

Séminaire Gallium 2 décembre 2019

Toward certified quantum programming

Christophe Chareton

Sébastien Bardin, François Bobot, Valentin Perrelle (CEA) and Benoît Valiron (LRI)

Take away

Quantum computers (are going to / will ...) arrive

- \rightarrow How to write <u>correct</u> programs?
- Need specification and verification mechanisms
 - scale invariant
 - close to quantum algorithm descriptions
 - well distinguished from code itself
 - largely automated
- We are developing *Qbricks* as a first step towards this goal
 - core building circuit language
 - dual semantics
 - high level specification framework
- Certified implementation of the phase estimation algorithm (quantum part of Shor)

list ^{CE2tech} Context

Outline

Context

The case for verification of quantum algorithms

Qbricks

Circuit language Dual semantics Derive proof obligations Toward further automation

Case study: phase estimation algorithm

Conclusion

Dreams of quantum computing

ACHINES

How long until quantum computing is for everyone?

🕜 1 HOUR AGO 🛛 🙆 38 VIEWS

Applications:

- Machine learning
- Chemistry
- Optimisation
- Cryptography
- Scheduling
- etc

Dreams of quantum computing

ACHINES

How long until quantum computing is for everyone?

They are coming

IBM will soon launch a 53-qubit quantum computer

Frederic Lardinois @fredericl / 12:00 pm +00 • September 18, 2019

Google claims to have reached quantum supremacy

Researchers say their quantum computer has calculated an impossible problem for ordinary machines

Coi

They are coming

IBM will soon launch a 53-qubit quantum computer

Frederic Lardinois @fredericl / 12:00 pm +00 • September 18, 2019

Noisy Intermediate Scale Quantum (NISQ - J. Preskill 2018)

- Algorithm have to deal with noise
- Limited ressources :
 - **50** 1000 qubits
 - limited circuit depth

Google channes to have reached quantum supremacy

Researchers say their quantum computer has calculated an impossible problem for ordinary machines

They are coming

IBM will soon launch a 53-qubit quantum

¹In a 2^{*n*} dimension vector space, $|k\rangle_n$ designates the k^{th} canonical basis vector

Séminaire Gallium — Christophe Chareton — p. 7

Quantum information

 $\bigcup_{0} \bigcup_{n \to 1} \bigotimes_{2} \bigcup_{3} \dots \bigotimes_{n-1}$ One sequence in $\{\bigcup_{n}, \bigotimes_{n}\}^{n}$ (over 2^{n} possible) Quantum world¹

Séminaire Galilla a 2n dipression vector space, $|k\rangle_n$ designates the k^{th} canonical basis vector univer

Quantum information

Classical world:

 $\bigcup_{0} \bigcup_{n \neq 0} \bigcup_{n \neq 2} \bigcup_{n \neq 3} \dots \bigotimes_{n-1}$ One sequence in $\{\bigcup_{n \neq 3}, \bigotimes_{n}\}^{n}$ (over 2^{n} possible)
Quantum world¹

- + Some strange rules:
 - no cloning
 - destructive measure
 - operations restricted to unitary

¹In a 2^{*n*} dimension vector space, $|k\rangle_n$ designates the k^{th} canonical basis vector

The QRAM model

- A quantum co-processor (QRAM), controlled by a classical computer
 - Classical control flow
 - Quantum computing request, sent to the QRAM
- → Structured sequences of instructions: quantum circuits

The QRAM model

- A quantum co-processor (QRAM), controlled by a classical computer
 - Classical control flow
 - Quantum computing request, sent to the QRAM
- → Structured sequences of instructions: quantum circuits

Does the circuit fit the computation need?

Outline

Context

The case for verification of quantum algorithms

Qbricks

Circuit language Dual semantics Derive proof obligations Toward further automation

Case study: phase estimation algorithm

Conclusion

How do we check them?

How do we check them?

Tests are expensive and often statistical

How do we check them?

[A parte] Annotated code and deductive verification

Provides absolute guarantee

- Automates proofs
- Industrial successes
- Verify wide-spread languages (C, Java, caml ...)

Three main ingredients:

- operational semantics
- specification language
- proof engine

State of affairs in quantum computing

Three main ingredients:

- operational semantics: matrices \rightarrow matrix product, from Heisenberg (1925), Dirac (1939) path-sums (2018)
- specification language: ???
- proof engine: ???

Our strategy

- Build on best practice of formal verification for the classical case
 - separation of concerns
 - scale invariant verification
 - proof automation
 - domain-based specialization
 - flexible specification language
- Tailor them to the quantum case
 - dual semantics (truth reference + specifications)
 - specific reasoning rules
 - dedicated lemmas (1000+) libraries

State of the art

	QMC	Coq	Qwire (Coq)	Path-sums	Qbricks
 Separate specification from code 	0	X	0	X	0
 Scale invariance 	×	0	0	X	0
 Specifications fitting algorithm 	×	X	x	0	0
 Automate proofs 	0	x	x	0	~

Table: Formal verification of quantum circuits

State of the art, achievements in quantum formal verification

Qbricks

Outline

Context

The case for verification of quantum algorithms

Qbricks

Circuit language Dual semantics Derive proof obligations Toward further automation

Case study: phase estimation algorithm

Conclusion

Qbricks - Dual semantics

The quantum case : Back to basics

1. $|0\rangle|u\rangle$ initial state 2. $\rightarrow \frac{1}{\sqrt{2^2}} \sum_{j=0}^{2^d-1} |j\rangle|u\rangle$ create superposition 3. $\rightarrow \frac{1}{\sqrt{2^2}} \sum_{j=0}^{2^d-1} |j\rangle U^j|u\rangle$ apply black box $= \frac{1}{\sqrt{2^2}} \sum_{j=0}^{2^d-1} e^{2\pi i j\varphi_n} |j\rangle|u\rangle$ result of black box 4. $\rightarrow |\overline{\varphi_u}\rangle|u\rangle$ apply inverse Fourier transform 5. $\rightarrow \overline{\varphi_u}$ measure first register

Algorithm for the quantum phase estimation

Obricks - Dual semantics

The guantum case : Back to basics

create superposition

apply inverse Fourier transform measure first register

Algorithm for the quantum phase estimation

- A sequence of operations
- Intermediate assertions, describing the state of the system at each step

Qbricks – Dual semantics

The quantum case : Back to basics

Algorithm for the quantum phase estimation

Derive function specifications, eg :

let create_superposition (state) pre: |u\rangle is a ket vector pre: state = |0\rangle|u\rangle post: state = $\frac{1}{\sqrt{2^{l}}} \sum_{j=0}^{2^{l}-1} |j\rangle|u\rangle$ = (* The program *)

- Deductive verification (of annotated programs)
- $\blacksquare \rightarrow$ a domain specific language, embedded in the Why3 environment
 - build on best practice for the classical case (automation, separation of concerns, ...)
 - + interface with SMT-solvers

Qbricks – Dual semantics

Circuit building functions

type quantum_circuit_pre =
 Phase real | Rx real | Ry real | Rz_ real | Cnot
 Sequence quantum_circuit_pre quantum_circuit_pre
 Parallel quantum_circuit_pre quantum_circuit_pre

Qbricks – Dual semantics

Specification and verification

- Decorate Qbricks code with specifications
- Interprete circuit as functions transforming quantum states
 - x: quantum_state C: quantum_circuit (C, x]: quantum_state
- Path-sum semantics, general form

$$C, |k\rangle_n \xrightarrow{1} \frac{1}{\sqrt{2^r}} \sum_{j=0}^{2^{r-1}} ph(k, j) |ket(i, j)\rangle_n$$

- Three separated parameters, whith recursive definitions:
 - 🕳 r: int
 - **_** ph : int \rightarrow int \rightarrow complex
 - $\blacksquare ket: int \rightarrow int \rightarrow int$

Qbricks - Derive proof obligations

Specified circuit building

- Three separated parameters:
 - r: int

list

leatech

- **_** ph : int \rightarrow int \rightarrow complex
- ket : int \rightarrow int \rightarrow int
- functions r (sum_range), ph (phase_part) and ket (ket_part) are defined by recursion for circuits,

Qbricks - Derive proof obligations

Specified circuit building

- Three separated parameters:
 - 📕 r: int

list

Ceatech

- **_** ph : int \rightarrow int \rightarrow complex
- **ket** : int \rightarrow int \rightarrow int
- functions r (sum_range), ph (phase_part) and ket (ket_part) are defined by recursion for circuits,

they specify circuit lifted constructors

list CEALECH Qbricks - Derive proof obligations

Specified circuit building

- Three separated parameters:
 - r: int
 - **_** ph : int \rightarrow int \rightarrow complex
 - ket : int \rightarrow int \rightarrow int
- functions r (sum_range), ph (phase_part) and ket (ket_part) are defined by recursion for circuits,
- they specify circuit lifted constructors
- and the circuit building functions

Qbricks – Derive proof obligations

Generating proof obligations (why3)

Compilation generates proof obligations

sequence (rzp 1) (ry (dyadic 1 3))

list

Ceatech

Qbricks - Derive proof obligations

Generating proof obligations (why3)

- Compilation generates proof obligations
- Calling a function provides its postconditions as axioms

Qbricks - Derive proof obligations

list

Ceatech

Supporting proof obligations

- Proof obligations may be sent to SMT-solvers,
- and they can be eased, if needed, by to interactive transformations

Qbricks - Toward further automation

Outline

Context

The case for verification of quantum algorithms

Qbricks

Circuit language Dual semantics Derive proof obligations Toward further automation

Case study: phase estimation algorithm

Conclusion

Qbricks – Toward further automation

Path-sum semantics nice properties

Path-sum semantics satisfies nice properties

- Lemma (Properties of function Ps)
 - Linear decomposition. Let c be a quantum circuit, then for any ket |u⟩ of length s_c,

$$\boldsymbol{Ps}(c, |u\rangle) = \sum_{k=0}^{2^{s_c-1}} (u(k)) \boldsymbol{Ps}(c, |k\rangle_{s_c})$$

- Compositions. Let c and c' be quantum circuits, let |u⟩ and |u'⟩ be ket of respective lengths s_c and s_{c'}. Then,
 - **Ps** (parallel(c, c'), $|u\rangle \otimes |u'\rangle$) = (**Ps** (c, $|u\rangle$) \otimes (**Ps** (c', $|u'\rangle$)
 - if c and c' have the same size then
 Ps (sequence(c, c'), |u⟩) = Ps (c', Ps (c, |u⟩))

They enable local reasoning without reference to r, ph and ket

Abstract specification: the eigen example

Definition (Eigen predicate)

Let *c* be a quantum circuit, then for any ket $|u\rangle$ of length \mathbf{s}_c and for any complex number *v*, we say that $|u\rangle$ is an eigenvector for *c* with associated eigenvalue *v*, and we write eigen(*c*, $|u\rangle$, *v*), iff

 $\mathsf{Ps}\left(c,|u\rangle\right)=v|u\rangle$

Lemma (Eigen sequence composition)

Let c and c' be quantum circuits such that $\mathbf{s}_c = \mathbf{s}_{c'}$, let $|u\rangle$ be a ket of length \mathbf{s}_c . Then for any complex values v, v' such that

eigen
$$(c, |u\rangle, v)$$

eigen
$$(c', |u\rangle, v')$$

then

 $eigen(sequence(c, c'), |u\rangle, vv')$

Séminaire Gallium — Christophe Chareton — p. 25

Abstract specification and quantum algorithms

- Quantum algorithms (phase estimation, Grover, quantum simulation, etc.) are often parametrized by an *oracle* quantum circuit, respecting a given property
- This specification may not (nicely) translate in terms of r, ph and ket
- \blacksquare \rightarrow abstract specifications
- Example, the phase estimation algorithm:

Input: an unitary operator *U* and an eigenstate $|v\rangle$ of *U* **Output:** the eigenvalue associated to $|v\rangle$

Also: reversed circuit specification, controlled operations specifications, bit permutation specifications, etc.

Specific language fragments and simplified path-semantics

Predicates may characterize *Qbricks* fragments with simplified path-sum semantics:

Spec.	generating syntax	Semantics	Design input
Т	{Rx, Ry, Rz, Ph, Cnot}	r: int	
		ph : int \rightarrow int \rightarrow complex	
		ket : int \rightarrow int \rightarrow int	
flat	{Rz, Ph, Cnot}	ph : int \rightarrow complex	easy specification
		ket : int \rightarrow int	
diag	(Dr. Dh) phy inter complay		easier specification
$\{\Pi Z, FI\}$ pif . Int \rightarrow complex		pri . Int \rightarrow complex	iterators

Case study: phase estimation algorithm

Outline

Context

The case for verification of quantum algorithms

Qbricks

Circuit language Dual semantics Derive proof obligations Toward further automation

Case study: phase estimation algorithm

Conclusion

list

Case study: phase estimation algorithm

Phase estimation

Input: an unitary operator *U* and an eigenstate $|v\rangle$ of *U* **Output:** the eigenvalue associated to $|v\rangle$

- Eigen decomposition
- Solving linear systems
- Shor (with arithmetic assumption and probability)

Case study: phase estimation algorithm

Implementation data

	#Lines	#Def.	#Lem	#POs	#Aut.	#Cmd
create_superposition	42	2	1	11	6	36
apply_black_box	57	3	1	50	44	46
QFT	75	3	0	57	51	30
phase estimation	63	4	0	72	65	51
Total	237	12	2	190	166	163

#Aut.: automatically proven POs - #Cmd: interactive commands

Table: Implementation & verification of phase estimation

- The objective is reached: prove by fact that parametrized formal verification for quantum programs is possible
- Future works : further automate proof fulfillment

Case study: phase estimation algorithm

Comparison of several approaches, QFT algorithm

	QMC	Coq	Qwire (Coc	Path-sums	Qbricks
Separate specification from code	0	x	0	x	۲
 Scale invariance 	x	0	0	x	٢
 Specifications fitting algorithm 	x	x	x	0	٢
 Automate proofs 	•	x	x	0	~

Table: Formal verification of quantum circuits

	#Lines	#Def.	#Lem	#POs	#Aut.	#Cmd
QFT (full <i>Qbricks</i>)	75	3	0	57	51	30
QFT (Path-sum only)	87	3	0	73	64	49
QFT (Matrix only, cf QMC, Coq solutions)	200	8	15	306	285	106

Table: Comparison of several approaches, QFT algorithm

Séminaire Gallium - Christophe Chareton - p. 31

Conclusion

Conclusion

- *Qbricks*: a core development framework for certified quantum programming
 - scale invariant
 - close to quantum algorithm descriptions
 - well distinguished from code itself
 - largely automated
- Implementation
 - Circuit building language
 - Dual semantics + equivalence proof
 - Shorcuts for further automation
 - Certified implementation of the phase estimation algorithm
- Future works:
 - Further automate proof framework
 - Extend *Qbricks* to measure \rightarrow Shor

Commissariat à l'énergie atomique et aux énergies alternatives CEA Tech List Centre de Saclay — 91191 Gif-sur-Yvette Cedex www-list.cea.fr

Etablissement public à caractère industriel et commercial - RCS Paris B 775 685 019