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Rust
Mozilla’s replacement for C/C++

Systems programming language focusing on safety

� Control over memory allocation & layout
� Sound type system with guarantees:

� Type and memory safety
� Absence of data races
� Idea: Prohibit aliased mutable state

� Using borrow types with “lifetimes”

� First-class functions, polymorphism/generics
� Traits ≈ Type classes + associated types
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Rust
Mozilla’s replacement for C/C++

Systems programming language focusing on safety

� Control over memory allocation & layout
� Sound? type system with guarantees:

� Type and memory safety
� Absence of data races
� Idea: Prohibit aliased mutable state

� Using borrow types with “lifetimes”

� First-class functions, polymorphism/generics
� Traits ≈ Type classes + associated types

RustBelt: prove the soundness of Rust’s type system (idealized)
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The key challenge

Superficially: no mutation through aliased pointers

But this is not always true!

� Many Rust libraries permit mutation through aliased pointers

� The safety of this is highly non-obvious because these libraries
make use of unsafe features!
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The key challenge

Superficially: no mutation through aliased pointers

But this is not always true!

� Many Rust libraries permit mutation through aliased pointers

� The safety of this is highly non-obvious because these libraries
make use of unsafe features!

So why is any of this sound?
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Introduction

Overview of Rust

λRust : a small idealized Rust

A semantic model for λRust

Conclusion
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let (snd, rcv) = channel();

join(

move || { // First thread

// Allocating [b] as Box<i32> (pointer to heap)

let mut b = Box::new(0);

*b = 1;

// Transferring the ownership to the other thread...

snd.send(b);

},

move || { // Second thread

let b = rcv.recv().unwrap(); // ... that receives it

println!("{}", *b); // ... and uses it.

});
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// ==> Prevents data race

},

move || { // Second thread

let b = rcv.recv().unwrap(); // ... that receives it

println!("{}", *b); // ... and uses it.

});

5 of 28



Borrowing and lifetimes

let mut v = vec![1, 2, 3];

v[1] = 4;

v.push(6);

println!("{:?}", v);

Type of index_mut:

fn<’a> index_mut(&’a mut Vec<i32>, usize)

-> &’a mut i32

New pointer type: &’a mut T:

� mutable borrowed reference

� valid only for lifetime ’a
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Type of index_mut:

fn<’a> index_mut(&’a mut Vec<i32>, usize)

-> &’a mut i32

New pointer type: &’a mut T:

� mutable borrowed reference

� valid only for lifetime ’a

We temporarily lost ownership of vector v

We get back the full ownership of vector v
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Borrowing and lifetimes

let mut v = vec![1, 2, 3];

{ let mut inner_ptr = Vec::index_mut(&mut v, 1);

*inner_ptr = 4; }

v.push(6);

println!("{:?}", v);

Type of index_mut:

fn<’a> index_mut(&’a mut Vec<i32>, usize)

-> &’a mut i32

New pointer type: &’a mut T:

� mutable borrowed reference

� valid only for lifetime ’a

Lifetime ’a inferred by Rust
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Shared borrowing

let mut x = 1;

join (|| println !("Thread 1: {}" , &x),

|| println !("Thread 2: {}" , &x));

x = 2;
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Shared borrowing

let mut x = 1;

join (|| println !("Thread 1: {}" , &x),

|| println !("Thread 2: {}" , &x));

x = 2;

&x creates a shared borrow of x

� Type: &’a i32

� Can be copied/shared

� Does not allow mutation
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Summing up

� Rust’s type system is based on ownership

� Three kinds of ownership:

1. Full ownership: Vec<T> (vector), Box<T> (pointer to heap)
2. Mutable borrowed reference: &’a mut T

3. Shared borrowed reference: &’a T

� Lifetimes decide when borrows are valid
� Remark: If x : &’a (&’b T) , then &’b T is valid during ’a

=⇒ Rust checks ’a v ’b (“Outlives relation”)
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Interior mutability

What if we want shared mutable data structures?

Rust standard library provides types with interior mutability

� Allows mutation under a shared borrow

� Written in Rust using unsafe features
� Safely encapsulated

� The library interface restricts mutations
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Mutex
Example of interior mutability

let m = Mutex::new(1); // m : Mutex<i32>

// We can mutate the integer

// *with a shared borrow* only

join (|| *(&m).lock().unwrap() += 1,

|| *(&m).lock().unwrap() += 1);

// Unique owner: no need to lock

println!("{}", m.into_inner().unwrap())
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Cell
Example of interior mutability

fn incr_cell<’a>(c : &’a Cell<i32>) {

let x = c.get();

// Can mutate through a shared borrow only

c.set(x + 1)

}

fn main() {

let c = Cell::new(0);

incr_cell(&c);

}

[...]

‘std::cell::Cell<i32>‘ cannot be shared

between threads safely

[...]

The trait ‘std::marker::Sync‘ is not

implemented for ‘std::cell::Cell<i32>‘

[...]

T shared accross threads =⇒ T : Sync

� Automatic for basic types (structs, i32...)

� Ex: Cell<T> not Sync

T moved accross threads =⇒ T : Send

� Automatic for basic types (structs, i32...)

� Ex: Rc<T> (ref. counted smart pointer) not Send

� T : Sync ⇐⇒ &’a T : Send
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Protocols

A shared borrow establishes a sharing protocol:

� &’a i32

� =⇒ Read-only
� Safety: trivial

� &’a Mutex<i32>

� =⇒ Read-write by taking the lock
� Safety: ensured by proper synchronization

� &’a Cell<i32>

� =⇒ Read-Write via get() and set(...)
� Safety: single threaded (no Sync), no inner &’a mut i32
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λRust: Main goal

Formalize Rust’s type system without its main complications.

� Close to MIR (rustc intermediate language)

� Omitted: traits, polymorphism, panics, weak memory*, IO,
destructors...

*Work in progress
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λRust: Syntax and operational semantics

Lambda-calculus with extensions:

� Integers and Boolean

� Heap (manual (de)allocation) and pointers (block ID + offset)

� Concurrency (fork, atomic memory accesses, CAS)

Operational semantics:

� Small-step style
� Stuck:

� Type errors
� Incorrect memory accesses (incl. double free, ...)
� Data races
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λRust: Type system

E;L | K ; T ` F

Programs written in continuation-passing style

� MIR programs: control flow graphs

� =⇒ No output type

16 of 28



λRust: Type system

E;L | K ; T ` F

Type context

Each variable: integer or pointer.
Associated with type + ownership. Examples:

� x C int

� p C box (int× int + ())

� p C &α
mut (int× int+ ()) ; p C†α box (int× int + ())

� p C &α
shr int
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λRust: Type system

E;L | K ; T ` F

Lifetime contexts

Contain information for:

� Lifetime currently alive: E;L ` α alive
� Lifetime inclusions: E;L ` α v β

� We know in advance that α is shorter than β

� Allowing to end a lifetime
� Check: no promise to end another lifetime

earlier.
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λRust: Type system

E;L | K ; T ` F

Continuation context

� Calling a continuation ⇔ Jumping to another block in CFG

� May require constraints on typing context and lifetime context

� Example:

k C cont(“α alive” ; r C box (() + &α
mut int), x C box int)
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A semantic model for λRust
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Challenge #1: the right approach

� One can write unsafe code in a safely encapsulated manner
� New types that are safe for new reasons

� Our goal: prove that these library are safe
� =⇒ Syntactic approaches will not work

We build a logical relation for Rust’s type system
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Choosing the right logic

Rust type system: Ownership, complex sharing protocols, in a
concurrent setting

� Iris is a concurrent separation logic framework that we have been
developing since 2014 [POPL’15, ICFP’16, ESOP’17, POPL’17, ECOOP’17]

� Iris has built-in support for these features and furthermore supports
deriving new custom logics and mechanizing proofs in Coq

� =⇒ Iris is the right tool for modeling Rust!
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Proof method

� We define a logical relation in Iris:

E;L | K;T |= F , {JEK ∗ JLK ∗ JKK ∗ JTK} F {True}

� The relation is compatible with type-checking rules:

E;L | K;T ` F =⇒ E;L | K;T |= F

� The relation is adequate:

E;L | K;T |= F =⇒ F is safe

� Conclusion: well-typed programs can’t go wrong
� No data race, no memory error, . . .
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Logical interpretation of types
Example 1: int

What values are integers?

JintK.own(v) , ∃n ∈ Z. v = n
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Logical interpretation of types
Example 2: box τ

We must state ownership of memory and inner type:

Jbox τK.own(v) , ∃` ∈ L. v = ` ∗ ∃v ′. ` 7→ v ′ ∗ JτK.own(v ′)
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Logical interpretation of types
Example 3: τ1 × τ2

Actually, types refer to list of values

Jτ1 × τ2K.own(v̄) ,

∃v̄1v̄2. v̄ = v̄1 ++v̄2 ∗ Jτ1K.own(v̄1) ∗ Jτ2K.own(v̄2)

This also ensures no aliasing between v̄1 and v̄2
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Challenge #2: interpreting borrows
Mutable borrows &α

mut τ

Pointer with temporary ownership

Recall:

Jbox τK.own(v̄) ,

∃` ∈ L. v̄ = [`] ∗ ∃w̄ . ` 7→ w̄ ∗ JτK.own(w̄)

&κ
full P is a separation logic assertion

� Intuition: ownership of P only if κ is alive

� Part of the lifetime logic (logical library defined in
Iris)
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Pointer with temporary ownership

For mutable borrows, we use the full borrow assertion &κ
full :

J&α
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Challenge #2: interpreting borrows
Shared borrows &α

shr τ

J&α
shr τK.own(v̄) , ∃` ∈ L. v̄ = [`] ∗ ???

JτK.shr(κ, `) has to be persistent.

� I.e., duplicable, does not contain resources

� So that &α
shr τ can be shared

Lifetime logic provides tools for defining &α
shr τ

� &κ
frac Φ: access to only a fraction of Φ

� Read-only protocol

� &κ
at P: access to P only for atomic operations

� Mutex...

� ...
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Challenge #3: thread safety

Reminder, in Rust:

� T : Send ⇐⇒ T can be moved to another thread

� T : Sync ⇐⇒ T can be shared with another thread

How to model this?
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Challenge #3: thread safety

Reminder, in Rust:

� T : Send ⇐⇒ T can be moved to another thread

� T : Sync ⇐⇒ T can be shared with another thread

JτK.own and JτK.shr can depend on thread ID:

JτK.own(t, v̄) = . . . JτK.shr(κ, t, `) = . . .

� τ is Send : JτK.own(t, v̄) independent of t

� τ is Sync : JτK.shr(κ, t, `) independent of t

� In the lifetime logic: &
κ/t
na P

� Shared P while κ is alive, limited to thread t
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Conclusion

And also. . .
� Lifetime logic: a library in Iris

� Logical model of lifetimes and borrows
� Main idea: split ownership over time (instead of “over space”)

� Model of most of Rust’s types with interior mutability
� Cell<T>, RefCell<T>, Rc<T>, Arc<T>, Mutex<T>, RwLock<T>

� Subtyping/lifetime inclusions

http://plv.mpi-sws.org/rustbelt/
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Borrows and inheritance

Usually: we split ownership with respect to space

Let’s allow splitting ownership over time:

.P V &α
full P ∗

(
[†α] V .P

)
.P can be transformed into. . .
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Borrows and inheritance

Usually: we split ownership with respect to space

Let’s allow splitting ownership over time:

.P V &α
full P ∗

(
[†α] V .P

)
A borrowed part:

� access of P when α is ongoing

� P must be preserved when α ends
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Borrows and inheritance

Usually: we split ownership with respect to space

Let’s allow splitting ownership over time:

.P V &α
full P ∗

(
[†α] V .P

)
An inheritance part, that gives
back P when α is finished.
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Lifetime tokens

How to witness that α is alive?

We use a lifetime token [α]

� Left in deposit when opening a borrow:

&α
full P ∗ [α] V .P ∗

(
.P V &α

full P ∗ [α]
)

� Needed to terminate α:

[α] V [†α]
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fn f<’a>(pair : &’a mut (i32, i32)) {

let fst : &’a mut i32 = &mut pair.0;

let snd : &’a mut i32 = &mut pair.1;

join(|| *fst *= 2,

|| *snd += 1);

}
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let snd : &’a mut i32 = &mut pair.1;

join(|| *fst *= 2,

|| *snd += 1);

}
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&α
full(P ∗Q) WV &α

full P ∗&α
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fn f<’a>(pair : &’a mut (i32, i32)) {

let fst : &’a mut i32 = &mut pair.0;

let snd : &’a mut i32 = &mut pair.1;

join(|| *fst *= 2,

|| *snd += 1);

}

Both threads witness that the lifetime is alive.
=⇒ We make the lifetime token fractional:

[α]q+q′ ⇔ [α]q ∗ [α]q′
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Fractional lifetime tokens

How to witness that α is alive?

We use lifetime tokens [α]q
� Fractional: [α]q+q′ ⇔ [α]q ∗ [α]q′

� Full token needed to terminate α:

[α]1 V [†α]

� Fraction left in deposit when opening a borrow:

&α
full P ∗ [α]q V .P ∗

(
.P V &α

full P ∗ [α]q
)
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Sharing protocols

J&’a TK.own([l ]) , JTK.shr(J’aK, l) , ?

Depends on T. Common idea:

� Share a borrow using an invariant:

JTK.shr(J’aK, l) , &α
full [Protocol]

N

� Technical problems with step-indexing

� Specific construction: persistent borrows: &α
at [Protocol]

� Behave like cancellable invariant
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