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Verified Containers

Good data structures are crucial for efficient programs
Containers are usually easy to specify using mathematical
models
Not much work yet on verification of real world containers
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Challenges

Low-level reasoning on pointers
Concurrency
Optimisations
Many theories to combine: arithmetics, sets, multisets, arrays,
lists, etc…
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This Work

Case study on a container library from the Ada standard library.
Given:

Optimized Ada implementation (~ 1400 loc)
SPARK specification (~ 3600 loc)

Done:
Reimplementation in C (~ 600 loc)
Verification in VeriFast (~ 4700 loc)
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Ada and SPARK

Ada
General purpose, high-level programming language
Strong static typing
Generic

SPARK
Subset of Ada with simple semantics
Executable contracts

Application to safety-critical embedded system
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Ada Containers

Lists, Vectors, Maps, Sets, and Graphs
Purely functionnal or imperative
Bounded or unbounded
Generic in the element type
Avoid most unnecessary pointer indirections
Specified in SPARK, tested but not verified
Not concurrent
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Interface

List is a type with the following interface:

Capacity : List -> NonNegative
Empty_List : List
Length : List -> NonNegative
= : List -> List -> Boolean
Is_Empty : List -> Boolean

Clear : List -> Unit
Asssign : List -> List -> Unit
Copy : List -> NonNegative -> List

Model : List -> Sequence
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Interface: Cursors

Cursor is a type with the following interface:

No_Element : Cursor
First, Last : List -> Cursor
Next, Previous : List -> Cursor -> Unit
Element : List -> Cursor -> Element_Type
Find : List -> Element_Type -> Cursor -> Cursor

Replace_Element : List -> Cursor -> Element_Type -> Unit
Insert : List -> Cursor -> Element_Type -> NonNegative ->

Cursor
Delete : List -> Cursor -> NonNegative -> Unit

Positions : List -> Map(Cursor, Positive)
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Specification

Each method of the library is specified by its impact on Model and
Positions.
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Specification

procedure Append
(Container : in out List;

New_Item : Element_Type;
Count : Count_Type)

with
Global => null,
Pre =>

Length (Container) <= Container.Capacity - Count ,
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Specification

Post =>
Length (Container) = Length (Container)'Old + Count

and Model (Container)'Old <= Model (Container)
and (if Count > 0 then

M.Constant_Range
(Container => Model (Container),

Fst => Length (Container)'Old + 1,
Lst => Length (Container),
Item => New_Item))

and P_Positions_Truncated
(Positions (Container)'Old,

Positions (Container),
Cut => Length (Container)'Old + 1,
Count => Count);
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Implementation: Nodes

A Node is a record with the following fields:
Element : Element_Type
Prev : -1 ... (Invariant : Prev ≤ Capacity)
Next : NonNegative (Invariant : Next ≤ Capacity)

A node is free if Prev = -1, otherwise it is occupied.
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Implementation: Lists

A List is a record with the following fields:
Nodes : an array of Nodes of length Capacity
Length : NonNegative (Invariant : Length ≤ Capacity)
Free : Integer (Invariant : - Capacity ≤ Free ≤
Capacity)
First : NonNegative (Invariant : First ≤ Capacity)
Last : NonNegative (Invariant : Last ≤ Capacity)

When Free ≥ 0, we call the list initialized.
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Implementation: Lists

Invariants:
Occupied nodes form a doubly-linked list of length Length
between Nodes[First] and Nodes[Last].
If the list is initialized, then free nodes form a simply-linked
list from Free to 0.
Otherwise, free nodes are the nodes Nodes[-Free],
Nodes[-Free+1], …, Nodes[Capacity].
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Cursors

A cursor is either 0 (representing No_Element) or the index of an
occupied node in the array Nodes.
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Example

Nodes[1]
Prev Elem Next

-1 0X

Nodes[2]
Prev Elem Next

-1 0X

Nodes[3]
Prev Elem Next

-1 0X

Nodes[4]
Prev Elem Next

-1 0X

Nodes[5]
Prev Elem Next

-1 0X

Capacity: 5
Length: 0
Free: -1
First: 0
Last: 0

L = List(5)
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Example

Nodes[1]
Prev Elem Next

-1 0X

Nodes[2]
Prev Elem Next

-1 0X

Nodes[3]
Prev Elem Next

-1 0X

Nodes[4]
Prev Elem Next

-1 0X

Nodes[5]
Prev Elem Next

-1 0X

Capacity: 5
Length: 0
Free: -1
First: 0
Last: 0

Append(L, e1, 1)
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Prev Elem Next

0 0X

Nodes[2]
Prev Elem Next

-1 0X

Nodes[3]
Prev Elem Next

-1 0X

Nodes[4]
Prev Elem Next

-1 0X

Nodes[5]
Prev Elem Next

-1 0X

Capacity: 5
Length: 1
Free: -2
First: 1
Last: 1

Append(L, e2, 1)

19 / 32



Introduction Bounded Doubly-Linked Lists Verification Conclusion

Example

Nodes[1]
Prev Elem Next

0 2X
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Example
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VeriFast

VeriFast:
Verification tool for C (and Java)
Specification language: separation logic with data types and
inductive predicates
Backend: SMT Solvers (Redux, Z3)
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Translation

The Ada library has been manually translated in C and VeriFast.
0-starting arrays
Capacity becomes a field of List
Strong language distinction betwen programming and
specification

Functional models cannot exist at runtime
Functional and imperative lists are no more two instances of
the same interface

Contract cases
Translated to alternatives
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VeriFast Logic

Quantifier-free Separation Logic:
t ::= x | f(t1, . . . , tn)
φ ::= emp | t1 = t2 | t1 7→ t2 | φ1 ⋆ φ2 | P(t1, . . . , tn)

Algebraic Data Types
Example: sequence ⟨a⟩ := Nil | Cons of a ∗ sequence ⟨a⟩
Functions defined by structural recursion
Inductive predicates
Example:
linked_list(x, y) := (x = y) | ∃z. x 7→ z ⋆ linked_list(z, y)
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VeriFast Logic

Quantifier-free Separation Logic:
t ::= x | f(t1, . . . , tn) | {l1 = t1, . . . , ln = tn} | t.l | t1 + t2
φ ::= emp | t1 = t2 | t1 7→ t2 | φ1 ⋆ φ2 | P(t1, . . . , tn)

Algebraic Data Types
Example: sequence ⟨a⟩ := Nil | Cons of a ∗ sequence ⟨a⟩
Functions defined by structural recursion
Inductive predicates
Example:
linked_list(x, y) := (x = y) | ∃z. x 7→ z ⋆ linked_list(z, y)
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Low-level invariant

range(Nodes, first, last) := first = last
| ∃X. Nodes + first 7→ {Prev = −1,Elem = X,Next = 0}

⋆ range(Nodes, first + 1, last)

sll(Nodes, first, last) := first = last
| ∃n,X. Nodes + first 7→ {Prev = −1,Elem = X,Next = n}

⋆ sll(Nodes, n, last)

dll(Nodes, first, next, prev, last) := first = prev ⋆ next = last
| ∃n,X. Nodes + next 7→ {Prev = first,Elem = X,Next = n}

⋆ dll(Nodes, next, n, prev, last)

bdll(L) := dll(L.nodes, 0, L.first, L.last, 0) ⋆
( L.free < 0 ⋆ range(L.nodes,−free, L.capacity)
| L.free > 0 ⋆ sll(L.nodes, free, 0) )
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High-level models

sequence ⟨a⟩ := Nil | Cons of a ∗ sequence ⟨a⟩

prod ⟨a, b⟩ := Pair of a ∗ b
map ⟨a, b⟩ := sequence ⟨prod ⟨a, b⟩⟩
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Precise models

precise_model ⟨a⟩ := C0 | C1 of int ∗ a ∗ precise_model ⟨a⟩

dll(Nodes, first, next, prev, last ) :=
| first = prev ⋆ next = last
| ∃n,X .

Nodes + next 7→ {Prev = first,Elem = X,Next = n}
⋆ dll(Nodes, next, n, prev, last )
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Precise models

precise_model

⟨a⟩

:= C0 | C1

of int ∗ a ∗ precise_model ⟨a⟩

dll(Nodes, first, next, prev, last,m) :=
| first = prev ⋆ next = last ⋆ m = C0

| ∃n,X,m′.
Nodes + next 7→ {Prev = first,Elem = X,Next = n}
⋆ dll(Nodes, next, n, prev, last,m′)
⋆ m = C1
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Precise models

precise_model ⟨a⟩ := C0 | C1 of int ∗ a ∗ precise_model ⟨a⟩

dll(Nodes, first, next, prev, last,m) := match m with
| C0 →first = prev ⋆ next = last
| C1(n,X,m′) →

Nodes + next 7→ {Prev = first,Elem = X,Next = n}
⋆ dll(Nodes, next, n, prev, last,m′)
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Precise models

precise_model ⟨a⟩ := C0 | C1 of int ∗ a ∗ precise_model ⟨a⟩

model(m) := match m with
| C0 → Nil
| C1(n,X,m′) → Cons(X,model(m′))

positions(m, first, i) := match m with
| C0 → Nil
| C1(n,X,m′) → Cons(Pair(first, i), positions(m′, n, i + 1))
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Precise model composition

precise_model ⟨a⟩ := C0 | C1 of int ∗ a ∗ precise_model ⟨a⟩

precise_append(m1,m2) := match m1 with
| C0 → m2

| C1(n,X,m′) → C1(n,X, precise_append(m′,m2))

dll(Nodes, first, next, a, b,m1) ⋆ dll(Nodes, a, b, prev, last,m2) ⊢
dll(Nodes, first, next, prev, last, precise_append(m1,m2))

dll(Nodes, first, next, prev, last, precise_append(m1,m2)) ⊢
∃a, b. dll(Nodes, first, next, a, b,m1) ⋆ dll(Nodes, a, b, prev, last,m2)
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Results

27/39 proved methods Remaining: sorting functions and Copy
47 inductive predicates, 42 pure recursive functions, 171
lemmata
In Ada/SPARK: 1 source code line for about 3 specification
lines
In Verifast: 1 source code line for about 8 annotation lines
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Conclusion

Verifast is a powerful but limited tool
good automation for linear arithmetics
no support for other theories

BDLL Library:
No error found
Static and dynamic assertions have been proved
Invariants made explicit

31 / 32



Introduction Bounded Doubly-Linked Lists Verification Conclusion

Future work

Remaining functions
More prover integration in VeriFast
Automation of induction reasoning
Transfer to other verification tools
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