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In this talk

The story of a formally verified algorithm...

• initially motivated by Coq’s implementation...
(universe constraints)• ...which ended up integrated into the Dune build system.
(dependencies between build actions)

We verify at the same time correctness and complexity...

... and our implementation turns out to be 7x faster!
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Context



Program verification framework: Coq and (extended) CFML
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Separation Logic with Time Credits

• Each function call (or loop iteration) consumes $1• $n asserts the ownership of n time credits• $pn`mq “ $n ˚ $m• Credits are not duplicable: $1 ùñ{ $1 ˚ $1• Enables amortized analysis

Type of assertions, in the model:

• Standard Separation Logic: Heap Ñ Prop• Separation Logic with Time Credits: Heap ˆ N Ñ Prop
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Example specifications using time credits

Complexity specification using explicit time credits:

@ g G. t IsGraph g G ˚ $p3 |edges G| ` 5q u dfspgq t IsGraph g G u

Asymptotic complexity specification:

Dpf : Z Ñ Zq.

nonnegative f ^ monotonic f ^ f P OZpλm.mq

^ @ g G. t IsGraph g G ˚ $ fp|edges G|q u dfspgq t IsGraph g G u
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Incremental cycle detection

The problem: checking for acyclicity of a dynamically
constructed graph
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Naive algorithm: traverse the graph at each step.

Each arc insertion costsOpmq.

Coq and Dune implement a state-of-the-art algorithm by
Bender, Fineman, Gilbert and Tarjan (2016).

It runs inOpm ¨ minpm1{2, n2{3qq form arc insertions.

In particular, in a sparse graph,Op
?
mq amortized for each

insertion.
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Contributions

• A simple yet crucial improvement to make Bender et al.’s
algorithm truly online;• An OCaml implementation as a standalone library;• A machine-checked proof of both its functional
correctness and amortized asymptotic complexity;• Time credits that are counted in Z (instead of N): this
leads to significantly fewer proof obligations (!).
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In the rest of this talk

Overview of the library: interface and specification

Bender et al.’s algorithm: Key Ideas

Complexity Analysis

A taste of time credits: forward traversal analysis

Integer Time Credits
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Overview of the library: interface and
specification



Implementation

„150 lines of (terse) hand written OCaml code
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Minimal OCaml interface

module Make (G : Raw_graph) : sig
val add_vertex :

G.graph -> G.vertex -> unit

type add_edge_result =

| EdgeAdded
| EdgeCreatesCycle

val add_edge_or_detect_cycle :

G.graph -> G.vertex -> G.vertex ->

add_edge_result

end
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Toplevel specification (functional correctness only)

@g Gv w. let m :“ |edges G| in

let n :“ |vertices G| in

v, w P vertices G ^ pv, wq R edges G ùñ
!

IsGraph g G

˚ $pψ pm` 1, nq ´ ψ pm,nqq

)

padd_edge_or_detect_cycle g v wq
$

’

&

’

%

λ res. match res with

| EdgeAdded ñ IsGraph g pG` pv, wqq

| EdgeCreatesCycle ñ rw ÝÑ˚
G vsq

,

/

.

/

-

@g G. IsGraph g G , IsGraph g G ˚ r@x. x ÝÑ `
G xs

ψ P Opm ¨ minpm1{2, n2{3q ` nq
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Using the specification

let g = create_graph () in

add_vertex g 1; $pψp0, 1q ´ ψp0, 0qq

. . .

add_vertex g n; $pψp0, nq ´ ψp0, n´ 1qq

add_edge_or_detect_cycle g 1 2; $pψp1, nq ´ ψp0, nqq

add_edge_or_detect_cycle g 2 3; $pψp2, nq ´ ψp1, nqq

. . .

add_edge_or_detect_cycle g (m-1) m; $pψpm,nq ´ ψpm´ 1, nqq

Total cost: ψpm,nq ´ ψp0, 0q

P Opm ¨ minpm1{2, n2{3q ` nq
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Bender et al.’s algorithm: Key Ideas



Idea 1: Levels

Each vertex v is given a levelLpvq.

Invariant: v ÝÑG w ùñ Lpvq ď Lpwq

Can accelerate the search, but needs to be maintained:
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Idea 1 (bis): Tradeoff on the number of levels

(cheap) (expensive)

• Too many levels: the expensive case triggers often,
outweights the cheap case• Too few levels: similar to the naive algorithm, no gain
from the cheap case
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Idea 2: Two-way Search

The backward search is:

• restricted at the same level• bounded by a predetermined number of edges F

The forward search restores the invariant on levels as it goes.
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Not explained at this point: when do new levels get created?

Let’s see: Demo!
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Main complexity invariant: levels are “replete”

For every node x at level k ` 1 there is at least k co-accessible
edges at level k.

Corollary: there is at least k edges at level k. 17/32



Complexity Analysis



@g Gv w.

let m,n :“ |edges G| , |vertices G| in

v, w P vertices G ^ pv, wq R edges G ùñ
!

IsGraph g G ˚ $pψ pm` 1, nq ´ ψ pm,nqq

)

padd_edge_or_detect_cycle g v wq
$

’

&

’

%

λ res. match res with

| EdgeAdded ñ IsGraph g pG` pv, wqq

| EdgeCreatesCycle ñ rw ÝÑ˚
G vsq

,

/

.

/

-
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@g GLM I v w.

let m,n :“ |edges G| , |vertices G| in

v, w P vertices G ^ pv, wq R edges G ùñ
#

IsRawGraph g GLM I ˚ rInv G L Is ˚ $ϕpG,Lq

˚ $pψ pm` 1, nq ´ ψ pm,nqq

+

padd_edge_or_detect_cycle g v wq
$

’

’

’

&

’

’

’

%

λ res. match res with

| EdgeAdded ñ let G1 :“ G` pv, wq in DDL1 M 1 I 1.

IsRawGraph g G1 L1 M 1 I 1 ˚ rInv G1 L1 I 1s ˚ $ϕpG1, L1q

| EdgeCreatesCycle ñ rw ÝÑ˚
G vsq

,

/

/

/

.

/

/

/

-
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A sketch of the complexity analysis

• Backward traversal (bounded by F ): OpF q• Forward traversal: Op1q amortized (!) using ϕ• Adding the new edge: Op1q• Potential for the new edge: Opψpm` 1, nq ´ ψpm,nqq

Good choice for F
ùñ Main complexity invariant (levels are “replete”)
ùñ F P Opψpm`1, nq´ψpm,nqq ^ψ P Opm¨minpm1{2, n2{3q`nq

In Bender et al., F depends on the final graph; we give an
alternative definition that works on the current graph.
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A taste of time credits: forward traversal
analysis



The graph potential ϕ

The potential ϕ stores Time Credits for edges depending on
their current level (lower level = more credits).

Credits are received at each edge insertion, and spent when
raising nodes.

ϕpG,Lq :“
ÿ

pu,vqPG

phighest_level G L´ Lpuqq
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Forward traversal economics

• Traversing an edge pu, vq costs 1• Raising v releases cardptw | pv, wq P Guq from ϕ

(this pays for exploring all the successors of v)• The stack holds credits for the next edges to explore

The traversal stack contains credits representing the
“working capital” of the traversal.
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outpvq :“ cardptw | pv, wq P Guq

|stack| :“
ř

vPstack outpvq

let rec visit_forward g new_level visited stack =

match stack with

| [] -> ()

| u :: stack ->

let stack = List.fold_left (fun stack v ->

...

set_level g v new_level;

v :: stack

) stack (get_outgoing g u) in

visit_forward g new_level visited stack
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...

set_level g v new_level;
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$|stack|$ϕ(G,L)

$(out(u) +|stack|)

$|stack|

$(out(v) + |stack|)
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Proof methodology, in practice

In practice, credit counts involve multiplicative constants:

ϕpG,Lq :“ C ¨
ř

pu,vqPGphighest_level G L´ Lpuqq

|stack| :“ C 1 ¨
ř

vPstack outpvq

DC2. 0 ď C2 ^ @g nl vs stack . . . .

t$C2 ˚ $|stack| ˚ . . .u visit_forward g nl vs stack tλpq. . . .u

C,C 1 andC2 depend on specifics of the implementation.

We develop tactics to make the proofs independent from
their exact expression, and avoid writing it explicitly by hand.
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Integer Time Credits



Time Credits and redundant proof obligations

Originally, Time Credits are counted in N:

$0 ” true

$pm` nq ” $m ˚ $n

$n , true

Corollary:

$n ” $pn´mq ˚ $m if m ď n
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Time Credits and redundant proof obligations (2)

Starting with $n then paying for operations with costsm1,
m2, …,mk produces redundant proof obligations:

$n

pay $m1 ⇝ n´m1 ě 0

$pn´m1q

pay $m2 ⇝ n´m1 ´m2 ě 0

. . .

$pn´m1 ´m2 ´ . . .´mk´1q

pay $mk ⇝ n´m1 ´m2 ´ . . .´mk ě 0
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Time Credits in Z

We work in a variant of SL with credits counted in Z:

$0 ” true

$pm` nq ” $m ˚ $n

$n ˚ rn ě 0s , true

Corollaries (for any n,m P Z!):

$0 ” $n ˚ $p´nq

$n ” $pn´mq ˚ $m

Negative credits are not affine!
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Time Credits in Z (2)

Paying for a sequence of operations produces a single final
proof obligation:

$n

pay $m1 ⇝ no proof obligation

$pn´m1q

pay $m2 ⇝ no proof obligation

. . .

$pn´m1 ´ . . .´mk´1q

pay $mk ⇝ no proof obligation

discard $pn´m1 ´ . . .´mkq ⇝ n´m1 ´ . . .´mk ě 0
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Pre/Post-condition duality

With integer time credits, these two specifications are
equivalent (using the frame rule):

t$nu f n tλpq. empu

tempu f n tλpq. $p´nqu

Bonus: returning negative credits allow the complexity to
depend on the result of the function! Example:

tempu collatz_stopping_time n tλi. $p´iqu
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Interaction with loops

From the proof of the forward traversal:
{{ $ϕpG,Lq ˚ rInv G L Is

List.fold_left ... (fun ... ->

{{ DDL1. $ϕpG,L1q

rextract credits from $ϕpG,L1qs

. . .

)

{{ $ϕpG,L2q ˚ rInv G L2 I2s

(Difficult) Lemma: @GLI. Inv G L I ùñ ϕpG,Lq ě 0

Time Credits in N would require a nontrivial strengthening of
the loop invariant.
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Interruptible Iteration

let rec interruptible_iter f l =

match l with
| [] -> true

| x :: l’ -> f x && interruptible_iter f l’

Integer time credits allow for an intuitive specification:

@I l f.

p@x l1. prefix l1 l ùñ tI l1u f x tλb. I px :: l1quq ùñ

tI rs ˚ $|l|u

interruptible_iter f l

tλb. if b then I l else DDl1 l2. I l1 ˚ $|l2| ˚ rl “ l1 `̀ l2su
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Conclusion



Challenges

• Understanding the algorithm (!)

• (Re)inventing the complexity invariants

• Designing robust and generic invariants for
(interruptible) graph traversals

• Designing Coq tactics for interactive reasoning using
integer time credits

31/32



Thank you!

Code, proofs, paper and demo available at:

https://gitlab.inria.fr/agueneau/incremental-cycles
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Idea 3: Policy for raising nodes to a new level

w and its descendants need to be raised toLpvq or higher.

Bender et al.’s policy:

• If the backward search from v was not interrupted:
raised toLpvq• Otherwise, raised toLpvq ` 1 (possibly creating a new
level).



Idea 4: choice of F

Recall: backward search is bounded to visit at most F edges.

The choice of F is crucial to get the correct complexity.

In Bender et al.:

F “ minpm1{2, n2{3q, form and n of the final graph
(hard to know in practice).

In our modified algorithm:

F “ Lpvq, in the current graph
(this makes the algorithm truly online).



Low-level Data Structure

IsRawGraph g GLM I: a SL predicate that asserts the
ownership of a data structure at address g, with logical
modelG,L,M , I.

• G: a mathematical graph• L: levels, as a map vertex Ñ Z• M : marks, as a map vertex Ñ mark• I: horizontal incoming edges, a map vertex Ñ set vertex



Functional Invariant

Inv G L I: a pure proposition that relatesGwithL and I.

Inv G L I :“
$

’

’

’

’

’

&

’

’

’

’

’

%

acyclicity : @x. x ÝÑ `
G x

positive levels : @x. Lpxq ě 1

pseudo t́opological levels : @x y. x ÝÑG y ùñ Lpxq ď Lpyq

incoming edges : @x y. x P Ipyq ðñ x ÝÑG y ^ Lpxq “ Lpyq

replete levels : @x. enough_edges_below G L x

enough_edges_below G L x :“

|coacc_edges_at_level G L k x| ě k where k “ Lpxq ´ 1

coacc_edges_at_level G L k x :“

t py, zq | y ÝÑG z ÝÑ˚
G x ^ Lpyq “ Lpzq “ k u



Potential and Advertised Cost (formally)

Potential of an edge pu, vq: max_level m n´ Lpuq.

ϕpG,Lq :“ C ¨ pnet G Lq

net G L :“ received m n´ spent G L

,

.

-

where m “ |edges G|

and n “ |vertices G|

spent G L :“
ř

pu,vq P edges G

Lpuq

received m n :“ m ¨ pmax_level m n` 1q

max_level m n :“ minprp2mq1{2s, tp 3
2nq2{3uq ` 1

ψpm,nq :“ C 1 ¨ preceived m n`m` nq



Proof methodology

Specification excerpt for the backward traversal:

Da b. 0 ď a ^ @F g v w . . . .

t$pa ¨ F ` bq ˚ . . .u backward_search F g v w tλres. . . .u



Future Work



Well-behaved credits inference with integer credits

Credit synthesis requires solving heap entailments of the form:

$p?cq ˚ $potential , $cost1 ˚ . . . ˚ $costn ˚ ?F

(functions returning credits makes solving these even more tricky)

Integer credits would allow turning these into:

$p?cq ˚ $potential ˚ $p´cost1q ˚ . . . ˚ $p´costnq , ?F

Is this useful?...



Automation for processing synthesized cost expressions

Credit synthesis produces in the end goals of the form:

Df. . . . f . . .

Da b. . . . a . . . b . . .

Where “. . .” usually:

• are complex expressions unwieldy to handle manually;• contain symbolic expressions (abstract cost functions or
constants).
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