POPLMark Reloaded:
Mechanizing Logical Relations Proofs

Brigitte Pientka
McGill University, Montreal
Ludwig Maximilian University, Munich

Joint work with A. Abel (Chalmers), G. Allais (Nijmegen), A. Hameer (McGill), A. Momigliano (Milan), S. Schäfer (Saarbrücken), K. Stark (Saarbrücken)
Mechanizing formal systems together with proofs establishes trust.
Mechanizing formal systems together with proofs establishes trust... and avoid flaws.
Programs go wrong.

Testing correctness of C Compilers (Vu et al. PLDI'14):

• GCC and LLVM had over 195 bugs
• Compcert the only compiler where no bugs were found

“This is a strong testimony to the promise and quality of verified compilers.”

[Vu et al. PLDI'14]
Programs go wrong.

Testing correctness of C Compilers [Vu et.al PLDI’14]:

- GCC and LLVM had over 195 bugs
- Compcert the only compiler where no bugs were found

“This is a strong testimony to the promise and quality of verified compilers.”

[Vu et al PLDI'14]
Java is Type Safe — Probably

Sophia Drossopoulou and Susan Eisenbach
Department of Computing
Imperial College of Science, Technology and Medicine
e-mail: sd and se @doc.ic.ac.uk

Abstract. Amidst rocketing numbers of enthusiastic Java programmers and internet applet users, there is growing concern about the security of executing Java code produced by external, unknown sources. Rather than waiting to find out empirically what damage Java programs do, we aim to examine first the language and then the environment looking for points of weakness. A proof of the soundness of the Java type system is a first, necessary step towards demonstrating which Java programs won’t compromise computer security.
We consider a type safe subset of Java describing primitive types, classes, inheritance, instance variables and methods, interfaces, shadowing, dynamic method binding, object creation, null and arrays. We argue that for this subset the type system is sound, by proving that program execution preserves the types, up to subclasses/subinterfaces.
Programming lang. designs and implementations go wrong.

Type Safety of Java (20 years ago)

Java is not type-safe

Abstract. An aspect of the internet security is the design and implementation of programming languages. Java is a popular and type-safe language. However, it has been found that Java is not type-safe. In this paper, we will discuss the reasons why Java is not type-safe.

Java is not type-safe, though it was intended to be.

Java, the internal Java Virtual Machine (JVM) data structures, including JVM crashes (core dumps). Thus Java security,

Java is not type-safe, Chris and modify fields (and invoke methods) private to another object. It may read and

Java is not type-safe. It may read and modify fields (and invoke methods) private to another object. It may read and
developed for that

Java is not type-safe.
Programming lang. designs and implementations go wrong.

Type Safety of Java and Scala (20 years later)

Java is Type Safe

- Java is type-safe, etc.
- Java object may read a
- unsafe internal Java Virt.
- Safety internal Java Virt.
- JVM crashes (core dumps)

Java and Scala’s Type Systems are Unsound

- The Existential Crisis of Null Pointers
- Java and Scala

Java is Probably e-safe

- Nada Amin
 EPFL, Switzerland
 nada.amin@epfl.ch

- Ross Tate
 Cornell University, USA
 ross@cs.cornell.edu

Type Safety of Java and Scala (20 years later)

Type Safety of Java and Scala (20 years later)
Programming lang. designs and implementations go wrong.

Type Safety of Java and Scala (20 years later)
“The truth of the matter is that putting languages together is a very tricky business. When one attempts to combine language concepts, unexpected and counterintuitive interactions arise. At this point, even the most experienced designers intuition must be buttressed by a rigorous definition of what the language means.”

- J. Reynolds
The problem: Correct proofs are tricky to write.

- a lot of overhead
 (on paper and even more so in a proof assistant)
- challenging to keep track of details
- hard to understand interaction between different features
- difficulties increase with size
What are good high-level proof languages that make it easier to mechanize and maintain formal guarantees?
POPLMark – A Look Back ...
Spotlight on

“type preservation and soundness, unique decomposition properties of operational semantics, proofs of equivalence between algorithmic and declarative versions of type systems.”

- Structural induction proofs (syntactic)
- Representing and reasoning about structures with binders
- Easy to be understood; text book description (TAPL)
- Small (can be mechanized in a couple of hours or days)
- Explore different encoding techniques for representing bindings
POPLMark Challenge – The Good

✓ Popularized the use of proof assistants
✓ Many submitted solutions
✓ Good way to learn about a technique
✓ Mechanizing proofs is addictive!
POPLMark Challenge – The Bad

• Did we achieve “a future where the papers in conferences such as POPL and ICFP are routinely accompanied by mechanically checkable proofs of the theorems they claim.”?

• Did we get better tool support for mechanizing proofs?
POPLMark Challenge – The Ugly

✗ Did not identify bugs or flaws in existing systems
✗ Did not inspire the development of new theoretical foundations
✗ Did not push existing systems to their limit

“Type soundness results are two a penny.”
Andrew Pitts
Beyond the POPLMark Challenge!
Beyond the POPLMark Challenge

“The POPLMark Challenge is not meant to be exhaustive: other aspects of programming language theory raise formalization difficulties that are interestingly different from the problems we have proposed - to name a few: more complex binding constructs such as mutually recursive definitions, logical relations proofs, coinductive simulation arguments, undecidability results, and linear handling of type environments.” [Aydemir et. al. 2005]
POPLMark Reloaded –
Goals and Target Audience
User Community Including Students

- Learn logical relations proofs a modern way
- Be able to grow the development to rich type theories (for example dependently typed systems)
- Understand the trade-offs in choosing a particular proof environment when tackling such a proof
• Highlight features that are ideally suited for built-in support
• Highlight current shortcomings (theoretical and practical) in existing proof environments
• Signpost to advertise a given system
• Stimulate research on foundations of proof environments
• Benchmark for evaluating and comparing systems
POPLMark Reloaded:
Strong normalization for the simply-typed lambda-calculus with typed-reductions using Kripke-style logical relations
Simply Typed λ-calculus:

Terms \(M, N \) ::= \(x \) \mid \lambda x: A. M \mid M \ N

Types \(A, B \) ::= A \Rightarrow B \mid i
Simply Typed λ-Calculus with Type-Directed Reductions

Simply Typed λ-calculus:

Terms $M, N ::= x \mid \lambda x:A.M \mid M N$

Types $A, B ::= A \Rightarrow B \mid i$

Type-directed reductions [Goguen’95]:

$\Gamma \vdash M \rightarrow N : A$

$\Gamma \vdash \lambda x:A.M : A \Rightarrow B \quad \Gamma \vdash N : A$

$\Gamma \vdash (\lambda x:A.M) \ N \rightarrow [N/x]M : B \ \beta$

$\Gamma \vdash M \rightarrow M' : A \Rightarrow B \quad \Gamma \vdash N : A$

$\Gamma \vdash M N \rightarrow M' N : B$

$\Gamma \vdash M : A \Rightarrow B \quad \Gamma \vdash N \rightarrow N' : A$

$\Gamma \vdash M N \rightarrow M N' : B$

$\Gamma, x:A \vdash M \rightarrow M' : B$

$\Gamma \vdash \lambda x:A.M \rightarrow \lambda x:A.M' : A \Rightarrow B$
Why Type-directed Reductions?

- Simplifies the study of its meta-theory.
- Concise presentation of the important issues that arise.
- Widely applicable in studying subtyping, type-preserving compilation, etc.
- Types are necessary if we want η-expansion.

$M \neq \lambda y: A. M'$

$$\frac{\Gamma \vdash M \rightarrow \lambda x: A. M \ x : A \Rightarrow B}{\ast}$$

WARNING: This rule doesn’t actually work, if we want strong normalization. Use at your own risk.
Normalization

- A term M is said to be *weakly normalising* if there is a rewrite sequence starting in M that eventually ends in a normal form.
- A term M is said to be *strongly normalising* if all rewrite sequences starting in M end eventually in a normal form.
Often defined as an accessibility relation:

\[\forall N. \Gamma \vdash M \rightarrow N : A \implies \Gamma \vdash N : A \in \text{sn} \]

\[\Gamma \vdash M : A \in \text{sn} \]

“the reduct analysis becomes increasingly annoying in normalization proofs for more and more complex systems.”

Joachimski and Matthes [2003]
A term M is said to be weakly normalising if there is a rewrite sequence starting in M that eventually ends in a normal form.
A term M is said to be *weakly normalising* if there is a rewrite sequence starting in M that eventually ends in a normal form.

Set of all weakly normalising terms: the smallest set of all normal forms closed under expansion.
A term M is said to be *weakly normalising* if there is a rewrite sequence starting in M that eventually ends in a normal form.

Set of all weakly normalising terms: the smallest set of all normal forms closed under expansion.

How to obtain the set of all strongly normalising terms?

\Rightarrow Similar . . . with a few restrictions
A Modular Approach to Strongly Normalizing Terms
[F. van Raamsdonk and P. Severi 1995]

- Inductive characterization of normal forms ($\Gamma \vdash M : A \in SN$)
- Leads to modular proofs – on paper and in mechanizations

“the new proofs are essentially simpler than already existing ones.”
F. van Raamsdonk and P. Severi
Inductive definition of well-typed strongly normalizing terms

Neutral terms

\[
\begin{array}{c}
\Gamma \vdash x : A \in \Gamma \\
\Gamma \vdash x : A \in \text{SNe} \\
\end{array}
\]

\[
\begin{array}{c}
\Gamma \vdash R : A \Rightarrow B \in \text{SNe} \\
\Gamma \vdash M : A \in \text{SN} \\
\end{array}
\]

\[
\begin{array}{c}
\Gamma \vdash R \cdot M : B \in \text{SNe} \\
\end{array}
\]

Normal terms

\[
\begin{array}{c}
\Gamma \vdash R : A \in \text{SNe} \\
\Gamma \vdash R : A \in \text{SN} \\
\end{array}
\]

\[
\begin{array}{c}
\Gamma, x : A \vdash M : B \in \text{SN} \\
\Gamma \vdash \lambda x : A. M : A \Rightarrow B \in \text{SNe} \\
\end{array}
\]

\[
\begin{array}{c}
\Gamma \vdash M \rightarrow_{\text{SN}} M' : A \\
\Gamma \vdash M' : A \in \text{SN} \\
\end{array}
\]

\[
\begin{array}{c}
\Gamma \vdash M : A \in \text{SN} \\
\end{array}
\]

Strong head reduction

\[
\begin{array}{c}
\Gamma \vdash N : A \in \text{SN} \\
\Gamma, x : A \vdash M : B \\
\end{array}
\]

\[
\begin{array}{c}
\Gamma \vdash (\lambda x . M) \cdot N \rightarrow_{\text{SN}} [N/x]M : B \\
\end{array}
\]

\[
\begin{array}{c}
\Gamma \vdash R \rightarrow_{\text{SN}} R' : A \Rightarrow B \\
\Gamma \vdash M : A \\
\end{array}
\]

\[
\begin{array}{c}
\Gamma \vdash R \cdot M \rightarrow_{\text{SN}} R' \cdot M \\
\end{array}
\]
Challenge 1: Equivalence between accessibility and inductive definition of strongly normalizing terms:

\[\Gamma \vdash M : A \in \text{sn} \iff \Gamma \vdash M : A \in \text{SN}. \]
Strong Normalization using Logical Predicate

\[\Gamma \vdash M \in R \]

\[\Gamma \vdash M \in R \iff \Gamma \vdash M : i \in SN \]

\[\Gamma \vdash M \in R \Rightarrow B \iff \Gamma \vdash M : A \Rightarrow B \] and for all \(N, \Delta \) such that \(\Gamma \leq \rho \Delta \), if \(\Delta \vdash N \in R \) then \(\Delta \vdash (\rho M) N \in R \).

• Contexts arise naturally.
• They are necessary!
• The definition scales to dependently typed setting and stating properties about type-directed equivalence of lambda-terms.

Do we really need to model terms in a "local" context and use Kripke-style context extensions?
Strong Normalization using Logical Predicate

Definition (Reducibility Candidates: $\Gamma \vdash M \in \mathcal{R}_A$)

$\Gamma \vdash M \in \mathcal{R}_i$ iff $\Gamma \vdash M : i \in \text{SN}$

$\Gamma \vdash M \in \mathcal{R}_{A\Rightarrow B}$ iff $\Gamma \vdash M : A \Rightarrow B$ and

for all N, Δ such that $\Gamma \leq_{\rho} \Delta$,

if $\Delta \vdash N \in \mathcal{R}_A$ then $\Delta \vdash ([\rho]M)N \in \mathcal{R}_B$.

- Contexts arise naturally.
- They are necessary!
- The definition scales to dependently typed setting and stating properties about type-directed equivalence of lambda-terms.
Strong Normalization using Logical Predicate

Definition (Reducibility Candidates: \(\Gamma \vdash M \in \mathcal{R}_A \))

\[
\begin{align*}
\Gamma \vdash M \in \mathcal{R}_i & \iff \Gamma \vdash M : i \in \text{SN} \\
\Gamma \vdash M \in \mathcal{R}_{A\Rightarrow B} & \iff \Gamma \vdash M : A \Rightarrow B \text{ and } \\
& \text{for all } N, \Delta \text{ such that } \Gamma \leq_{\rho} \Delta, \\
& \text{if } \Delta \vdash N \in \mathcal{R}_A \text{ then } \Delta \vdash ([\rho]M)N \in \mathcal{R}_B.
\end{align*}
\]

- Contexts arise naturally.
- They are necessary!
- The definition scales to dependently typed setting and stating properties about type-directed equivalence of lambda-terms.

Do we really need the weakening substitution \(\rho \)?
Strong Normalization using Logical Predicate

Definition (Reducibility Candidates: $\Gamma \vdash M \in \mathcal{R}_A$)

- $\Gamma \vdash M \in \mathcal{R}_i$ iff $\Gamma \vdash M : i \in \text{SN}$
- $\Gamma \vdash M \in \mathcal{R}_{A \Rightarrow B}$ iff $\Gamma \vdash M : A \Rightarrow B$ and

 for all N, Δ such that $\Gamma \leq_{\rho} \Delta$,

 if $\Delta \vdash N \in \mathcal{R}_A$ then $\Delta \vdash ([\rho]M)N \in \mathcal{R}_B$.

- Contexts arise naturally.
- They are necessary!
- The definition scales to dependently typed setting and stating properties about type-directed equivalence of lambda-terms.

Do we really need to model terms in a “local” context and use Kripke-style context extensions?
Challenge 2: Strong normalization for simply typed λ-calculus

CR 1: If $\Gamma \vdash M \in \mathcal{R}_A$ then $\Gamma \vdash M : A \in SN$.

CR 2: If $\Gamma \vdash R : A \in SNe$ then $\Gamma \vdash R \in \mathcal{R}_A$.

CR 3: If $\Gamma \vdash M \rightarrow_{SN} M' : A$ and $\Gamma \vdash M' \in \mathcal{R}_A$ then $\Gamma \vdash M \in \mathcal{R}_A$.

Main fundamental lemma:

If $\Gamma \vdash M : A$ and $\Gamma' \vdash \sigma \in \mathcal{R}_\Gamma$ then $\Gamma' \vdash [\sigma]M \in \mathcal{R}_A$.
Challenges in the Proof(s)

- Definitions use well-typed terms
- Stratified definitions for reducibility candidates (not strictly positive!)
- Simultaneous substitutions and weakenings
- Basic infrastructure
 - Substitution properties about terms
 - Weakening and Strengthening of type-directed reductions
 - Weakening, Exchange, and Strengthening for typing
 - Weakening, Anti-weakening for strongly normalizing terms
 - Weakening for reducibility candidates
- Induction principles
Towards solving the challenge problems
Beluga: Programming and Proof Environment

- Below the surface: Support for key concepts based on Contextual LF
 [TOCL’08, POPL’08, LFMTP’13, ESOP’17, . . .]
- Above the surface: (Co)Inductive Proofs as (Co)Recursive Programs using (Co)pattern Matching
 [POPL’08, IJCAR’10, POPL’12, POPL’13, CADE’15, ICFP’16, . . .]
A Quick Guided Tour

Demo
• Use HOAS to characterize simply typed terms
• Define SN inductively
• Use stratified definition for reducibility
• Extension to disjoint sums.
Lessons Learned – The Good, the Bad and the Ugly

✓ HOAS is great to model binding structure!
✓ Built-in support for substitutions and weakening is very useful!
✓ Take advantage of dependent types to model intrinsically typed terms, typed-reductions, typed SN, etc.
✓ Great to investigate and motivate extensions, first-class weakenings, to the theory of simultaneous substitutions
 Unification in the presence of renamings.
✓ Great to find bugs and make system more robust.
 Particularly coverage and termination checking
 Motivated lexicographic orderings for termination checking
 Ordering does not take into account exchange
✗ Interactive proof development mode clearly needs work.
✗ No proof automation – know what you want to do.
• Use well-typed de Bruijn encoding for simply typed terms

\[
\text{Inductive } \text{tm} \ (\Gamma : \text{ctx}) : \text{ty} \rightarrow \text{Type} := \\
\text{\qquad | \ var \ A : \ \text{Var} \ \Gamma \ A \rightarrow \ \text{tm} \ \Gamma \ A} \\
\text{\qquad | \ app \ A \ B : \ \text{tm} \ \Gamma \ (A \Rightarrow B) \rightarrow \ \text{tm} \ \Gamma \ A \rightarrow \ \text{tm} \ \Gamma \ B} \\
\text{\qquad | \ lam \ A \ B : \ \text{tm} \ (A :: \Gamma) \ B \rightarrow \ \text{tm} \ \Gamma \ (A \Rightarrow B).}
\]

• Weakenings (renamings) are functions mapping positions in a context to positions in another context.

\[\rho : \forall \ A, \ \text{Var} \ \Gamma \ A \rightarrow \ \text{Var} \ \Gamma' \ A.\]

• Substitutions are functions mapping positions in a context to terms in another context.

\[\sigma : \forall \ A, \ \text{Var} \ \Gamma \ A \rightarrow \ \text{tm} \ \Gamma' \ A\]

• Following explicit substitution calc. [Abadi et al 1991]
✓ Everything could be proven "as expected"
✓ Repetitive proofs (renaming, anti-renaming lemmas) proven using proof scripts and Coq tactics.
✗ Approx. 200 lines of technical boilerplate code

Rethinking Autosubst: well-suited for automatically generating boilerplate code for well-scoped representations (not well-typed ones)
• Use generic-syntax library to define well-typed de Bruijn encoding for simply typed terms
 \((\text{Type} \times \text{List Type})\)-indexed functor

 Library size: 1600 LOC

• Theory of renaming and substitution is not internalised.

• Worked well for expert user

• Lead to implementing new generic results as part of the generic-syntax library that were previously overlooked
Comparisons LOC (to be taken cautiously...)

<table>
<thead>
<tr>
<th></th>
<th>Beluga</th>
<th>Coq</th>
<th>Agda</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>STLC</td>
<td>STLC+</td>
<td>STLC</td>
</tr>
<tr>
<td>Library (generic-syntax)</td>
<td>1600</td>
<td>1600</td>
<td>1600</td>
</tr>
<tr>
<td>Typed Terms & Red.</td>
<td>75</td>
<td>174</td>
<td>202</td>
</tr>
<tr>
<td>Def. Strong Norm.</td>
<td>30</td>
<td>48</td>
<td>22</td>
</tr>
<tr>
<td>Twist: Eval. Ctx</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Properties of sn</td>
<td>163</td>
<td>355</td>
<td>97</td>
</tr>
<tr>
<td>Soundness of SN</td>
<td>29</td>
<td>50</td>
<td>17</td>
</tr>
<tr>
<td>Properties of SN</td>
<td>69</td>
<td>136</td>
<td>43</td>
</tr>
<tr>
<td>SN proof (Log. Pred.)</td>
<td>80</td>
<td>155</td>
<td>55</td>
</tr>
<tr>
<td>Total</td>
<td>446</td>
<td>918</td>
<td>446</td>
</tr>
</tbody>
</table>
Isn’t proving strong normalization in a proof assistant an old hat?
Characteristic Features:

- Terms are not well-scoped or well-typed
- Candidate relation is untyped and does not enforce well-scoped terms

\[\Rightarrow \text{does not scale to typed-directed evaluation or equivalence} \]
\[\Rightarrow \text{today we may have better techniques to structure proofs (inductive def. of SN)} \]
Beyond strong normalization ...
Additional Challenge Problems

- Weak normalization
 (good starting point) [LFMTP’13, MSCS’17] ✓

- Type-directed algorithmic equality
 (Tutorial by K. Crary in ATPL; similar issues as in strong normalization with typed reductions) [LFMTP’15, MSCS’17] ✓

- Adding η-expansion ?

- Normalization of System F
 (excellent suggestion – relies on impredicativity) X

Let’s systematically compare different mechanization.
Benchmarks can be great!
A Call for Action

- Choose your favorite proof assistant
- Complete the challenge
- Let’s stick to the given set up
 in particular the inductive def. of SN . . .
 ✓ makes it easier to compare mechanization
 ✓ it’s good for you :-)}
Let’s get started... talk to me for the challenge problem set up and questions to keep in mind.

Thank you!
If you submit a solution, please answer the following set of questions to help us compare and evaluate different mechanizations.
Questions About the Set Up

• How are bindings, substitutions, and necessary infrastructure represented? How big is your initial set up? – If you use libraries, explain briefly what they are.

• How are well-typed terms modelled?

• How are Kripke-style context extensions modelled?

• How does the formalization deal with renamings / weakenings?
Questions About the Proof Development

- How does it compare to the proof given in the online tutorial?
- Were there any additional lemmas required besides the ones given in the tutorial?
- How straightforward was it to extend the language to unit and disjoint sums? Did anything in the set-up needed to be changed?
Questions About General Lessons

• Did you find solving the problem interesting? Did it expose you to a new perspective on logical relations proofs?
• Did solving this problem expose any issues with the system you were working with? Did it inspire extensions?
• Do you have any general lessons / take-aways?
Let’s get started… We are looking forward seeing your solutions.