
1/42

Towards
Certified Incremental Functional Programming

Yann Régis-Gianas
(IRIF, Univ. Paris, Inria π.r2) – yrg@irif.fr

with Paolo Giarrusso (Univ. Delft), Philip Schutser (Univ. Marburg), Lourdes
Gonzalez Huesca (Univ. Mexico), Lelio Brun (ENS), Olivier Martinot (Univ. Paris)

2019-09-30

yrg@irif.fr

2/42

Plan

Introduction

Some structure for first-class changes

Incrementalize this!

How should we equip incremental programmers?

Where we are and what we are up to

3/42

Data constantly change

Data x at t = 0 Data x at t = 1 Data x at t = 2

Change Change

f(x) at t = 0 f(x) at t = 1 f(x) at t = 2

f f f

▶ Now, take size(x) = 250 and size(modified part of x) = 210 .
▶ Recomputation is not an option!

3/42

Data constantly change

Data x at t = 0 Data x at t = 1 Data x at t = 2

Change Change

f(x) at t = 0 f(x) at t = 1 f(x) at t = 2

f f f
▶ Now, take size(x) = 250 and size(modified part of x) = 210 .
▶ Recomputation is not an option!

4/42

Stream-based processing

Data
New items New items

f
New output New output

▶ f only reacts to new items by producing a new version of its output.
▶ We are back to a reasonable computational setting.

5/42

What about large structured data?

▶ Stream-based processing is relevant for computations:
▶ that are dealing with linearizable data ;
▶ whose output only depends on a bounded number of previous items.

▶ Examples: tweets, financial data, machine learning datasets, …

How should we program systems that
perform non local computations

over interdependent and ever-changing structured values?
(e.g. commits in a large source code repository, …)

6/42

Incremental programming with first-class changes

Data x at t = 0 dx1 dx2

f(x + dx1) f(x + dx1+ dx2)

D(f) D(f)

6/42

Incremental programming with first-class changes

If

 f : A → B
∆A are changes overA and∆B are changes overB
⊕A : A → ∆A → A and⊕B : A → ∆B → B

then useD(f) such that:

f (x⊕A dx) = f x⊕B D(f)x dx

where the complexity ofD(f)

▶ (should ideally) only depends on the size of dx, and
▶ (always) be better than the complexity of f .

6/42

Incremental programming with first-class changes

If

 f : A → B
∆A are changes overA and∆B are changes overB
⊕A : A → ∆A → A and⊕B : A → ∆B → B

then useD(f) such that:

f (x⊕A dx) = f x⊕B D(f)x dx

where the complexity ofD(f)

▶ (should ideally) only depends on the size of dx, and
▶ (always) be better than the complexity of f .

6/42

Incremental programming with first-class changes

If

 f : A → B
∆A are changes overA and∆B are changes overB
⊕A : A → ∆A → A and⊕B : A → ∆B → B

then useD(f) such that:

f (x⊕A dx) = f x⊕B D(f)x dx

where the complexity ofD(f)

▶ (should ideally) only depends on the size of dx, and
▶ (always) be better than the complexity of f .

1. How should we define∆A,∆B ,⊕A , and⊕B?
2. How to get this miraculousD(f)?

7/42

Plan

Introduction

Some structure for first-class changes

Incrementalize this!

How should we equip incremental programmers?

Where we are and what we are up to

8/42

Change structures

1. How should we define∆A,∆B ,⊕A , and⊕B?

Incremental language designers do not actually agree on this question...

8/42

Change structures

1. How should we define∆A,∆B ,⊕A , and⊕B?

Incremental language designers do not actually agree on this question...

9/42

Giarrusso’s change structures

A complete change structure is a tuple (A,∆,⊕,) such that:

▶ A is a type.
▶ ∆ : A → Type

where for all a of typeA, the inhabitants of∆a are valid changes for a.
▶ ⊕ : ∀(x : A),∆x → A

where a⊕ da is the application of the change da to a.
▶ 	 : A → ∀(x : A),∆x

where a⊕ (b	 a) = b.

10/42

Alvarez and Ong’s change actions

A change action is a tuple (A,∆A,⊕,�,0) such that:

▶ ∆A is a type for changes.
▶ M∆ = (∆A,�,0) is a monoid.
▶ ⊕ : A×∆A → A is an action of the monoidM∆ on (A,⊕).

11/42

Gonzalez’ displaceable types

A typeA is displaceable by (∆A,⊕,	,0,�) if

▶ ∆A is a type for changes.
▶ M∆ = (∆A,�,0) is a monoid.
▶ ⊕ : A×∆A 7→ A is an action of the monoidM∆ on (A,⊕).
▶ 	 : A → A → ∆A where a⊕ (b	 a) = b.

12/42

Rich change structures

A rich change structure is a tuple (A,∆A,V,⊕,�,0,	, !) such that:

▶ A is a type and∆A is a type for changes.
▶ V : A → ∆A → Prop is a validity predicate for change.
▶ ∆ : A → Type is defined as a Prop irrelevant subset type

∆x ≜ {dx : A | V x dx}
▶ ⊕ : ∀(x : A),∆x → A

where a⊕ da is the application of the change da to a.
▶ � : ∀(x : A)(dx : ∆x) → ∆(x⊕ dx) → ∆x

is an associative change composition operator, behaving as an action on
(A,⊕).

▶ 0 : ∀(x : A),∆x
is such that ∀x, x⊕ 0x = x and behaves as an identity for�.

▶ 	 : A → ∀(x : A),∆x
where a⊕ (b	 a) = b.

▶ ! : ∀(y : A), A → ∆y

13/42

Change-related definitions

Equivalence of changes
Let x : A and dx1 dx2 : ∆x.
The two changes dx1 and dx2 are equivalent, written dx1 ≡ dx2 , if:

x⊕ dx1 = x⊕ dx2

14/42

Change structure examples : natural numbers

▶ Take∆N = Z and� = +Z

▶ The validity predicate V nk is defined as (k < 0) → (−k < n).
▶ Then, n⊕ k = n+Z k and	 = −Z .
▶ The nil change is 0 for all n.

15/42

Change structure examples : products

If (A,∆A,VA,⊕A,�A,0A,	A) and (B,∆B,VB ,⊕B ,�B ,0B ,	B) are
two change structures, then, by lifting the two set of operations to products,
(A×B,∆A×∆B,VA×B ,⊕A×B ,�A×B ,0A×B ,	A×B) is also a change
structure.

16/42

Change structure examples : sums

▶ Take∆(A+B) = ∆A+∆B +A+B

▶ VA+B s ds if

(∃ a da, s = in1 a ∧ ds = in1 da) ∨ (∃ b db, s = in2 b ∧ ds = in2 db) ∨
(∃ a′, ds = in3 a′) ∨ (∃ b′, ds = in4 b′)

▶ 0(in1a) = 0 a and 0(in2b) = 0 b.
▶ Exercise: Define⊕,	 and�!

17/42

Change structure examples : functions (Gonzalez’ style)

▶ Take∆(A → B) = A → ∆B .
▶ Lift the change structure overB in a pointwise way.
▶ For instance, change application is:

f ⊕ df = λx.f x⊕ df x

▶ For nil change:
0f = λx.0(f x)

18/42

Change structure examples : functions (Giarrusso’s style)

▶ Take∆(A → B) = A → ∆A → ∆B .
▶ For the change application, Giarrusso uses:

f ⊕ df = λx.f x⊕ df x (0x)

▶ Because of the need for:

(f ⊕ df) (x⊕ dx) = f x⊕ df x dx

▶ In that setting, 0f must therefore enjoy:

(f ⊕ (0 f)) (x⊕ dx) = f x⊕ (0 f)x dx = f (x⊕ dx)

▶ That is, 0 f must be a derivative of f .

19/42

Validity for function changes

V f df =

{
∀a da,VA a da → VB (f a) (df a da) ∧
∀a da, f a⊕ df a da = f (a⊕ da)⊕ df (a⊕ da) (0 (a⊕ da))

20/42

Plan

Introduction

Some structure for first-class changes

Incrementalize this!

How should we equip incremental programmers?

Where we are and what we are up to

21/42

A toy compiler for arithmetic expressions

1 (** Abstract syntax trees for arithmetic expressions. *)
2 type exp = EInt of int | EBin of op * exp * exp and op = Add | Mul
3

4 (** Instructions of a stack machine. *)
5 type instr = IPush of int | IAdd | IMul
6

7 (** We want a compiler from arithmetic expressions to instructions. *)
8 type source = exp and target = instr list
9

10 (** [compile] is defined by induction over arithmetic expressions. *)
11 let rec compile : source -> target = function
12 | EInt d -> [IPush d]
13 | EBin (op, lhs, rhs) -> compile lhs @ compile rhs @ [to_instr op]
14

15 and to_instr = function Add -> IAdd | Mul -> IMul

22/42

Source code changes

1 (** A rich set of changes for the abstract syntax trees. *)
2 type dexp =
3 ReplaceEInt of int (* Replace a literal. *)
4 | ReplaceOp of op (* Replace an operation. *)
5 | ChangeLeft of dexp (* Apply a change on lhs. *)
6 | ChangeRight of dexp (* Apply a change on rhs. *)
7 | LeftInsertOp of op * exp (* Insert an operation with rhs *)
8 | RightInsertOp of op * exp (* Insert an operation with lhs *)
9 | ProjLeft (* Keep only lhs. *)
10 | ProjRight (* Keep only rhs. *)
11 | BinOpToEInt of int (* Change an operation into a literal. *)
12 | EIntToBinOp of op * exp * exp (* Change a literal into an operation. *)
13 | DExpNil (* Change nothing. *)

23/42

Source change application

1 (** Here is how some of these changes can be applied to ASTs. *)
2 let apply_dexp e de =
3 match e, de with
4 | EInt x, ReplaceEInt y -> EInt y
5 | EInt x, EIntToBinOp (op, lhs, rhs) -> EBin (op, lhs, rhs)
6 | EBin (b, lhs, rhs), BinOpToEInt x -> EInt x
7 | EBin (b, lhs, rhs), ProjLeft -> lhs
8 | EBin (b, lhs, rhs), ProjRight -> rhs
9 | EBin (b, lhs, rhs), ReplaceOp b' -> EBin (b, lhs, rhs)
10 | e, LeftInsertOp (op, lhs) -> EBin (op, lhs, e)
11 | e, RightInsertOp (op, rhs) -> EBin (op, e, rhs)
12 | _, _ -> failwith "Invalid change"

▶ Did I miss some cases?
▶ With some extra pain, you can define compose_dexp.

23/42

Source change application

1 (** Here is how some of these changes can be applied to ASTs. *)
2 let apply_dexp e de =
3 match e, de with
4 | EInt x, ReplaceEInt y -> EInt y
5 | EInt x, EIntToBinOp (op, lhs, rhs) -> EBin (op, lhs, rhs)
6 | EBin (b, lhs, rhs), BinOpToEInt x -> EInt x
7 | EBin (b, lhs, rhs), ProjLeft -> lhs
8 | EBin (b, lhs, rhs), ProjRight -> rhs
9 | EBin (b, lhs, rhs), ReplaceOp b' -> EBin (b, lhs, rhs)
10 | e, LeftInsertOp (op, lhs) -> EBin (op, lhs, e)
11 | e, RightInsertOp (op, rhs) -> EBin (op, e, rhs)
12 | _, _ -> failwith "Invalid change"

▶ Did I miss some cases?
▶ With some extra pain, you can define compose_dexp.

24/42

…and now?

1 (** [compile] is defined by induction over arithmetic expressions. *)
2 let rec compile : source -> target = function
3 | EInt d -> [IPush d]
4 | EBin (op, lhs, rhs) -> compile lhs @ compile rhs @ [to_instr op]
5

6 and to_instr = function Add -> IAdd | Mul -> IMul
7

8 (** [dcompile source dsource] computes how [compile source] should be
9 changed if [source] is changed by [dsource]. *)
10 let dcompile : source -> dsource -> dtarget = ?

25/42

A programming challenge

▶ Derivatives are often partial functions.

Can you remove an element from an empty list?
The program safety depends on the validity of changes.

▶ Derivatives are defined bymany cases.
▶ Efficient derivatives are often program dependent.
▶ Incremental programming is algorithmically challenging.
▶ Incremental programming hardly scales to large programs.
▶ The complexity of incremental programs is hard to reason about.

25/42

A programming challenge

▶ Derivatives are often partial functions.
▶ Derivatives are defined bymany cases.

If a datatype has n cases and if there ism distinct kind of changes,
prepare yourself to consider n ∗m cases (and many make no sense)!

▶ Efficient derivatives are often program dependent.
▶ Incremental programming is algorithmically challenging.
▶ Incremental programming hardly scales to large programs.
▶ The complexity of incremental programs is hard to reason about.

25/42

A programming challenge

▶ Derivatives are often partial functions.
▶ Derivatives are defined bymany cases.
▶ Efficient derivatives are often program dependent.

There is no magic wand.
Efficient derivatives exploit mathematical properties of functions.

▶ Incremental programming is algorithmically challenging.
▶ Incremental programming hardly scales to large programs.
▶ The complexity of incremental programs is hard to reason about.

25/42

A programming challenge

▶ Derivatives are often partial functions.
▶ Derivatives are defined bymany cases.
▶ Efficient derivatives are often program dependent.
▶ Incremental programming is algorithmically challenging.

An incrementalizationmust share information with its base computation.
Use retroactive data structures to efficiently store and update it.

▶ Incremental programming hardly scales to large programs.
▶ The complexity of incremental programs is hard to reason about.

25/42

A programming challenge

▶ Derivatives are often partial functions.
▶ Derivatives are defined bymany cases.
▶ Efficient derivatives are often program dependent.
▶ Incremental programming is algorithmically challenging.
▶ Incremental programming hardly scales to large programs.

Manual incrementalization of small functions is hard but feasible.
Large programs have no obvious derivatives.

▶ The complexity of incremental programs is hard to reason about.

25/42

A programming challenge

▶ Derivatives are often partial functions.
▶ Derivatives are defined bymany cases.
▶ Efficient derivatives are often program dependent.
▶ Incremental programming is algorithmically challenging.
▶ Incremental programming hardly scales to large programs.
▶ The complexity of incremental programs is hard to reason about.

A tiny change of the inputs can have a large impact on the outputs.
The complexity is better expressed w.r.t the size of the output update.
Require reasoning about f x, f(x⊕ dx) andD(f)x dx.

25/42

A programming challenge

▶ Derivatives are often partial functions.
▶ Derivatives are defined bymany cases.
▶ Efficient derivatives are often program dependent.
▶ Incremental programming is algorithmically challenging.
▶ Incremental programming hardly scales to large programs.
▶ The complexity of incremental programs is hard to reason about.

26/42

Plan

Introduction

Some structure for first-class changes

Incrementalize this!

How should we equip incremental programmers?

Where we are and what we are up to

27/42

Our take on this programming challenge

ΔCoq ΔCaml

OCaml

compilationextraction

declaration

▶ For a function f for which a “smart” incrementalization is not obvious:
⇒ ∆Caml provides derive f, an automatic incrementalization of f.

▶ For a function f for which the programmer has some intuition:
⇒ ∆Coq assists the programmer through the incrementalization process.

28/42

The quest for automatic differentiation

2. How to get this miraculousD(f)?

▶ Easy! Take:
D(f)x dx = λx dx.f(x⊕ dx)	 f x

▶ This is a too naive! D(f)must be more efficient than recomputation!
▶ Two more realistic approaches:

▶ Gonzalez’ partial derivatives ;
▶ Giarrusso’s static differentiation.

28/42

The quest for automatic differentiation

2. How to get this miraculousD(f)?

▶ Easy! Take:
D(f)x dx = λx dx.f(x⊕ dx)	 f x

▶ This is a too naive! D(f)must be more efficient than recomputation!
▶ Two more realistic approaches:

▶ Gonzalez’ partial derivatives ;
▶ Giarrusso’s static differentiation.

28/42

The quest for automatic differentiation

2. How to get this miraculousD(f)?

▶ Easy! Take:
D(f)x dx = λx dx.f(x⊕ dx)	 f x

▶ This is a too naive! D(f)must be more efficient than recomputation!

▶ Two more realistic approaches:
▶ Gonzalez’ partial derivatives ;
▶ Giarrusso’s static differentiation.

28/42

The quest for automatic differentiation

2. How to get this miraculousD(f)?

▶ Easy! Take:
D(f)x dx = λx dx.f(x⊕ dx)	 f x

▶ This is a too naive! D(f)must be more efficient than recomputation!
▶ Two more realistic approaches:

▶ Gonzalez’ partial derivatives ;
▶ Giarrusso’s static differentiation.

29/42

Partial derivatives à la Gonzalez

Let’s extend the standard call-by-value λ-calculus withD(•) ruled by:

D(λx.t) → λx dx.
∂t

∂x
where

∂y

∂x
=

dx if y = x

0 y otherwise

∂(λy.t)

∂x
= λy.

∂t

∂x
if x 6= y

∂D(t)
∂x

= D(∂t
∂x

)

∂(r s)

∂x
=

(
D(r) s ∂s

∂x

)
�
(∂r

∂x
(x⊕ ∂s

∂x
)
)

30/42

Partial derivatives à la Gonzalez
Theorem (Chain rule)
The chain rule holds for the deterministic differential λ-calculus.

D(λx.(f ◦ g)x) → λx dx.D(f) (g x) (D(g)x dx)

Theorem (Soundness of dynamic differentiation)
Let f be function. The following equation holds:

f (x⊕ dx) = f x⊕D(f)x dx

where the equality stands for the definitional equivalence.

▶ Add a rule for your favorite primitives and their derivatives, and voilà!
▶ D(•) lifts primitive derivatives to higher-order programs.
▶ A framework to reason about derivatives, inspired by Differential λ-calculus.

7 Unfortunately, partial derivatives require huge implementation efforts…

30/42

Partial derivatives à la Gonzalez
Theorem (Chain rule)
The chain rule holds for the deterministic differential λ-calculus.

D(λx.(f ◦ g)x) → λx dx.D(f) (g x) (D(g)x dx)

Theorem (Soundness of dynamic differentiation)
Let f be function. The following equation holds:

f (x⊕ dx) = f x⊕D(f)x dx

where the equality stands for the definitional equivalence.

▶ Add a rule for your favorite primitives and their derivatives, and voilà!
▶ D(•) lifts primitive derivatives to higher-order programs.
▶ A framework to reason about derivatives, inspired by Differential λ-calculus.
7 Unfortunately, partial derivatives require huge implementation efforts…

31/42

Static differentiation (Giarrusso et al, PLDI’14)

Giarrusso et al study the following stunningly simple program transformation:

D(x) = dx
D(t u) = D(t)uD(u)

D(λx.t) = λx dx.D(t)

▶ It performs static differentiation w.r.t. all free variables at once.
▶ As a program transformation, it can be easily embedded in a compiler.

Theorem (Soundness of static differentiation)
If f : A → B , a : A and da : ∆A is a valid change for a, then the following holds:

f (a⊕ da) ' f a⊕D(f) a da

were' denotes the (definitional) equality of denotations.

31/42

Static differentiation (Giarrusso et al, PLDI’14)

Giarrusso et al study the following stunningly simple program transformation:

D(x) = dx
D(t u) = D(t)uD(u)

D(λx.t) = λx dx.D(t)

▶ It performs static differentiation w.r.t. all free variables at once.
▶ As a program transformation, it can be easily embedded in a compiler.

Theorem (Soundness of static differentiation)
If f : A → B , a : A and da : ∆A is a valid change for a, then the following holds:

f (a⊕ da) ' f a⊕D(f) a da

were' denotes the (definitional) equality of denotations.

31/42

Static differentiation (Giarrusso et al, PLDI’14)

Giarrusso et al study the following stunningly simple program transformation:

D(x) = dx
D(t u) = D(t)uD(u)

D(λx.t) = λx dx.D(t)

▶ It performs static differentiation w.r.t. all free variables at once.
▶ As a program transformation, it can be easily embedded in a compiler.

Theorem (Soundness of static differentiation)
If f : A → B , a : A and da : ∆A is a valid change for a, then the following holds:

f (a⊕ da) ' f a⊕D(f) a da

were' denotes the (definitional) equality of denotations.

32/42

Inefficiency of Giarrusso’s static differentiation

1 let average : int list -> int = fun xs ->
2 let s = sum xs in
3 let n = len xs in
4 let d = div s n in
5 d

Applied to average, static differentiation produces the following derivative:

1 let daverage : int list -> (int, ∆int) ∆list -> ∆int
2 = fun xs dxs ->
3 let s = sum xs and ds = dsum xs dxs in
4 let n = len xs and dn = dlen xs dxs in
5 let d = div s n and dd = ddiv s ds n dn in
6 dd
7

8 let ddiv s ds n dn = (s ⊕ ds) / (n ⊕ dn)

ddiv needs s (i.e. sum xs) even though average xs already computed it!

32/42

Inefficiency of Giarrusso’s static differentiation

1 let average : int list -> int = fun xs ->
2 let s = sum xs in
3 let n = len xs in
4 let d = div s n in
5 d

Applied to average, static differentiation produces the following derivative:

1 let daverage : int list -> (int, ∆int) ∆list -> ∆int
2 = fun xs dxs ->
3 let s = sum xs and ds = dsum xs dxs in
4 let n = len xs and dn = dlen xs dxs in
5 let d = div s n and dd = ddiv s ds n dn in
6 dd
7

8 let ddiv s ds n dn = (s ⊕ ds) / (n ⊕ dn)

ddiv needs s (i.e. sum xs) even though average xs already computed it!

33/42

Static differentiation in Cache Transfer Style (ESOP’19)

In CTS, a function returns a cache of its intermediate results:

1 let cts_average : int list -> int * cache_average = fun xs ->
2 let s, cache_sum = cts_sum xs in
3 let n, cache_len = cts_len xs in
4 let d, cache_div = cts_div s n in
5 (d, (s, cache_sum, n, cache_len, d, cache_div))

In CTS, a derivative exploits and updates this cache:

1 let cts_daverage
2 : cache_average -> int list -> (int, ∆int) ∆list -> ∆int * cache_average
3 = fun cache xs dxs ->
4 let (s, cache_sum, n, cache_length, d, cache_div) = cache in
5 let ds, cache_sum = dsum cache_sum xs dxs in
6 let dn, cache_len = dlen cache_len xs dxs in
7 let dd, cache_div = ddiv cache_div s ds n dn in
8 (dd, (s ⊕ ds, cache_sum, n ⊕ dn, cache_len, d ⊕ dd, cache_div))

34/42

Status of CTS differentiation

In the paper
▶ A new soundness proof of differentiation (in an untyped setting).
▶ A soundness proof of the CTS differentiation.
▶ Preliminary benchmarks show that resulting incrementalizations are of an

order of magnitude faster than recomputing.

Now
▶ The implementation of∆Caml is work-in-progress.
▶ ∆Caml is core ML + change structures + derivatives.
▶ The transformation requires terms to be in λ-lifted A-normal form.

35/42

Towards the certification of hand-written CTS derivatives

How should we design the∆Coq library?

We are trying to answer this through a case study : an incremental List module.

36/42

Which change structure for Lists?

If (A,∆A,VA,⊕A,�A,0A,	A) is a change structure, then let us take

∆listA ::= Insertk a | Removek a | Updatek a da | Compose dl dl | NilChange

where we take k ∈ N, a ∈ A, da ∈ ∆A, and dl ∈ ∆listA.

37/42

List.map

How would you incrementalize List.map?

1 let rec dmap_nil f df dl =
2 match dl with
3 | Insert k a -> Insert k (f a)
4 | Remove k a -> Remove k (f a)
5 | Update k a da -> Update k (f a) (df a da)
6 | Compose dl1 dl2 -> Compose (dmap_nil f df dl1) (dmap_nil f df dl2)
7 | NilChange -> NilChange
8

9 let dmap f df l dl =
10 if is_nil df then dmap_nil f df dl else ! (map (f ⊕ df) (l ⊕ dl))

▶ The caches are omitted because they are not necessary for List.map.

37/42

List.map

How would you incrementalize List.map?

1 let rec dmap_nil f df dl =
2 match dl with
3 | Insert k a -> Insert k (f a)
4 | Remove k a -> Remove k (f a)
5 | Update k a da -> Update k (f a) (df a da)
6 | Compose dl1 dl2 -> Compose (dmap_nil f df dl1) (dmap_nil f df dl2)
7 | NilChange -> NilChange
8

9 let dmap f df l dl =
10 if is_nil df then dmap_nil f df dl else ! (map (f ⊕ df) (l ⊕ dl))

▶ The caches are omitted because they are not necessary for List.map.

38/42

List.fold_left

How would you incrementalize List.fold_left?

▶ If you know nothing about f:
▶ Take a cache that remembers all the intermediate values of the accumulator.
▶ Restart the iteration from the position of the change.
▶ Worst-case: O(|l|).

▶ If you know that f is commutative and inversible:
▶ There is no need for a cache.
▶ Undo/Update the contribution of the element at the change position.
▶ Worst-case: (O(1))

▶ If you know that f is associative:
▶ Take a cache which is a (differential variant of a) fingertree.
▶ Split the fingertree at the change position, apply the change and join the

fingertree back.
▶ Worst-case: O(log2(l)).

38/42

List.fold_left

How would you incrementalize List.fold_left?

▶ If you know nothing about f:
▶ Take a cache that remembers all the intermediate values of the accumulator.
▶ Restart the iteration from the position of the change.
▶ Worst-case: O(|l|).

▶ If you know that f is commutative and inversible:
▶ There is no need for a cache.
▶ Undo/Update the contribution of the element at the change position.
▶ Worst-case: (O(1))

▶ If you know that f is associative:
▶ Take a cache which is a (differential variant of a) fingertree.
▶ Split the fingertree at the change position, apply the change and join the

fingertree back.
▶ Worst-case: O(log2(l)).

39/42

Plan

Introduction

Some structure for first-class changes

Incrementalize this!

How should we equip incremental programmers?

Where we are and what we are up to

40/42

How does it compare with self-adjusting computations?

Why don’t you use Acar’s self-adjusting computations?

What are these self-adjusting computations?
▶ They are instrumented to build a graph representing their execution traces.
▶ Output changes are obtained by propagating changes in the graph.
▶ Tremendous performances thanks to aggressive memoization.

But …
▶ It is a dynamic and imperative process in a graph: hard to reason about.
⇒ A derivative is simply a new program compatible with usual verification tools.
▶ Acar’s notion of changes is based on replacement.
⇒ We believe that more structured changes open better opportunities.

40/42

How does it compare with self-adjusting computations?

Why don’t you use Acar’s self-adjusting computations?

What are these self-adjusting computations?
▶ They are instrumented to build a graph representing their execution traces.
▶ Output changes are obtained by propagating changes in the graph.
▶ Tremendous performances thanks to aggressive memoization.

But …
▶ It is a dynamic and imperative process in a graph: hard to reason about.
⇒ A derivative is simply a new program compatible with usual verification tools.
▶ Acar’s notion of changes is based on replacement.
⇒ We believe that more structured changes open better opportunities.

40/42

How does it compare with self-adjusting computations?

Why don’t you use Acar’s self-adjusting computations?

What are these self-adjusting computations?
▶ They are instrumented to build a graph representing their execution traces.
▶ Output changes are obtained by propagating changes in the graph.
▶ Tremendous performances thanks to aggressive memoization.

But …
▶ It is a dynamic and imperative process in a graph: hard to reason about.
⇒ A derivative is simply a new program compatible with usual verification tools.

▶ Acar’s notion of changes is based on replacement.
⇒ We believe that more structured changes open better opportunities.

40/42

How does it compare with self-adjusting computations?

Why don’t you use Acar’s self-adjusting computations?

What are these self-adjusting computations?
▶ They are instrumented to build a graph representing their execution traces.
▶ Output changes are obtained by propagating changes in the graph.
▶ Tremendous performances thanks to aggressive memoization.

But …
▶ It is a dynamic and imperative process in a graph: hard to reason about.
⇒ A derivative is simply a new program compatible with usual verification tools.
▶ Acar’s notion of changes is based on replacement.
⇒ We believe that more structured changes open better opportunities.

41/42

Towards cache communication

1 let rec sort = function
2 ...
3 | x :: xs ->
4 let cmp, cmp_cache = less_than x in
5 let (xless, xmore), partition_cache = partition cmp xs in
6 ...

1 let rec dsort (sorted_list, cmp_cache, partition_cache, ...) =
2 ...
3 (* Case for ``Insert k a'' *)
4 let dcmp, dcmp_cache = dless_than cmp_cache dx in
5 let (dxless, dxmore), partition_cache =
6 dpartition partition_cache dcmp (Insert k a)
7 in
8 ...

▶ dpartition has aO(n) worst-case complexity.

▶ But by exploiting sorted_list this could be reduced to log(n)!
▶ The cache of sort has information about values processed by partition.
▶ Can we share information between caches?

41/42

Towards cache communication

1 let rec sort = function
2 ...
3 | x :: xs ->
4 let cmp, cmp_cache = less_than x in
5 let (xless, xmore), partition_cache = partition cmp xs in
6 ...

1 let rec dsort (sorted_list, cmp_cache, partition_cache, ...) =
2 ...
3 (* Case for ``Insert k a'' *)
4 let dcmp, dcmp_cache = dless_than cmp_cache dx in
5 let (dxless, dxmore), partition_cache =
6 dpartition partition_cache dcmp (Insert k a)
7 in
8 ...

▶ dpartition has aO(n) worst-case complexity.
▶ But by exploiting sorted_list this could be reduced to log(n)!

▶ The cache of sort has information about values processed by partition.
▶ Can we share information between caches?

41/42

Towards cache communication

1 let rec sort = function
2 ...
3 | x :: xs ->
4 let cmp, cmp_cache = less_than x in
5 let (xless, xmore), partition_cache = partition cmp xs in
6 ...

1 let rec dsort (sorted_list, cmp_cache, partition_cache, ...) =
2 ...
3 (* Case for ``Insert k a'' *)
4 let dcmp, dcmp_cache = dless_than cmp_cache dx in
5 let (dxless, dxmore), partition_cache =
6 dpartition partition_cache dcmp (Insert k a)
7 in
8 ...

▶ dpartition has aO(n) worst-case complexity.
▶ But by exploiting sorted_list this could be reduced to log(n)!
▶ The cache of sort has information about values processed by partition.
▶ Can we share information between caches?

42/42

Conclusion

Where we are
▶ Cache-Transfer-Style differentiation is a program transformation to

incrementalize higher-order programs.
▶ We have a Coq proof and several experiments in OCaml.

Where we go
▶ Implementing∆Caml and∆Coq to conduct large experiments.
▶ Studying a theory of caches.

Thank you for attention! Any questions?

42/42

Conclusion

Where we are
▶ Cache-Transfer-Style differentiation is a program transformation to

incrementalize higher-order programs.
▶ We have a Coq proof and several experiments in OCaml.

Where we go
▶ Implementing∆Caml and∆Coq to conduct large experiments.
▶ Studying a theory of caches.

Thank you for attention! Any questions?

42/42

Conclusion

Where we are
▶ Cache-Transfer-Style differentiation is a program transformation to

incrementalize higher-order programs.
▶ We have a Coq proof and several experiments in OCaml.

Where we go
▶ Implementing∆Caml and∆Coq to conduct large experiments.
▶ Studying a theory of caches.

Thank you for attention! Any questions?

	Introduction
	Some structure for first-class changes
	Incrementalize this!
	How should we equip incremental programmers?
	Where we are and what we are up to

