Formally verified incremental cycle detection

Armaël Guéneau

with J.-H. Jourdan, A. Charguéraud and F. Pottier

In this talk

The story of a formally verified algorithm...

- initially motivated by Coq's implementation... (universe constraints)
- ...which ended up integrated into the Dune build system. (dependencies between build actions)

We verify at the same time *correctness and complexity*... ... and our implementation turns out to be 7x faster!

Context

Program verification framework: Coq and (extended) CFML

Separation Logic with Time Credits

- Each function call (or loop iteration) consumes \$1
- n asserts the ownership of n time credits
- \$(n+m) = \$n * \$m
- Credits are not duplicable: $1 \implies 1 * 1$
- Enables amortized analysis

Type of assertions, in the model:

- Standard Separation Logic: Heap \rightarrow Prop
- Separation Logic with Time Credits: Heap $\times \mathbb{N} \to \mathsf{Prop}$

Example specifications using time credits

Complexity specification using explicit time credits:

 $\forall \, g \, G. \, \{ \, \operatorname{IsGraph} g \; G \ast \$(3 \, | \operatorname{edges} \, G | + 5) \, \} \, \operatorname{d\!f\!s}(g) \, \{ \, \operatorname{IsGraph} g \; G \, \}$

Asymptotic complexity specification:

$$\exists (f:\mathbb{Z}\to\mathbb{Z}).$$

 $\begin{array}{ll} \text{nonnegative } f & \wedge \text{ monotonic } f & \wedge f \in O_{\mathbb{Z}}(\lambda m.m) \\ & \wedge \forall \, g \, G. \ \{ \text{IsGraph } g \; G \ast \$ \; f(|\text{edges } G|) \; \} \; dfs(g) \; \{ \text{IsGraph } g \; G \; \} \end{array}$

Naive algorithm: traverse the graph at each step. Each arc insertion costs O(m).

Coq and Dune implement a state-of-the-art algorithm by Bender, Fineman, Gilbert and Tarjan (2016).

It runs in $O(m \cdot \min(m^{1/2}, n^{2/3}))$ for m arc insertions.

In particular, in a sparse graph, $O(\sqrt{m})$ amortized for each insertion.

Contributions

- A simple yet crucial improvement to make Bender et al.'s algorithm truly online;
- An OCaml implementation as a standalone library;
- A machine-checked proof of both its functional correctness and amortized asymptotic complexity;
- Time credits that are counted in Z (instead of N): this leads to significantly fewer proof obligations (!).

Overview of the library: interface and specification

Bender et al.'s algorithm: Key Ideas

Complexity Analysis

A taste of time credits: forward traversal analysis

Integer Time Credits

Overview of the library: interface and specification

 ${\sim}$ 150 lines of (terse) hand written OCaml code

Minimal OCaml interface

```
module Make (G : Raw_graph) : sig
  val add vertex :
    G.graph -> G.vertex -> unit
  type add edge result =
     EdgeAdded
    EdgeCreatesCycle
  val add edge or detect cycle :
    G.graph -> G.vertex -> G.vertex ->
    add_edge_result
end
```

Toplevel specification (functional correctness only)

```
 \forall g \ G \ v \ w. \ \text{let} \ m := |\text{edges } G| \text{ in} \\ \text{let} \ n := |\text{vertices } G| \text{ in} \\ v, w \in \text{vertices } G \land (v, w) \notin \text{edges } G \implies \\ \left\{ \begin{array}{l} \text{IsGraph } g \ G \\ (\texttt{add\_edge\_or\_detect\_cycle } g \ v \ w) \\ \left\{ \begin{array}{l} \lambda \text{ res. match res with} \\ | \ \text{EdgeAdded} \Rightarrow \text{IsGraph } g \ (G + (v, w)) \\ | \ \text{EdgeCreatesCycle} \Rightarrow [w \longrightarrow_{G}^{*} v]) \end{array} \right\}
```

 $\forall g G. \operatorname{IsGraph} g G \Vdash \operatorname{IsGraph} g G * [\forall x. x \longrightarrow_{G}^{+} x]$

Toplevel specification (functional correctness only)

```
 \forall g \ G \ v \ w. \ \text{let} \ m := |\text{edges } G| \text{ in} \\ \text{let} \ n := |\text{vertices } G| \text{ in} \\ v, w \in \text{vertices } G \land (v, w) \notin \text{edges } G \implies \\ \left\{ \begin{array}{l} \text{IsGraph } g \ G \\ (\texttt{add\_edge\_or\_detect\_cycle } g \ v \ w) \\ \left\{ \begin{array}{l} \lambda \text{ res. match res with} \\ | \ \text{EdgeAdded} \Rightarrow \text{IsGraph } g \ (G + (v, w)) \\ | \ \text{EdgeCreatesCycle} \Rightarrow [w \longrightarrow_{G}^{*} v]) \end{array} \right\}
```

$$\begin{split} &\operatorname{IsGraph} g \ G \ := \ \exists L \ M \ I. \ \operatorname{IsRawGraph} g \ G \ L \ M \ I \ast \left[\operatorname{Inv} \ G \ L \ I\right] \\ &\operatorname{Inv} \ G \ L \ I \ := \ (\forall x. \ x \longrightarrow {}^+_G \ x) \ \land \ \dots \end{split}$$

Toplevel specification (correctness and complexity)

```
 \begin{array}{l} \forall g \: G \: v \: w. \: \mathrm{let} \: m := |\mathrm{edges} \: G| \: \mathrm{in} \\ & \mathrm{let} \: n := |\mathrm{vertices} \: G| \: \mathrm{in} \\ & v, w \in \mathrm{vertices} \: G \: \land \: (v, w) \notin \mathrm{edges} \: G \: \Longrightarrow \\ & \left\{ \: \mathrm{IsGraph} \: g \: G \\ & \left( \mathrm{add\_edge\_or\_detect\_cycle} \: g \: v \: w \right) \\ & \left\{ \: \begin{array}{l} \mathrm{add\_edge\_or\_detect\_cycle} \: g \: v \: w \right) \\ & \left\{ \: \lambda \: \mathrm{res.} \: \mathrm{match} \: \mathrm{res} \: \mathrm{with} \\ & | \: \mathrm{EdgeAdded} \Rightarrow \mathrm{IsGraph} \: g \: (G + (v, w)) \\ & | \: \mathrm{EdgeCreatesCycle} \Rightarrow \left[ w \longrightarrow_{G}^{\ast} v \right] ) \end{array} \right\} \end{array}
```

 $\begin{aligned} &\text{IsGraph} \ g \ G \ := \ \exists L \ M \ I. \ \text{IsRawGraph} \ g \ G \ L \ M \ I \ast [\text{Inv} \ G \ L \ I] \ast \$\phi(G, L) \\ &\text{Inv} \ G \ L \ I \ := \ (\forall x. \ x \ \longrightarrow \ ^+_G x) \ \land \ \dots \end{aligned}$

Toplevel specification (correctness and complexity)

```
 \forall g \ G \ v \ w. \ \text{let} \ m := |\text{edges } G| \text{ in} \\ \text{let} \ n := |\text{vertices } G| \text{ in} \\ v, w \in \text{vertices } G \land (v, w) \notin \text{edges } G \implies \\ \left\{ \begin{array}{l} \text{IsGraph } g \ G \ast \$(\psi \ (m+1,n) - \psi \ (m,n)) \\ (\text{add\_edge\_or\_detect\_cycle } g \ v \ w) \\ \left\{ \begin{array}{l} \lambda \text{ res. match res with} \\ | \ \text{EdgeAdded} \Rightarrow \text{IsGraph } g \ (G + (v,w)) \\ | \ \text{EdgeCreatesCycle} \Rightarrow [w \longrightarrow_G^* v]) \end{array} \right\}
```

 $\begin{aligned} &\text{IsGraph} \ g \ G \ := \ \exists L \ M \ I. \ \text{IsRawGraph} \ g \ G \ L \ M \ I \ast [\text{Inv} \ G \ L \ I] \ast \$\phi(G, L) \\ &\text{Inv} \ G \ L \ I \ := \ (\forall x. \ x \ \longrightarrow \ _G^+ x) \ \land \ \dots \end{aligned}$

 $\psi \in O(m \cdot \min(m^{1/2}, n^{2/3}) + n)$

Using the specification

```
let g = create_graph () in
add_vertex g 1; \$(\psi(0,1) - \psi(0,0))
...
add_vertex g n; \$(\psi(0,n) - \psi(0,n-1))
add_edge_or_detect_cycle g 1 2; \$(\psi(1,n) - \psi(0,n))
add_edge_or_detect_cycle g 2 3; \$(\psi(2,n) - \psi(1,n))
...
add_edge_or_detect_cycle g (m-1) m; \$(\psi(m,n) - \psi(m-1,n))
```

```
Total cost: \psi(m,n) - \psi(0,0)
```

Using the specification

```
let q = create qraph () in
                                          (\psi(0,1) - \psi(0,0))
add vertex g 1;
. . .
                                          (\psi(0,n) - \psi(0,n-1))
add vertex g n;
                                          (\psi(1,n) - \psi(0,n))
add edge or detect cycle g 1 2;
                                          (\psi(2,n) - \psi(1,n))
add edge or detect cycle g 2 3;
. . .
add_edge_or_detect_cycle g (m-1) m; \$(\psi(m,n) - \psi(m-1,n))
```

Total cost: $\psi(m,n) - \psi(0,0) \in O(m \cdot \min(m^{1/2}, n^{2/3}) + n)$

Bender et al.'s algorithm: Key Ideas

Idea 1: Levels

Each vertex v is given a level L(v). Invariant: $v \longrightarrow_G w \implies L(v) \leq L(w)$

Can accelerate the search, but needs to be maintained:

Idea 1: Levels

Each vertex v is given a level L(v). Invariant: $v \longrightarrow_G w \implies L(v) \leq L(w)$

Can accelerate the search, but needs to be maintained:

Idea 1 (bis): Tradeoff on the number of levels

- Too many levels: the expensive case triggers often, outweights the cheap case
- Too few levels: similar to the naive algorithm, no gain from the cheap case

Idea 2: Two-way Search

The backward search is:

- restricted at the same level
- *bounded* by a predetermined number of edges *F*

The forward search restores the invariant on levels as it goes.

Not explained at this point: when do new levels get created?

Let's see: Demo!

Main complexity invariant: levels are "replete"

For every node x at level k + 1 there is at least k co-accessible edges at level k.

Corollary: there is at least k edges at level k.

Complexity Analysis

 $\begin{array}{l} \forall g \: G \: v \: w. \\ \text{let} \: m, n := |\text{edges} \: G| \:, |\text{vertices} \: G| \: \text{in} \\ v, w \in \text{vertices} \: G \: \land \: (v, w) \notin \text{edges} \: G \Longrightarrow \\ \left\{ \begin{array}{l} \text{IsGraph} \: g \: G \ast \$(\psi \: (m+1,n) - \psi \: (m,n)) \end{array} \right\} \\ (\text{add_edge_or_detect_cycle} \: g \: v \: w) \\ \left\{ \begin{array}{l} \lambda \text{ res. match res with} \\ | \: \text{EdgeAdded} \Rightarrow \text{IsGraph} \: g \: (G + (v, w)) \\ | \: \text{EdgeCreatesCycle} \Rightarrow \: [w \longrightarrow_{G}^{\ast} v]) \end{array} \right\} \end{array}$

```
\forall q G L M I v w.
let m, n := |\text{edges } G|, |vertices G| in
v, w \in vertices G \land (v, w) \notin edges G \implies
    IsRawGraph g \ G \ L \ M \ I * [Inv \ G \ L \ I] * $\phi(G, L) 
* (\psi \ (m+1, n) - \psi \ (m, n))
(add edge or detect cycle g v w)
      \lambda res. match res with
        | \operatorname{EdgeAdded} \Rightarrow \operatorname{let} G' := G + (v, w) \text{ in } \exists L' M' I'.
           EdgeAdded \Rightarrow let G' := G + (v, w) in \exists L' M' I'.
IsRawGraph g G' L' M' I' * [Inv G' L' I'] * <math>\phi(G', L')
           \operatorname{EdgeCreatesCycle} \Rightarrow [w \longrightarrow_{C}^{*} v])
```

A sketch of the complexity analysis

- Backward traversal (bounded by F): O(F)
- Forward traversal: O(1) amortized (!) using ϕ
- Adding the new edge: O(1)
- Potential for the new edge: $O(\psi(m + 1, n) \psi(m, n))$

Good choice for F

- \implies Main complexity invariant (levels are "replete")
- $\implies F \in O(\psi(m+1,n) \psi(m,n)) \land \psi \in O(m \cdot \min(m^{1/2},n^{2/3}) + n)$

In Bender et al., *F* depends on the *final* graph; we give an alternative definition that works on the *current* graph.

A sketch of the complexity analysis

- Backward traversal (bounded by F): O(F)
- Forward traversal: O(1) amortized (!) using ϕ
- Adding the new edge: O(1)
- Potential for the new edge: $O(\psi(m + 1, n) \psi(m, n))$

Good choice for F

- \implies Main complexity invariant (levels are "replete")
- $\implies F \in O(\psi(m+1,n) \psi(m,n)) \land \psi \in O(m \cdot \min(m^{1/2},n^{2/3}) + n)$

In Bender et al., *F* depends on the *final* graph; we give an alternative definition that works on the *current* graph.

A taste of time credits: forward traversal analysis

The graph potential ϕ

The potential ϕ stores Time Credits for edges depending on their current level (lower level = more credits).

Credits are received at each edge insertion, and spent when *raising* nodes.

 $\phi(G, L) := \sum_{(u,v)\in G} (\text{highest_level } G \ L - L(u))$

Forward traversal economics

- Traversing an edge (u, v) costs 1
- Raising v releases card({w | (v, w) ∈ G}) from φ (this pays for exploring all the successors of v)
- The *stack* holds credits for the next edges to explore

The traversal stack contains credits representing the "working capital" of the traversal.

 $\begin{array}{ll} \operatorname{out}(v) \, := \, \operatorname{card}(\{w \, | \, (v,w) \in G\}) \\ |stack| \, := \, \sum_{v \in stack} \operatorname{out}(v) \end{array}$

let rec visit_forward g new_level visited stack =
 match stack with

```
| [] -> ()
```

```
| u :: stack ->
```

```
let stack = List.fold_left (fun stack v ->
```

```
...
set_level g v new_level;
v :: stack
) stack (get_outgoing g u) in
```

```
visit_forward g new_level visited stack
```


Proof methodology, in practice

In practice, credit counts involve multiplicative constants:

$$\begin{aligned} \phi(G,L) &:= \quad \frac{C}{V} \cdot \sum_{(u,v) \in G} (\text{highest_level } G \ L - L(u)) \\ |stack| &:= \quad \frac{C'}{V} \cdot \sum_{v \in stack} \operatorname{out}(v) \end{aligned}$$

$$\exists C''. \ 0 \leq C'' \land \forall g \ nl \ vs \ stack \ \dots$$

$$\{\$C'' \ast \$ | stack | \ast \dots \} \text{ visit_forward } g \ nl \ vs \ stack \ \{\lambda(). \ \dots \}$$

 $\mathit{C},\mathit{C'}$ and $\mathit{C''}$ depend on specifics of the implementation.

We develop tactics to make the proofs independent from their exact expression, and avoid writing it explicitly by hand.

Integer Time Credits

Time Credits and redundant proof obligations

Originally, Time Credits are counted in $\mathbb{N}\colon$

$$\begin{array}{rcl} \$0 &\equiv true \\ \$(m+n) &\equiv \$m * \$n \\ \$n & \Vdash true \end{array}$$

Corollary:

$$\$n \equiv \$(n-m) \, \ast \, \$m \qquad \text{ if } m \leqslant n$$

Time Credits and redundant proof obligations (2)

Starting with n then paying for operations with costs m_1 , m_2 , ..., m_k produces redundant proof obligations:

 $\begin{array}{ll} \$n & & \\ & & \operatorname{pay} \$m_1 & & \rightsquigarrow n - m_1 \ge 0 \\ \$(n - m_1) & & \\ & & \operatorname{pay} \$m_2 & & \rightsquigarrow n - m_1 - m_2 \ge 0 \\ & \cdots & & \\ \$(n - m_1 - m_2 - \dots - m_{k-1}) & & \\ & & & \operatorname{pay} \$m_k & & \rightsquigarrow n - m_1 - m_2 - \dots - m_k \ge 0 \end{array}$

Time Credits in $\ensuremath{\mathbb{Z}}$

We work in a variant of SL with credits counted in \mathbb{Z} :

$$\begin{array}{rcl} \$0 &\equiv true \\ \$(m+n) &\equiv \$m * \$n \\ \$n * [n \ge 0] & \Vdash true \end{array}$$

Corollaries (for any $n, m \in \mathbb{Z}!$):

$$\begin{array}{rcl} \$0 &\equiv& \$n \ast \$(-n) \\ \$n &\equiv& \$(n-m) \ast \$m \end{array}$$

Negative credits are not affine!

Time Credits in ${\ensuremath{\mathbb Z}}$ (2)

Paying for a sequence of operations produces a single final proof obligation:

Pre/Post-condition duality

With integer time credits, these two specifications are equivalent (using the frame rule):

{n f n { λ (). emp} {emp} f n { λ (). \$(-n)}

Bonus: returning negative credits allow the complexity to depend on the result of the function! Example:

 $\{emp\}$ collatz_stopping_time $n \ \{\lambda i. \ (-i)\}$

Interaction with loops

From the proof of the forward traversal:

// $\phi(G, L) * [Inv G L I]$ List.fold_left ... (fun ... -> // $\exists L'. \ \phi(G, L')$ [extract credits from $\phi(G, L')$]) // $\phi(G, L'') * [Inv G L'' I'']$

(Difficult) Lemma: $\forall G L I$. Inv $G L I \implies \phi(G, L) \ge 0$

Time Credits in $\ensuremath{\mathbb{N}}$ would require a nontrivial strengthening of the loop invariant.

Interruptible Iteration

```
let rec interruptible_iter f l =
  match l with
  | [] -> true
  | x :: l' -> f x && interruptible_iter f l'
```

Interruptible Iteration

```
let rec interruptible_iter f l =
  match l with
  | [] -> true
  | x :: l' -> f x && interruptible_iter f l'
```

Integer time credits allow for an intuitive specification:

$$\forall I \ l \ f.$$

$$(\forall x \ l'. \ \text{prefix} \ l' \ l \implies \{I \ l'\} \ f \ x \ \{\lambda b. \ I \ (x :: l')\}) \implies$$

$$\{I \ [] * \$|l|\}$$

$$\text{interruptible_iter} \ f \ l$$

$$\{\lambda b. \ \text{if} \ b \ \text{then} \ I \ l \ \text{else} \ \exists l' \ l''. \ I \ l' * \$|l''| * [l = l' ++ l'']\}$$

Conclusion

- Understanding the algorithm (!)
- (Re)inventing the complexity invariants
- Designing robust and generic invariants for (interruptible) graph traversals
- Designing Coq tactics for interactive reasoning using integer time credits

Thank you!

Code, proofs, paper and demo available at: https://gitlab.inria.fr/agueneau/incremental-cycles

Idea 3: Policy for raising nodes to a new level

w and its descendants need to be raised to L(v) or higher. Bender et al.'s policy:

- If the backward search from v was not interrupted: raised to L(v)
- Otherwise, raised to L(v) + 1 (possibly creating a new level).

Recall: backward search is bounded to visit at most *F* edges. The choice of *F* is crucial to get the correct complexity.

In Bender et al.:

 $F = \min(m^{1/2}, n^{2/3})$, for m and n of the final graph (hard to know in practice).

In our modified algorithm:

F = L(v), in the *current* graph (this makes the algorithm truly online). Is RawGraph g G L M I: a SL predicate that asserts the ownership of a data structure at address g, with logical model G, L, M, I.

- G: a mathematical graph
- L: levels, as a map vertex $\rightarrow \mathbb{Z}$
- M:marks, as a map vertex \rightarrow mark
- *I*: horizontal incoming edges, a map vertex \rightarrow set vertex

Functional Invariant

Inv G L I: a pure proposition that relates G with L and I.

 $\mathrm{Inv}\;G\;L\;I\;:=\;$

 $\left\{\begin{array}{lll} acyclicity: & \forall x. \quad x \longrightarrow {}^+_G x\\ positive \ levels: & \forall x. \quad L(x) \geqslant 1\\ pseudo-topological \ levels: \forall x \ y. \ x \longrightarrow_G y \implies L(x) \leqslant L(y)\\ incoming \ edges: & \forall x \ y. \ x \in I(y) \iff x \longrightarrow_G y \ \land L(x) = L(y)\\ replete \ levels: & \forall x. \ enough_edges_below \ G \ L \ x \end{array}\right.$

enough_edges_below $G \mathrel{L} x$:= |coacc_edges_at_level $G \mathrel{L} k \mathrel{x} | \ge k$ where k = L(x) - 1

 $\begin{array}{l} \operatorname{coacc_edges_at_level} G \ L \ k \ x \ := \\ \left\{ \left(y,z\right) \ \middle| \ y \longrightarrow_{G} z \longrightarrow_{G}^{*} x \ \land \ L(y) = L(z) = k \right\} \end{array}$

Potential and Advertised Cost (formally)

Potential of an edge (u, v): max_level m n - L(u).

$$\begin{split} \phi(G,L) & := C \cdot (\operatorname{net} G L) \\ \operatorname{net} G L & := \operatorname{received} m n - \operatorname{spent} G L \\ \end{split} \\ \begin{array}{l} \text{spent} G L & := \sum_{(u,v) \in \operatorname{edges} G} L(u) \\ \operatorname{received} m n & := m \cdot (\operatorname{max_level} m n + 1) \\ \operatorname{max_level} m n & := \min(\lceil (2m)^{1/2} \rceil, \lfloor (\frac{3}{2}n)^{2/3} \rfloor) + 1 \\ \end{array} \\ \end{array}$$

Specification excerpt for the backward traversal:

$$\exists a \ b. \ 0 \leq a \ \land \ \forall F \ g \ v \ w \ \dots$$
$$\{\$(a \cdot F + b) \ast \dots\} \text{ backward_search } F \ g \ v \ w \ \{\lambda res. \ \dots\}$$

Future Work

Well-behaved credits inference with integer credits

Credit synthesis requires solving heap entailments of the form:

```
(?c) * spotential \Vdash cost_1 * \ldots * cost_n * ?F
```

(functions returning credits makes solving these even more tricky)

Integer credits would allow turning these into:

(?c) *spotential * $(-cost_1) * ... * (-cost_n) \Vdash ?F$ Is this useful?...

Automation for processing synthesized cost expressions

Credit synthesis produces in the end goals of the form:

$$\exists f. \dots f \dots \\ \exists a b. \dots a \dots b \dots$$

Where "..." usually:

- are complex expressions unwieldy to handle manually;
- contain symbolic expressions (abstract cost functions or constants).