
Gradual Typing: A New Perspective

With polymorphism, unions, intersections, and much more

G. Castagna, V. Lanvin, T. Petrucciani, J. Siek

18 February 2019

1 / 36

Gradual Typing (1/3)

Let’s write a map, that can work on both arrays and lists depending
on a condition:

let map (condition : Bool) (f : α -> β) (data :) : =

if condition then
List.map f data

else
Array.map f data

Runtime checks or casts are then inserted automatically by the
compiler.

2 / 36

Gradual Typing (1/3)

Let’s write a map, that can work on both arrays and lists depending
on a condition:

let map (condition : Bool) (f : α -> β) (data :) : =
if condition then

List.map f data
else

Array.map f data

Runtime checks or casts are then inserted automatically by the
compiler.

2 / 36

Gradual Typing (1/3)

Let’s write a map, that can work on both arrays and lists depending
on a condition:

let map (condition : Bool) (f : α -> β) (data : ?) : =
if condition then

List.map f data
else

Array.map f data

Runtime checks or casts are then inserted automatically by the
compiler.

2 / 36

Gradual Typing (1/3)

Let’s write a map, that can work on both arrays and lists depending
on a condition:

let map (condition : Bool) (f : α -> β) (data : ?) : ? =
if condition then

List.map f data
else

Array.map f data

Runtime checks or casts are then inserted automatically by the
compiler.

2 / 36

Gradual Typing (1/3)

Let’s write a map, that can work on both arrays and lists depending
on a condition:

let map (condition : Bool) (f : α -> β) (data : ?) : ? =
if condition then

List.map f data
else

Array.map f data

Runtime checks or casts are then inserted automatically by the
compiler.

2 / 36

Gradual Typing (2/3)

– Goal: have both static and dynamic typing in the same
language.

– How: by adding a dynamic type, denoted “?”.

– Allows for a trade-off between safety and programming
productivity.

The transition is gradual:

? 4 ?→ ? 4 Int→ ? 4 Int→ Bool

3 / 36

Gradual Typing (2/3)

– Goal: have both static and dynamic typing in the same
language.

– How: by adding a dynamic type, denoted “?”.

– Allows for a trade-off between safety and programming
productivity.

The transition is gradual:

? 4 ?→ ? 4 Int→ ? 4 Int→ Bool

3 / 36

Gradual Typing (2/3)

– Goal: have both static and dynamic typing in the same
language.

– How: by adding a dynamic type, denoted “?”.

– Allows for a trade-off between safety and programming
productivity.

The transition is gradual:

? 4 ?→ ? 4 Int→ ? 4 Int→ Bool

3 / 36

Gradual Typing (3/3)

Sometimes this gradualization is too coarse

let map (condition : Bool) (f : α -> β) (data : ?) : ? =
if condition then

List.map f data
else

Array.map f data
in
map (Random.bool ()) (fun x -> x) "Hello"

This always fails!

We want to give the programmer a way to reject such cases
statically, while still accepting this function.

4 / 36

Gradual Typing (3/3)

Sometimes this gradualization is too coarse

let map (condition : Bool) (f : α -> β) (data : ?) : ? =
if condition then

List.map f data
else

Array.map f data
in
map (Random.bool ()) (fun x -> x) "Hello"

This always fails!

We want to give the programmer a way to reject such cases
statically, while still accepting this function.

4 / 36

Gradual Typing (3/3)

Sometimes this gradualization is too coarse

let map (condition : Bool) (f : α -> β) (data : ?) : ? =
if condition then

List.map f data
else

Array.map f data
in
map (Random.bool ()) (fun x -> x) "Hello"

This always fails!

We want to give the programmer a way to reject such cases
statically, while still accepting this function.

4 / 36

Enter Set-Theoretic Types (1/2)

let map (condition : Bool) (f : α -> β)
(data :) : =

if condition then
List.map f data

else
Array.map f data

Unfortunately, this is not well-typed without additional checks,
since α array ∨ α list � α array.

5 / 36

Enter Set-Theoretic Types (1/2)

let map (condition : Bool) (f : α -> β)
(data : (α array ∨ α list)) : =

if condition then
List.map f data

else
Array.map f data

Unfortunately, this is not well-typed without additional checks,
since α array ∨ α list � α array.

5 / 36

Enter Set-Theoretic Types (1/2)

let map (condition : Bool) (f : α -> β)
(data : (α array ∨ α list)) : (β array ∨ β list) =

if condition then
List.map f data

else
Array.map f data

Unfortunately, this is not well-typed without additional checks,
since α array ∨ α list � α array.

5 / 36

Enter Set-Theoretic Types (1/2)

let map (condition : Bool) (f : α -> β)
(data : (α array ∨ α list)) : (β array ∨ β list) =

if condition then
List.map f data

else
Array.map f data

Unfortunately, this is not well-typed without additional checks,
since α array ∨ α list � α array.

5 / 36

Enter Set-Theoretic Types (2/2)

We need to explicitly deconstruct the union:

let map (condition : Bool) (f : α -> β)
(data : (α array ∨ α list)) : (β array ∨ β list) =

if condition then
if typeOf(data) = α list then

List.map f data
else

raise Runtime_type_error
else

(* Same for arrays *)

This is safer, but extremely verbose.

6 / 36

Enter Set-Theoretic Types (2/2)

We need to explicitly deconstruct the union:

let map (condition : Bool) (f : α -> β)
(data : (α array ∨ α list)) : (β array ∨ β list) =

if condition then
if typeOf(data) = α list then

List.map f data
else

raise Runtime_type_error
else

(* Same for arrays *)

This is safer, but extremely verbose.

6 / 36

Enter Set-Theoretic Types (2/2)

We need to explicitly deconstruct the union:

let map (condition : Bool) (f : α -> β)
(data : (α array ∨ α list)) : (β array ∨ β list) =

if condition then
if typeOf(data) = α list then

List.map f data
else

raise Runtime_type_error
else

(* Same for arrays *)

This is safer, but extremely verbose.

6 / 36

Set-Theoretic Types Summarized

– Types with connectives (∨, ∧, ¬)

– Useful for overloading, branching, but often syntactically
heavy.

(Int -> Int) ∧ (Bool -> Bool) = overloaded function

if x then 3 else true : Int ∨ Bool

– In Semantic subtyping,

Types ' Sets of values
Subtyping ' Set-containment

7 / 36

Set-Theoretic Types Summarized

– Types with connectives (∨, ∧, ¬)

– Useful for overloading, branching, but often syntactically
heavy.

(Int -> Int) ∧ (Bool -> Bool) = overloaded function

if x then 3 else true : Int ∨ Bool

– In Semantic subtyping,

Types ' Sets of values
Subtyping ' Set-containment

7 / 36

Set-Theoretic Types Summarized

– Types with connectives (∨, ∧, ¬)

– Useful for overloading, branching, but often syntactically
heavy.

(Int -> Int) ∧ (Bool -> Bool) = overloaded function

if x then 3 else true : Int ∨ Bool

– In Semantic subtyping,

Types ' Sets of values
Subtyping ' Set-containment

7 / 36

Set-Theoretic Types Summarized

– Types with connectives (∨, ∧, ¬)

– Useful for overloading, branching, but often syntactically
heavy.

(Int -> Int) ∧ (Bool -> Bool) = overloaded function

if x then 3 else true : Int ∨ Bool

– In Semantic subtyping,

Types ' Sets of values
Subtyping ' Set-containment

7 / 36

Set-Theoretic Types Summarized

– Types with connectives (∨, ∧, ¬)

– Useful for overloading, branching, but often syntactically
heavy.

(Int -> Int) ∧ (Bool -> Bool) = overloaded function

if x then 3 else true : Int ∨ Bool

– In Semantic subtyping,

Types ' Sets of values
Subtyping ' Set-containment

7 / 36

Pros and Cons

Set-theoretic types Gradual types

Safe Unsafe

Expressive Too coarse

Verbose Light

Restrictive Permissive

Can we get the best of both worlds?

8 / 36

Pros and Cons

Set-theoretic types Gradual types

Safe Unsafe

Expressive Too coarse

Verbose Light

Restrictive Permissive

Can we get the best of both worlds?

8 / 36

Mixing the Two

let map condition f
(data : (α list ∨ α array)) =
if condition then

List.map f data
else

Array.map f data

– By subtyping, (α list ∨ α array) ∧ ? ≤ ?.

– Can only be used with lists or arrays

– No need for manual type checks

– We want to infer all non-gradual types (including the return
type!)

9 / 36

Mixing the Two

let map condition f
(data : (α list ∨ α array) ∧ ?) =
if condition then

List.map f data
else

Array.map f data

– By subtyping, (α list ∨ α array) ∧ ? ≤ ?.

– Can only be used with lists or arrays

– No need for manual type checks

– We want to infer all non-gradual types (including the return
type!)

9 / 36

Mixing the Two

let map condition f
(data : (α list ∨ α array) ∧ ?) =
if condition then

List.map f data
else

Array.map f data

– By subtyping, (α list ∨ α array) ∧ ? ≤ ?.

– Can only be used with lists or arrays

– No need for manual type checks

– We want to infer all non-gradual types (including the return
type!)

9 / 36

Mixing the Two

let map condition f
(data : (α list ∨ α array) ∧ ?) =
if condition then

List.map f data
else

Array.map f data

– By subtyping, (α list ∨ α array) ∧ ? ≤ ?.

– Can only be used with lists or arrays

– No need for manual type checks

– We want to infer all non-gradual types (including the return
type!)

9 / 36

Mixing the Two

let map condition f
(data : (α list ∨ α array) ∧ ?) =
if condition then

List.map f data
else

Array.map f data

– By subtyping, (α list ∨ α array) ∧ ? ≤ ?.

– Can only be used with lists or arrays

– No need for manual type checks

– We want to infer all non-gradual types (including the return
type!)

9 / 36

Mixing the Two

let map (condition : Bool) f
(data : (α list ∨ α array) ∧ ?) =
if condition then

List.map f data
else

Array.map f data

– By subtyping, (α list ∨ α array) ∧ ? ≤ ?.

– Can only be used with lists or arrays

– No need for manual type checks

– We want to infer all non-gradual types (including the return
type!)

9 / 36

Mixing the Two

let map condition (f : α -> β)
(data : (α list ∨ α array) ∧ ?) =
if condition then

List.map f data
else

Array.map f data

– By subtyping, (α list ∨ α array) ∧ ? ≤ ?.

– Can only be used with lists or arrays

– No need for manual type checks

– We want to infer all non-gradual types (including the return
type!)

9 / 36

Mixing the Two

let map condition f
(data : (α list ∨ α array) ∧ ?) : β list ∨ β array =
if condition then

List.map f data
else

Array.map f data

– By subtyping, (α list ∨ α array) ∧ ? ≤ ?.

– Can only be used with lists or arrays

– No need for manual type checks

– We want to infer all non-gradual types (including the return
type!)

9 / 36

How is it Usually Done?

1. Define a subtype-consistency relation ≤̃.

This relation is not transitive! ? ≤̃ τ ≤̃ ? for all τ

2. Embed this relation into typing rules.

Γ ` e1 : τ1 → τ ′1 Γ ` e2 : τ2 τ2 ≤̃ τ1
Γ ` e1 e2 : τ ′1

This gets even more complicated with set-theoretic types!

10 / 36

How is it Usually Done?

1. Define a subtype-consistency relation ≤̃.

This relation is not transitive! ? ≤̃ τ ≤̃ ? for all τ

2. Embed this relation into typing rules.

Γ ` e1 : τ1 → τ ′1 Γ ` e2 : τ2 τ2 ≤̃ τ1
Γ ` e1 e2 : τ ′1

This gets even more complicated with set-theoretic types!

10 / 36

How is it Usually Done?

1. Define a subtype-consistency relation ≤̃.

This relation is not transitive! ? ≤̃ τ ≤̃ ? for all τ

2. Embed this relation into typing rules.

Γ ` e1 : τ1 → τ ′1 Γ ` e2 : τ2 τ2 ≤̃ τ1
Γ ` e1 e2 : τ ′1

This gets even more complicated with set-theoretic types!

10 / 36

How is it Usually Done?

1. Define a subtype-consistency relation ≤̃.

This relation is not transitive! ? ≤̃ τ ≤̃ ? for all τ

2. Embed this relation into typing rules.

Γ ` e1 : τ1 Γ ` e2 : τ2 τ2 ≤̃ dom(τ1)

Γ ` e1 e2 : τ1◦τ2

This gets even more complicated with set-theoretic types!

10 / 36

Declarative Systems

What is the Dynamic Type?

Every occurrence of ? behaves like a distinct, existentially
quantified type variable.

let map (condition : Bool) (f : α -> β) (data : ?) : ? =
if condition then

List.map f data
else

Array.map f data

Main idea: interpret occurrences of ? as arbitrary type variables.

11 / 36

What is the Dynamic Type?

Every occurrence of ? behaves like a distinct, existentially
quantified type variable.

let map (condition : Bool) (f : α -> β) (data : ?) : ? =
if condition then

List.map f data
else

Array.map f data

Main idea: interpret occurrences of ? as arbitrary type variables.

11 / 36

What is the Dynamic Type?

Every occurrence of ? behaves like a distinct, existentially
quantified type variable.

let map (condition : Bool) (f : α -> β) (data : ?) : ? =
if condition then

List.map f data (* Here ? unifies to α list *)
else

Array.map f data

Main idea: interpret occurrences of ? as arbitrary type variables.

11 / 36

What is the Dynamic Type?

Every occurrence of ? behaves like a distinct, existentially
quantified type variable.

let map (condition : Bool) (f : α -> β) (data : ?) : ? =
if condition then

List.map f data (* Here ? unifies to α list *)
else

Array.map f data (* Here ? unifies to α array *)

Main idea: interpret occurrences of ? as arbitrary type variables.

11 / 36

What is the Dynamic Type?

Every occurrence of ? behaves like a distinct, existentially
quantified type variable.

let map (condition : Bool) (f : α -> β) (data : ?) : ? =
if condition then

List.map f data (* Here ? unifies to α list *)
else

Array.map f data (* Here ? unifies to α array *)

Main idea: interpret occurrences of ? as arbitrary type variables.

11 / 36

Our Approach

1. Translate gradual types to static types (types without ?) with
variables.

2. Define transitive relations on gradual types, and in particular
“materialization” which contains the essence of gradual typing.

3. Embed materialization into more and more complex systems
(Hindley-Milner, with subtyping, and with semantic subtyping).

Important remark: this translation is only used to define and
compute relations, and is not done in the source program.

12 / 36

Our Approach

1. Translate gradual types to static types (types without ?) with
variables.

2. Define transitive relations on gradual types, and in particular
“materialization” which contains the essence of gradual typing.

3. Embed materialization into more and more complex systems
(Hindley-Milner, with subtyping, and with semantic subtyping).

Important remark: this translation is only used to define and
compute relations, and is not done in the source program.

12 / 36

Our Approach

1. Translate gradual types to static types (types without ?) with
variables.

2. Define transitive relations on gradual types, and in particular
“materialization” which contains the essence of gradual typing.

3. Embed materialization into more and more complex systems
(Hindley-Milner, with subtyping, and with semantic subtyping).

Important remark: this translation is only used to define and
compute relations, and is not done in the source program.

12 / 36

Our Approach

1. Translate gradual types to static types (types without ?) with
variables.

2. Define transitive relations on gradual types, and in particular
“materialization” which contains the essence of gradual typing.

3. Embed materialization into more and more complex systems
(Hindley-Milner, with subtyping, and with semantic subtyping).

Important remark: this translation is only used to define and
compute relations, and is not done in the source program.

12 / 36

Discrimination and Materialization

We first define the discrimination of a gradual type:

D(?) = {X1;X2; . . .}

D((Int→ ?) ∧ ?) = {(Int→ X1) ∧ X1;

(Int→ X1) ∧ X2;

. . .}

And we define materialization (which is the inverse of precision,
as defined in Garcia [2013]):

τ1 4 τ2 ⇐⇒def ∃T1 ∈ D(τ1), σ : Vars→ GTypes,T1σ = τ2

As well as gradual subtyping:

τ1 ≤ τ2 ⇐⇒def ∃(T1,T2) ∈ D(τ1)×D(τ2),T1 ≤T T2

13 / 36

Discrimination and Materialization

We first define the discrimination of a gradual type:

D(?) = {X1;X2; . . .}

D((Int→ ?) ∧ ?) = {(Int→ X1) ∧ X1;

(Int→ X1) ∧ X2;

. . .}

And we define materialization (which is the inverse of precision,
as defined in Garcia [2013]):

τ1 4 τ2 ⇐⇒def ∃T1 ∈ D(τ1), σ : Vars→ GTypes,T1σ = τ2

As well as gradual subtyping:

τ1 ≤ τ2 ⇐⇒def ∃(T1,T2) ∈ D(τ1)×D(τ2),T1 ≤T T2

13 / 36

Discrimination and Materialization

We first define the discrimination of a gradual type:

D(?) = {X1;X2; . . .}

D((Int→ ?) ∧ ?) = {(Int→ X1) ∧ X1;

(Int→ X1) ∧ X2;

. . .}

And we define materialization (which is the inverse of precision,
as defined in Garcia [2013]):

τ1 4 τ2 ⇐⇒def ∃T1 ∈ D(τ1), σ : Vars→ GTypes,T1σ = τ2

As well as gradual subtyping:

τ1 ≤ τ2 ⇐⇒def ∃(T1,T2) ∈ D(τ1)×D(τ2),T1 ≤T T2

13 / 36

Discrimination and Materialization

We first define the discrimination of a gradual type:

D(?) = {X1;X2; . . .}

D((Int→ ?) ∧ ?) = {(Int→ X1) ∧ X1;

(Int→ X1) ∧ X2;

. . .}

And we define materialization (which is the inverse of precision,
as defined in Garcia [2013]):

τ1 4 τ2 ⇐⇒def ∃T1 ∈ D(τ1), σ : Vars→ GTypes,T1σ = τ2

As well as gradual subtyping:

τ1 ≤ τ2 ⇐⇒def ∃(T1,T2) ∈ D(τ1)×D(τ2),T1 ≤T T2

13 / 36

Subtyping

Subtyping only allows us to move inside the dynamic world, or
inside the static world. It does not allow crossing the barrier.

As opposed to consistent subtyping, it is transitive:

? ≤ ? ? � Int Int � ?

It can be used to handle unions and intersections, by simply
plugging-in the static version of semantic subtyping:

? ≤ ? ∨ Int Int ∧ ? ≤ ?

14 / 36

Subtyping

Subtyping only allows us to move inside the dynamic world, or
inside the static world. It does not allow crossing the barrier.

As opposed to consistent subtyping, it is transitive:

? ≤ ? ? � Int Int � ?

It can be used to handle unions and intersections, by simply
plugging-in the static version of semantic subtyping:

? ≤ ? ∨ Int Int ∧ ? ≤ ?

14 / 36

Subtyping

Subtyping only allows us to move inside the dynamic world, or
inside the static world. It does not allow crossing the barrier.

As opposed to consistent subtyping, it is transitive:

? ≤ ? ? � Int Int � ?

It can be used to handle unions and intersections, by simply
plugging-in the static version of semantic subtyping:

? ≤ ? ∨ Int Int ∧ ? ≤ ?

14 / 36

Materialization

Materialization is what allows us to cross the barrier from the
dynamic world into the static world (and only this way!)

? 4 τ for every τ
?→ ? 4 τ1 → τ2 for every τ1, τ2

And it is transitive:

? 4 ?→ ? 4 ?→ Int 4 Int→ Int

Therefore it can be embedded into a type system as a
subsumption rule.

15 / 36

Materialization

Materialization is what allows us to cross the barrier from the
dynamic world into the static world (and only this way!)

? 4 τ for every τ
?→ ? 4 τ1 → τ2 for every τ1, τ2

And it is transitive:

? 4 ?→ ? 4 ?→ Int 4 Int→ Int

Therefore it can be embedded into a type system as a
subsumption rule.

15 / 36

Materialization

Materialization is what allows us to cross the barrier from the
dynamic world into the static world (and only this way!)

? 4 τ for every τ
?→ ? 4 τ1 → τ2 for every τ1, τ2

And it is transitive:

? 4 ?→ ? 4 ?→ Int 4 Int→ Int

Therefore it can be embedded into a type system as a
subsumption rule.

15 / 36

Materialization

Materialization is what allows us to cross the barrier from the
dynamic world into the static world (and only this way!)

? 4 τ for every τ
?→ ? 4 τ1 → τ2 for every τ1, τ2

And it is transitive:

? 4 ?→ ? 4 ?→ Int 4 Int→ Int

Therefore it can be embedded into a type system as a
subsumption rule.

15 / 36

Declarative Type Systems

Γ, x : τ ` x : τ

Γ, x : τ1 ` e : τ2
Γ ` λx .e : τ1 → τ2

Γ ` e1 : τ1 → τ2 Γ ` e2 : τ1
Γ ` e1 e2 : τ2

And as a bonus, we get the static gradual guarantee for free!

16 / 36

Declarative Type Systems

Γ, x : τ ` x : τ

Γ, x : τ1 ` e : τ2
Γ ` λx .e : τ1 → τ2

Γ ` e1 : τ1 → τ2 Γ ` e2 : τ1
Γ ` e1 e2 : τ2

Γ ` e : τ1 τ1 4 τ2
Γ ` e : τ2

Γ ` e : τ1 τ1 ≤ τ2
Γ ` e : τ2

And as a bonus, we get the static gradual guarantee for free!

16 / 36

Declarative Type Systems

Γ, x : ∀~α.τ ` x : τ{~α := ~t}
Γ, x : τ1 ` e : τ2

Γ ` λx .e : τ1 → τ2

Γ ` e1 : τ1 → τ2 Γ ` e2 : τ1
Γ ` e1 e2 : τ2

Γ ` e1 : τ1 Γ, x : GenΓ(τ1) ` e2 : τ

Γ ` let x = e1 in e2 : τ

And as a bonus, we get the static gradual guarantee for free!

16 / 36

Declarative Type Systems

Γ, x : ∀~α.τ ` x : τ{~α := ~t}
Γ, x : τ1 ` e : τ2

Γ ` λx .e : τ1 → τ2

Γ ` e1 : τ1 → τ2 Γ ` e2 : τ1
Γ ` e1 e2 : τ2

Γ ` e1 : τ1 Γ, x : GenΓ(τ1) ` e2 : τ

Γ ` let x = e1 in e2 : τ

Γ ` e : τ1 τ1 4 τ2
Γ ` e : τ2

And as a bonus, we get the static gradual guarantee for free!

16 / 36

Declarative Type Systems

Γ, x : ∀~α.τ ` x : τ{~α := ~t}
Γ, x : τ1 ` e : τ2

Γ ` λx .e : τ1 → τ2

Γ ` e1 : τ1 → τ2 Γ ` e2 : τ1
Γ ` e1 e2 : τ2

Γ ` e1 : τ1 Γ, x : GenΓ(τ1) ` e2 : τ

Γ ` let x = e1 in e2 : τ

Γ ` e : τ1 τ1 4 τ2
Γ ` e : τ2

Γ ` e : τ1 τ1 ≤ τ2
Γ ` e : τ2

And as a bonus, we get the static gradual guarantee for free!

16 / 36

Declarative Type Systems

Γ, x : ∀~α.τ ` x : τ{~α := ~t}
Γ, x : τ1 ` e : τ2

Γ ` λx .e : τ1 → τ2

Γ ` e1 : τ1 → τ2 Γ ` e2 : τ1
Γ ` e1 e2 : τ2

Γ ` e1 : τ1 Γ, x : GenΓ(τ1) ` e2 : τ

Γ ` let x = e1 in e2 : τ

Γ ` e : τ1 τ1 4 τ2
Γ ` e : τ2

Γ ` e : τ1 τ1 ≤ τ2
Γ ` e : τ2

And as a bonus, we get the static gradual guarantee for free!

16 / 36

Back to the Example (1/2)

In the body of the function,

Γ ` data : (α array ∨ α list) ∧ ?

By subtyping:

(α array ∨ α list) ∧ ? ≤ ?

And by materialization:

? 4 α array

Hence Γ ` data : α array
=⇒ Array.map f data is well-typed.

17 / 36

Back to the Example (1/2)

In the body of the function,

Γ ` data : (α array ∨ α list) ∧ ?

By subtyping:

(α array ∨ α list) ∧ ? ≤ ?

And by materialization:

? 4 α array

Hence Γ ` data : α array
=⇒ Array.map f data is well-typed.

17 / 36

Back to the Example (1/2)

In the body of the function,

Γ ` data : (α array ∨ α list) ∧ ?

By subtyping:

(α array ∨ α list) ∧ ? ≤ ?

And by materialization:

? 4 α array

Hence Γ ` data : α array
=⇒ Array.map f data is well-typed.

17 / 36

Back to the Example (1/2)

In the body of the function,

Γ ` data : (α array ∨ α list) ∧ ?

By subtyping:

(α array ∨ α list) ∧ ? ≤ ?

And by materialization:

? 4 α array

Hence Γ ` data : α array

=⇒ Array.map f data is well-typed.

17 / 36

Back to the Example (1/2)

In the body of the function,

Γ ` data : (α array ∨ α list) ∧ ?

By subtyping:

(α array ∨ α list) ∧ ? ≤ ?

And by materialization:

? 4 α array

Hence Γ ` data : α array
=⇒ Array.map f data is well-typed.

17 / 36

Back to the Example (2/2)

Now from the outside, consider a partial application f:

Γ ` f : ((α array ∨ α list) ∧ ?)→ t

Let’s say we want to apply it to a string. We need to materialize
the type of f to string→ t.

Simply materializing ? does not work:

((α array ∨ α list) ∧ string) = ∅

Subtyping cannot be used either as it is contravariant in the
domain:

((α array ∨ α list) ∧ ?)→ t � ?→ t

18 / 36

Back to the Example (2/2)

Now from the outside, consider a partial application f:

Γ ` f : ((α array ∨ α list) ∧ ?)→ t

Let’s say we want to apply it to a string. We need to materialize
the type of f to string→ t.

Simply materializing ? does not work:

((α array ∨ α list) ∧ string) = ∅

Subtyping cannot be used either as it is contravariant in the
domain:

((α array ∨ α list) ∧ ?)→ t � ?→ t

18 / 36

Back to the Example (2/2)

Now from the outside, consider a partial application f:

Γ ` f : ((α array ∨ α list) ∧ ?)→ t

Let’s say we want to apply it to a string. We need to materialize
the type of f to string→ t.

Simply materializing ? does not work:

((α array ∨ α list) ∧ string) = ∅

Subtyping cannot be used either as it is contravariant in the
domain:

((α array ∨ α list) ∧ ?)→ t � ?→ t

18 / 36

Back to the Example (2/2)

Now from the outside, consider a partial application f:

Γ ` f : ((α array ∨ α list) ∧ ?)→ t

Let’s say we want to apply it to a string. We need to materialize
the type of f to string→ t.

Simply materializing ? does not work:

((α array ∨ α list) ∧ string) = ∅

Subtyping cannot be used either as it is contravariant in the
domain:

((α array ∨ α list) ∧ ?)→ t � ?→ t

18 / 36

Is This Still Gradual Typing?

We do not have consistency anymore, and materialization only
allows us to go one way.

τ1 τ2

τ

∼

4 4

Propositions.
1- Every typable term in the system of Siek & Taha [2006] can be
given the same type in our system.

2- Conversely, every typable term in our system can be given a
less-precise type in the system of Siek & Taha [2006].
3- Same results for the polymorphic system of Garcia & Cimini [2015].

19 / 36

Is This Still Gradual Typing?

We do not have consistency anymore, and materialization only
allows us to go one way.

τ1 τ2

τ

∼

4 4

Propositions.
1- Every typable term in the system of Siek & Taha [2006] can be
given the same type in our system.

2- Conversely, every typable term in our system can be given a
less-precise type in the system of Siek & Taha [2006].
3- Same results for the polymorphic system of Garcia & Cimini [2015].

19 / 36

Is This Still Gradual Typing?

We do not have consistency anymore, and materialization only
allows us to go one way.

τ1 τ2

τ

∼

4 4

Propositions.
1- Every typable term in the system of Siek & Taha [2006] can be
given the same type in our system.

2- Conversely, every typable term in our system can be given a
less-precise type in the system of Siek & Taha [2006].
3- Same results for the polymorphic system of Garcia & Cimini [2015].

19 / 36

Is This Still Gradual Typing?

We do not have consistency anymore, and materialization only
allows us to go one way.

τ1 τ2

τ

∼

4 4

Propositions.
1- Every typable term in the system of Siek & Taha [2006] can be
given the same type in our system.

2- Conversely, every typable term in our system can be given a
less-precise type in the system of Siek & Taha [2006].

3- Same results for the polymorphic system of Garcia & Cimini [2015].

19 / 36

Is This Still Gradual Typing?

We do not have consistency anymore, and materialization only
allows us to go one way.

τ1 τ2

τ

∼

4 4

Propositions.
1- Every typable term in the system of Siek & Taha [2006] can be
given the same type in our system.

2- Conversely, every typable term in our system can be given a
less-precise type in the system of Siek & Taha [2006].
3- Same results for the polymorphic system of Garcia & Cimini [2015].

19 / 36

Towards a Cast Language

We now want to compile our source language to a cast language
that incorporates casts and blame tracking.

(λx : ?.x〈?⇒l1 Int〉+ 1) (true〈Bool⇒l2 ?〉)

↪→ true〈Bool⇒l2 ?〉〈?⇒l1 Int〉+ 1

↪→ blame l1

(λx : Int.x + 1) 〈Int→ Int⇒l1 ?→ ?〉(true〈Bool⇒l2 ?〉)

↪→ (true〈Bool⇒l2 ?〉〈?⇒l̄1 Int〉+ 1)〈Int⇒l1 ?〉
↪→ blame l̄1

Blame tells us where an error occurred, and in which way the
boundary was crossed.

20 / 36

Towards a Cast Language

We now want to compile our source language to a cast language
that incorporates casts and blame tracking.

(λx : ?.x〈?⇒l1 Int〉+ 1) (true〈Bool⇒l2 ?〉)

↪→ true〈Bool⇒l2 ?〉〈?⇒l1 Int〉+ 1

↪→ blame l1

(λx : Int.x + 1) 〈Int→ Int⇒l1 ?→ ?〉(true〈Bool⇒l2 ?〉)

↪→ (true〈Bool⇒l2 ?〉〈?⇒l̄1 Int〉+ 1)〈Int⇒l1 ?〉
↪→ blame l̄1

Blame tells us where an error occurred, and in which way the
boundary was crossed.

20 / 36

Towards a Cast Language

We now want to compile our source language to a cast language
that incorporates casts and blame tracking.

(λx : ?.x〈?⇒l1 Int〉+ 1) (true〈Bool⇒l2 ?〉)

↪→ true〈Bool⇒l2 ?〉〈?⇒l1 Int〉+ 1

↪→ blame l1

(λx : Int.x + 1) 〈Int→ Int⇒l1 ?→ ?〉(true〈Bool⇒l2 ?〉)

↪→ (true〈Bool⇒l2 ?〉〈?⇒l̄1 Int〉+ 1)〈Int⇒l1 ?〉
↪→ blame l̄1

Blame tells us where an error occurred, and in which way the
boundary was crossed.

20 / 36

Towards a Cast Language

We now want to compile our source language to a cast language
that incorporates casts and blame tracking.

(λx : ?.x〈?⇒l1 Int〉+ 1) (true〈Bool⇒l2 ?〉)

↪→ true〈Bool⇒l2 ?〉〈?⇒l1 Int〉+ 1

↪→ blame l1

(λx : Int.x + 1) 〈Int→ Int⇒l1 ?→ ?〉(true〈Bool⇒l2 ?〉)

↪→ (true〈Bool⇒l2 ?〉〈?⇒l̄1 Int〉+ 1)〈Int⇒l1 ?〉
↪→ blame l̄1

Blame tells us where an error occurred, and in which way the
boundary was crossed.

20 / 36

Declarative Compilation

Principle: to every use of the materialization rule
corresponds a cast.

Γ ` e : τ1 τ1 4 τ2
Γ ` e : τ2

Casts of the form 〈Int→ ?⇒l ?→ Int〉 are forbidden.

Moreover, the direction of the cast can be enforced in the typing
rules:

Γ ` e : τ1

p = l =⇒ τ1 4 τ2

p = l̄ =⇒ τ2 4 τ1

Γ ` e〈τ1 ⇒
p
τ2〉 : τ2

21 / 36

Declarative Compilation

Principle: to every use of the materialization rule
corresponds a cast.

Γ ` e : τ1 τ1 4 τ2
Γ ` e : τ2

Casts of the form 〈Int→ ?⇒l ?→ Int〉 are forbidden.

Moreover, the direction of the cast can be enforced in the typing
rules:

Γ ` e : τ1

p = l =⇒ τ1 4 τ2

p = l̄ =⇒ τ2 4 τ1

Γ ` e〈τ1 ⇒
p
τ2〉 : τ2

21 / 36

Declarative Compilation

Principle: to every use of the materialization rule
corresponds a cast.

Γ ` e : τ1 7→ e ′ τ1 4 τ2

Γ ` e : τ2 7→ e ′ 〈τ1 ⇒
l
τ2〉

Casts of the form 〈Int→ ?⇒l ?→ Int〉 are forbidden.

Moreover, the direction of the cast can be enforced in the typing
rules:

Γ ` e : τ1

p = l =⇒ τ1 4 τ2

p = l̄ =⇒ τ2 4 τ1

Γ ` e〈τ1 ⇒
p
τ2〉 : τ2

21 / 36

Declarative Compilation

Principle: to every use of the materialization rule
corresponds a cast.

Γ ` e : τ1 7→ e ′ τ1 4 τ2

Γ ` e : τ2 7→ e ′ 〈τ1 ⇒
l
τ2〉

Casts of the form 〈Int→ ?⇒l ?→ Int〉 are forbidden.

Moreover, the direction of the cast can be enforced in the typing
rules:

Γ ` e : τ1

p = l =⇒ τ1 4 τ2

p = l̄ =⇒ τ2 4 τ1

Γ ` e〈τ1 ⇒
p
τ2〉 : τ2

21 / 36

Declarative Compilation

Principle: to every use of the materialization rule
corresponds a cast.

Γ ` e : τ1 7→ e ′ τ1 4 τ2

Γ ` e : τ2 7→ e ′ 〈τ1 ⇒
l
τ2〉

Casts of the form 〈Int→ ?⇒l ?→ Int〉 are forbidden.

Moreover, the direction of the cast can be enforced in the typing
rules:

Γ ` e : τ1

p = l =⇒ τ1 4 τ2

p = l̄ =⇒ τ2 4 τ1

Γ ` e〈τ1 ⇒
p
τ2〉 : τ2

21 / 36

Type Preservation and Blame Safety

Type preservation for the declarative compilation is immediate.

Blame safety is an important result of the cast language that
states that only the dynamically-typed part of the code can
cause errors.

We only insert casts when crossing from dynamic to static code,
and precisely control the direction of each cast throughout the
execution. This makes proving blame safety straightforward.

22 / 36

Type Preservation and Blame Safety

Type preservation for the declarative compilation is immediate.

Blame safety is an important result of the cast language that
states that only the dynamically-typed part of the code can
cause errors.

We only insert casts when crossing from dynamic to static code,
and precisely control the direction of each cast throughout the
execution. This makes proving blame safety straightforward.

22 / 36

Type Preservation and Blame Safety

Type preservation for the declarative compilation is immediate.

Blame safety is an important result of the cast language that
states that only the dynamically-typed part of the code can
cause errors.

We only insert casts when crossing from dynamic to static code,
and precisely control the direction of each cast throughout the
execution. This makes proving blame safety straightforward.

22 / 36

Summary

– By interpreting ? as a type variable, we can define relations on
gradual types using existing definitions on static types.

– We presented a simple, straightforward way of declaratively
adding gradual typing to existing type systems and compilation
systems.

– We highlight a direct correspondence between compilation and
type derivations.

– The declarative systems enjoy many (almost) free theorems
(blame safety, type preservation, static gradual guarantee).

23 / 36

Summary

– By interpreting ? as a type variable, we can define relations on
gradual types using existing definitions on static types.

– We presented a simple, straightforward way of declaratively
adding gradual typing to existing type systems and compilation
systems.

– We highlight a direct correspondence between compilation and
type derivations.

– The declarative systems enjoy many (almost) free theorems
(blame safety, type preservation, static gradual guarantee).

23 / 36

Summary

– By interpreting ? as a type variable, we can define relations on
gradual types using existing definitions on static types.

– We presented a simple, straightforward way of declaratively
adding gradual typing to existing type systems and compilation
systems.

– We highlight a direct correspondence between compilation and
type derivations.

– The declarative systems enjoy many (almost) free theorems
(blame safety, type preservation, static gradual guarantee).

23 / 36

Summary

– By interpreting ? as a type variable, we can define relations on
gradual types using existing definitions on static types.

– We presented a simple, straightforward way of declaratively
adding gradual typing to existing type systems and compilation
systems.

– We highlight a direct correspondence between compilation and
type derivations.

– The declarative systems enjoy many (almost) free theorems
(blame safety, type preservation, static gradual guarantee).

23 / 36

Algorithmic Systems

Part 1: Hindley-Milner

static types Tt 3 t ::= α | b | t × t | t → t

gradual types Tτ 3 τ ::= ? | α | b | τ × τ | τ → τ

source language e ::= x | c | λx . e | λx : τ. e | e e | (e, e) | πi e
| let ~α x = e in e

cast language E ::= λτ→τx .E | let x = E in E | Λ~α.E | E [~t]

| E 〈τ ⇒p τ〉 | . . .

24 / 36

Inference: Main Ideas

– Based on the works of Pottier and Rémy [2005], and of
Castagna et al. [2016].

– Our inference algorithm only uses unification, which differs
from Garcia and Cimini [2015].

– We generate structured constraints, rewrite them to obtain a
set of unification and materialization constraints, and solve
them by unification.

Note: we never infer gradual types, they can only be introduced
by explicit annotations.

25 / 36

Inference: Main Ideas

– Based on the works of Pottier and Rémy [2005], and of
Castagna et al. [2016].

– Our inference algorithm only uses unification, which differs
from Garcia and Cimini [2015].

– We generate structured constraints, rewrite them to obtain a
set of unification and materialization constraints, and solve
them by unification.

Note: we never infer gradual types, they can only be introduced
by explicit annotations.

25 / 36

Inference: Main Ideas

– Based on the works of Pottier and Rémy [2005], and of
Castagna et al. [2016].

– Our inference algorithm only uses unification, which differs
from Garcia and Cimini [2015].

– We generate structured constraints, rewrite them to obtain a
set of unification and materialization constraints, and solve
them by unification.

Note: we never infer gradual types, they can only be introduced
by explicit annotations.

25 / 36

Inference: Main Ideas

– Based on the works of Pottier and Rémy [2005], and of
Castagna et al. [2016].

– Our inference algorithm only uses unification, which differs
from Garcia and Cimini [2015].

– We generate structured constraints, rewrite them to obtain a
set of unification and materialization constraints, and solve
them by unification.

Note: we never infer gradual types, they can only be introduced
by explicit annotations.

25 / 36

Inference: Structured Constraints

We first generate constraints of the form1:

C ::=(t ≤̇ t) | (τ 4̇ α) | (x 4̇ α) | def x : τ in C | ∃~α. C | C ∧ C

〈〈x : t〉〉 = ∃α. (x 4̇ α) ∧ (α ≤̇ t)

〈〈(λx . e) : t〉〉 = ∃α1, α2. (def x : α1 in 〈〈e : α2〉〉) ∧ (α1 4̇ α1) ∧ (α1→α2 ≤̇ t)

〈〈(λx : τ. e) : t〉〉 = ∃α1, α2. (def x : τ in 〈〈e : α2〉〉) ∧ (τ 4̇ α1) ∧ (α1→α2 ≤̇ t)

Note that 〈〈(λx : ?. x) : Int→ Int〉〉 can be solved, whereas
〈〈(λx . x) : ?→ ?〉〉 cannot.

1Let constraints are omitted for the sake of simplicity
26 / 36

Inference: Structured Constraints

We first generate constraints of the form1:

C ::=(t ≤̇ t) | (τ 4̇ α) | (x 4̇ α) | def x : τ in C | ∃~α. C | C ∧ C

〈〈x : t〉〉 = ∃α. (x 4̇ α) ∧ (α ≤̇ t)

〈〈(λx . e) : t〉〉 = ∃α1, α2. (def x : α1 in 〈〈e : α2〉〉) ∧ (α1 4̇ α1) ∧ (α1→α2 ≤̇ t)

〈〈(λx : τ. e) : t〉〉 = ∃α1, α2. (def x : τ in 〈〈e : α2〉〉) ∧ (τ 4̇ α1) ∧ (α1→α2 ≤̇ t)

Note that 〈〈(λx : ?. x) : Int→ Int〉〉 can be solved, whereas
〈〈(λx . x) : ?→ ?〉〉 cannot.

1Let constraints are omitted for the sake of simplicity
26 / 36

Inference: Structured Constraints

We first generate constraints of the form1:

C ::=(t ≤̇ t) | (τ 4̇ α) | (x 4̇ α) | def x : τ in C | ∃~α. C | C ∧ C

〈〈x : t〉〉 = ∃α. (x 4̇ α) ∧ (α ≤̇ t)

〈〈(λx . e) : t〉〉 = ∃α1, α2. (def x : α1 in 〈〈e : α2〉〉) ∧ (α1 4̇ α1) ∧ (α1→α2 ≤̇ t)

〈〈(λx : τ. e) : t〉〉 = ∃α1, α2. (def x : τ in 〈〈e : α2〉〉) ∧ (τ 4̇ α1) ∧ (α1→α2 ≤̇ t)

Note that 〈〈(λx : ?. x) : Int→ Int〉〉 can be solved, whereas
〈〈(λx . x) : ?→ ?〉〉 cannot.

1Let constraints are omitted for the sake of simplicity
26 / 36

Rewriting constraints

We then rewrite the structured constraints to obtain a set
containing type constraints:

D ::=(t1 ≤̇ t2) | (τ 4̇ α)

Γ; ∆ ` (x 4̇ α) {τ{~α := ~β} 4̇ α}
Γ(x) = ∀~α. τ
~β fresh

(Γ, x : τ); ∆ ` C D

Γ; ∆ ` def x : τ in C D

27 / 36

Rewriting constraints

We then rewrite the structured constraints to obtain a set
containing type constraints:

D ::=(t1 ≤̇ t2) | (τ 4̇ α)

Γ; ∆ ` (x 4̇ α) {τ{~α := ~β} 4̇ α}
Γ(x) = ∀~α. τ
~β fresh

(Γ, x : τ); ∆ ` C D

Γ; ∆ ` def x : τ in C D

27 / 36

Rewriting constraints

We then rewrite the structured constraints to obtain a set
containing type constraints:

D ::=(t1 ≤̇ t2) | (τ 4̇ α)

Γ; ∆ ` (x 4̇ α) {τ{~α := ~β} 4̇ α}
Γ(x) = ∀~α. τ
~β fresh

(Γ, x : τ); ∆ ` C D

Γ; ∆ ` def x : τ in C D

27 / 36

Solving constraints

Everything is finally solved using unification, by replacing every
occurence of ? in materialization constraints by a distinct type
variable.

For example, the constraint

?→ ?→ ? 4̇ Bool→ α

will become
X1 → X2 → X3 4̇ Bool→ α

and solving it will return the unifier

θ : X1 7→ Bool;X2 7→ β;X3 7→ γ;α 7→ (β → γ)

28 / 36

Solving constraints

Everything is finally solved using unification, by replacing every
occurence of ? in materialization constraints by a distinct type
variable.

For example, the constraint

?→ ?→ ? 4̇ Bool→ α

will become
X1 → X2 → X3 4̇ Bool→ α

and solving it will return the unifier

θ : X1 7→ Bool;X2 7→ β;X3 7→ γ;α 7→ (β → γ)

28 / 36

Solving constraints

Everything is finally solved using unification, by replacing every
occurence of ? in materialization constraints by a distinct type
variable.

For example, the constraint

?→ ?→ ? 4̇ Bool→ α

will become
X1 → X2 → X3 4̇ Bool→ α

and solving it will return the unifier

θ : X1 7→ Bool;X2 7→ β;X3 7→ γ;α 7→ (β → γ)

28 / 36

Solving constraints

Everything is finally solved using unification, by replacing every
occurence of ? in materialization constraints by a distinct type
variable.

For example, the constraint

?→ ?→ ? 4̇ Bool→ α

will become
X1 → X2 → X3 4̇ Bool→ α

and solving it will return the unifier

θ : X1 7→ Bool;X2 7→ β;X3 7→ γ;α 7→ (β → γ)

28 / 36

Compilation and Results

To summarize, given an expression e, and a constraint derivation D
of Γ; ∆ ` 〈〈e : t〉〉 D, we can compute a unifier θ satisfying D.

This derivation and the associated unifier can be used to compile
e in a straightforward way: to every materialization constraint
introduced in D corresponds a cast.

LxMDθ = x〈τθ ⇒l αθ〉 if D = Γ; ∆ ` 〈〈x : t〉〉 {(τ 4̇ α), (α ≤̇ t)}

Inference (and compilation) for this system is sound,
type-preserving and complete w.r.t. the declarative system.

29 / 36

Compilation and Results

To summarize, given an expression e, and a constraint derivation D
of Γ; ∆ ` 〈〈e : t〉〉 D, we can compute a unifier θ satisfying D.

This derivation and the associated unifier can be used to compile
e in a straightforward way: to every materialization constraint
introduced in D corresponds a cast.

LxMDθ = x〈τθ ⇒l αθ〉 if D = Γ; ∆ ` 〈〈x : t〉〉 {(τ 4̇ α), (α ≤̇ t)}

Inference (and compilation) for this system is sound,
type-preserving and complete w.r.t. the declarative system.

29 / 36

Compilation and Results

To summarize, given an expression e, and a constraint derivation D
of Γ; ∆ ` 〈〈e : t〉〉 D, we can compute a unifier θ satisfying D.

This derivation and the associated unifier can be used to compile
e in a straightforward way: to every materialization constraint
introduced in D corresponds a cast.

LxMDθ = x〈τθ ⇒l αθ〉 if D = Γ; ∆ ` 〈〈x : t〉〉 {(τ 4̇ α), (α ≤̇ t)}

Inference (and compilation) for this system is sound,
type-preserving and complete w.r.t. the declarative system.

29 / 36

Compilation and Results

To summarize, given an expression e, and a constraint derivation D
of Γ; ∆ ` 〈〈e : t〉〉 D, we can compute a unifier θ satisfying D.

This derivation and the associated unifier can be used to compile
e in a straightforward way: to every materialization constraint
introduced in D corresponds a cast.

LxMDθ = x〈τθ ⇒l αθ〉 if D = Γ; ∆ ` 〈〈x : t〉〉 {(τ 4̇ α), (α ≤̇ t)}

Inference (and compilation) for this system is sound,
type-preserving and complete w.r.t. the declarative system.

29 / 36

Part 2: Adding subtyping

We saw that, declaratively, adding subtyping is just a matter of
adding one subsumption rule.

Constraint generation is also unchanged, unification constraints
just become subtyping constraints.

However, to solve constraints such as {(α ≤̇ t1), (α ≤̇ t2)} we
have to compute greatest lower bounds.

For example,

fun x -> if (fst x) then (1 + snd x) else x

should be of type (Bool×Int) → (Int | (Bool×Int))

30 / 36

Part 2: Adding subtyping

We saw that, declaratively, adding subtyping is just a matter of
adding one subsumption rule.

Constraint generation is also unchanged, unification constraints
just become subtyping constraints.

However, to solve constraints such as {(α ≤̇ t1), (α ≤̇ t2)} we
have to compute greatest lower bounds.

For example,

fun x -> if (fst x) then (1 + snd x) else x

should be of type (Bool×Int) → (Int | (Bool×Int))

30 / 36

Part 2: Adding subtyping

We saw that, declaratively, adding subtyping is just a matter of
adding one subsumption rule.

Constraint generation is also unchanged, unification constraints
just become subtyping constraints.

However, to solve constraints such as {(α ≤̇ t1), (α ≤̇ t2)} we
have to compute greatest lower bounds.

For example,

fun x -> if (fst x) then (1 + snd x) else x

should be of type (Bool×Int) → (Int | (Bool×Int))

30 / 36

Part 2: Adding subtyping

We saw that, declaratively, adding subtyping is just a matter of
adding one subsumption rule.

Constraint generation is also unchanged, unification constraints
just become subtyping constraints.

However, to solve constraints such as {(α ≤̇ t1), (α ≤̇ t2)} we
have to compute greatest lower bounds.

For example,

fun x -> if (fst x) then (1 + snd x) else x

should be of type (Bool×Int) → (Int | (Bool×Int))

30 / 36

Part 3: Adding Set-Theoretic Types

The types become:

static types t ::= α | b | t × t | t → t | t ∨ t | ¬t | 0
gradual types τ ::= ? | α | b | τ × τ | τ → τ | τ ∨ τ | ¬τ | 0

Constraints are unchanged. However, the inference algorithm is
now based on the tallying algorithm of Castagna et al. [2015],
rather than unification (but the principle is the same).

{(α ≤̇ t1), (α ≤̇ t2)} ' {(α ≤̇ t1 ∧ t2)}

Soundness still holds for the inference algorithm, but
completeness no longer holds.

31 / 36

Part 3: Adding Set-Theoretic Types

The types become:

static types t ::= α | b | t × t | t → t | t ∨ t | ¬t | 0
gradual types τ ::= ? | α | b | τ × τ | τ → τ | τ ∨ τ | ¬τ | 0

Constraints are unchanged. However, the inference algorithm is
now based on the tallying algorithm of Castagna et al. [2015],
rather than unification (but the principle is the same).

{(α ≤̇ t1), (α ≤̇ t2)} ' {(α ≤̇ t1 ∧ t2)}

Soundness still holds for the inference algorithm, but
completeness no longer holds.

31 / 36

Part 3: Adding Set-Theoretic Types

The types become:

static types t ::= α | b | t × t | t → t | t ∨ t | ¬t | 0
gradual types τ ::= ? | α | b | τ × τ | τ → τ | τ ∨ τ | ¬τ | 0

Constraints are unchanged. However, the inference algorithm is
now based on the tallying algorithm of Castagna et al. [2015],
rather than unification (but the principle is the same).

{(α ≤̇ t1), (α ≤̇ t2)} ' {(α ≤̇ t1 ∧ t2)}

Soundness still holds for the inference algorithm, but
completeness no longer holds.

31 / 36

A Remark About The Decidability of Subtyping

Recall that subtyping is defined as an existential quantification.

However, we show that it reduces in linear time to subtyping on
static types.

We can replace all the occurrences of ? of the same polarity by the
same variable.

(?→ ?) ∨ ? 7→ (X0 → X1) ∨ X1

This is enough to decide subtyping

32 / 36

A Remark About The Decidability of Subtyping

Recall that subtyping is defined as an existential quantification.

However, we show that it reduces in linear time to subtyping on
static types.

We can replace all the occurrences of ? of the same polarity by the
same variable.

(?→ ?) ∨ ? 7→ (X0 → X1) ∨ X1

This is enough to decide subtyping

32 / 36

A Remark About The Decidability of Subtyping

Recall that subtyping is defined as an existential quantification.

However, we show that it reduces in linear time to subtyping on
static types.

We can replace all the occurrences of ? of the same polarity by the
same variable.

(?→ ?) ∨ ? 7→ (X0 → X1) ∨ X1

This is enough to decide subtyping

32 / 36

A Remark About The Decidability of Subtyping

Recall that subtyping is defined as an existential quantification.

However, we show that it reduces in linear time to subtyping on
static types.

We can replace all the occurrences of ? of the same polarity by the
same variable.

(?→ ?) ∨ ? 7→ (X0 → X1) ∨ X1

This is enough to decide subtyping

32 / 36

Some Remarks About Semantics (1/2)

The semantics of the cast calculus for HM without subtyping are
basically the same as those presented by Siek et al. [2015].

[ExpandL] V 〈τ ⇒p ?〉 ↪→ V 〈τ ⇒p gnd(τ)〉〈gnd(τ)⇒p ?〉
[Collapse] V 〈ρ⇒p ?〉〈?⇒q ρ′〉 ↪→ V if ρ = ρ′

[Blame] V 〈ρ⇒p ?〉〈?⇒q ρ′〉 ↪→ blame q if ρ 6= ρ′

gnd(τ1 → τ2) = ?→ ? gnd(τ1 × τ2) = ?× ? gnd(b) = b

Adding subtyping is just a matter of allowing ρ ≤ ρ′.

33 / 36

Some Remarks About Semantics (1/2)

The semantics of the cast calculus for HM without subtyping are
basically the same as those presented by Siek et al. [2015].

[ExpandL] V 〈τ ⇒p ?〉 ↪→ V 〈τ ⇒p gnd(τ)〉〈gnd(τ)⇒p ?〉
[Collapse] V 〈ρ⇒p ?〉〈?⇒q ρ′〉 ↪→ V if ρ = ρ′

[Blame] V 〈ρ⇒p ?〉〈?⇒q ρ′〉 ↪→ blame q if ρ 6= ρ′

gnd(τ1 → τ2) = ?→ ? gnd(τ1 × τ2) = ?× ? gnd(b) = b

Adding subtyping is just a matter of allowing ρ ≤ ρ′.

33 / 36

Some Remarks About Semantics (1/2)

The semantics of the cast calculus for HM without subtyping are
basically the same as those presented by Siek et al. [2015].

[ExpandL] V 〈τ ⇒p ?〉 ↪→ V 〈τ ⇒p gnd(τ)〉〈gnd(τ)⇒p ?〉
[Collapse] V 〈ρ⇒p ?〉〈?⇒q ρ′〉 ↪→ V if ρ = ρ′

[Blame] V 〈ρ⇒p ?〉〈?⇒q ρ′〉 ↪→ blame q if ρ 6= ρ′

gnd(τ1 → τ2) = ?→ ? gnd(τ1 × τ2) = ?× ? gnd(b) = b

Adding subtyping is just a matter of allowing ρ ≤ ρ′.

33 / 36

Some Remarks About Semantics (2/2)

Adding set-theoretic types is more complicated, mostly because
we need to take into account unions and intersections containing ?.

We defined a grounding operator τ1/τ2 to compute the
intermediate type of a cast.

(Int→ Int) ∨ (Bool→ Bool)/(Int→ Int) ∨ ? = (Int→ Int)∨(?→ ?)

[ExpandL] V 〈τ1 ⇒
p
τ2〉 ↪→ V 〈τ1 ⇒

p τ1/τ2〉〈τ1/τ2 ⇒
p
τ2〉

The full semantics are conservative, but complicated and contain
six additional rules to handle corner cases.

34 / 36

Some Remarks About Semantics (2/2)

Adding set-theoretic types is more complicated, mostly because
we need to take into account unions and intersections containing ?.

We defined a grounding operator τ1/τ2 to compute the
intermediate type of a cast.

(Int→ Int) ∨ (Bool→ Bool)/(Int→ Int) ∨ ? = (Int→ Int)∨(?→ ?)

[ExpandL] V 〈τ1 ⇒
p
τ2〉 ↪→ V 〈τ1 ⇒

p τ1/τ2〉〈τ1/τ2 ⇒
p
τ2〉

The full semantics are conservative, but complicated and contain
six additional rules to handle corner cases.

34 / 36

Some Remarks About Semantics (2/2)

Adding set-theoretic types is more complicated, mostly because
we need to take into account unions and intersections containing ?.

We defined a grounding operator τ1/τ2 to compute the
intermediate type of a cast.

(Int→ Int) ∨ (Bool→ Bool)/(Int→ Int) ∨ ? = (Int→ Int)∨(?→ ?)

[ExpandL] V 〈τ1 ⇒
p
τ2〉 ↪→ V 〈τ1 ⇒

p τ1/τ2〉〈τ1/τ2 ⇒
p
τ2〉

The full semantics are conservative, but complicated and contain
six additional rules to handle corner cases.

34 / 36

Some Remarks About Semantics (2/2)

Adding set-theoretic types is more complicated, mostly because
we need to take into account unions and intersections containing ?.

We defined a grounding operator τ1/τ2 to compute the
intermediate type of a cast.

(Int→ Int) ∨ (Bool→ Bool)/(Int→ Int) ∨ ? = (Int→ Int)∨(?→ ?)

[ExpandL] V 〈τ1 ⇒
p
τ2〉 ↪→ V 〈τ1 ⇒

p τ1/τ2〉〈τ1/τ2 ⇒
p
τ2〉

The full semantics are conservative, but complicated and contain
six additional rules to handle corner cases.

34 / 36

Summary

– We defined a sound and complete type inference algorithm for
a gradually-typed version of ML.

– By interpreting once again ? as a type variable, the
aforementionned inference algorithm reuses existing unification
algorithms.

– We also gave a sound inference algorithm for an extension of this
language with set-theoretic types, which reuses the tallying
algorithm.

– We provided sound semantics for a cast calculus with
set-theoretic gradual types and polymorphism.

35 / 36

Summary

– We defined a sound and complete type inference algorithm for
a gradually-typed version of ML.

– By interpreting once again ? as a type variable, the
aforementionned inference algorithm reuses existing unification
algorithms.

– We also gave a sound inference algorithm for an extension of this
language with set-theoretic types, which reuses the tallying
algorithm.

– We provided sound semantics for a cast calculus with
set-theoretic gradual types and polymorphism.

35 / 36

Summary

– We defined a sound and complete type inference algorithm for
a gradually-typed version of ML.

– By interpreting once again ? as a type variable, the
aforementionned inference algorithm reuses existing unification
algorithms.

– We also gave a sound inference algorithm for an extension of this
language with set-theoretic types, which reuses the tallying
algorithm.

– We provided sound semantics for a cast calculus with
set-theoretic gradual types and polymorphism.

35 / 36

Summary

– We defined a sound and complete type inference algorithm for
a gradually-typed version of ML.

– By interpreting once again ? as a type variable, the
aforementionned inference algorithm reuses existing unification
algorithms.

– We also gave a sound inference algorithm for an extension of this
language with set-theoretic types, which reuses the tallying
algorithm.

– We provided sound semantics for a cast calculus with
set-theoretic gradual types and polymorphism.

35 / 36

The End

Thanks for listening!

Comments, questions, suggestions?

36 / 36

	Declarative Systems
	Algorithmic Systems

