
Proving the security of
an embedded operating
system using abstract

interpretation

Marc Chevalier

What it’s all about?

Abstract interpretation
saves the day

Add assembly into the
soup

Even C is hell

Conclusion

Proving the security of an embedded operating

system using abstract interpretation

Marc Chevalier

April 29, 2018

1 / 41

Proving the security of
an embedded operating
system using abstract

interpretation

Marc Chevalier

What it’s all about?

Abstract interpretation
saves the day

Add assembly into the
soup

Even C is hell

Conclusion

What it’s all about?

Abstract interpretation saves the day

Add assembly into the soup

Even C is hell

Conclusion

2 / 41

Proving the security of
an embedded operating
system using abstract

interpretation

Marc Chevalier

What it’s all about?

The need of certifications

What we prove

What I want to prove

Abstract interpretation
saves the day

Add assembly into the
soup

Even C is hell

Conclusion

What it’s all about?

Abstract interpretation saves the day

Add assembly into the soup

Even C is hell

Conclusion

3 / 41

Proving the security of
an embedded operating
system using abstract

interpretation

Marc Chevalier

What it’s all about?

The need of certifications

What we prove

What I want to prove

Abstract interpretation
saves the day

Add assembly into the
soup

Even C is hell

Conclusion

The need of certifications – Cost of software failure

Bugs have various annoying consequences:

◮ Deaths (Patriot, Toyota)

◮ A lot of money: Ariane V, $60 billion/year in the US

◮ Privacy

◮ . . .

4 / 41

Proving the security of
an embedded operating
system using abstract

interpretation

Marc Chevalier

What it’s all about?

The need of certifications

What we prove

What I want to prove

Abstract interpretation
saves the day

Add assembly into the
soup

Even C is hell

Conclusion

The need of certifications – What we usually do

How developers think they can avoid bugs:

◮ High level/safe language

◮ Tests

◮ Strict code style

Still, Ariane V crashed. . . . "And here, poor fool[s], with all [their] lore,
[they] stand no wiser than before".

5 / 41

Proving the security of
an embedded operating
system using abstract

interpretation

Marc Chevalier

What it’s all about?

The need of certifications

What we prove

What I want to prove

Abstract interpretation
saves the day

Add assembly into the
soup

Even C is hell

Conclusion

What we prove

Usually, no runtime error:

◮ Signed integer overflow

◮ Out of bound access

◮ Invalid pointer dereference

◮ . . .

Better:

◮ The result satisfies some property

◮ The execution path does not depend on some secret data

6 / 41

Proving the security of
an embedded operating
system using abstract

interpretation

Marc Chevalier

What it’s all about?

The need of certifications

What we prove

What I want to prove

Abstract interpretation
saves the day

Add assembly into the
soup

Even C is hell

Conclusion

What I want to prove

Study case: the OS of an host platform in planes at the border between
trusted (flight control) and untrusted (potentially hostile) world.

We want to prove some security properties: memory isolation, hosted
applications don’t get more privileges. . . .

Properties are not visible from C (check some CPU’s registers, mainly):
inline assembly ⇒ analyze assembly.

7 / 41

Proving the security of
an embedded operating
system using abstract

interpretation

Marc Chevalier

What it’s all about?

Abstract interpretation
saves the day

Introduction

An example

Let’s generalize

The incompleteness

Other domains

Add assembly into the
soup

Even C is hell

Conclusion

What it’s all about?

Abstract interpretation saves the day

Add assembly into the soup

Even C is hell

Conclusion

8 / 41

Proving the security of
an embedded operating
system using abstract

interpretation

Marc Chevalier

What it’s all about?

Abstract interpretation
saves the day

Introduction

An example

Let’s generalize

The incompleteness

Other domains

Add assembly into the
soup

Even C is hell

Conclusion

Introduction

◮ Check an execution: test, limited.

◮ Check all executions at once: ok, but not computable.

◮ Check an over-approximation of all execution: sound, not
complete.

9 / 41

Proving the security of
an embedded operating
system using abstract

interpretation

Marc Chevalier

What it’s all about?

Abstract interpretation
saves the day

Introduction

An example

Let’s generalize

The incompleteness

Other domains

Add assembly into the
soup

Even C is hell

Conclusion

An example

1 int f(int x)

2 { // x ∈ [−231
, 231 − 1]

3 int y = abs(x); // y ∈ [0, 231 − 1] ∨ x = −231

4 int z = y + 1; // z ∈ [1, 231 − 1] ∨ y = 231 − 1
5 return 1/z; // 0 6∈ [1, 231 − 1]⇒ OK!

6 }

10 / 41

Proving the security of
an embedded operating
system using abstract

interpretation

Marc Chevalier

What it’s all about?

Abstract interpretation
saves the day

Introduction

An example

Let’s generalize

The incompleteness

Other domains

Add assembly into the
soup

Even C is hell

Conclusion

Let’s generalize

(D,⊆,∧,∨,⊥,⊤) a too big complete lattice (typically, set of memory
environments).

JPK = f1 ◦ · · · ◦ fn

We want that c ⊆ specification holds at every program point.

11 / 41

Proving the security of
an embedded operating
system using abstract

interpretation

Marc Chevalier

What it’s all about?

Abstract interpretation
saves the day

Introduction

An example

Let’s generalize

The incompleteness

Other domains

Add assembly into the
soup

Even C is hell

Conclusion

Let’s generalize

Abstract domain:

◮ (D♯
,⊆♯

,∧♯,∨♯,⊥♯
,⊤♯): complete lattice (eg. Z

2
)

◮ γ : D♯ → D : concretization (eg. (a, b) 7→ {x ∈ Z | a 6 x 6 b})

Sound if for all program point, c ⊆ γ(a): we don’t miss any behavior
by executing in the abstract (but we lose precision).

Sound abstract operator: fi ◦ γ ⊆ γ ◦ f ♯i .

And we want γ(a) ⊆ specification.

12 / 41

Proving the security of
an embedded operating
system using abstract

interpretation

Marc Chevalier

What it’s all about?

Abstract interpretation
saves the day

Introduction

An example

Let’s generalize

The incompleteness

Other domains

Add assembly into the
soup

Even C is hell

Conclusion

The incompleteness

1 /*@ requires -10 <= x <= 10; */

2 int g(int x)

3 { // x ∈ [−10, 10]
4 int y = x; // y ∈ [−10, 10]
5 int z = x * y;

6 /* z ∈ Interval({a× b | a ∈ [−10, 10], b ∈ [−10, 10]})
7 z ∈ [−100, 100]
8 */

9 int t = z + 1; // t ∈ [−99, 101]
10 return 1/t; // 0 ∈ [−99, 101]⇒ Alarm!

11 }

But this program is clearly safe.
What happens? This abstract domain cannot understand the relation
between x and y.

13 / 41

Proving the security of
an embedded operating
system using abstract

interpretation

Marc Chevalier

What it’s all about?

Abstract interpretation
saves the day

Introduction

An example

Let’s generalize

The incompleteness

Other domains

Add assembly into the
soup

Even C is hell

Conclusion

Other domains

◮ Numerical:
Non relational:
◮ Modulo: xi ≡ ci [ni]
◮ Bitwise: xi = 0?1??100010111????

◮ Sign: xi < 0, xi > 0, xi 6 0 . . .

Relational:
◮ Polytope: ∑ aixi 6 ci

◮ Octagon: ±xi ± xj 6 ci

And combination of domains.

◮ Memory: some value points to another, memory structures,
separation logic. . . .

◮ Partitioning: (x > 0⇒ ...) ∧ (x 6 0⇒ ...)

14 / 41

Proving the security of
an embedded operating
system using abstract

interpretation

Marc Chevalier

What it’s all about?

Abstract interpretation
saves the day

Add assembly into the
soup

Back on security

Inline assembly

Difficulties

Computing the destination

Local jumps

Distant and return jumps

Mixed calls

Even C is hell

Conclusion

What it’s all about?

Abstract interpretation saves the day

Add assembly into the soup

Even C is hell

Conclusion

15 / 41

Proving the security of
an embedded operating
system using abstract

interpretation

Marc Chevalier

What it’s all about?

Abstract interpretation
saves the day

Add assembly into the
soup

Back on security

Inline assembly

Difficulties

Computing the destination

Local jumps

Distant and return jumps

Mixed calls

Even C is hell

Conclusion

Back on security

OS ⇒ assembly (Intel x86).

Some properties:

◮ Memory isolation ⇒ register CR3 are correctly set and not
modified (paging).

◮ "Sandboxing" ⇒ applications stay in ring 3.

◮ Static code ⇒ a writable segment never become executable.

16 / 41

Proving the security of
an embedded operating
system using abstract

interpretation

Marc Chevalier

What it’s all about?

Abstract interpretation
saves the day

Add assembly into the
soup

Back on security

Inline assembly

Difficulties

Computing the destination

Local jumps

Distant and return jumps

Mixed calls

Even C is hell

Conclusion

Inline assembly

1 int a;

2 void f()

3 {

4 // C code

5 asm {

6 ; assembly code

7 mov a, 4

8 }

9 }

17 / 41

Proving the security of
an embedded operating
system using abstract

interpretation

Marc Chevalier

What it’s all about?

Abstract interpretation
saves the day

Add assembly into the
soup

Back on security

Inline assembly

Difficulties

Computing the destination

Local jumps

Distant and return jumps

Mixed calls

Even C is hell

Conclusion

Difficulties

Majority of C: need to analyze x86 in a analysis designed for C.

Why x86 is really different from C:

◮ Jumps across functions vs local goto and blocks,

◮ Computed jump destinations vs static CFG,

◮ Type-agnostic registers vs statically typed programs,

◮ Intensive usage of stack, register. . . vs independent from
architecture and implementation.

18 / 41

Proving the security of
an embedded operating
system using abstract

interpretation

Marc Chevalier

What it’s all about?

Abstract interpretation
saves the day

Add assembly into the
soup

Back on security

Inline assembly

Difficulties

Computing the destination

Local jumps

Distant and return jumps

Mixed calls

Even C is hell

Conclusion

Difficulties – Control Flow

Let’s take a look at the control flow problem.

C: cfg, a lot of structured control flow (while, for, if...), gotos
x86: basically, only jumps. (For experts: only near/short jmp/call)

Problems (in increasing difficulty):

◮ Compute jumps local to a C function.

◮ Compute the destination.

◮ Compute jumps leading to anywhere else.

19 / 41

Proving the security of
an embedded operating
system using abstract

interpretation

Marc Chevalier

What it’s all about?

Abstract interpretation
saves the day

Add assembly into the
soup

Back on security

Inline assembly

Difficulties

Computing the destination

Local jumps

Distant and return jumps

Mixed calls

Even C is hell

Conclusion

Computing the destination

1 mov EBX, 0

2 mov EAX, label

3 add EAX, 3

4 jmp EAX

5 label:

6 add EBX, 1 ; This instruction has 3 bytes: 83 C3 01

7 add EBX, 2

8 ; Here EBX == 2

20 / 41

Proving the security of
an embedded operating
system using abstract

interpretation

Marc Chevalier

What it’s all about?

Abstract interpretation
saves the day

Add assembly into the
soup

Back on security

Inline assembly

Difficulties

Computing the destination

Local jumps

Distant and return jumps

Mixed calls

Even C is hell

Conclusion

Computing the destination

Program point: (block number, statement number). An instruction.
Useful in analysis
Code pointer: (label, offset) where the label and the offset can be
imprecise. An address. How the assembly works.

We have to compute the byte length of each assembly instruction to
reinterpret code pointer as program point.

A jump in the middle of an instruction is considered as an error.

21 / 41

Proving the security of
an embedded operating
system using abstract

interpretation

Marc Chevalier

What it’s all about?

Abstract interpretation
saves the day

Add assembly into the
soup

Back on security

Inline assembly

Difficulties

Computing the destination

Local jumps

Distant and return jumps

Mixed calls

Even C is hell

Conclusion

Computing the destination
1 void f() {

2 register int p;

3 asm {

4 mov p, [ESP+4] ; return address

5 }

6 int n = (p-zero)/(one-zero); // call number

7 }

8 void h() {

9 asm {

10 zero: call f

11 one: call f

12 ...

13 call f

14 }

15 }
22 / 41

Proving the security of
an embedded operating
system using abstract

interpretation

Marc Chevalier

What it’s all about?

Abstract interpretation
saves the day

Add assembly into the
soup

Back on security

Inline assembly

Difficulties

Computing the destination

Local jumps

Distant and return jumps

Mixed calls

Even C is hell

Conclusion

Local jumps

1 int f()

2 {

3 int x = 1; // x = 1

4 goto l; // ⊥, l 7→ {x = 1}

5 m: // ...

6 return x; // ...

7 l: // x = 1

8 goto m; // ⊥, m 7→ {x = 1}

9 } // ⊥

23 / 41

Proving the security of
an embedded operating
system using abstract

interpretation

Marc Chevalier

What it’s all about?

Abstract interpretation
saves the day

Add assembly into the
soup

Back on security

Inline assembly

Difficulties

Computing the destination

Local jumps

Distant and return jumps

Mixed calls

Even C is hell

Conclusion

Local jumps

1 int f()

2 {

3 int x = 1; // x = 1, m 7→ {x = 1}

4 goto l; // ⊥, l 7→ {x = 1}, m 7→ {x = 1}

5 m: // x = 1, l 7→ {x = 1}

6 return x; // return = 1, l 7→ {x = 1}

7 l: // x = 1

8 goto m; // ⊥, m 7→ {x = 1}

9 } // return = 1

24 / 41

Proving the security of
an embedded operating
system using abstract

interpretation

Marc Chevalier

What it’s all about?

Abstract interpretation
saves the day

Add assembly into the
soup

Back on security

Inline assembly

Difficulties

Computing the destination

Local jumps

Distant and return jumps

Mixed calls

Even C is hell

Conclusion

Local jumps – Termination

We have a super-union that accelerate convergence: widening.

◮ sound: ∀(a, b) ∈ D♯2
,γ(a) ∪ γ(b) ⊆ γ(a∇b)

◮ termination: for all sequence (an) ∈ D♯N
, the sequence

b0 = a0

bn+1 = bn∇an+1

is stationary.

Make sure there is at least a widening (and not only abstract union)
when we iterate until fixpoint.

25 / 41

Proving the security of
an embedded operating
system using abstract

interpretation

Marc Chevalier

What it’s all about?

Abstract interpretation
saves the day

Add assembly into the
soup

Back on security

Inline assembly

Difficulties

Computing the destination

Local jumps

Distant and return jumps

Mixed calls

Even C is hell

Conclusion

Distant and return jumps

A bit of context:

◮ No recursion (call stack abstraction).

◮ Inlined analysis (functions always return where they were called).

2 kinds of jumps:

◮ To a new function (not in the stack): distant jump.

◮ To a function which is in the call stack: return jump.

26 / 41

Proving the security of
an embedded operating
system using abstract

interpretation

Marc Chevalier

What it’s all about?

Abstract interpretation
saves the day

Add assembly into the
soup

Back on security

Inline assembly

Difficulties

Computing the destination

Local jumps

Distant and return jumps

Mixed calls

Even C is hell

Conclusion

Distant and return jumps
1 void f() {

2 asm { ; P

3 jmp pp ; ⊥
4 ...

5 pp2:

6 }

7 }

8 void g() { // ⊥, pp 7→ P

9 asm {

10 pp: ; P

11 ...

12 ; Q

13 jmp pp2 ; ⊥, ret: pp2 7→ Q

14 }

15 }
27 / 41

Proving the security of
an embedded operating
system using abstract

interpretation

Marc Chevalier

What it’s all about?

Abstract interpretation
saves the day

Add assembly into the
soup

Back on security

Inline assembly

Difficulties

Computing the destination

Local jumps

Distant and return jumps

Mixed calls

Even C is hell

Conclusion

Distant and return jumps
1 void f() {

2 asm { ; P

3 jmp pp ; ⊥, pp2 7→ Q

4 ...

5 pp2: ; Q

6 }

7 }

8 void g() { // ⊥, pp 7→ P

9 asm {

10 pp: ; P

11 ...

12 ; Q

13 jmp pp2 ; ⊥, ret: pp2 7→ Q

14 }

15 }
28 / 41

Proving the security of
an embedded operating
system using abstract

interpretation

Marc Chevalier

What it’s all about?

Abstract interpretation
saves the day

Add assembly into the
soup

Back on security

Inline assembly

Difficulties

Computing the destination

Local jumps

Distant and return jumps

Mixed calls

Even C is hell

Conclusion

Distant and return jumps

Why so complicated?

C structure keep most of the control flow: essential for precision.
Syntactic information (call, ret, jmp) are absolutely not reliable!

And there is worse....

29 / 41

Proving the security of
an embedded operating
system using abstract

interpretation

Marc Chevalier

What it’s all about?

Abstract interpretation
saves the day

Add assembly into the
soup

Back on security

Inline assembly

Difficulties

Computing the destination

Local jumps

Distant and return jumps

Mixed calls

Even C is hell

Conclusion

Mixed calls
1 int m;

2 int g(int a, int b) {

3 int c = a + b;

4 a = 1; b = 2;

5 return c;

6 }

7 void f() {

8 asm {

9 push 22

10 push 20

11 call g

12 mov m, EAX

13 add ESP, 8

14 }

15 }

1 extern int l(int);

2 int a = 0, param = 0;

3 void g() {

4 asm {

5 l:

6 mov EAX, 4[ESP]

7 mov param, EAX

8 add EAX, 42

9 ret

10 }

11 }

12 void f() {

13 a = l(1);

14 }

30 / 41

Proving the security of
an embedded operating
system using abstract

interpretation

Marc Chevalier

What it’s all about?

Abstract interpretation
saves the day

Add assembly into the
soup

Even C is hell

A common idiom

Virtual variables

Astrée on the inside

The new product in action

Dialectic

Current status

Conclusion

What it’s all about?

Abstract interpretation saves the day

Add assembly into the soup

Even C is hell

Conclusion

31 / 41

Proving the security of
an embedded operating
system using abstract

interpretation

Marc Chevalier

What it’s all about?

Abstract interpretation
saves the day

Add assembly into the
soup

Even C is hell

A common idiom

Virtual variables

Astrée on the inside

The new product in action

Dialectic

Current status

Conclusion

A common idiom

Figure 1: A segment descriptor

32 / 41

Proving the security of
an embedded operating
system using abstract

interpretation

Marc Chevalier

What it’s all about?

Abstract interpretation
saves the day

Add assembly into the
soup

Even C is hell

A common idiom

Virtual variables

Astrée on the inside

The new product in action

Dialectic

Current status

Conclusion

A common idiom

1 void set_base(struct seg_desc *seg, long* base)

2 {

3 seg->low_base = base & 0xffff;

4 seg->middle_base = (base >> 16) & 0xff;

5 seg->high_base = base >> 24;

6 }

⇒ we want to remember slices of pointers.

33 / 41

Proving the security of
an embedded operating
system using abstract

interpretation

Marc Chevalier

What it’s all about?

Abstract interpretation
saves the day

Add assembly into the
soup

Even C is hell

A common idiom

Virtual variables

Astrée on the inside

The new product in action

Dialectic

Current status

Conclusion

Virtual variables

Variables used to represent an abstract value but that do not concretely
exist.

1 int t[4];

2 int* p = &t[2];

We want to say p = t+ op. op: offset of p.

34 / 41

Proving the security of
an embedded operating
system using abstract

interpretation

Marc Chevalier

What it’s all about?

Abstract interpretation
saves the day

Add assembly into the
soup

Even C is hell

A common idiom

Virtual variables

Astrée on the inside

The new product in action

Dialectic

Current status

Conclusion

Astrée on the inside

...

Struct

Pointers

×

A tree of numeric domains

Downsides

◮ Variables ids are given by
Struct: missing ids for virtual
variables.

◮ There is no way to add
another Pointer-like domain.

◮ Nodes in the tree can’t do
global iteration: delegated to
Struct and Pointers

35 / 41

Proving the security of
an embedded operating
system using abstract

interpretation

Marc Chevalier

What it’s all about?

Abstract interpretation
saves the day

Add assembly into the
soup

Even C is hell

A common idiom

Virtual variables

Astrée on the inside

The new product in action

Dialectic

Current status

Conclusion

Astrée on the inside – Reduced Product

Given (D♯
1
,⊆♯

1
), (D♯

2
,⊆♯

2
), abstract domains for the same concrete

domain.

Product: D
♯
1×2

= D
♯
1
×D

♯
2

with pointwise operations.
γ1×2(a1, a2) = γ1(a1) ∩ γ2(a2)

ρ(a1, a2) = (b1, b2) with

γ1×2(a1, a2) ⊆ γ1×2(b1, b2) (sound)

Morally: b1 ⊆
♯
1
a1 ∧ b2 ⊆

♯
2
a2 (better)

36 / 41

Proving the security of
an embedded operating
system using abstract

interpretation

Marc Chevalier

What it’s all about?

Abstract interpretation
saves the day

Add assembly into the
soup

Even C is hell

A common idiom

Virtual variables

Astrée on the inside

The new product in action

Dialectic

Current status

Conclusion

Astrée on the inside
...

Struct

Pointer-adapter

×P

Numeric-adapter

×

Numeric domains

Pointers

New ×P :

◮ Id translation by
Pointer-adapter.

◮ Can add domains for pointer
slices, linear combinations. . . .

◮ Cleaner interfaces.

◮ Each domain can ask
everybody to store a virtual
variable and do computations
on it.

37 / 41

Proving the security of
an embedded operating
system using abstract

interpretation

Marc Chevalier

What it’s all about?

Abstract interpretation
saves the day

Add assembly into the
soup

Even C is hell

A common idiom

Virtual variables

Astrée on the inside

The new product in action

Dialectic

Current status

Conclusion

The new product in action

1 int t[4], *p, *q;

2 p = &t[0];

3 q = p + 1;

Before line 3:

◮ t has size 4.

◮ p = t+ op.

◮ op = 0.

...

Struct

Pointer-adapter

×P

Numeric-adapter

×

Numeric domains

Pointers

38 / 41

Proving the security of
an embedded operating
system using abstract

interpretation

Marc Chevalier

What it’s all about?

Abstract interpretation
saves the day

Add assembly into the
soup

Even C is hell

A common idiom

Virtual variables

Astrée on the inside

The new product in action

Dialectic

Current status

Conclusion

The new product in action

1 int t[4], *p, *q;

2 p = &t[0];

3 q = p + 1;

q← p+ 1:

p = ⊤
⇓
q = ⊤

...

Struct

Pointer-adapter

×P

Numeric-adapter

×

Numeric domains

Pointers

38 / 41

Proving the security of
an embedded operating
system using abstract

interpretation

Marc Chevalier

What it’s all about?

Abstract interpretation
saves the day

Add assembly into the
soup

Even C is hell

A common idiom

Virtual variables

Astrée on the inside

The new product in action

Dialectic

Current status

Conclusion

The new product in action

1 int t[4], *p, *q;

2 p = &t[0];

3 q = p + 1;

q← p+ 1:

p = t+ op
⇓
oq ← op + 1× 4
context

...

Struct

Pointer-adapter

×P

Numeric-adapter

×

Numeric domains

Pointers

38 / 41

Proving the security of
an embedded operating
system using abstract

interpretation

Marc Chevalier

What it’s all about?

Abstract interpretation
saves the day

Add assembly into the
soup

Even C is hell

A common idiom

Virtual variables

Astrée on the inside

The new product in action

Dialectic

Current status

Conclusion

The new product in action

1 int t[4], *p, *q;

2 p = &t[0];

3 q = p + 1;

oq ← op + 1× 4:

op = 0
⇓
oq = 4

...

Struct

Pointer-adapter

×P

Numeric-adapter

×

Numeric domains

Pointers

38 / 41

Proving the security of
an embedded operating
system using abstract

interpretation

Marc Chevalier

What it’s all about?

Abstract interpretation
saves the day

Add assembly into the
soup

Even C is hell

A common idiom

Virtual variables

Astrée on the inside

The new product in action

Dialectic

Current status

Conclusion

The new product in action

1 int t[4], *p, *q;

2 p = &t[0];

3 q = p + 1;

oq ← op + 1× 4:

op ∈ NUM

⇓
oq ∈ NUM

...

Struct

Pointer-adapter

×P

Numeric-adapter

×

Numeric domains

Pointers

38 / 41

Proving the security of
an embedded operating
system using abstract

interpretation

Marc Chevalier

What it’s all about?

Abstract interpretation
saves the day

Add assembly into the
soup

Even C is hell

A common idiom

Virtual variables

Astrée on the inside

The new product in action

Dialectic

Current status

Conclusion

The new product in action

1 int t[4], *p, *q;

2 p = &t[0];

3 q = p + 1;

q← p+ 1:

p = t+ op
context
⇓
q = t+ oq

...

Struct

Pointer-adapter

×P

Numeric-adapter

×

Numeric domains

Pointers

38 / 41

Proving the security of
an embedded operating
system using abstract

interpretation

Marc Chevalier

What it’s all about?

Abstract interpretation
saves the day

Add assembly into the
soup

Even C is hell

A common idiom

Virtual variables

Astrée on the inside

The new product in action

Dialectic

Current status

Conclusion

The new product in action

1 int t[4], *p, *q;

2 p = &t[0];

3 q = p + 1;

After line 3:

◮ t has size 4.

◮ p = t+ op.

◮ q = t+ oq.

◮ op = 0.

◮ oq = 4.

...

Struct

Pointer-adapter

×P

Numeric-adapter

×

Numeric domains

Pointers

38 / 41

Proving the security of
an embedded operating
system using abstract

interpretation

Marc Chevalier

What it’s all about?

Abstract interpretation
saves the day

Add assembly into the
soup

Even C is hell

A common idiom

Virtual variables

Astrée on the inside

The new product in action

Dialectic

Current status

Conclusion

Dialectic

+ More general

+ Solve my problem

+ Solve older problems

+ Remove some hacks

+ Cleaner code (more
parametric, more
abstraction)

- More internal instructions
for each real one: slower (I
don’t know how much)

- Very tricky

- Termination of each
instruction is not ensured
by local argument

And opportunistically: clean and optimize some old code I adapted.

39 / 41

Proving the security of
an embedded operating
system using abstract

interpretation

Marc Chevalier

What it’s all about?

Abstract interpretation
saves the day

Add assembly into the
soup

Even C is hell

A common idiom

Virtual variables

Astrée on the inside

The new product in action

Dialectic

Current status

Conclusion

Current status

Astrée: 200klo OCaml.

All my modifications: Astrée: +84k -30k
Pointer product: Astrée: +30k -14k; Coproduct: 10k OCaml, 9k
Python

Pointer product: big. Seems to work, but still testing. Log module to
ease debugging.
Still to write: pointer slices and linear combinations.

40 / 41

Proving the security of
an embedded operating
system using abstract

interpretation

Marc Chevalier

What it’s all about?

Abstract interpretation
saves the day

Add assembly into the
soup

Even C is hell

Conclusion

Conclusion

OK:

◮ Parsing, preprocessing, (dis)assembling, everything before the
analysis.

◮ Register/stack abstraction.

◮ Control flow.

Still to do:

◮ Test (and debug) the new reduced product.

◮ Analysis: write stubs or model the environment.

◮ Some abstractions may need more precision, but the backbone is
there.

41 / 41

