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A compilation-like approach to 
real-time systems implementation
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The need for automation

● Higher level program 
specification

● Implementation 
automation

Engineer struggling to keep her 
code from crashing, 1969  
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Compilation of « high-level » 
languages

Functionality
(C program)

Compiler
Linker

Sequential 
executable code
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Compilation of « high-level » 
languages

Functionality
(C program)

Compiler
Linker

Sequential 
executable code

Platform
model

(gcc internals, 
linker scripts)
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Data-flow (Lustre) compilation

Functionality
(Lustre program)

(Parallelization)
Lustre compiler

C compiler
Linker

Parallel or sequential 
executable code

Platform model,
Allocation
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Real-time data-flow compilation

Functionality
(Lustre program)

Parallelisation
Real-time scheduling

Lustre compiler
C compiler

Linker

Parallel real-time 
executable code

Parallel
platform
model

Non-functional
requirements

(e.g. real-time)
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Related work (1/2)

● « Classical » compilation
– Back-end and optimization

● Software pipelining
● Scheduling on VLIW architectures with exposed pipelines

– Precise timing models to achieve efficiency
● Timing of basic operations does not depend on allocation and scheduling

– Average-case optimization (vs. worst-case satisfaction)

● Off-line and time-triggered real-time scheduling
– SynDEx, Lustre2TTA, Giotto, Prelude, Lopht, Asterios Developer, etc.

– Front-end: Significant front-end work (we do not insist on it here)

– Back-end: Existing tools assume the existence of a timing 
characterization satisfying some properties

● How to derive it? 
● What is the cost of mapping choices and generated code? 
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Related work (2/2)

● Parallel, possibly real-time code generation 
without schedulability guarantees
– Simulink Real-Time, SCADE KCG6 parallel

● Automatic parallelization, parallel compilation
● WCET analysis of parallel code

– Heptane, OTAWA
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Outline

● Input: Data-flow programming in Lustre
– And timing extensions

● Output: Structure of an implementation
● Timing model
● Resource allocation and code generation 

– Compilation-like

● Experimental results
● Conclusion
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Data-flow programming in Lustre

node main () returns ()
var
  i : int; x : float;
  y : int; z : int;
  d : int;
let
  i = read_int();
  x = f(i);
  y = g(d);
  z = h(x,y);
  d = 0 fby z;
  () = write_int(z);
tel

f

g

h

fby

i

y

x

z

d

0

● Data-flow in textual form
– Cyclic execution

– State elements: fby
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Data-flow programming in Lustre

node main () returns ()
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  d : int;
let
  i = read_int();
  x = f(i);
  y = g(d);
  z = h(x,y);
  d = 0 fby z;
  () = write_int(z);
tel

f

g

h

fby

i

y

x

z

d

0

f

g

h

y

xi

0

f

g

h

y

x
i

d  

z z

d  

● Data-flow in textual form
– Cyclic execution

– State elements: fby
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Data-flow programming in Lustre

node main () returns ()
var
  i : int; x : float;
  y : int; z : int;
  d : int;
let
  i = read_int();
  x = f(i);
  y = g(d);
  z = h(x,y);
  d = 0 fby z;
  () = write_int(z);
tel

f

g

h

fby

i

y

x

z

d

0

● Simple, deterministic concurrency
– Static Single Assignment form

● Each variable assigned exactly once 

– Functions f, g, and h specified 
externally in C or Lustre

● No recursion, no side-effects, no heap

● Well understood semantics, 
analysis, compilation

● Integration specifications
– System-level, no further composition

● No input or output arguments
● I/O done through specific functions (e.g. 

read/write of memory-mapped devices)
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Non-functional requirements

period(3000)
node main () returns ()
var
  i : int; x : float;
  y : int; z : int;
  d : int;
let
  i = read_int();
  deadline(1500) x = f(i);
  y = g(d);
  z = h(x,y);
  d = 0 fby z;
  () = write_int(z);
tel

● Real-time requirements
– Period

– Release dates

– Deadlines

● Time unit: ms, µs, CPU cycle
● Other requirements

– Allocation constraints

f

g

h

i

y

x

z

d

0

3000

<1500
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Structure of an implementation

● Multi-threaded C code
● Initialization
● Function calls
● Synchronization

– Between threads
– With real time

● Memory coherency

● Allocation of all code and data
● Node code, thread code, stacks, data-flow variables
● Linker scripts
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Multi-threaded C code

void* thread_cpu0(void* unused){
   lock_init_pe(0); init(); time_init(&time);
   for(;;){
      global_barrier_reinit(2);
      time+=3000; wait(time);
      global_barrier_sync(0);
      dcache_inval();
      f(i,&x);
      dcache_flush();
      lock_grant(1);
      lock_request(0,0);
      dcache_inval();
      h(x,y,&z);
      dcache_flush();
   }
}

void* thread_cpu1(void* unused){
   lock_init_pe(1);
   for(;;){

      
      global_barrier_sync(1);
      dcache_inval();
      g(z,&y);
      dcache_flush();
      lock_request(1,1);
      lock_grant(0);  

   }
}

One thread per processor (no preemption, no OS)
Loops running in lockstep
One cycle of the loops = one cycle of the Lustre program
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Multi-threaded C code

void* thread_cpu0(void* unused){
   lock_init_pe(0); init(); time_init(&time);
   for(;;){
      global_barrier_reinit(2);
      time+=3000; wait(time);
      global_barrier_sync(0);
      dcache_inval();
      f(i,&x);
      dcache_flush();
      lock_grant(1);
      lock_request(0,0);
      dcache_inval();
      h(x,y,&z);
      dcache_flush();
   }
}

void* thread_cpu1(void* unused){
   lock_init_pe(1);
   for(;;){

      
      global_barrier_sync(1);
      dcache_inval();
      g(z,&y);
      dcache_flush();
      lock_request(1,1);
      lock_grant(0);  

   }
}

Global barrier synchronization ensures: 
● lockstep execution
● real-time period

Global barrier
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Multi-threaded C code

void* thread_cpu0(void* unused){
   lock_init_pe(0); init(); time_init(&time);
   for(;;){
      global_barrier_reinit(2);
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      f(i,&x);
      dcache_flush();
      lock_grant(1);
      lock_request(0,0);
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      h(x,y,&z);
      dcache_flush();
   }
}

f g

h

void* thread_cpu1(void* unused){
   lock_init_pe(1);
   for(;;){

      
      global_barrier_sync(1);
      dcache_inval();
      g(z,&y);
      dcache_flush();
      lock_request(1,1);
      lock_grant(0);  

   }
}

x

y

f

g

h

i

y

x

z

d

0

All remaining code in threads 
corresponds to data-flow nodes

Global barrier

z  
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Multi-threaded C code

void* thread_cpu0(void* unused){
   lock_init_pe(0); init(); time_init(&time);
   for(;;){
      global_barrier_reinit(2);
      time+=3000; wait(time);
      global_barrier_sync(0);
      dcache_inval();
      f(i,&x);
      dcache_flush();
      lock_grant(1);
      lock_request(0,0);
      dcache_inval();
      h(x,y,&z);
      dcache_flush();
   }
}

f g

h

void* thread_cpu1(void* unused){
   lock_init_pe(1);
   for(;;){

      
      global_barrier_sync(1);
      dcache_inval();
      g(z,&y);
      dcache_flush();
      lock_request(1,1);
      lock_grant(0);  

   }
}

x

           y

f

g

h

i

y

x

z

d

0

Hardware lock operations enforce data 
dependencies inside the cycle
● z not concerned

Global barrier

z  
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Multi-threaded C code

void* thread_cpu0(void* unused){
   lock_init_pe(0); init(); time_init(&time);
   for(;;){
      global_barrier_reinit(2);
      time+=3000; wait(time);
      global_barrier_sync(0);
      dcache_inval();
      f(i,&x);
      dcache_flush();
      lock_grant(1);
      lock_request(0,0);
      dcache_inval();
      h(x,y,&z);
      dcache_flush();
   }
}

f g

h

void* thread_cpu1(void* unused){
   lock_init_pe(1);
   for(;;){

      
      global_barrier_sync(1);
      dcache_inval();
      g(z,&y);
      dcache_flush();
      lock_request(1,1);
      lock_grant(0);  

   }
}

x
                y
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h
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x

z

d

0

Explicit cache operations ensure 
memory coherency

Global barrier

 z    
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Memory allocation
. = 0x80000 ;
.text_thread0 ALIGN(64) : {
  thread_cpu0.o(.text)
}
.data_thread0 ALIGN(32) : {
  thread_cpu0.o(.data)
  thread_cpu0.o(.bss)
  thread_cpu0.o(.rodata)
}
. = 0x9ffa8 ;
_user_stack_end0 = .;
. = 0xa0000 ;
_user_stack_start0 = .;

. = f_ALLOC ;

.f_text ALIGN(ICACHE_LINE_SIZE) : {
  f.o(.text)
}
.f_data ALIGN(DCACHE_LINE_SIZE) : {
  f.o(.data)
  f.o(.bss)
  f.o(.rodata)
}

x = 0x88e88;

● Code placement entirely 
controled
– Threads

● Code and local data 
contiguously at start of the bank

● Stack at the end of the bank

– Nodes
● Code and local data 

contiguously

– Data-flow variables placed in 
the remaining space
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Platform API

● Cache coherency
– dcache_flush – force the write of all dirty lines in the cache/write buffer to 

memory

– dcache_inval – invaldate all data cache lines

● Lock synchronization
– lock_request – request the hardware lock (blocking)

– lock_grant – grant the hardware lock (non-blocking)

● Time synchronization
– wait – wait for a specific date

● Global barrier synchronization
– global_barrier – global barrier of all processors. Exited on all processors 

at the same time (± a bounded number of CPU cycles)
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Timing model

● Analysis of sequential pieces of code
– In isolation 

● No interferences from concurrent code
– Need mapping-independent worst-case 

guarantees
– Hypotheses on memory allocation, that must 

be respected during allocation
● Interference model
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Analysis of sequential code

● Worst-case execution time (WCET) analysis
– In our case: aiT from AbsInt

– Static analysis of sequential functions
● Assumes no external interferences (timing, synchronization)
● Can be applied to dataflow nodes

– For a sequential function f, aiT can compute:
● WCET(f) = upper bound on the execution time, from function call to return

– Does not include building the call context

● WCAT(f,m) = upper bound on the number of memory accesses by f to a 
memory area m

– At memory bank input (takes into account cache behavior)

● WCCAL(f,g) = upper bound on the number of times f calls a library 
function g

– Mandatory for us, due to software implementation of division

● WCSTACK(f) = upper bound on the stack size
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Analysis of sequential code

● WCET analysis constraints
– Analysis is done on statically-allocated code with 

well-known stack

– We need allocation-independent values
● Cache partitioning through strong, architecture-dependent 

hypotheses on the way mapping is done. 
● Examples on Kalray MPPA256:

– Allocation of nodes is done with cache line alignment
– Code and data of all library functions are smaller than 4kbytes
– Nodes with code or data larger than 4kbytes are aligned on 

4kbytes…
– Specific memory allocation by gcc and custom-made analysis 

scripts for aiT
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Analysis of sequential code

● Remaining thread code is not analyzed using aiT
– Code snippets

● Call construction (putting arguments on stack)
● Cache coherency
● Synchronization code
● Global barrier
● Optional tracing code

– Instructions not covered or difficult to automate

– Manual analysis of the code to derive WCET(s), WCAT(s)
● Hypotheses: No call to library functions, no stack increase
● Most complex for call construction
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• Request-response protocol
– Arbitration: Memory requests from multiple sources 

are arbitrated using a Round Robin policy 
– Atomicity: Once accepted by the arbiter, requests 

are treated atomically

Memory interferences

RoRo arbiterRoRo arbiter

PE1
PE1

PE2
PE2

M
U

X
M

U
X

RAM 
bank
RAM 
bank

a

b

c

D
E

M
U

X
D

E
M

U
X
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RoRo arbiterRoRo arbiter

PE1
PE1

PE2
PE2

M
U

X
M

U
X

RAM 
bank
RAM 
bank

a

b

c

Memory interferences

• Reads are bursty
– One-word packet request, 8-word packet response
– The atomic operation lasts for 8 cycles

• Write operations last for 1 cycle
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X
D

E
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U
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Memory interferences

● Worst-case interference scenario for two 
communications
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Memory interferences

● Worst-case interference scenario for two 
communications
– Tasks t1, t2 acceding concurrently to a memory bank

– Assume ti makes ri(B) read accesses and wi(B) write 
accesses to bank B, with ai(B)=ri(B)+wi(B)

– An upper bound on the delay t2 imposes on t1 due to 
interferences on bank B is:

– An upper bound for the full interferences on t1 is:
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Architecture description

● Functional specifications alone 
are not enough for a real-time 
implementation

● Specification-dependent input
– WCET in isolation (pessimistic 

without context but no 
interferences)

– Code size
● Text
● Static data
● Stack usage

– Number of memory accesses
● Code, data and stack
● Triple for code read, data read, and 

data write

Architecture

Cores:2

Memory Excluded
[Start:0x000000 End:0x060000]
[Start:0x0c0000 End:0x1ff000]
[Start:0x1ff000 End:0x200000]

Function f :
Text : 104 Data : 0 Stack : 16
WCET : 1174
WCAT :
  Text :  [ 2  0   0 ]
  Data :  [ 0  0   0 ]
  Stack : [ 0 203 103 ]

bur
sty

 ac
ces

ses

non
 bu

rst
y
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The real-time mapping problem

● Cyclic dependency between mapping and timing 
analysis
– How to break this cycle?

Mapping and 
compilation

Mapping and 
compilation

Timing analysis, 
schedulability 

analysis

Timing analysis, 
schedulability 

analysis

ImplementationImplementation

Timing 
characterization

Timing 
characterization



32

The real-time mapping problem

Solutions:
– Implement using unsafe characteristics, then 

determine if implementation satisfies requirements
– Use over-approximated timing characterization that 

cover all possible mappings 

Mapping and 
compilation

Mapping and 
compilation

Timing analysis, 
schedulability 

analysis

Timing analysis, 
schedulability 

analysis

ImplementationImplementation

Timing 
characterization

Timing 
characterization
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The real-time mapping problem

● Solutions:
– Implement using unsafe characteristics, then 

determine if implementation satisfies requirements
● Choosing unsafe characteristics may be difficult

– Dependence on mapping may be important (e.g. FFT)

● What to do in case of non-satisfaction?

– Use over-approximated timing characterization that 
cover all possible mappings

● Produces a safe implementation
– Our choice

● Over-approximation costs
– Need precise timing models for efficient resource allocation
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Mapping heuristic

● The base heuristic : list scheduling 
– Consider the nodes of the dataflow graph in an order compatible with 

the intra-cycle data dependencies

– When considering a node:
● allocate all data and code it uses onto memory banks
● allocate it to one of the processing cores
● choose its start date to ensure that its data dependencies and real-time 

requirements are met

– What we need to tune :
● Choice of a node to schedule between those available at one moment
● Choice of mapping (allocation and schedule) of the chosen node
● Ensure that timing accounting remains correct throughout the scheduling 

process
– With respect to code generation

● Intuitive optimization choices are not the best ones
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Scheduling table

● Reserve time intervals for all function
– Respect all data dependencies of a 

cycle

f

h

barrier

CPU0   CPU1

T
im

e

g



36

Scheduling table

● Reserve time intervals for all function
– Respect all data dependencies of a 

cycle

– Reserved(f) =                      
WCET(f) + overheads(f)

– Legend
● Node call WCET
● Interferences
● Memory coherency
● Synchronization
● Global barrier

f

h

barrier

CPU0   CPU1

T
im

e

g
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Scheduling table

● Reserved space for a node 
must account for all overheads
– Need worst-case bounds on :

● Synchronization costs
● Coherency costs
● Interferences

– Including by nodes that are not yet 
scheduled

f

h

barrier

CPU0   CPU1

T
im

e

g
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Synchronization construction

● Objective: Preserve data dependencies and interference pattern
– Two nodes interfere if they overlap in time and access the same 

memory bank

● Synchronization synthesis is done after scheduling
● First attempt: minimal synchronization, maximal asynchrony

– Algorithm based on Lamport clocks

– Massive use-case paralellism => too many hardware resources needed
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Synchronization construction

● Problem of resources
– Many locks live at the same time

– Many requests on not granted locks 

– Main reason : nodes with larges fan-ins, fan-outs

● Heavy optimizations involving both improved analysis and 
modifications to scheduling to improve locality of locks
– Reduction, but not nearly enough. No guarantee of 

implementability
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Synchronization construction

● Solution: sequentialize synchronizations
– Chains of request-grant before or after 

node call (plus some optimization)
● Easy to validate correctness
● Significantly less synchronization operations
● Sequencing of operations does not seem 

penalizing, even for our «  fine-grain » 
parallelism 

● average node WCET = 1000 cycles, 
hundreds/thousands of nodes

– Static bound on synchronization overhead: 
● At most two lock requests and two lock grants 

per node call

f

h

barrier

CPU0   CPU1

T
im

e

g
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Memory coherency

● First attempt: per-data flush and inval operations, 
with smart ways of optimizing them
– High cost in code, data, and complexity

● Solution: use the global data cache invalidation 
and write buffer flush routines
– Systematic cache invalidation and flush before and 

after node call respectively

– (Small) bound on cache coherency costs

– Architecture-dependent solution!
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Interferences

● Need to provision acceptable interferences before scheduling
– Bound on interferences by not yet scheduled functions

● Increase each WCET by a percentage (e.g. 10%) 
provisioning interferences
– Lopht compiler parameter

● When mapping a fonction during list scheduling, check that its 
interferences and those of all already mapped functions 
remain within the predefined bound
– If not, search for a later date

– Percentage = 0% => accept no interferences (old Lopht [Carle at al. 
2012])

● Low parallelization

– Choosing the right value is important for efficiency
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Experimental results

● Avionics use-case (Airbus flight controller, DAL A)
– ~5k unique nodes

– ~36k variables

● Multi-periodic application
– Sequential implementation

– Repeating pattern formed of 5ms « tasks »

– Each « task » can be represented as a single-period 
dataflow program 

● Our problem:
– Parallelize each « task »
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Experimental results

● One task : 779 nodes, 7943 variables
● Speed-up bound given by critical path: 9.42x

– Sequential cycle duration/Parallelized cycle duration

– Infinite number of CPUs, no interferences, no overheads 

● Parallelization:
– 2 CPU: 1.76x

– 4 CPU: 3.26x

– 8 CPU: 5.48x

– 12 CPU: 7.41x 

(cannot use more CPUs due to memory limit, even though 
we were careful not to waste it)
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Experimental results

● Estimating the various overheads:
– Baseline parallelization on 8 CPU: 5.48x

– Parallelize while assuming:
● no interference costs: 6.84x
● no synchronization overhead: 5.74x
● no coherency overhead: 5.51x

no interference or overhead: 7.99x
Embarassingly parallel?
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Experimental results

● Estimating the various overheads:
– Baseline parallelization on 8 CPU: 5.48x

– Parallelize while assuming:
● no interference costs: 6.84x
● no synchronization overhead: 5.74x
● no coherency overhead: 5.51x
● no interference or overhead: 7.99x

– Embarassingly parallel?
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Experimental results

● Embarassingly parallel?
– Yes – there is a lot of parallelism (9.42x in theory)

– But exploiting it has a cost in synchronization and (mostly) 
interferences

– « embarassingly parallel » is not easy to define
● Depends on application, architecture, mapping

– E.g. increasing locality using local copies at certain dates reduces 
interferences
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Conclusion

● First real-time implementation method that fully automates timing analysis, 
in addition to mapping and code generation
– Real-time systems compilation

– Relies on strong integration of timing analysis, mapping, code generation, 
compilation around a precise timing model

– Works on shared memory multi-cores satisfying certain hypotheses
● One tile of Kalray MPPA256

– Good practical results for industrial case studies

● Future work
– Other platforms

● Full Kalray MPPA256 chip - code and data overlays and scheduling over NoC
● Tricore ?

– More native multi-rate support

– Optimizations

– Formal validation
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Other approaches to code 
generation

● Time-triggered
– Our first code generation approach for 

MPPA (dec. 2016)

– Simpler code

– Depending on architecture, fine-grain 
time synchronization may be expensive

● less overhead on Kalray MPPA256

– Code is functionally less robust
● Minor timing errors break the whole 

execution
– Functional simulation is impossible with the 

same code on a different architecture

● Gains on some functions cannot 
compensate timing errors on other functions

f

h
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CPU0   CPU1
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wait wait

wait
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Other approaches to code 
generation

● Bulk synchronous parallel (BSP)
– Separate computations and communications into non-

overlapping phases, executed cyclically

– Timing analysis of computation phases is easy if full 
spatial isolation is ensured

● No two processors use the same memory bank => no 
interferences

● Full spatial isolation => memory&communication costs

– WCET analysis of communication phases remains 
complicated

– Scheduling dataflow specifications for BSP is non-trivial
● Trade-off between parallelization and latency in the 

construction of computation phases
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Heuristics vs «  exact » methods

● Constraint solving, SMT, ILP
– Popular in real-time scheduling

● Our problem can be put in this form
– Previous attempts on simpler problems 

[FORMATS'15] – not scalable
– Recent advances in solver technology
– Problem far more complex: allocation of code data, 

interferences, scheduling, etc.
● Difficult to predict how much time it will take (or if it 

terminates)
– What to do when it does not?
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Reused results

● Previous work
– [Carle et al. 2012] – Mapping into shared-memory 

many-cores without memory interferences

– [Puaut&Potop 2013] – WCET analysis of 
synchronous parallel code without memory 
interferences

– [Rihani et al. 2016] – Timing analysis on Kalray 
MPPA256 in the presence of memory interferences
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Cannot use OS-like semaphores due to HW 
abstraction with high cost (e.g. critical sections, 

etc.)



54

Hypotheses on platform and 
external code (nodes+libs)

● Platform API
– dcache_flush, dcache_inval

– lock_request, lock_grant

– wait

– global_barrier

● Node call conventions
● Memory allocation conventions for nodes and libs
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