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Non-determinism in C expressions

int main() {

int x;

int y = (x = 3) + (x = 4);

printf("%d, %d\n", x, y);

}

According to the C standard, the order of evaluation is unspecified,
e.g., compilers are free to choose their evaluation strategy

. . . so we would expect as the outcome either ”4, 7” or ”3, 7”
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Unexpectedly

int main() {

int x;

int y = (x = 3) + (x = 4);

printf("%d, %d\n", x, y);

}

However, a small experiment with existing compilers gives

compiler outcome warnings

compcert 4, 7 no

clang 4, 7 yes

gcc-4.9 4, 8 no
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Undefined behavior

int main() {

int x;

int y = (x = 3) + (x = 4);

printf("%d, %d\n", x, y);

}

According to the C standard, this program violates the sequence point restriction
due to two unsequenced writes of the same variable x

A sequence point violation results in the undefined behavior
i.e., the program is allowed do anything it is even allowed to crash
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The goal

The problem: sequence point violations may cause a C program
to crash or to have arbitrary results.

The goal: we need a framework that, besides the functional correctness,
ensures the absence of undefined behavior for any evaluation order.

{P} e {Q} =⇒
functional correctness

∧ no sequence point violations

∧ no other undefined behavior
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The goal

The problem: sequence point violations may cause a C program
to crash or to have arbitrary results.

The goal: we need a framework that, besides the functional correctness,
ensures the absence of undefined behavior for any evaluation order.

{r 7→ i ∗ c 7→ j}
*r= *r ∗ (++(*c));

{v . v = i·(j+1) ∧ r 7→ i·(j+1) ∗ c 7→ j + 1}
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Previous work:

Krebbers’ program logic (POPL’14)
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(Krebbers POPL’14)

Observation: view non-determinism through concurrency
Idea: use concurrent separation logic

{P1} e1 {Ψ1} {P2} e2 {Ψ2} ∀v1 v2.Ψ1 v1 ∗Ψ2 v2 ` Φ(w1 J}K w2)

{P1 ∗ P2} e1 } e2 {Φ}

With the rules of this logic we can

- split the memory resources into two disjoint parts

- independently prove that each subexpression executes safely in its own part

Disjointedness ⇒ no sequence point violations
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(Krebbers POPL’14)

Krebbers’ logic addresses other aspects of sequence point restrictions in C:

- sharing of resources between subexpressions

- additional enforcement for nested assignments

- sequence points and function calls

(*l= *k + 10) + (*r= *k + 10) 3

=⇒ Use fractional permissions: k
q1+q27−−−→ v a` k q17−→ v ∗ k q27−→ v

5



(Krebbers POPL’14)

Krebbers’ logic addresses other aspects of sequence point restrictions in C:

- sharing of resources between subexpressions

- additional enforcement for nested assignments

- sequence points and function calls

*l= (*l= 3) 7

=⇒ Decorate permissions with a lockable flag ξ ∈ {L,U}
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(Krebbers POPL’14)

Krebbers’ logic addresses other aspects of sequence point restrictions in C:

- sharing of resources between subexpressions

- additional enforcement for nested assignments

- sequence points and function calls

{P1} e1 {Ψ1} {P2} e2 {Ψ2} (∀l w.Ψ1 l ∗Ψ2 w −∗ ∃v. l
17−→U v ∗ (l

17−→L w −∗ Φ w))

{P1 ∗ P2} (e1 = e2) {Φ}

=⇒ Decorate permissions with a lockable flag ξ ∈ {L,U}
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(Krebbers POPL’14)

Krebbers’ logic addresses other aspects of sequence point restrictions in C:

- sharing of resources between subexpressions

- additional enforcement for nested assignments

- sequence points and function calls

*l= 4 ; *l f() + g()

=⇒ Define unlocking modality U such that l
q7−→L v ` U(l

q7−→U v)
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(Krebbers POPL’14)

Krebbers’ logic addresses other aspects of sequence point restrictions in C:

- sharing of resources between subexpressions

- additional enforcement for nested assignments

- sequence points and function calls

{P} e1 {U(Ψ1)} {Ψ1} e2 {Φ}
{P} (e1 ; e2) {Φ}

=⇒ Define unlocking modality U such that l
q7−→L v ` U(l

q7−→U v)
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Limitations of Krebbers’ program logic

1. The program logic is difficult to extend with new features.

2. The proof process is tedious and has no support for automation:

- we have to subdivide resources manually all the time

- and to infer the intermediate postconditions.

{P1} e1 {Ψ1} {P2} e2 {Ψ2} ∀v1 v2.Ψ1 v1 ∗Ψ2 v2 ` Φ(w1 J}K w2)

{P1 ∗ P2} e1 } e2 {Φ}

=⇒ Such rules cannot be applied in an algorithmic fashion.
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This work:

Redesign Krebbers’s program logic and

turn it into a semi-automated procedure
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Contributions

{P} e {Q} , P ` wp e {Q}

wp e {Q}

C
J·K−→ ML|| wpmon JeK {Q ′}

Iris

ghost state

Coq tactics
. . .

vcgen symbolic

execution

Contribution 1:

A redesign of Krebbers’s logic using

a weakest precondition calculus.

⇒ decouples the program from the precondition

⇒ makes automation possible

Contribution 2:

A monadic semantics of C non-determinism

by translation into a concurrent ML language.

⇒ makes the semantics declarative

⇒ reader monad M(A) , msetPtr → mutex→ A

Contribution 3:

A layered model of our program logic

built on top of the Iris framework

⇒ makes logic more modular and expresive

⇒ support from Iris Proof Mode and Coq tactics

Contribution 4:

A symbolic execution algorithm

integrated into an interactive vcgen

⇒ turns logic into a semi-automated procedure

⇒ useful in an interactive theorem prover

Contribution 5:
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This talk:

Symbolic execution algorithm and vcgen
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Key idea

Turn the program logic into an algorithm procedure

using a novel symbolic execution algorithm:

input output

precondition value

program 99K (strongest) postcondition

frame = resources not used
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Key idea

Turn the program logic into an algorithm procedure

using a novel symbolic execution algorithm:

input output

r 7→ i ∗ c 7→ j ∗ d 7→ k i·(j+1)

*r= *r ∗ (++(*c)); 99K r 7→ i·(j+1) ∗ c 7→ j + 1

d 7→ k
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Symbolic execution algorithm

}

P

e1 e2

P

v1 Q1 R1

R1

v2 Q2 R2

v1 J}K v2 Q1 ∗ Q2 R2

The evaluation order in the symbolic
execution algorithm does not matter:

(P , e)
symb. exec.−−−−−−→ (w,Q,R)

P ` wp e {v. v = w ∗ Q} ∗ R
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Symbolic execution algorithm
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Towards automation

Symbolic execution algorithm that computes the frame allows

to apply the program logic rules in an algorithmic manner:

(P , e1)
symb. exec.−−−−−−→ (w1,Q,R) R ` wp e2 {w2.Q −∗ Φ (w1 J}K w2)}

P ` wp (e1 } e2) {Φ}

Compare this with applying the rule that does not use symbolic execution:

P1 ` wp e1 {Ψ1} P2 ` wp e2 {Ψ2} (∀w1w2.Ψ1 w1 ∗Ψ2 w2 −∗ Φ(w1 J}K w2))

P1 ∗ P2 ` wp (e1 } e2) {Φ}
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Towards automation

Symbolic execution algorithm that computes the frame allows

to apply the program logic rules in an algorithmic manner:

(P , e1)
symb. exec.−−−−−−→ (w1,Q,R) R ` wp e2 {w2.Q −∗ Φ (w1 J}K w2)}

P ` wp (e1 } e2) {Φ}

However, the algorithm itself may fail for several reasons:

- the program is not of the right shape (loop, function call, . . . )

- the precondition is not of the right shape (needed resource is missing, . . . )
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Vcgen

Key idea: design an interactive verification condition generator (vcgen).

interactive

proof

vcgen

procedure

calls

simplifies the proof goal

Vcgen automates the proof as long as the symbolic executor does not fail.

When the symbolic executor fails, vcgen does not fail itself, but

- returns to the user a partially solved goal

- from which it can be called back after the user helped out.
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∃k ≤ n.

Hr: r 7→ 1

Hc: c 7→ 0

IH: ∀k.

B

r 7→ fact(k) ∗ c 7→ k ∗ k ≤ n −∗
wp (while(..){...})

{r 7→ fact(n) ∗ c 7→ n}

Proof.

generalize Hr Hc. induction. while spec.

vcgen.

- vcgen. apply IH.

- eauto.

Qed.

while(*c < n){
*r= *r ∗ (++(*c));

}

Post-condition: r 7→ fact(n) ∗ c 7→ n
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∃k ≤ n.

Hr: r 7→ fact(k)

Hc: c 7→ k

Hk: k = n

IH: ∀k.

B

r 7→ fact(k) ∗ c 7→ k ∗ k ≤ n −∗
wp (while(..){...})

{r 7→ fact(n) ∗ c 7→ n}

Proof.
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()
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Implementation (1/2)

We implemented the symbolic execution algorithm as a partial function
which we restrict to symbolic heaps:

forward : (sheap× expr)→ (val× sheap× sheap)

satisfying the following specification:

forward(m, e) = (w,mo
1 ,m1)

JmK ` wp e {v. v = w ∗ Jmo
1K} ∗ Jm1K
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Implementation (1/2)

We implemented the symbolic execution algorithm as a partial function
which we restrict to symbolic heaps:

forward : (sheap× expr)→ (val× sheap× sheap)

Future work:

- lift the restriction for the precondition to handle pure facts

- enable interaction with external decision procedures
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Implementation (2/2)

The vcgen is implemented as a total function

vcg : (sheap× expr × (sheap→ val→ Prop))→ Prop

satisfying the following specification:

P ′ ` vcg(m, e, λm′ v. Jm′K −∗ Φ v)

P ′ ∗ JmK ` wp e {Φ}
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One piece of related work

Non-deterministic typing rule

Algorithmic type checking (Ch.1. Substructural Type Systems)

“The central idea is that rather than splitting the context into parts before checking a complex

expression composed of several subexpressions, we can pass the entire context as an input

to the first subexpression and have it return the unused portion as an output.” (p.12)
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Conclusion

Other contributions and related topics not covered in this talk:

- monadic definitional semantics of a subset of C

- multi-layered design of weakest precondition calculus on top of Iris

- proof by reflection as a part of development of automated procedures

The main message for today:

Symbolic execution with frames is a key to enable
semi-automated reasoning about C non-determinism
in an interactive theorem prover.
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Thank you !
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translation scheme (1/4)

Je1 = e2K def
= let (p, v) = Je1K ||HL Je2K in

p :=HL v ; v

Je1 + e2K def
= let (v1, v2) = Je1K ||HL Je2K in

v1 +HL v2

the non-determinism is embodied by using parallel composition ||HL

2



translation scheme (2/4)

Je1 = e2K def
= let (p, v) = Je1K ||HL Je2K in

if mem p env then error("Undefined behaviour")

else add p env ;

p :=HL v ; v

J;K def
= env :=HL ∅

the sequence point conditions are checked using a set of pointers env

2



translation scheme (3/4)

Je1 = e2K def
= let (p, v) = Je1K ||HL Je2K in

acquire lock;

if mem p env then error("Undefined behaviour")

else add p env ;

p :=HL v ;

release lock ;

v

the atomicity of updates is enforced by using a global lock

2



translation scheme (4/4)

the execution of function call is atomic from the caller ’s point of view :

f () + g()

all the instructions in one of the function are executed prior to the execution of the
other function

consequently, each call should be compiled using the lock:

Jf(e1)K def
= let v = Je1K in

acquire lock;

let r = f v in

release lock;

r

3



translation scheme (4/4)

the execution of function call is atomic from the caller ’s point of view :

f () + g()

but the function f might call some other function (or call itself)
consequently, each call should be compiled, using a new lock:

Jf(e1)K def
= fun lock⇒

let v = Je1K in

acquire lock;

let lock ′ = newmutex() in

let r = f v lock′ in

release lock; r

3



Vcg rule for add

vcg(m,e1 + e2,K)
def
=

match forward(m, e1) with

| Some (v1,mo ,mf )→ vcg(mf , e2, λm
′ v2.K (m′ tmo) (v1 + v2))

| None→
match forward(m, e2) with

| Some (v2,mo ,mf )→ vcg(mf , e1, λm
′ v1.K (m′ tmo) (v1 + v2))

| None→ JmK −∗ wp (e1 + e2) {λ v ,∃m′. Jm′K ∗ K m′ v}

4



(Krebbers POPL’14)

Fractional lockable permissions enforce the sequence point restriction:

{P} e {l. ∃w q. l q7−→U w ∗ ( l
q7−→U w −∗ Φ w)}

{P} (*e) {Φ}

{P1} e1 {Ψ1} {P2} e2 {Ψ2} (∀l w.Ψ1 l ∗Ψ2 w −∗ ∃v. l
17−→U v ∗ ( l

17−→L w −∗ Φ w))

{P1 ∗ P2} (e1 = e2) {Φ}

⇒ Allows to prove {l q7−→U v} *l + *l {λw .(w = v + v) ∗ l q7−→U v}
⇒ Rules out programs with undefined behavior like *l= (*l= 3)
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Unlocking modality

remark: we want to access locked pointers later again

*l= 4 ; *l

we use the unlocking modality U that unlocks
all locked locations at the sequence point :

wp e1 { .U(wp e2 {Φ})}
wp (e1 ; e2) {Φ}

l
q7−→L v

U(l
q7−→U v)

P −∗ Q
UP −∗ UQ

6



Example

l 7→ v1 ∗ k 7→ v2 ∗ r 7→ v3

- - - - - - - - - - - - - - - - - - - - - - - - - - -

*l= *k + 10

postcondition: >
frame: >
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Example

l 7→ v1 ∗ ((((k 7−→ v2 ∗ r 7→ v3

- - - - - - - - - - - - - - - - - - - - - - - - - - -

*l= v2 + 10

postcondition: k
0.57−−→ v2

frame: k
0.57−−→ v2
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Example

((((l 7→ v1 ∗((((k 7→ v2 ∗ ((((r 7→ v3

- - - - - - - - - - - - - - - - - - - - - - - - - - -
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postcondition: k
0.57−−→ v2 ∗ l 7−→L (v2 + 10)

frame: k
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Example (continued)

l 7→ v1 ∗ k 7→ v2 ∗ r 7→ v3

- - - - - - - - - - - - - - - - - - - - - - - - - - -

( *l= *k + 10 ) + (*r= *k + 10)

postcondition: >
frame: >
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After executing the LHS

((((l 7→ v1 ∗ ((((k 7→ v2 ∗ ((((r 7→ v3

- - - - - - - - - - - - - - - - - - - - - - - - - - -

(v2 + 10) + (*r= *k + 10)

postcondition: k
0.57−−→ v2 ∗ l 7−→L (v2 + 10)

frame: k
0.57−−→ v2 ∗ r 7→ v3
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Before executing the RHS

((((l 7→ v1 ∗ k
0.57−−→ v2 ∗ r 7→ v3

- - - - - - - - - - - - - - - - - - - - - - - - - - -

(v2 + 10) + (*r= *k + 10)

postcondition: k
0.57−−→ v2 ∗ l 7−→L (v2 + 10)

frame: ���
��

k
0.57−−→ v2 ∗ ((((r 7→ v3

8



Executing the RHS

((((l 7→ v1 ∗ ���
��

k
0.57−−→ v2 ∗ r 7→ v3

- - - - - - - - - - - - - - - - - - - - - - - - - - -

(v2 + 10) + (*r= v2 + 10)

postcondition: k
3/47−−→ v2 ∗ l 7−→L (v2 + 10)

frame: k
1/47−−→ v2 ∗((((r 7→ v3

8



Final result

((((l 7→ v1 ∗���
��

k
0.57−−→ v2 ∗ ((((r 7→ v3

- - - - - - - - - - - - - - - - - - - - - - - - - - -

(v2 + 10) + ( v2 + 10 )

postcondition: k
3/47−−→ v2 ∗ l 7−→L (v2 + 10) ∗ r 7−→L (v2 + 10)

frame: k
1/47−−→ v2 ∗���

��
r 7→ v3)

8
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