
Kami:
Modular Verif ication of Digital Hardware in Coq

Adam Chlipala
MIT CSAIL
January 2018

Joint work with: Arvind, Thomas Bourgeat, Joonwon Choi, Ian
Clester, Samuel Duchovni, Jamey Hicks, Muralidaran Vijayaraghavan,
Andrew Wright

2

A Cartoon View of Digital Hardware Design

Generator

RTL (e.g., Verilog)

Metaprogramming

Physical Layout

Silicon

CAD tools

Quite proprietary magic

Formal

Formal

Formal

Formal

Formal

Formal

Formal

Formal

FormalFormal

Formal

Formal Formal

3

Simplification #1: Prove a Shallow Property

If Foo is in this register, then Bar is
in that one.

Never Baz here and Qux there at
same time.

Common
practice:
prove some

Invariants

ISA Reference≅
The Kami way:
Behavioral refinement of
functional specor Boolean

equivalence
check

4

Simplification #2: Analyze Isolated Components

Proved

Proved

ISA Reference

≅
Proved

The Kami way:
Modularly compose proofs
of pieces

5

Simplification #3: Start Over For Each Design

CPU

L1 Cache

Memory

Proved
CPU

L1 Cache

Memory

CPU

L1 Cache

Proved
CPU

L1 Cache

L2 Cache

CPU

L1 Cache

Memory

CPU

L1 Cache

CPU

L1 Cache

L2 Cache

Proved

The Kami way:
Prove once for all
parameters

ISA Reference

∀ trees. ≅

6

A framework to support implementing, specifying, formally
verifying, and compiling hardware designs

based on the Bluespec high-level hardware design language

and the Coq proof assistant

7

Usual Industry Practice:
Register Transfer Language (RTL)

Register

Gate

GateRegister

Gate

Gate

...

Gate

Gate

8

Differences from Conventional Software

● All state elements must be finite.
● Instead of loops & recursion, single clock cycles.
● Almost unlimited opportunity for parallelism within one clock
cycle!

● However, one long dataflow dependency chain in one part of a
design can slow down the clock for everyone.
● So we often break operations into multiple cycles.

9

The Great Annoyance of Timing Dependency

Gates Gates Gates

cycle #1 cycle #2

inputs outputs

Gates Gates Gates

cycle #1 cycle #4

inputs outputs

cycle #2 cycle #3

...stall... ...stall... ...stall...

10

The Big Ideas (from Bluespec)

M

f(x) g(y)

N

h(u)

O

k(v)

Program modules are objects
with mutable private state,
accessed via methods.

11

The Big Ideas

M

f(x) g(y)

Every method call appears to execute atomically.
Any step is summarized by a trace of calls.
Object ref inement is inclusion of possible traces.

Recv f(1),
Send h(2)

Recv g(7),
Send k(13)

M'

Refines

f g

12

The Big Ideas

M

f(x) g(y)

Composing objects hides internal method calls.

Recv f(1)
Recv g(7),
Send k(13)

N

h(u)

O

k(v)

Recv g(7)

13

Rules

M

f(x) g(y)

Actually, objects also include rules, atomic state transitions that fire on their
own.
They wind up looking sort of like operational semantics rules.

Example rule:
- Read memory at PC.

- Check that it's an add instr.
- Load from source registers.

- Perform addition.
- Write to destination register.

Bluespec gives
programmers the illusion
that we repeatedly pick
a rule
(nondeterministically)
and run it atomically.

Parallelism is essential
for performance.

...so compiler extracts it
automatically, via static
analysis.

14

Some Example Kami Code (simple FIFO)

Definition deq {ty} : ActionT ty dType :=
 Read isEmpty <- ^empty;
 Assert !#isEmpty;
 Read eltT <- ^elt;
 Read enqPT <- ^enqP;
 Read deqPT <- ^deqP;
 Write ^full <- $$false;
 LET next_deqP <- (#deqPT + $1) :: Bit sz;
 Write ^empty <- (#enqPT == #next_deqP);
 Write ^deqP <- #next_deqP;
 Ret #eltT@[#deqPT].

15

An Example Kami Proof (pipelined processor)

Lemma p4st_refines_p3st: p4st <<== p3st.
Proof.
 kmodular.
 - kdisj_edms_cms_ex O.
 - kdisj_ecms_dms_ex O.
 - apply fetchDecode_refines_fetchNDecode; auto.
 - krefl.
Qed.

Uses standard Coq ASCII syntax for mathematical proofs.
These proofs are checked automatically, just like type checking.
We inherit streamlined IDE support for Coq.

16

We Are Building:

Design Spec
Refines

Coq tactics to prove
refinements

RTL

Compiler

Refin
es

Verify semantics
preservation of

compiler

17

Some Useful Refinement Tactics

Monolithic Spec

Sequential
Consistency

Decompose1

Decoupled Spec

Processor

Memory

Getting Real

Fancy Processor

Memory

Replace Module2

Processor'

Induction
/Simulation

3

Processor''

Ideal Queue

Decompose4

Processor

. . . .

Processor''

Ring Buffer
Replace5

=
. . . .

18

Decompose ↔ Merge & Inline

M

f(x) g(y)

N

h(x)

M+N

f(x) g(y)

h(x)

Merge

M+N

h(x)
f(x)

g(y)

Inline

sort of smells like Coq simpl

19

Replace Module ↔ Congruence sort of smells like Coq rewrite

M ≤ M' N ≤ N'

M+N ≤ M'+N'

Joins other classic theorems of process calculus:

M ≤ M

M ≤ M' M' ≤ M''

M ≤ M''

20

Direct Simulation sort of smells like Coq induction

Impl. Spec.

≈
∀ ∃

≈

Choose this relation per proof.

Wrinkle: cycles in module call graph
make it not so trivial to enumerate all

possible steps.
We prove that certain syntactic

conditions guarantee soundness.

same
labels

21

Code walk-through:
simple producer-consumer system

22

Twist #1: Mixing Specs & Impls

Processor'

Processor''

Ideal Queue

Decompose4

Processor''

Ring Buffer
Replace5

Want to write as a normal functional program

Must write as Bluespec-style HW design

Must write as Bluespec-style HW design

23

Review: Parametric Higher-Order Abs. Syntax
(PHOAS)

Inductive ty :=
| Bitvector (n : nat)
| Tuple (ts : list ty).

Section var.
Variable var : ty → Set.

Inductive exp : ty → Set :=
| Bits : forall n, bitvector n

→ exp (Bitvector n)
| Let : forall t1 t2,

exp t1 → (var t1 → exp t2)
→ exp t2

| Var : forall t, var t → exp t
| …

End var.

Definition Exp t := ∀ var, exp var t.

24

Review: Parametric Higher-Order Abs. Syntax
(PHOAS)

Fixpoint tyD (t : ty) : Set := match t with
| Bitvector n => bitvector n
| Tuple ts => tuple (map tyD ts)

end.

Fixpoint expD t (e : expr tyD t) : tyD t :=
match e with

| Bits bv => bv
} Let e1 e2 => expD (e2 (expD e1))
| Var x => x
| …

end.

Definition ExpD t (E : Exp t) := expD (E _).

Section var.
Variable var : ty → Set.

Inductive exp : ty → Set :=
| Bits : forall n, bitvector n

→ exp (Bitvector n)
| Let : forall t1 t2,

exp t1 → (var t1 → exp t2)
→ exp t2

| Var : forall t, var t → exp t
| …

End var.

Definition Exp t := ∀ var, exp var t.

25

Mixing It Up: Allowing Native Coq Code
Inductive ty :=

| Bitvector (n : nat)
| Tuple (ts : list ty).

Inductive ty' :=
| Syntactic (t : ty)
| Semantic (T : Set).

Definition ty'D (t : ty') : Set :=
match t with

| Syntactic t => tyD t
| Semantic T => T

end.

Section var.
Variable var : ty → Set.

Definition var' (t : ty') : Set := match t with
| Syntactic t => var t
| Semantic T => T

end.

Inductive exp : ty' → Set :=
| Bits : forall n, bitvector n

→ exp (Syntactic (Bitvector n))
| Let : forall t1 t2,

exp t1 → (var' t1 → exp t2) → exp t2
| Var : forall t, var' t → exp t | …

End var.

!

!

!

26

Twist #2: Parametric and Repeated Designs

Processor(cacheSize) ISAspec

∀cacheSize. Processor(cacheSize) ≤ ISAspec

Processor(cacheSize)

Processor(cacheSize)

Processor(cacheSize)

…

ISAspec

ISAspec

ISAspec

…

∀cacheSize, n. [Processor(cacheSize)]n ≤ ISAspecn

Kami programs are actually Gallina
programs to compute deeply embedded

Bluespec-style syntax!
Parameterization is just use of Gallina

functions, and repetition is a simple
recursive function.

27

Handy Proof Rules

M ≤ N

Mn ≤ Nn

Implementation challenges are to make the main Kami
tactics work well with metaprograms, doing just enough

reduction.

28

RISC-V: An Open Instruction Set

29

Official Formal Semantics for RISC-V

Interpreter
in a tasteful
subset of
Haskell

“the
semantics”

Coq Isabelle/HOL SMT ACL2

Reference manual (using prose from
specially formatted comments)

Fast emulator

Test cases / test
oracle

30

Sample Code for Semantics WIP
Decoding machine instructions

decode_sub opcode
 | opcode==opcode_LOAD, funct3==funct3_LB

= Lb {rd=rd, rs1=rs1, oimm12=oimm12}
 | opcode==opcode_LOAD, funct3==funct3_LH

= Lh {rd=rd, rs1=rs1, oimm12=oimm12}

Executing decoded instructions

execute (Lwu rd rs1 oimm12) = do
 a <- getRegister rs1
 x <- loadWord (a + fromIntegral oimm12)
 setRegister rd (unsigned x)
execute (Addw rd rs1 rs2) = do
 x <- getRegister rs1
 y <- getRegister rs2
 setRegister rd (s32 (x + y))

31

An Open Library of Formally Verified Components

• Microcontroller-class RV32I (multicore; U)
• Desktop-class RV64IMA (multicore; U,S,M)
• Cache-coherent memory system

Reuse our proofs when composing our components
with your own formally verified accelerators!

32

The Promise of this Approach

ISA Formal Semantics

Processor Proved

RTL Formal Semantics

Application Machine Code

Application Specification

Proved

33

The Trusted Computing Base

Where can defects go uncaught?

Coq proof checker (small & general-purpose)
RTL formal semantics
Application specification
ISA formal semantics
Hardware design (Bluespec, RTL, …)
Software implementation (C, ...)

34

Shameless plug!

Part of a larger project:
The Science of Deep Specif ication

A National Science Foundation
Expedition in Computing

https://deepspec.org/

Join our mailing list for updates on our 2018 summer school:
hands-on training with these tools!

35

In Summary...
● With the right tool support, digital-hardware development is just
another kind of programming.

● Functional programming & Coq are a great match for this domain.
● The rough edges that still exist are just the kind that the ICFP
crowd enjoy smoothing!

● The chance to tinker with the HW layers is freeing – ask me later
about getting rid of weak memory models. :)

36

https://github.com/mit-plv/kami

https://github.com/mit-plv/kami

	Diapo 1
	Diapo 2
	Diapo 3
	Diapo 4
	Diapo 5
	Diapo 6
	Diapo 7
	Diapo 8
	Diapo 9
	Diapo 10
	Diapo 11
	Diapo 12
	Diapo 13
	Diapo 14
	Diapo 15
	Diapo 16
	Diapo 17
	Diapo 18
	Diapo 19
	Diapo 20
	Diapo 21
	Diapo 22
	Diapo 23
	Diapo 24
	Diapo 25
	Diapo 26
	Diapo 27
	Diapo 28
	Diapo 29
	Diapo 30
	Diapo 31
	Diapo 32
	Diapo 33
	Diapo 34
	Diapo 35
	Diapo 36

