
Efficient Structural Differencing

… and the lessons learned from it

Victor Cacciari Miraldo Wouter Swierstra

Utrecht University

1

Intro

2

Contributions

• Efficient Algorithm for structured diffing (and merging)

• Think of UNIX diff, over AST’s.

• Wrote it in Haskell, generically

• Tested against dataset from GitHub

• mined Lua repositories

3

Contributions

• Efficient Algorithm for structured diffing (and merging)

• Think of UNIX diff, over AST’s.

• Wrote it in Haskell, generically

• Tested against dataset from GitHub

• mined Lua repositories

3

Contributions

• Efficient Algorithm for structured diffing (and merging)

• Think of UNIX diff, over AST’s.

• Wrote it in Haskell, generically

• Tested against dataset from GitHub

• mined Lua repositories

3

Contributions

• Efficient Algorithm for structured diffing (and merging)

• Think of UNIX diff, over AST’s.

• Wrote it in Haskell, generically

• Tested against dataset from GitHub

• mined Lua repositories

3

Line-by-Line Differencing

4

The UNIX diff

Compares files line-by-line, outputs an edit script.

type checker: "You fool!

What you request makes no sense,

rethink your bad code."

type checker: "You fool!

What you request makes no sense,

it's some ugly code."

UNIX diff outputs:

@@ -3,1 , +3,1 @@

- rethink your bad code."

+ it's some ugly code."

5

The UNIX diff

Compares files line-by-line, outputs an edit script.

type checker: "You fool!

What you request makes no sense,

rethink your bad code."

type checker: "You fool!

What you request makes no sense,

it's some ugly code."

UNIX diff outputs:

@@ -3,1 , +3,1 @@

- rethink your bad code."

+ it's some ugly code."

5

The UNIX diff: In a Nutshell

Encodes changes as an edit script

data ES = Ins String | Del | Cpy

type Patch = [ES]

Example,

@@ -3,1 , +3,1 @@

- rethink your bad code."

+ it's some ugly code."

[Cpy , Cpy , Del , Ins "it's some ..."]

Computes changes by enumeration.

diff :: [String] -> [String] -> Patch

diff x y = head $ sortBy mostCopies $ enumerate_all x y

6

The UNIX diff: In a Nutshell

Encodes changes as an edit script

data ES = Ins String | Del | Cpy

type Patch = [ES]

Example,

@@ -3,1 , +3,1 @@

- rethink your bad code."

+ it's some ugly code."

[Cpy , Cpy , Del , Ins "it's some ..."]

Computes changes by enumeration.

diff :: [String] -> [String] -> Patch

diff x y = head $ sortBy mostCopies $ enumerate_all x y

6

The UNIX diff: In a Nutshell

Encodes changes as an edit script

data ES = Ins String | Del | Cpy

type Patch = [ES]

Example,

@@ -3,1 , +3,1 @@

- rethink your bad code."

+ it's some ugly code."

[Cpy , Cpy , Del , Ins "it's some ..."]

Computes changes by enumeration.

diff :: [String] -> [String] -> Patch

diff x y = head $ sortBy mostCopies $ enumerate_all x y

6

The UNIX diff: Abstractly

Abstractly, diff computes differences between two objects:

diff :: a -> a -> Patch a

as a transformation that can be applied,

apply :: Patch a -> a -> Maybe a

such that,

apply (diff x y) x == Just y

UNIX diff works for [String].

7

The UNIX diff: Abstractly

Abstractly, diff computes differences between two objects:

diff :: a -> a -> Patch a

as a transformation that can be applied,

apply :: Patch a -> a -> Maybe a

such that,

apply (diff x y) x == Just y

UNIX diff works for [String].

7

The UNIX diff: Abstractly

Abstractly, diff computes differences between two objects:

diff :: a -> a -> Patch a

as a transformation that can be applied,

apply :: Patch a -> a -> Maybe a

such that,

apply (diff x y) x == Just y

UNIX diff works for [String].

7

The UNIX diff: Abstractly

Abstractly, diff computes differences between two objects:

diff :: a -> a -> Patch a

as a transformation that can be applied,

apply :: Patch a -> a -> Maybe a

such that,

apply (diff x y) x == Just y

UNIX diff works for [String].

7

The UNIX diff: Abstractly

Abstractly, diff computes differences between two objects:

diff :: a -> a -> Patch a

as a transformation that can be applied,

apply :: Patch a -> a -> Maybe a

such that,

apply (diff x y) x == Just y

UNIX diff works for [String].

7

The UNIX diff Generalized: Edit Scripts

Modify edit scripts

data ES = Ins Tree | Del | Cpy

Bin

T U

T7→ src tree preorder: [Bin , T , U]

dst tree preorder: [T]

diff [Bin , T , U] [T] = [Del , Cpy , Del]

Not ideal

8

The UNIX diff Generalized: Edit Scripts

Modify edit scripts

data ES = Ins Tree | Del | Cpy

Bin

T U

T7→ src tree preorder: [Bin , T , U]

dst tree preorder: [T]

diff [Bin , T , U] [T] = [Del , Cpy , Del]

Not ideal

8

The UNIX diff Generalized: Edit Scripts

Modify edit scripts

data ES = Ins Tree | Del | Cpy

Bin

T U

T7→

src tree preorder: [Bin , T , U]

dst tree preorder: [T]

diff [Bin , T , U] [T] = [Del , Cpy , Del]

Not ideal

8

The UNIX diff Generalized: Edit Scripts

Modify edit scripts

data ES = Ins Tree | Del | Cpy

Bin

T U

T7→ src tree preorder: [Bin , T , U]

dst tree preorder: [T]

diff [Bin , T , U] [T] = [Del , Cpy , Del]

Not ideal

8

The UNIX diff Generalized: Edit Scripts

Modify edit scripts

data ES = Ins Tree | Del | Cpy

Bin

T U

T7→ src tree preorder: [Bin , T , U]

dst tree preorder: [T]

diff [Bin , T , U] [T] = [Del , Cpy , Del]

Not ideal

8

The UNIX diff Generalized: Edit Scripts

Modify edit scripts

data ES = Ins Tree | Del | Cpy

Bin

T U

T7→ src tree preorder: [Bin , T , U]

dst tree preorder: [T]

diff [Bin , T , U] [T] = [Del , Cpy , Del]

Not ideal

8

Edit Scripts: The Problem

Which subtree to copy?

Bin

T U

Bin

U T

7→

Copy U : [Cpy , Del , Cpy , Ins T] Copy T : [Cpy , Ins U , Cpy , Del]

• Choice is arbitrary!

• Counting Copies:

• List case: corresponds to longest common subseq.

• Tree case: Not so simple, most copies can be bad.

Bin

A A

Bin

A A

7→

9

Edit Scripts: The Problem

Which subtree to copy?

Bin

T U

Bin

U T

7→

Copy U : [Cpy , Del , Cpy , Ins T]

Copy T : [Cpy , Ins U , Cpy , Del]

• Choice is arbitrary!

• Counting Copies:

• List case: corresponds to longest common subseq.

• Tree case: Not so simple, most copies can be bad.

Bin

A A

Bin

A A

7→

9

Edit Scripts: The Problem

Which subtree to copy?

Bin

T U

Bin

U T

7→

Copy U : [Cpy , Del , Cpy , Ins T] Copy T : [Cpy , Ins U , Cpy , Del]

• Choice is arbitrary!

• Counting Copies:

• List case: corresponds to longest common subseq.

• Tree case: Not so simple, most copies can be bad.

Bin

A A

Bin

A A

7→

9

Edit Scripts: The Problem

Which subtree to copy?

Bin

T U

Bin

U T

7→

Copy U : [Cpy , Del , Cpy , Ins T] Copy T : [Cpy , Ins U , Cpy , Del]

• Choice is arbitrary!

• Counting Copies:

• List case: corresponds to longest common subseq.

• Tree case: Not so simple, most copies can be bad.

Bin

A A

Bin

A A

7→

9

Edit Scripts: The Problem

Which subtree to copy?

Bin

T U

Bin

U T

7→

Copy U : [Cpy , Del , Cpy , Ins T] Copy T : [Cpy , Ins U , Cpy , Del]

• Choice is arbitrary!

• Counting Copies:

• List case: corresponds to longest common subseq.

• Tree case: Not so simple, most copies can be bad.

Bin

A A

Bin

A A

7→

9

Edit Scripts: The Problem

Which subtree to copy?

Bin

T U

Bin

U T

7→

Copy U : [Cpy , Del , Cpy , Ins T] Copy T : [Cpy , Ins U , Cpy , Del]

• Choice is arbitrary!

• Counting Copies:

• List case: corresponds to longest common subseq.

• Tree case: Not so simple, most copies can be bad.

Bin

A A

Bin

A A

7→

9

Edit Scripts: The Problem

Which subtree to copy?

Bin

T U

Bin

U T

7→

Copy U : [Cpy , Del , Cpy , Ins T] Copy T : [Cpy , Ins U , Cpy , Del]

• Choice is arbitrary!

• Counting Copies:

• List case: corresponds to longest common subseq.

• Tree case: Not so simple, most copies can be bad.

Bin

A A

Bin

A A

7→

9

Edit Scripts: The Problem

Choice is necessary: only Ins, Del and Cpy

Drawbacks:

1. Cannot explore all copy oportunities: must chose one per subtree

2. Choice points makes algorithms slow

Generalizations can break specifications!

Solution: Detach from edit-scripts

Bin

0 1

Bin

1 0

7→

10

Edit Scripts: The Problem

Choice is necessary: only Ins, Del and Cpy

Drawbacks:

1. Cannot explore all copy oportunities: must chose one per subtree

2. Choice points makes algorithms slow

Generalizations can break specifications!

Solution: Detach from edit-scripts

Bin

0 1

Bin

1 0

7→

10

Edit Scripts: The Problem

Choice is necessary: only Ins, Del and Cpy

Drawbacks:

1. Cannot explore all copy oportunities: must chose one per subtree

2. Choice points makes algorithms slow

Generalizations can break specifications!

Solution: Detach from edit-scripts

Bin

0 1

Bin

1 0

7→

10

Edit Scripts: The Problem

Choice is necessary: only Ins, Del and Cpy

Drawbacks:

1. Cannot explore all copy oportunities: must chose one per subtree

2. Choice points makes algorithms slow

Generalizations can break specifications!

Solution: Detach from edit-scripts

Bin

0 1

Bin

1 0

7→

10

Edit Scripts: The Problem

Choice is necessary: only Ins, Del and Cpy

Drawbacks:

1. Cannot explore all copy oportunities: must chose one per subtree

2. Choice points makes algorithms slow

Generalizations can break specifications!

Solution: Detach from edit-scripts

Bin

0 1

Bin

1 0

7→

10

New Structure for Changes

11

Changes

diff (Bin (Bin t u) t) (Tri t u x) =

BinC

BinC

0 1

0

TriC

0 1 x

7→

• Arbitrary duplications, contractions, permutations

• Can explore all copy opportunities

• Faster to compute

• Our diff x y runs in O(size x + size y)

12

Changes

diff (Bin (Bin t u) t) (Tri t u x) =

BinC

BinC

0 1

0

TriC

0 1 x

7→

• Arbitrary duplications, contractions, permutations

• Can explore all copy opportunities

• Faster to compute

• Our diff x y runs in O(size x + size y)

12

Changes

diff (Bin (Bin t u) t) (Tri t u x) =

BinC

BinC

0 1

0

TriC

0 1 x

7→

• Arbitrary duplications, contractions, permutations

• Can explore all copy opportunities

• Faster to compute

• Our diff x y runs in O(size x + size y)

12

Changes

Two contexts • deletion: matching

• insertion: instantiation

data Tree = Leaf

| Bin Tree Tree

| Tri Tree Tree Tree

Context are datatypes annotated with holes.

data TreeC h = LeafC

| BinC TreeC TreeC

| TriC TreeC TreeC TreeC

| Hole h

type Change = (TreeC MetaVar , TreeC MetaVar)

13

Changes

Two contexts • deletion: matching

• insertion: instantiation

data Tree = Leaf

| Bin Tree Tree

| Tri Tree Tree Tree

Context are datatypes annotated with holes.

data TreeC h = LeafC

| BinC TreeC TreeC

| TriC TreeC TreeC TreeC

| Hole h

type Change = (TreeC MetaVar , TreeC MetaVar)

13

Changes

Two contexts • deletion: matching

• insertion: instantiation

data Tree = Leaf

| Bin Tree Tree

| Tri Tree Tree Tree

Context are datatypes annotated with holes.

data TreeC h = LeafC

| BinC TreeC TreeC

| TriC TreeC TreeC TreeC

| Hole h

type Change = (TreeC MetaVar , TreeC MetaVar)

13

Applying Changes

BinC

0 BinC

1 t

BinC

0 1

7→

Call it c, application function sketch:

apply c = \x -> case x of

Bin a (Bin b c) -> if c == t then Just (Bin a b) else Nothing

_ -> Nothing

14

Applying Changes

BinC

0 BinC

1 t

BinC

0 1

7→

Call it c,

application function sketch:

apply c = \x -> case x of

Bin a (Bin b c) -> if c == t then Just (Bin a b) else Nothing

_ -> Nothing

14

Applying Changes

BinC

0 BinC

1 t

BinC

0 1

7→

Call it c, application function sketch:

apply c = \x -> case x of

Bin a (Bin b c) -> if c == t then Just (Bin a b) else Nothing

_ -> Nothing

14

Relation to Edit Scripts

Change represents families of ES:

Change ≈ Tree → Maybe [ES]

Bin

A 0

Tri

A 0 0

7→
=

Bin

A B

7→

7→

Just [

[Del, Ins Tri, Cpy, Ins B, Cpy],

[Del, Ins Tri, Cpy, Cpy, Ins B],

...]

15

Relation to Edit Scripts

Change represents families of ES:

Change ≈ Tree → Maybe [ES]

Bin

A 0

Tri

A 0 0

7→
=

Bin

A B

7→

7→

Just [

[Del, Ins Tri, Cpy, Ins B, Cpy],

[Del, Ins Tri, Cpy, Cpy, Ins B],

...]

15

Relation to Edit Scripts

Change represents families of ES:

Change ≈ Tree → Maybe [ES]

Bin

A 0

Tri

A 0 0

7→

=
Bin

A B

7→

7→

Just [

[Del, Ins Tri, Cpy, Ins B, Cpy],

[Del, Ins Tri, Cpy, Cpy, Ins B],

...]

15

Relation to Edit Scripts

Change represents families of ES:

Change ≈ Tree → Maybe [ES]

Bin

A 0

Tri

A 0 0

7→
=

Bin

A B

7→

7→

Just [

[Del, Ins Tri, Cpy, Ins B, Cpy],

[Del, Ins Tri, Cpy, Cpy, Ins B],

...]

15

Relation to Edit Scripts

Change represents families of ES:

Change ≈ Tree → Maybe [ES]

Bin

A 0

Tri

A 0 0

7→
=

Bin

A x

_

7→

7→

Just [

[Del, Ins Tri, Cpy, Ins x, Cpy],

[Del, Ins Tri, Cpy, Cpy, Ins x],

...]

Nothing

16

Computing Changes

Can copy as much as possible

Computation of diff x y divided:

Hard Identify the common subtrees in x and y

Easy Extract the context around the common subtrees

Consequence of definition of Change

Postpone the hard part for now

• Oracle: wcs :: Tree -> Tree -> (Tree -> Maybe MetaVar)

• stands for which common subtree

17

Computing Changes

Can copy as much as possible

Computation of diff x y divided:

Hard Identify the common subtrees in x and y

Easy Extract the context around the common subtrees

Consequence of definition of Change

Postpone the hard part for now

• Oracle: wcs :: Tree -> Tree -> (Tree -> Maybe MetaVar)

• stands for which common subtree

17

Computing Changes

Can copy as much as possible

Computation of diff x y divided:

Hard Identify the common subtrees in x and y

Easy Extract the context around the common subtrees

Consequence of definition of Change

Postpone the hard part for now

• Oracle: wcs :: Tree -> Tree -> (Tree -> Maybe MetaVar)

• stands for which common subtree

17

Computing Changes

Can copy as much as possible

Computation of diff x y divided:

Hard Identify the common subtrees in x and y

Easy Extract the context around the common subtrees

Consequence of definition of Change

Postpone the hard part for now

• Oracle: wcs :: Tree -> Tree -> (Tree -> Maybe MetaVar)

• stands for which common subtree

17

Computing Changes

Can copy as much as possible

Computation of diff x y divided:

Hard Identify the common subtrees in x and y

Easy Extract the context around the common subtrees

Consequence of definition of Change

Postpone the hard part for now

• Oracle: wcs :: Tree -> Tree -> (Tree -> Maybe MetaVar)

• stands for which common subtree

17

Computing Changes

Can copy as much as possible

Computation of diff x y divided:

Hard Identify the common subtrees in x and y

Easy Extract the context around the common subtrees

Consequence of definition of Change

Postpone the hard part for now

• Oracle: wcs :: Tree -> Tree -> (Tree -> Maybe MetaVar)

• stands for which common subtree

17

Computing Changes: The Easy Part

Extracting the context:

extract :: (Tree -> Maybe MetaVar) -> Tree -> TreeC

extract f x = maybe (extract' x) Hole $ f x

where

extract' (Bin a b) = BinC (extract f a) (extract f b)

...

Finally, with wcs s d as an oracle

diff :: Tree -> Tree -> Change MetaVar

diff s d = (extract (wcs s d) s , extract (wcs s d) d)

if wcs s d is efficient, then so is diff s d

18

Computing Changes: The Easy Part

Extracting the context:

extract :: (Tree -> Maybe MetaVar) -> Tree -> TreeC

extract f x = maybe (extract' x) Hole $ f x

where

extract' (Bin a b) = BinC (extract f a) (extract f b)

...

Finally, with wcs s d as an oracle

diff :: Tree -> Tree -> Change MetaVar

diff s d = (extract (wcs s d) s , extract (wcs s d) d)

if wcs s d is efficient, then so is diff s d

18

Computing Changes: The Easy Part

Extracting the context:

extract :: (Tree -> Maybe MetaVar) -> Tree -> TreeC

extract f x = maybe (extract' x) Hole $ f x

where

extract' (Bin a b) = BinC (extract f a) (extract f b)

...

Finally, with wcs s d as an oracle

diff :: Tree -> Tree -> Change MetaVar

diff s d = (extract (wcs s d) s , extract (wcs s d) d)

if wcs s d is efficient, then so is diff s d

18

Computing Changes: Defining the Oracle

Defining an inefficient wcs s d is easy:

wcs :: Tree -> Tree -> Tree -> Maybe MetaVar

wcs s d x = elemIndex x (subtrees s `intersect` subtrees d)

Efficient wcs:

• annotates Tree with cryptographic hashes, akin to a Merkle Tree

• store those in a Trie (amortized const. time search)

• uses topmost hash to compare trees for equality.

Runs in amortized O(1)

19

Computing Changes: Defining the Oracle

Defining an inefficient wcs s d is easy:

wcs :: Tree -> Tree -> Tree -> Maybe MetaVar

wcs s d x = elemIndex x (subtrees s `intersect` subtrees d)

Efficient wcs:

• annotates Tree with cryptographic hashes, akin to a Merkle Tree

• store those in a Trie (amortized const. time search)

• uses topmost hash to compare trees for equality.

Runs in amortized O(1)

19

Computing Changes: Defining the Oracle

Defining an inefficient wcs s d is easy:

wcs :: Tree -> Tree -> Tree -> Maybe MetaVar

wcs s d x = elemIndex x (subtrees s `intersect` subtrees d)

Efficient wcs:

• annotates Tree with cryptographic hashes, akin to a Merkle Tree

• store those in a Trie (amortized const. time search)

• uses topmost hash to compare trees for equality.

Runs in amortized O(1)

19

Computing Changes: Defining the Oracle

Defining an inefficient wcs s d is easy:

wcs :: Tree -> Tree -> Tree -> Maybe MetaVar

wcs s d x = elemIndex x (subtrees s `intersect` subtrees d)

Efficient wcs:

• annotates Tree with cryptographic hashes, akin to a Merkle Tree

• store those in a Trie (amortized const. time search)

• uses topmost hash to compare trees for equality.

Runs in amortized O(1)

19

Experiments

20

Computing Changes: But how fast?

Diffed files from ≈1200 commits from top Lua repos

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

0 2500 5000 7500 10000

tim
e

(s
)

n + m

0

1

2

3

4

5

6

7

0×100 1×105 2×105 3×105 4×105

tim
e

(s
)

n + m

21

Computing Changes: But how fast?

Diffed files from ≈1200 commits from top Lua repos

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

0 2500 5000 7500 10000

tim
e

(s
)

n + m

0

1

2

3

4

5

6

7

0×100 1×105 2×105 3×105 4×105

tim
e

(s
)

n + m

21

Computing Changes: But how fast?

Diffed files from ≈1200 commits from top Lua repos

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

0 2500 5000 7500 10000

tim
e

(s
)

n + m

0

1

2

3

4

5

6

7

0×100 1×105 2×105 3×105 4×105

tim
e

(s
)

n + m

21

Merging Changes

Merging is a constant motivation for structured diffing

We defined a (very!) simple merging algorithm:

merge :: Change -> Change -> Either Conflict Change

merge p q = if p `disjoint` q then p else Conflict

o
p

����
��
��
�� q

��>
>>

>>
>>

a

merge q p
��>

>>
>>

>>
> b

merge p q
����
��
��
��

c

11% of mined merge commits could bemerged

22

Merging Changes

Merging is a constant motivation for structured diffing

We defined a (very!) simple merging algorithm:

merge :: Change -> Change -> Either Conflict Change

merge p q = if p `disjoint` q then p else Conflict

o
p

����
��
��
�� q

��>
>>

>>
>>

a

merge q p
��>

>>
>>

>>
> b

merge p q
����
��
��
��

c

11% of mined merge commits could bemerged

22

Merging Changes

Merging is a constant motivation for structured diffing

We defined a (very!) simple merging algorithm:

merge :: Change -> Change -> Either Conflict Change

merge p q = if p `disjoint` q then p else Conflict

o
p

����
��
��
�� q

��>
>>

>>
>>

a

merge q p
��>

>>
>>

>>
> b

merge p q
����
��
��
��

c

11% of mined merge commits could bemerged

22

Merging Changes

Merging is a constant motivation for structured diffing

We defined a (very!) simple merging algorithm:

merge :: Change -> Change -> Either Conflict Change

merge p q = if p `disjoint` q then p else Conflict

o
p

����
��
��
�� q

��>
>>

>>
>>

a

merge q p
��>

>>
>>

>>
> b

merge p q
����
��
��
��

c

11% of mined merge commits could bemerged

22

Summary

New representation enables:

• Clear division of tasks (wcs oracle + context extraction)

• Express more changes than edit scripts

• Faster algorithm altogether

We have learned:

1. Generalizations can break specs

2. More expressiveness does not mean higher complexity

3. Thinking extensionally is very helpful

23

Summary

New representation enables:

• Clear division of tasks (wcs oracle + context extraction)

• Express more changes than edit scripts

• Faster algorithm altogether

We have learned:

1. Generalizations can break specs

2. More expressiveness does not mean higher complexity

3. Thinking extensionally is very helpful

23

Summary

New representation enables:

• Clear division of tasks (wcs oracle + context extraction)

• Express more changes than edit scripts

• Faster algorithm altogether

We have learned:

1. Generalizations can break specs

2. More expressiveness does not mean higher complexity

3. Thinking extensionally is very helpful

23

Summary

New representation enables:

• Clear division of tasks (wcs oracle + context extraction)

• Express more changes than edit scripts

• Faster algorithm altogether

We have learned:

1. Generalizations can break specs

2. More expressiveness does not mean higher complexity

3. Thinking extensionally is very helpful

23

Summary

New representation enables:

• Clear division of tasks (wcs oracle + context extraction)

• Express more changes than edit scripts

• Faster algorithm altogether

We have learned:

1. Generalizations can break specs

2. More expressiveness does not mean higher complexity

3. Thinking extensionally is very helpful

23

Summary

New representation enables:

• Clear division of tasks (wcs oracle + context extraction)

• Express more changes than edit scripts

• Faster algorithm altogether

We have learned:

1. Generalizations can break specs

2. More expressiveness does not mean higher complexity

3. Thinking extensionally is very helpful

23

In Greater Depth

24

In Depth: The Efficient Oracle

Recall,

wcs :: Tree -> Tree -> Tree -> Maybe MetaVar

wcs s d x = elemIndex x (subtrees s `intersect` subtrees d)

Two inefficiency points:

• Comparing trees for equality

• Searching for a subtree in all enumerated subtrees

25

In Depth: The Efficient Oracle

Recall,

wcs :: Tree -> Tree -> Tree -> Maybe MetaVar

wcs s d x = elemIndex x (subtrees s `intersect` subtrees d)

Two inefficiency points:

• Comparing trees for equality

• Searching for a subtree in all enumerated subtrees

25

In Depth: The Efficient Oracle

Recall,

wcs :: Tree -> Tree -> Tree -> Maybe MetaVar

wcs s d x = elemIndex x (subtrees s `intersect` subtrees d)

Two inefficiency points:

• Comparing trees for equality

• Searching for a subtree in all enumerated subtrees

25

In Depth: The Efficient Oracle

Recall,

wcs :: Tree -> Tree -> Tree -> Maybe MetaVar

wcs s d x = elemIndex x (subtrees s `intersect` subtrees d)

Two inefficiency points:

• Comparing trees for equality

• Searching for a subtree in all enumerated subtrees

25

In Depth: The Efficient Oracle (Inefficiency #1)

Node3

Leaf Node2

Leaf Leaf

Leaf Leaf LeafNode2
++++

Leaf Leaf

Node3
...

decorate

26

In Depth: The Efficient Oracle (Merkle Trees)

Annotate Trees with Digests:

decorate :: Tree -> TreeH

data TreeH = LeafH

| BinH (TreeH, Digest) (TreeH, Digest)

| TriH (TreeH, Digest) (TreeH, Digest) (TreeH, Digest)

root :: TreeH -> Digest

root LeafH = hash "leaf"

root (BinH (_ , dx) (_ , dy)) = hash ("node2" ++ dx ++ dy)

...

Compare roots:

instance Eq TreeH where

t == u = root t == root u

27

In Depth: The Efficient Oracle (Merkle Trees)

Annotate Trees with Digests:

decorate :: Tree -> TreeH

data TreeH = LeafH

| BinH (TreeH, Digest) (TreeH, Digest)

| TriH (TreeH, Digest) (TreeH, Digest) (TreeH, Digest)

root :: TreeH -> Digest

root LeafH = hash "leaf"

root (BinH (_ , dx) (_ , dy)) = hash ("node2" ++ dx ++ dy)

...

Compare roots:

instance Eq TreeH where

t == u = root t == root u

27

In Depth: The Efficient Oracle (Merkle Trees)

Annotate Trees with Digests:

decorate :: Tree -> TreeH

data TreeH = LeafH

| BinH (TreeH, Digest) (TreeH, Digest)

| TriH (TreeH, Digest) (TreeH, Digest) (TreeH, Digest)

root :: TreeH -> Digest

root LeafH = hash "leaf"

root (BinH (_ , dx) (_ , dy)) = hash ("node2" ++ dx ++ dy)

...

Compare roots:

instance Eq TreeH where

t == u = root t == root u

27

In Depth: The Efficient Oracle (Merkle Trees)

Annotate Trees with Digests:

decorate :: Tree -> TreeH

data TreeH = LeafH

| BinH (TreeH, Digest) (TreeH, Digest)

| TriH (TreeH, Digest) (TreeH, Digest) (TreeH, Digest)

root :: TreeH -> Digest

root LeafH = hash "leaf"

root (BinH (_ , dx) (_ , dy)) = hash ("node2" ++ dx ++ dy)

...

Compare roots:

instance Eq TreeH where

t == u = root t == root u

27

In Depth: The Efficient Oracle (Inefficiency #2)

Good structure to lookup hashes: Tries!

wcs :: TreeH -> TreeH -> (TreeH -> Maybe MetaVar)

wcs s d = lookup (tr empty s `intersect` tr empty d) . root

tr :: Trie -> TreeH -> Trie

tr db t = insert (root t)

$ case t of

LeafH -> db

BinH (x , _) (y , _) -> tr (tr db x) y

...

28

In Depth: The Efficient Oracle (Inefficiency #2)

Good structure to lookup hashes: Tries!

wcs :: TreeH -> TreeH -> (TreeH -> Maybe MetaVar)

wcs s d = lookup (tr empty s `intersect` tr empty d) . root

tr :: Trie -> TreeH -> Trie

tr db t = insert (root t)

$ case t of

LeafH -> db

BinH (x , _) (y , _) -> tr (tr db x) y

...

28

In Depth: The Efficient Oracle (Inefficiency #2)

Good structure to lookup hashes: Tries!

wcs :: TreeH -> TreeH -> (TreeH -> Maybe MetaVar)

wcs s d = lookup (tr empty s `intersect` tr empty d) . root

tr :: Trie -> TreeH -> Trie

tr db t = insert (root t)

$ case t of

LeafH -> db

BinH (x , _) (y , _) -> tr (tr db x) y

...

28

In Depth: The Efficient Oracle (Inefficiency #2)

Good structure to lookup hashes: Tries!

wcs :: TreeH -> TreeH -> (TreeH -> Maybe MetaVar)

wcs s d = lookup (tr empty s `intersect` tr empty d) . root

tr :: Trie -> TreeH -> Trie

tr db t = insert (root t)

$ case t of

LeafH -> db

BinH (x , _) (y , _) -> tr (tr db x) y

...

28

In Depth: The Efficient Oracle: The diff function

One could write:

diff :: Tree -> Tree -> Change

diff s d = let s' = decorate s; d' = decorate d

in (extract (wcs s' d') s' , extract (wcs s' d') d')

Subtle issue: a = Bin (Bin t k) u; b = Bin (Bin t k) t

Wrong

Bin

0 u

Bin

0 1

7→

Correct:

Bin

0 u

Bin

0 t

7→

Why not?
Bin

Bin

0 1

u

Bin

Bin

0 1

0

7→

29

In Depth: The Efficient Oracle: The diff function

One could write:

diff :: Tree -> Tree -> Change

diff s d = let s' = decorate s; d' = decorate d

in (extract (wcs s' d') s' , extract (wcs s' d') d')

Subtle issue: a = Bin (Bin t k) u; b = Bin (Bin t k) t

Wrong

Bin

0 u

Bin

0 1

7→

Correct:

Bin

0 u

Bin

0 t

7→

Why not?
Bin

Bin

0 1

u

Bin

Bin

0 1

0

7→

29

In Depth: The Efficient Oracle: The diff function

One could write:

diff :: Tree -> Tree -> Change

diff s d = let s' = decorate s; d' = decorate d

in (extract (wcs s' d') s' , extract (wcs s' d') d')

Subtle issue: a = Bin (Bin t k) u; b = Bin (Bin t k) t

Wrong

Bin

0 u

Bin

0 1

7→

Correct:

Bin

0 u

Bin

0 t

7→

Why not?
Bin

Bin

0 1

u

Bin

Bin

0 1

0

7→

29

In Depth: The Efficient Oracle: The diff function

One could write:

diff :: Tree -> Tree -> Change

diff s d = let s' = decorate s; d' = decorate d

in (extract (wcs s' d') s' , extract (wcs s' d') d')

Subtle issue: a = Bin (Bin t k) u; b = Bin (Bin t k) t

Wrong

Bin

0 u

Bin

0 1

7→

Correct:

Bin

0 u

Bin

0 t

7→

Why not?
Bin

Bin

0 1

u

Bin

Bin

0 1

0

7→

29

In Depth: The Efficient Oracle: The diff function

One could write:

diff :: Tree -> Tree -> Change

diff s d = let s' = decorate s; d' = decorate d

in (extract (wcs s' d') s' , extract (wcs s' d') d')

Subtle issue: a = Bin (Bin t k) u; b = Bin (Bin t k) t

Wrong

Bin

0 u

Bin

0 1

7→

Correct:

Bin

0 u

Bin

0 t

7→

Why not?
Bin

Bin

0 1

u

Bin

Bin

0 1

0

7→

29

In Depth: The “best” change

• The “best” change is the one with the largest domain.

• least specific

Let c and d be changes that transform x into y.

c ⊆ d ⇔ ∃σ . dom c ⊑σ dom d

x
x ⊑σ x

t = σ x
x ⊑σ t

x1 ⊑σ y1 x2 ⊑σ y2 · · ·
C x⃗ ⊑σ C y⃗

This makes a preorder (reflexive; transitive)

30

In Depth: The “best” change

• The “best” change is the one with the largest domain.

• least specific

Let c and d be changes that transform x into y.

c ⊆ d ⇔ ∃σ . dom c ⊑σ dom d

x
x ⊑σ x

t = σ x
x ⊑σ t

x1 ⊑σ y1 x2 ⊑σ y2 · · ·
C x⃗ ⊑σ C y⃗

This makes a preorder (reflexive; transitive)

30

In Depth: The “best” change

• The “best” change is the one with the largest domain.

• least specific

Let c and d be changes that transform x into y.

c ⊆ d ⇔ ∃σ . dom c ⊑σ dom d

x
x ⊑σ x

t = σ x
x ⊑σ t

x1 ⊑σ y1 x2 ⊑σ y2 · · ·
C x⃗ ⊑σ C y⃗

This makes a preorder (reflexive; transitive)

30

In Depth: The “best” change

• The “best” change is the one with the largest domain.

• least specific

Let c and d be changes that transform x into y.

c ⊆ d ⇔ ∃σ . dom c ⊑σ dom d

x
x ⊑σ x

t = σ x
x ⊑σ t

x1 ⊑σ y1 x2 ⊑σ y2 · · ·
C x⃗ ⊑σ C y⃗

This makes a preorder (reflexive; transitive)

30

In Depth: The “best” change

• The “best” change is the one with the largest domain.

• least specific

Let c and d be changes that transform x into y.

c ⊆ d ⇔ ∃σ . dom c ⊑σ dom d

x
x ⊑σ x

t = σ x
x ⊑σ t

x1 ⊑σ y1 x2 ⊑σ y2 · · ·
C x⃗ ⊑σ C y⃗

This makes a preorder (reflexive; transitive)

30

In Depth: The “best” change

• The “best” change is the one with the largest domain.

• least specific

Let c and d be changes that transform x into y.

c ⊆ d ⇔ ∃σ . dom c ⊑σ dom d

x
x ⊑σ x

t = σ x
x ⊑σ t

x1 ⊑σ y1 x2 ⊑σ y2 · · ·
C x⃗ ⊑σ C y⃗

This makes a preorder (reflexive; transitive)

30

In Depth: Merging

Hard to reason with Change

• Redundant Info

• Metavariable Scope

un-distribute the redundant constructors.

type Patch = TreeC Change

BinC

BinC

0 1

t

BinC

BinC

1 0

t

7→ BinC

BinC

0 1

BinC

1 0

t7→

31

In Depth: Merging

Hard to reason with Change

• Redundant Info

• Metavariable Scope

un-distribute the redundant constructors.

type Patch = TreeC Change

BinC

BinC

0 1

t

BinC

BinC

1 0

t

7→ BinC

BinC

0 1

BinC

1 0

t7→

31

In Depth: Merging

Hard to reason with Change

• Redundant Info

• Metavariable Scope

un-distribute the redundant constructors.

type Patch = TreeC Change

BinC

BinC

0 1

t

BinC

BinC

1 0

t

7→ BinC

BinC

0 1

BinC

1 0

t7→

31

In Depth: Merging

Hard to reason with Change

• Redundant Info

• Metavariable Scope

un-distribute the redundant constructors.

type Patch = TreeC Change

BinC

BinC

0 1

t

BinC

BinC

1 0

t

7→

BinC

BinC

0 1

BinC

1 0

t7→

31

In Depth: Merging

Hard to reason with Change

• Redundant Info

• Metavariable Scope

un-distribute the redundant constructors.

type Patch = TreeC Change

BinC

BinC

0 1

t

BinC

BinC

1 0

t

7→ BinC

BinC

0 1

BinC

1 0

t7→

31

In Depth: Merging and Anti-unification

Extract the greatest common prefix from two TreeC:

gcp :: TreeC a -> TreeC b -> TreeC (TreeC a , TreeC b)

gcp LeafC LeafC = LeafC

gcp (BinC x y) (BinC u v) = BinC (gcp x u) (gcp y v)

gcp (TriC x y z) (TriC u v w) = TriC (gcp x u) (gcp y v) (gcp z w)

gcp x w = Hole (x , y)

Problematic. Can break scoping.

BinC

t 0

BinC

0 0

7→ gcp
BinC

t 0 0 07→ 7→

Define closure :: Patch -> Patch to fix scopes.

32

In Depth: Merging and Anti-unification

Extract the greatest common prefix from two TreeC:

gcp :: TreeC a -> TreeC b -> TreeC (TreeC a , TreeC b)

gcp LeafC LeafC = LeafC

gcp (BinC x y) (BinC u v) = BinC (gcp x u) (gcp y v)

gcp (TriC x y z) (TriC u v w) = TriC (gcp x u) (gcp y v) (gcp z w)

gcp x w = Hole (x , y)

Problematic. Can break scoping.

BinC

t 0

BinC

0 0

7→ gcp
BinC

t 0 0 07→ 7→

Define closure :: Patch -> Patch to fix scopes.

32

In Depth: Merging and Anti-unification

Extract the greatest common prefix from two TreeC:

gcp :: TreeC a -> TreeC b -> TreeC (TreeC a , TreeC b)

gcp LeafC LeafC = LeafC

gcp (BinC x y) (BinC u v) = BinC (gcp x u) (gcp y v)

gcp (TriC x y z) (TriC u v w) = TriC (gcp x u) (gcp y v) (gcp z w)

gcp x w = Hole (x , y)

Problematic. Can break scoping.

BinC

t 0

BinC

0 0

7→ gcp
BinC

t 0 0 07→ 7→

Define closure :: Patch -> Patch to fix scopes.

32

In Depth: Merging and Anti-unification

Extract the greatest common prefix from two TreeC:

gcp :: TreeC a -> TreeC b -> TreeC (TreeC a , TreeC b)

gcp LeafC LeafC = LeafC

gcp (BinC x y) (BinC u v) = BinC (gcp x u) (gcp y v)

gcp (TriC x y z) (TriC u v w) = TriC (gcp x u) (gcp y v) (gcp z w)

gcp x w = Hole (x , y)

Problematic. Can break scoping.

BinC

t 0

BinC

0 0

7→

gcp
BinC

t 0 0 07→ 7→

Define closure :: Patch -> Patch to fix scopes.

32

In Depth: Merging and Anti-unification

Extract the greatest common prefix from two TreeC:

gcp :: TreeC a -> TreeC b -> TreeC (TreeC a , TreeC b)

gcp LeafC LeafC = LeafC

gcp (BinC x y) (BinC u v) = BinC (gcp x u) (gcp y v)

gcp (TriC x y z) (TriC u v w) = TriC (gcp x u) (gcp y v) (gcp z w)

gcp x w = Hole (x , y)

Problematic. Can break scoping.

BinC

t 0

BinC

0 0

7→ gcp
BinC

t 0 0 07→ 7→

Define closure :: Patch -> Patch to fix scopes.

32

In Depth: Merging and Anti-unification

Extract the greatest common prefix from two TreeC:

gcp :: TreeC a -> TreeC b -> TreeC (TreeC a , TreeC b)

gcp LeafC LeafC = LeafC

gcp (BinC x y) (BinC u v) = BinC (gcp x u) (gcp y v)

gcp (TriC x y z) (TriC u v w) = TriC (gcp x u) (gcp y v) (gcp z w)

gcp x w = Hole (x , y)

Problematic. Can break scoping.

BinC

t 0

BinC

0 0

7→ gcp
BinC

t 0 0 07→ 7→

Define closure :: Patch -> Patch to fix scopes.

32

Discussion

33

Discussion

Performance of structural diffing:

Fixed

Now what?

• Metatheory

• Sharing Control

• Merge Strategies

• Domain-specific conflict resolution

• Bigger univeses

34

Discussion

Performance of structural diffing: Fixed

Now what?

• Metatheory

• Sharing Control

• Merge Strategies

• Domain-specific conflict resolution

• Bigger univeses

34

Discussion

Performance of structural diffing: Fixed

Now what?

• Metatheory

• Sharing Control

• Merge Strategies

• Domain-specific conflict resolution

• Bigger univeses

34

Discussion

Performance of structural diffing: Fixed

Now what?

• Metatheory

• Sharing Control

• Merge Strategies

• Domain-specific conflict resolution

• Bigger univeses

34

Discussion

Performance of structural diffing: Fixed

Now what?

• Metatheory

• Sharing Control

• Merge Strategies

• Domain-specific conflict resolution

• Bigger univeses

34

Discussion

Performance of structural diffing: Fixed

Now what?

• Metatheory

• Sharing Control

• Merge Strategies

• Domain-specific conflict resolution

• Bigger univeses

34

Discussion

Performance of structural diffing: Fixed

Now what?

• Metatheory

• Sharing Control

• Merge Strategies

• Domain-specific conflict resolution

• Bigger univeses

34

Discussion

Performance of structural diffing: Fixed

Now what?

• Metatheory

• Sharing Control

• Merge Strategies

• Domain-specific conflict resolution

• Bigger univeses

34

Efficient Structural Differencing

… and the lessons learned from it

Victor Cacciari Miraldo Wouter Swierstra

Utrecht University

35

	Intro
	Line-by-Line Differencing
	New Structure for Changes
	Experiments
	In Greater Depth
	Discussion

