To make transaction cost in Nomos predictable and trans-
parent, and to prevent bugs and vulnerabilities in contracts
based on excessive resource usage, we apply and further
develop automatic amortized resource analysis (AARA), a
type-based technique for automatically inferring symbolic
resource bounds [15, 25–27, 32]. AARA is parametric in the
cost model, which makes it directly applicable to track gas
consumption of Nomos contracts. Other advantages of the
technique include natural compositionality, a formal sound-
ness proof with respect to a cost semantics, and reduction of
(non-linear) bound inference to o�-the-shelf LP solving.

To eliminate a class of bugs in which the internal state of
a contract loses track of its assets or performs unintended
transactions, Nomos integrates a linear type system [45] into
a functional language. Linear type systems use the ideas of
Girard’s linear logic [22] to ensure that certain data is neither
duplicated nor discarded by a program. Programming lan-
guages such as Rust [5] have demonstrated that substructural
type systems are practical in industrial-strength languages.
Moreover, linear types are compatible with session types,
which are themselves based on linear logic [10, 14, 39, 44, 46].

In addition to the design of the Nomos language, we make
the following technical contributions.
1. We integrate linear session types that support controlled

sharing [10, 11] into a conventional functional type sys-
tem. To leave the logical foundation intact, the integra-
tion is achieved by a contextual monad [44] (Section 4)
that gives process expressions �rst-class status in the
functional language. Moreover, we recast shared session
types [10] to accommodate the explicit notions of contracts
and clients (Section 5).

2. We smoothly integrate AARA for functional programs
with session types for work analysis [20] (Section 6).

3. We prove the type soundness of Nomos with respect to
a novel asynchronous cost semantics using progress and
preservation (Section 7).

4. We translated all examples used in this paper into Concur-
rent C0 [47], which serves as proof-of-concept for evalu-
ating the performance of digital contract languages based
on session types. Our preliminary results indicate that the
performance of language based on session types is ade-
quate for implementation of digital contracts (Section 9).

This article illustrates the key concepts and functionality of
Nomos. The supplementary material formalizes the complete
language with typing rules, cost semantics and the type
soundness theorem and proof.
2 Nomos by Example
Nomos is a programming language based on resource-aware
[20] and shared [10] session types for writing safe digital
contracts. This section uses a simple auction contract to

showcase the most signi�cant features of the language. The
subsequent sections explain each feature in technical detail.

Explicit Protocols of Interaction Digital contracts, like
ordinary contracts, follow a prede�ned protocol. For in-
stance, an auction contract follows the protocol that the
bidders �rst submit their bids to the auctioneer, and then
the highest bidder receives the lot while all other bidders
receive their bids back. In existing smart contract languages
like Solidity [1], this protocol is neither made explicit in
the contract program nor enforced statically. Without such
an explicit protocol, there is no guarantee that the parties
involved in the contract will follow the protocol. As a re-
sult, contracts in these languages have to resort to explicit
runtime checks to prevent undesirable behavior. This is a
common source of bugs in contracts as accounting for all
possible unwanted behavior is challenging, especially in a
distributed system with distrusting parties.
Contracts in Nomos, on the other hand, are typed with

a session type [10, 14, 28–30, 39, 44, 46], which speci�es the
contract’s protocol of interaction. Type-checking then makes
sure that the program implements the protocol de�ned by the
session type correctly. For instance, consider the following
protocol prescribed by the auction session type (ignore the
annotations on / and . , discussed later).

"SL /11 � {running : N{bid : id � money (.1 #SL auction,
cancel : .8 #SL auction},

ended : N{collect : id �
�{won : lot ⌦ .3 #SL auction,

lost : money⌦ #SL auction},
cancel : .8 #SL auction}}

Since there exist multiple bidders in an auction, we use a
shared session type [10] to de�ne the auction protocol. To
guarantee that bidders interact with the auction in mutual
exclusion, the session type demarcates the parts of the pro-
tocol that become a critical section. The "SL type modality
denotes the beginning of a critical section, the #SL modality
its end. Programmatically, "SL translates into an acquire of the
auction session and #SL into the release of the session. Shared
session types guarantee that inside a critical section there
exists exactly one client, whose interaction is described by a
linear session type.
Once a client has acquired the auction session, the auc-

tion will indicate whether it is still running (running) or not
(ended). This protocol is expressed by the internal choice
type constructor (�), describing the provider’s (aka con-
tract’s) choice. An external choice (N), on the other hand,
leaves the choice to the client. For example, in case the lot-
tery is still running, the client can choose between placing
a bid (bid) or backing out (cancel). If the client chooses to
place a bid, they have to indicate their identi�er, followed by
a payment, after which they release the session. Nomos ses-
sion types allow exchange of both functional values (e.g. id),

2

=

Example: Type of an
Auction Contract

At the beginning, you have
to pay 11 units to cover the

worst-case gas cost.

Gas cost is given by a cost
semantics and the type system
ensures 11 is the worst-case.

If the worst-case path is
not taken then the
leftover is returned.

This is the worst-
case path

PL’18, January 01–03, 2018, New York, NY, USA Ankush Das, Stephanie Balzer, Jan Ho�mann, and Frank Pfenning

In the future, typed Nomos code could safely interact with
untyped or untrusted code through monitors, which can be
automatically synthesized from the session type [23].

To make transaction cost in Nomos predictable and trans-
parent, and to prevent bugs and vulnerabilities in contracts
based on excessive resource usage, we apply and further
develop automatic amortized resource analysis (AARA), a
type-based technique for automatically inferring symbolic
resource bounds [15, 25–27, 32]. AARA is parametric in the
cost model, which makes it directly applicable to track gas
consumption of Nomos contracts. Other advantages of the
technique include natural compositionality, a formal sound-
ness proof with respect to a cost semantics, and reduction of
(non-linear) bound inference to o�-the-shelf LP solving.

To eliminate a class of bugs in which the internal state of
a contract loses track of its assets or performs unintended
transactions, Nomos integrates a linear type system [45] into
a functional language. Linear type systems use the ideas of
Girard’s linear logic [22] to ensure that certain data is neither
duplicated nor discarded by a program. Programming lan-
guages such as Rust [5] have demonstrated that substructural
type systems are practical in industrial-strength languages.
Moreover, linear types are compatible with session types,
which are themselves based on linear logic [10, 14, 39, 44, 46].

In addition to the design of the Nomos language, we make
the following technical contributions.
1. We integrate linear session types that support controlled

sharing [10, 11] into a conventional functional type sys-
tem. To leave the logical foundation intact, the integra-
tion is achieved by a contextual monad [44] (Section 4)
that gives process expressions �rst-class status in the
functional language. Moreover, we recast shared session
types [10] to accommodate the explicit notions of contracts
and clients (Section 5).

2. We smoothly integrate AARA for functional programs
with session types for work analysis [20] (Section 6).

3. We prove the type soundness of Nomos with respect to
a novel asynchronous cost semantics using progress and
preservation (Section 7).

4. We translated all examples used in this paper into Concur-
rent C0 [47], which serves as proof-of-concept for evalu-
ating the performance of digital contract languages based
on session types. Our preliminary results indicate that the
performance of language based on session types is ade-
quate for implementation of digital contracts (Section 9).

This article illustrates the key concepts and functionality of
Nomos. The supplementary material formalizes the complete
language with typing rules, cost semantics and the type
soundness theorem and proof.
2 Nomos by Example
Nomos is a programming language based on resource-aware
[20] and shared [10] session types for writing safe digital
contracts. This section uses a simple auction contract to

showcase the most signi�cant features of the language. The
subsequent sections explain each feature in technical detail.

Explicit Protocols of Interaction Digital contracts, like
ordinary contracts, follow a prede�ned protocol. For in-
stance, an auction contract follows the protocol that the
bidders �rst submit their bids to the auctioneer, and then
the highest bidder receives the lot while all other bidders
receive their bids back. In existing smart contract languages
like Solidity [1], this protocol is neither made explicit in
the contract program nor enforced statically. Without such
an explicit protocol, there is no guarantee that the parties
involved in the contract will follow the protocol. As a re-
sult, contracts in these languages have to resort to explicit
runtime checks to prevent undesirable behavior. This is a
common source of bugs in contracts as accounting for all
possible unwanted behavior is challenging, especially in a
distributed system with distrusting parties.
Contracts in Nomos, on the other hand, are typed with

a session type [10, 14, 28–30, 39, 44, 46], which speci�es the
contract’s protocol of interaction. Type-checking then makes
sure that the program implements the protocol de�ned by the
session type correctly. For instance, consider the following
protocol prescribed by the auction session type (ignore the
annotations on / and . , discussed later).

"SL /11 � {running : N{bid : id � money (.1 #SL auction,
cancel : .8 #SL auction},

ended : N{collect : id �
�{won : lot ⌦ .3 #SL auction,

lost : money⌦ #SL auction},
cancel : .8 #SL auction}}

Since there exist multiple bidders in an auction, we use a
shared session type [10] to de�ne the auction protocol. To
guarantee that bidders interact with the auction in mutual
exclusion, the session type demarcates the parts of the pro-
tocol that become a critical section. The "SL type modality
denotes the beginning of a critical section, the #SL modality
its end. Programmatically, "SL translates into an acquire of the
auction session and #SL into the release of the session. Shared
session types guarantee that inside a critical section there
exists exactly one client, whose interaction is described by a
linear session type.
Once a client has acquired the auction session, the auc-

tion will indicate whether it is still running (running) or not
(ended). This protocol is expressed by the internal choice
type constructor (�), describing the provider’s (aka con-
tract’s) choice. An external choice (N), on the other hand,
leaves the choice to the client. For example, in case the lot-
tery is still running, the client can choose between placing
a bid (bid) or backing out (cancel). If the client chooses to
place a bid, they have to indicate their identi�er, followed by
a payment, after which they release the session. Nomos ses-
sion types allow exchange of both functional values (e.g. id),

2

PL’18, January 01–03, 2018, New York, NY, USA Ankush Das, Stephanie Balzer, Jan Ho�mann, and Frank Pfenning

In the future, typed Nomos code could safely interact with
untyped or untrusted code through monitors, which can be
automatically synthesized from the session type [23].

To make transaction cost in Nomos predictable and trans-
parent, and to prevent bugs and vulnerabilities in contracts
based on excessive resource usage, we apply and further
develop automatic amortized resource analysis (AARA), a
type-based technique for automatically inferring symbolic
resource bounds [15, 25–27, 32]. AARA is parametric in the
cost model, which makes it directly applicable to track gas
consumption of Nomos contracts. Other advantages of the
technique include natural compositionality, a formal sound-
ness proof with respect to a cost semantics, and reduction of
(non-linear) bound inference to o�-the-shelf LP solving.

To eliminate a class of bugs in which the internal state of
a contract loses track of its assets or performs unintended
transactions, Nomos integrates a linear type system [45] into
a functional language. Linear type systems use the ideas of
Girard’s linear logic [22] to ensure that certain data is neither
duplicated nor discarded by a program. Programming lan-
guages such as Rust [5] have demonstrated that substructural
type systems are practical in industrial-strength languages.
Moreover, linear types are compatible with session types,
which are themselves based on linear logic [10, 14, 39, 44, 46].

In addition to the design of the Nomos language, we make
the following technical contributions.
1. We integrate linear session types that support controlled

sharing [10, 11] into a conventional functional type sys-
tem. To leave the logical foundation intact, the integra-
tion is achieved by a contextual monad [44] (Section 4)
that gives process expressions �rst-class status in the
functional language. Moreover, we recast shared session
types [10] to accommodate the explicit notions of contracts
and clients (Section 5).

2. We smoothly integrate AARA for functional programs
with session types for work analysis [20] (Section 6).

3. We prove the type soundness of Nomos with respect to
a novel asynchronous cost semantics using progress and
preservation (Section 7).

4. We translated all examples used in this paper into Concur-
rent C0 [47], which serves as proof-of-concept for evalu-
ating the performance of digital contract languages based
on session types. Our preliminary results indicate that the
performance of language based on session types is ade-
quate for implementation of digital contracts (Section 9).

This article illustrates the key concepts and functionality of
Nomos. The supplementary material formalizes the complete
language with typing rules, cost semantics and the type
soundness theorem and proof.
2 Nomos by Example
Nomos is a programming language based on resource-aware
[20] and shared [10] session types for writing safe digital
contracts. This section uses a simple auction contract to

showcase the most signi�cant features of the language. The
subsequent sections explain each feature in technical detail.

Explicit Protocols of Interaction Digital contracts, like
ordinary contracts, follow a prede�ned protocol. For in-
stance, an auction contract follows the protocol that the
bidders �rst submit their bids to the auctioneer, and then
the highest bidder receives the lot while all other bidders
receive their bids back. In existing smart contract languages
like Solidity [1], this protocol is neither made explicit in
the contract program nor enforced statically. Without such
an explicit protocol, there is no guarantee that the parties
involved in the contract will follow the protocol. As a re-
sult, contracts in these languages have to resort to explicit
runtime checks to prevent undesirable behavior. This is a
common source of bugs in contracts as accounting for all
possible unwanted behavior is challenging, especially in a
distributed system with distrusting parties.
Contracts in Nomos, on the other hand, are typed with

a session type [10, 14, 28–30, 39, 44, 46], which speci�es the
contract’s protocol of interaction. Type-checking then makes
sure that the program implements the protocol de�ned by the
session type correctly. For instance, consider the following
protocol prescribed by the auction session type (ignore the
annotations on / and . , discussed later).

"SL /11 � {running : N{bid : id � money (.1 #SL auction,
cancel : .8 #SL auction},

ended : N{collect : id �
�{won : lot ⌦ .3 #SL auction,

lost : money⌦ #SL auction},
cancel : .8 #SL auction}}

Since there exist multiple bidders in an auction, we use a
shared session type [10] to de�ne the auction protocol. To
guarantee that bidders interact with the auction in mutual
exclusion, the session type demarcates the parts of the pro-
tocol that become a critical section. The "SL type modality
denotes the beginning of a critical section, the #SL modality
its end. Programmatically, "SL translates into an acquire of the
auction session and #SL into the release of the session. Shared
session types guarantee that inside a critical section there
exists exactly one client, whose interaction is described by a
linear session type.
Once a client has acquired the auction session, the auc-

tion will indicate whether it is still running (running) or not
(ended). This protocol is expressed by the internal choice
type constructor (�), describing the provider’s (aka con-
tract’s) choice. An external choice (N), on the other hand,
leaves the choice to the client. For example, in case the lot-
tery is still running, the client can choose between placing
a bid (bid) or backing out (cancel). If the client chooses to
place a bid, they have to indicate their identi�er, followed by
a payment, after which they release the session. Nomos ses-
sion types allow exchange of both functional values (e.g. id),

2

=

Implementation of a Running Auction

Implementation of a Running Auction

accept ‘acquire’ (↑S
L)

Implementation of a Running Auction

accept ‘acquire’ (↑S
L)

send status ‘running’

Implementation of a Running Auction

accept ‘acquire’ (↑S
L)

send status ‘running’

recv ‘id’ and ‘money’

Implementation of a Running Auction

accept ‘acquire’ (↑S
L)

send status ‘running’

recv ‘id’ and ‘money’

detach from client (↓S
L)

Implementation of a Running Auction

accept ‘acquire’ (↑S
L)

send status ‘running’

recv ‘id’ and ‘money’

detach from client (↓S
L)

add bid and money

Implementation of a Running Auction

accept ‘acquire’ (↑S
L)

send status ‘running’

recv ‘id’ and ‘money’

detach from client (↓S
L)

add bid and money

no work constructs!

How to Use the Potential

Payment schemes (amortized cost)

• Ensure constant gas cost in the presence of costly operations

• Overcharge for cheap operations and store gas in contract

• Similar to storing ether in memory in EVM but part of contract

Explicit gas bounds

• Add an additional argument that carries potential

• User arg N ~ maximal number of players => gas bound is 81*N + 28

Enforce constant gas cost

• Simply disable potential in contract state

• Require messages to only carry constant potential

Computation on a Blockchain
Blockchain state: shared processes waiting to be acquired

contr1(~u1,~v1) …
c1 c2 cn

contrn(~un,~vn)contr2(~u2,~v2)

Computation on a Blockchain
Blockchain state: shared processes waiting to be acquired Contracts store

functional and
linear data.contr1(~u1,~v1) …

c1 c2 cn

contrn(~un,~vn)contr2(~u2,~v2)

Computation on a Blockchain
Blockchain state: shared processes waiting to be acquired Contracts store

functional and
linear data.

Channel name =
address

contr1(~u1,~v1) …
c1 c2 cn

contrn(~un,~vn)contr2(~u2,~v2)

Computation on a Blockchain
Blockchain state: shared processes waiting to be acquired Contracts store

functional and
linear data.

Channel name =
address

contr1(~u1,~v1) …
c1 c2 cn

contrn(~un,~vn)contr2(~u2,~v2)

Transaction: client submits code of a linear process

contr1(~u1,~v1) …
c1 c2 cn

contrn(~un,~vn)contr2(~u2,~v2) client

Computation on a Blockchain

• Client process can acquire existing contracts

• Client process can spawn new (shared) processes -> new contracts

• Client process needs to terminates in a new valid state

Blockchain state: shared processes waiting to be acquired Contracts store
functional and

linear data.

Channel name =
address

contr1(~u1,~v1) …
c1 c2 cn

contrn(~un,~vn)contr2(~u2,~v2)

Transaction: client submits code of a linear process

contr1(~u1,~v1) …
c1 c2 cn

contrn(~un,~vn)contr2(~u2,~v2) client

Computation on a Blockchain

• Client process can acquire existing contracts

• Client process can spawn new (shared) processes -> new contracts

• Client process needs to terminates in a new valid state

Blockchain state: shared processes waiting to be acquired Contracts store
functional and

linear data.

Channel name =
address

contr1(~u1,~v1) …
c1 c2 cn

contrn(~un,~vn)contr2(~u2,~v2)

Transaction: client submits code of a linear process

contr1(~u1,~v1) …
c1 c2 cn

contrn(~un,~vn)contr2(~u2,~v2) client

Contract should have
default clients.

Blockchain, Type Checking, and Verification

Type checking is part of the attack surface

• Contract code can checked at publication time

• User code needs to be checked for each transaction

• Denial of service attacks are possible

• Nomos type checking is linear in the size of the program

Verification of Nomos program is possible

• Dynamic semantics specifies runtime behavior

• Directly applicable to verification in Coq

• Nomos’ type system guaranties some important properties

Nomos

References

A statically-typed, strict, functional language for digital contracts

• Automatic amortized resource analysis for static gas bounds

• Shared binary session types for transparent & safe contract interfaces

• Linear type system for accurately reflecting assets

Ongoing work: implementation

• Parser • Type checker • Interpreter • Compiler✓ ✓

• POPL ’17: AARA for OCaml (RaML)
• LICS ’18: Resource-Aware Session Types

• arXiv ’19: Nomos

Nomos

References

A statically-typed, strict, functional language for digital contracts

• Automatic amortized resource analysis for static gas bounds

• Shared binary session types for transparent & safe contract interfaces

• Linear type system for accurately reflecting assets

Ongoing work: implementation

• Parser • Type checker • Interpreter • Compiler✓ ✓

• POPL ’17: AARA for OCaml (RaML)
• LICS ’18: Resource-Aware Session Types

• arXiv ’19: Nomos

Collaborators: Stephanie Balzer, Ankush
Das, and Frank Pfenning

