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Cryptographic web applications

Applications have to be deployed on a number of different platforms and architectures:
desktop (Windows, Mac, Linux), website and smartphone application (Android and
iOS). A popular solution is to write a Web application and bundle it using frameworks
like Electron.

Because of this, having good security means in practice ensuring good security using
the technologies from the Web Stack.

How is security managed on the Web? Standard network protection is ensured by TLS
and the HTTPS protocol. But what about higher-level security guarantees?

Examples of cryptographic applications beyond TLS

• Storing encrypted data on servers (Lastpass).
• End-to-end encryption between devices (Whatsapp, Signal).
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Multiple Web execution engines

There is a need for cryptography beyond TLS, and at the application level. There are
several ways to implement it.

Web cryptographic solutions

• The WebCrypto API (fast, reliable, but only certain primitives)
• Custom Javascript (slow, not secure [BDLM14])
• asm.js (C compiled to Javascript)
• WebAssembly (new !)
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Challenge : bringing verification to Web applications

Here is how Signal implements its cryptographic protocol:

How do we get verified software inside this architecture?
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Choosing the toolchain

Specification language

Implementation language

Intermediate language

Web-compatible language

Machine code

Offline

Online

F* ? Gallina ?

Low* ? Gallina ?

C ? OCaml ? Nothing ?

Javascript ? WebAssembly ?
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Online toolchain: what is WebAssembly?

WebAssembly [Haa+17] is

• a low-level intermediate representation (or a macro-assembler);
• with structured control flow;
• written as an AST;
• architecture-independent;
• typechecked before execution;
• formally specified;
• memory-management-agnostic (it gives only a flat memory buffer);
• modular with a simple import-export semantic;
• interoperable with Javascript.
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A WebAssembly function

(module
(export "fib" (func $fib))
(func $fib (param $n i32) (result i32)
(if (i32.lt_s

(get_local $n)
(i32.const 2))

(return (i32.const 1))
)
(return (i32.add

(call $fib (i32.sub (get_local $n) (i32.const 2)))
(call $fib (i32.sub (get_local $n) (i32.const 1)))

))
)

)
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Building a toolchain on top of WebAssembly

WebAssembly is better suited to cryptographic software than Javascript (machine
arithmetic, manual memory management). It is the second best choice after using the
WebCrypto API.

Our verified toolchain should target it. Prosecco and Microsoft Research have already
developped a toolchain from F* (Low*) to C to verify cryptographic primitives
[Pro+17].

Problem
• Should we translate C to WebAssembly?
• Or directly from Low* to WebAssembly?
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The case for a domain-specific compiler to WebAssembly

Going via Clight

+ Reusing existing toolchains (Low* to Clight and Emscripten)
− No verified translation to WebAssembly (unless it’s added to CompCert...)
− Formalization has to deal with C99 scopes and other C details
− Loss of information (e.g. immutable local variables)

Custom intermediate language C♭

− Have to fork the existing Low* toolchain
+ C♭ is expression-based, no undefined behaviour
+ Simpler to formalize
+ Custom, stack-based memory management
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From F* to WebAssembly

F*

λow*

C♭

WebAssembly

Machine code

Offline

Online

[Pro+17]

To be presented

To be presented

Browser engine, [Haa+17]
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F* specification, Low* implementation

F*
let prime = pow2 255 - 19
type elem = e:int{e >= 0 /\ e < prime}
let add e1 e2 = (e1 + e2) % prime
let mul e1 e2 = (e1 * e2) % prime
let zero: elem = 0
let one: elem = 1

Low*
type felem = p:uint64 p { length p = 5 }
let fadd (output a b: felem): Stack unit

(requires (fun h0 -> live pointers h0 [output; a; b] /\
fadd_pre h0.[a] h0.[b])

(ensures (fun h0 h1 -> modifies only output h0 h1 /\
h1.[output] == add h0.[a] h0.[b]))
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λow* and C♭ syntax

τ ∶∶= int32 ∣ int64 ∣ unit ∣ {
ÐÐ⇀
f = τ} ∣ buf τ ∣ α

v ∶∶= x ∣ g ∣ k ∶ τ ∣ () ∣ {
ÐÐ⇀
f = v}

e ∶∶= readbuf e1 e2 ∣ writebuf e1 e2 e3 ∣ newbuf n (e1 ∶ τ)
∣ subbuf e1 e2 ∣ e.f ∣ v ∣ if e1 then e2 else e3

∣ d Ð⇀e ∣ let x ∶ τ = e1 in e2 ∣ {
ÐÐ⇀
f = e} ∣ e ⊕ n ∣ for i ∈ [0; n) e

P ∶∶= ⋅ ∣ let d = λÐÐ⇀y ∶ τ . e1 ∶ τ1,P ∣ let g ∶ τ = e,P

τ̂ ∶∶= int32 ∣ int64 ∣ unit ∣ pointer
v̂ ∶∶= ` ∣ g ∣ k ∶ τ̂ ∣ ()

ê ∶∶= readn ê ∣ writen ê1 ê2 ∣ new ê ∣ ê1 ⊕ ê2 ∣ ` ∶= ê ∣ v̂ ∣ ê1; ê2

∣ if ê1 then ê2 else ê3 ∶ τ̂ ∣ for ` ∈ [0; n) ê ∣ ê1 × ê2 ∣ ê1 + ê2 ∣ d
Ð⇀
ê

P̂ ∶∶= ⋅ ∣ let d = λ
ÐÐ⇀
` ∶ τ̂ .

ÐÐ⇀
` ∶ τ̂ , ê ∶ τ̂ , P̂ ∣ let g ∶ τ̂ = ê, P̂
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λow* to C♭: desugaring structure values

let d = λy ∶ τ1. e ∶ τ2 ↝ let d = λy ∶ buf τ1. [readbuf y 0/y]e ∶ τ2
let d = λy ∶ τ1. e ∶ τ2 ↝ let d = λy ∶ τ1. λr ∶ buf τ2. let x ∶ τ2 = e in writebuf r 0 x ∶ unit
f (e ∶ τ) ↝ let x ∶ buf τ = newbuf 1 e in f x
(f e) ∶ τ ↝ let x ∶ buf τ = newbuf 1 (_ ∶ τ) in f e x ; readbuf x 0

let x ∶ τ = e1 in e2 ↝ let x ∶ buf τ = take_addr e1 in [readbuf x 0/x]e2

{ÐÐ⇀f = e} (not under newbuf) ↝ let x ∶ buf {ÐÐ⇀f = τ} = newbuf 1 {ÐÐ⇀f = e} in readbuf x 0

take_addr(readbuf e n) ↝ subbuf e n
take_addr((e ∶ ÐÐ⇀f ∶ τ).f ) ↝ take_addr(e) ⊕ offset(ÐÐ⇀f ∶ τ , f )
take_addr(let x ∶ τ = e1 in e2) ↝ let x ∶ τ = e1 in take_addr e2
take_addr(if e1 then e2 else e3) ↝ if e1 then take_addr e2 else take_addr e3
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λow* to C♭: performing the struct layout

size int32 = 4
size unit = 4
size int64 = 8
size buf τ = 4
size

ÐÐ⇀
f ∶ τ = offset (

ÐÐ⇀
f ∶ τ , fn) + size τn

offset (
ÐÐ⇀
f ∶ τ , f0) = 0

offset (
ÐÐ⇀
f ∶ τ , fi+1) = align(offset (

ÐÐ⇀
f ∶ τ , fi) + size τi , alignment τi+1)

alignment(
ÐÐ⇀
f ∶ τ) = 8

alignment(τ) = size τ otherwise
align(k,n) = k if k mod n = 0
align(k,n) = k + n − (k mod n) otherwise
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λow* to C♭: some rules I

Let
G ; V ⊢ e1 ∶ τ1 ⇛ ê1 ∶ τ̂1 ⊣ V ′

` fresh G ; (x ↦ `, τ̂1) ⋅V ′ ⊢ e2 ∶ τ2 ⇛ ê2 ∶ τ̂2 ⊣ V ′′

G ; V ⊢ let x ∶ τ1 = e1 in e2 ∶ τ2 ⇛ ` ∶= ê1; ê2 ∶ τ̂2 ⊣ V ′′

FunDecl
G ;
ÐÐÐÐ⇀
y ↦ `, τ̂ ⊢ e1 ∶ τ1 ⇛ ê1 ∶ τ̂1 ⊣

ÐÐÐÐÐ⇀
x ↦ `′, τ̂ ′ ⋅

ÐÐÐÐ⇀
y ↦ `, τ̂

G ⊢ let d = λÐÐ⇀y ∶ τ . e1 ∶ τ1 ⇛ let d = λ
ÐÐ⇀
` ∶ τ̂ .

ÐÐÐ⇀
`′ ∶ τ̂ ′, ê1 ∶ τ̂1

Var
V (x) = `, τ

G ; V ⊢ x ⇛ ` ∶ τ ⊣ V

BufWrite
G ; V ⊢ writeB (e1 + e2 × size τ1) e3 ⇛ ê ⊣ V ′

G ; V ⊢ writebuf (e1 ∶ τ1) e2 e3 ⇛ ê ∶ unit ⊣ V ′



16/28

λow* to C♭: some rules II

WriteInt32
G ; V ⊢ e1 ⇛ ê1 ⊣ V ′ G ; V ′ ⊢ e2 ⇛ ê2 ⊣ V ′′

G ; V ⊢ writeB e1 (e2 ∶ int32) ⇛ write4 ê1 ê2 ⊣ V ′′

WriteLiteral
G ; Vi ⊢ writeB (e + offset (

ÐÐ⇀
f ∶ τ , fi)) ei ⇛ êi ⊣ Vi+1

G ; V0 ⊢ writeB e ({
ÐÐÐÐ⇀
f = e ∶ τ}) ⇛ ê0; . . . ; ên−1 ⊣ Vn

WriteDeRef
` fresh V ′ = `, int32 ⋅V G ; V ⊢ vi ⇛ v̂i ⊣ V

memcpy v1 v2 n = for ` ∈ [0; n) write1 (v1 + `) (read1 (v2 + `) 1)
G ; V ⊢ writeB v1 (readbuf (v2 ∶ τ2) 0) ⇛ memcpy v1 v2 (size τ2) ⊣ V ′
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λow* to C♭: some rules III

BufNew
`, `′ fresh

G ; x ↦ (`, int32) ⋅ y ↦ (`′, int32) ⋅V ⊢ writeB (x + size τ × y) v1 ⇛ ê ⊣ V ′

G ; V ⊢ newbuf n (v ∶ τ) ⇛ ` ∶= new (n × size τ); for `′ ∈ [0; n) ê; ` ⊣ V ′
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C♭ to WebAssembly: memory management helpers

We adopt a stack-based memory allocation scheme with a watermark at address 0.

get_stack = func [] → i32 local []
i32.const 0; i32.load

set_stack = func i32→ [] local
ÐÐÐ⇀
` ∶ i32

i32.const 0; get_local `; i32.store
grow_stack = func i32→ i32 local

ÐÐÐ⇀
` ∶ i32

call get_stack; get_local `; i32.op+;
call set_stack; call get_stack
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C♭ to WebAssembly: some rules I

Write32
ê1 ⇛

Ð⇀i1 ê2 ⇛
Ð⇀i2

write4 ê1 ê2 ⇛
Ð⇀i1 ; Ð⇀i2 ; i32.store; i32.const 0

New
ê ⇛Ð⇀i

new ê ⇛Ð⇀i ; call grow_stack

For
ê ⇛Ð⇀i

for ` ∈ [0; n) ê ⇛
loop(Ð⇀i ; drop;

get_local `; i32.const 1; i32.op+; tee_local `;
i32.const n; i32.op =; br_if); i32.const 0
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C♭ to WebAssembly: some rules II

Func
ê ⇛Ð⇀i τ̂i ⇛ ti

let d = λ
ÐÐÐ⇀
`1 ∶ τ̂1.

ÐÐÐ⇀
`2 ∶ τ̂2, ê ∶ τ̂ ⇛

d = funcÐ⇀t1 → t local
ÐÐÐÐÐÐÐ⇀
`1 ∶ t1 ⋅ `2 ∶ t2 ⋅ ` ∶ t.

call get_stack; Ð⇀i ; store_local ` ; call set_stack; get_local `
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Example: compiled fadd function

fadd = func [int32; int32; int32] → []
local [`0, `1, `2 ∶ int32; `3 ∶ int32; ` ∶ int32].
call get_stack; loop(

// Push dst + 8*i on the stack
get_local `0; get_local `3; i32.const 8; i32.binop∗; i32.binop+
// Load a + 8*i on the stack
get_local `1; get_local `3; i32.const 8; i32.binop∗; i32.binop+
i64.load
// Load b + 8*i on the stack (elided, same as above)
// Add a.[i] and b.[i], store into dst.[i]
i64.binop+; i64.store
// Per the rules, return unit
i32.const 0; drop
// Increment i; break if i == 5
get_local `3; i32.const 1; i32.binop+; tee_local `3
i32.const 5; i32.op =; br_if

); i32.const 0
store_local ` ; call set_stack; get_local `
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Future work: translation correctness

The compiler, KreMLin, is 11,000 LOC. The translation is implemented following this
formalization, and is designed to be auditable.
We left as future work the task of replicating and adapting the translation correctness
of [Pro+17] from λow* to Clight:

Lemma
Let P be a λow∗ program and e be a λow* entry point expression, and assume that
they compile: ⇊ (P) = P̂ for some C∗ program P̂ and ↓ (e) = Ð⇀s ; ê for some C∗ list of
statements Ð⇀s and expression ê.
Let V be a mapping of local variables containing the initial values of secrets. Then,
the C∗ program P̂ terminates with trace ` and return value v , i.e.,
P̂ ⊢ ([],V ,Ð⇀s ; return ê) `,∗

→ ([],V ′, return v) if, and only if, so does the λow∗ program:
P ⊢ ({}, e[V ])

`,∗
→ (H ′, v); and similarly for divergence.
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Future work: secret independence theorem

Theorem
From [Pro+17], proven for the translation from λow* to Clight: given

1 a program well-typed against a secret interface, Γs , i.e, Γs ,ΓP ; Σ; Γ ⊢ (H, e) ∶ τ ,

2 a well-typed implementation of the Γs interface, Γs ; Σ; ⋅ ⊢∆ Ps , such that Ps is equivalent
modulo secrets,

3 a pair (ρ1, ρ2) of well-typed substitutions for Γ,

then either:

1 both programs cannot reduce further, i.e. Ps ,P ⊢ (H, e)[ρ1] ↛ and Ps ,P ⊢ (H, e)[ρ2] ↛,
or

2 both programs make progress with the same trace, i.e. there exists Σ′ ⊇ Σ,Γ′ ⊇ Γ,H ′, e′, a
pair (ρ′1, ρ

′

2) of well-typed substitutions for Γ′, and a trace ` such that

i) Ps ,P ⊢ (H, e)[ρ1] →
+

` (H ′, e′)[ρ′1] and Ps ,P ⊢ (H, e)[ρ2] →
+

` (H ′, e′)[ρ′2], and
ii) Γs ,ΓP ; Σ′; Γ′ ⊢ (H ′, e′) ∶ τ
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Translation validation for secret independence

Classify
C ⊢ i ∶ π
C ⊢ i ∶ σ

BinOpPub
o is constant-time

C ⊢ t.binop o ∶ m m → m

BinOpPriv
o is not constant-time
C ⊢ t.binop o ∶ π π → π

Load

C ⊢ t.load ∶ ∗σ π → σ

Local
C(`) = m

C ⊢ get_local ` ∶ [] → m

Cond
C ⊢ Ð⇀i1 ∶ Ð⇀m → π C ⊢ ÐÐ⇀i

{2,3} ∶
Ð⇀m →Ð⇀m

C ⊢ if Ð⇀i1 thenÐ⇀i2 elseÐ⇀i3 ∶ Ð⇀m π →Ð⇀m
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Performance evaluation of WHACL*

Primitive (blocksize, #rounds) HACL* libsodium WHACL*
Curve25519 (1k) 0.83 s 0.15 s 4.05 s
Chacha20 (4kB, 100k) 1.86 s 1.74 s 6.62 s
Salsa20 (4kB, 100k) 1.55 s 2.24 s 5.52 s
Ed25519 sign (16kB, 1k) 3.01 s 0.27 s 15.6 s
Ed25519 verify (16kB, 1k) 3.07 s 0.24 s 15.6 s
Poly1305_32 (16kB, 10k) 0.27 s 0.19 s _
Poly1305_64 (16kB, 10k) 1.93 s 0.19 s 11.5 s
SHA2_256 (16kB, 10k) 1.64 s 1.84 s 3.5 s
SHA2_512 (16kB, 10k) 1.16 s 1.21 s 3.2 s
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Application : the Signal protocol
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Conclusion

WebAssembly is the best available target for verified applications on the Web. Because
it is small and simple, it is also a good compilation target for domain-specific
languages. [Wat+19] proposes to extend it with secretness concepts.

Adapting the proof from [Pro+17] is the most direct path to improve our confidence in
the correctness of the translation to WebAssembly. However, the Trusted Code Base is
quite big with the F* compiler and Kremlin. A WebAssembly backend for CompCert
could be a significant contribution towards a certified Web-compatible toolchain.

The Signal case study demonstrate the ability of the F* and Pro/CryptoVerif
ecosystem to handle the proof of non-trivial properties (including functional correctness
and security) of a large codebase, that can be extracted with a high confidence to
portable code.
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