A Functional Synchronous Language

with Time Warps

Adrien Guatto

Inria Paris

Gallium - 06/11/2017

Streams in Programs and Proofs

m Infinite sequences of values
Stream(X) =~ N — X

m Kahn's insight: a deterministic reactive system can be
described as a mathematical function

Stream(X) — Stream(Y)

m Exploited in various languages and formalisms:
m lazy functional languages, e.g. Haskell;
m synchronous dataflow languages, e.g. Lustre;
m proof assistants based on Type Theory, e.g. Coq.

Recursive Stream Definitions

m Streams, as infinite objects, have to be introduced via
self-referential definitions.

m For example, zeroes can be characterized as the solution of
zeroes = 0 :: zeroes

and defined as such in Haskell, Lustre, and Coq.

m What about equations with several or no solutions?
weird = weird

Different languages follow different approaches.

Recursive Stream Definitions

m Streams, as infinite objects, have to be introduced via
self-referential definitions.

m For example, zeroes can be characterized as the solution of
zeroes = 0 :: zeroes

and defined as such in Haskell, Lustre, and Coq.

m What about equations with several or no solutions?
weird = weird
Different languages follow different approaches.

Demonstration 1
Try the above in our three prototypical languages.

Productivity and its Enforcement

Productivity
A stream definition is productive when any finite prefix of the
stream can be computed in finite time.

Productivity can be enforced by:
m Syntactic criteria (e.g., Coq and Lustre)
v/ Simple and well-understood
X Anti-modular, inexpressive
m Type systems (e.g., guarded type theories, Lucid Synchrone)

v Modular
? Expressive

Productivity and its Enforcement

Productivity
A stream definition is productive when any finite prefix of the
stream can be computed in finite time.

Productivity can be enforced by:
m Syntactic criteria (e.g., Coq and Lustre)
v/ Simple and well-understood
X Anti-modular, inexpressive
m Type systems (e.g., guarded type theories, Lucid Synchrone)

v Modular
? Expressive

Guarded Type Theories and the Later Modality

Nakano's Key ldea

In a recursive definition, self-references are only available later.

Guarded Type Theories and the Later Modality

Nakano's Key ldea

In a recursive definition, self-references are only available later.

Guarded Type Theories and the Later Modality

Nakano's Key ldea

In a recursive definition, self-references are only available later.

Formally:

Guarded Type Theories and the Later Modality

Nakano's Key ldea

In a recursive definition, self-references are only available later.

Formally:

m Enrich the type language with a modality
Ti=- |7

and related operations.

Guarded Type Theories and the Later Modality

Nakano's Key ldea

In a recursive definition, self-references are only available later.

Formally:

m Enrich the type language with a modality
Ti=- T

and related operations.

m Give appropriate types to the stream constructor/destructors;
(:x) : X = » Stream(X) — Stream(X)

head : Stream(X) — X tail : Stream(X) — » Stream(X)

Guarded Type Theories and the Later Modality

Nakano's Key ldea

In a recursive definition, self-references are only available later.

Formally:

m Enrich the type language with a modality
Ti=- T

and related operations.

m Give appropriate types to the stream constructor/destructors;
(:1) : X — » Stream(X) — Stream(X)
head : Stream(X) — X tail : Stream(X) — » Stream(X)

m Have a special typing rule for recursive definitions.

Guarded Recursive Definitions

Mx:»7kHt:7T
NFrec (x:7).t:7

Guarded Recursive Definitions

Mx:»7kHt:7T
NFrec (x:7).t:7

m The following definition is well-typed.

zeroes = 0 :: zeroes

Guarded Recursive Definitions

Mx:»7kHt:7T
NFrec (x:7).t:7

m The following definition is well-typed.

rec (zeroes : Stream(Int)).(0 :: zeroes)

Guarded Recursive Definitions

Mx:»7kHt:7T
NFrec (x:7).t:7

m The following definition is well-typed.
rec (zeroes : Stream(Int)).(0 :: zeroes)
m This one is not:

rec (weird : Stream(Int)).weird

Guarded Recursive Definitions

Mx:»7kHt:7T
NFrec (x:7).t:7

m The following definition is well-typed.
rec (zeroes : Stream(Int)).(0 :: zeroes)
m This one is not:
rec (weird : Stream(Int)).weird

“This expression has type » Stream(Int) but was expected to
have type Stream(Int)."

Later and its Limitations

m Following Nakano, many works from Birkedal, Krishnaswami,
McBride, Mggelberg, Bizjak and others, studying:
m powerful (dependent) type systems;
m denotational and operational semantics;
m practical and theoretical use cases, from

nat =0 ::map (Ax.x + 1) nat

to step-indexed models of programming languages.

Later and its Limitations

m Following Nakano, many works from Birkedal, Krishnaswami,
McBride, Mggelberg, Bizjak and others, studying:
m powerful (dependent) type systems;
m denotational and operational semantics;
m practical and theoretical use cases, from

nat =0 ::map (Ax.x + 1) nat

to step-indexed models of programming languages.
m However, current guarded type theories struggle with. ..
m mutual recursion:

nat = 0 :: spos spos = map (Ax.x + 1) nat

Later and its Limitations

m Following Nakano, many works from Birkedal, Krishnaswami,
McBride, Mggelberg, Bizjak and others, studying:
m powerful (dependent) type systems;
m denotational and operational semantics;
m practical and theoretical use cases, from

nat =0 ::map (Ax.x + 1) nat

to step-indexed models of programming languages.
m However, current guarded type theories struggle with. ..
m mutual recursion:

nat = 0 :: spos spos = map (Ax.x + 1) nat
m fine-grained dependencies:

thuemorse = false :: tail (h thuemorse)

where h (x :: xs) =x :: (not x) - h xs

Beyond Later: Time Warps

m Models of guarded recursion interpret types by w-indexed
families of sets of observations.

(Stream(Int)), = Int"

m The later modality applies a simple transformation to a type:
delaying what can be observed one step into the future.

(» Stream(Int)), ~ Int""?

Beyond Later: Time Warps

m Models of guarded recursion interpret types by w-indexed
families of sets of observations.

(Stream(Int)), = Int"

m The later modality applies a simple transformation to a type:
delaying what can be observed one step into the future.

(» Stream(Int)), ~ Int""?

Main Claims of This Talk

Beyond Later: Time Warps

m Models of guarded recursion interpret types by w-indexed
families of sets of observations.

(Stream(Int)), = Int"

m The later modality applies a simple transformation to a type:
delaying what can be observed one step into the future.

(» Stream(Int)), ~ Int""?

Main Claims of This Talk

m By considering a large class of transformations, time warps, we
obtain a very general parametric modality.

Beyond Later: Time Warps

m Models of guarded recursion interpret types by w-indexed
families of sets of observations.

(Stream(Int)), = Int"

m The later modality applies a simple transformation to a type:
delaying what can be observed one step into the future.

(» Stream(Int)), ~ Int""?

Main Claims of This Talk
m By considering a large class of transformations, time warps, we
obtain a very general parametric modality.

m It is possible to design a type system around this modality to
make it both usable and implementable.

Beyond Later: Time Warps

m Models of guarded recursion interpret types by w-indexed
families of sets of observations.

(Stream(Int)), = Int"

m The later modality applies a simple transformation to a type:
delaying what can be observed one step into the future.

(» Stream(Int)), ~ Int""?

Main Claims of This Talk

m By considering a large class of transformations, time warps, we
obtain a very general parametric modality.

m It is possible to design a type system around this modality to
make it both usable and implementable.

Pulsar is a prototype implementation of these ideas.

Introduction

Programming in a Language with Time Warps
Metatheoretical Aspects

Algorithmic Type Checking

Perspectives

Programming in a Language with Time Warps

Overview

m Pulsar is based on the simply-typed A-calculus extended with a
built-in stream type.

Tu= v|Stream(7) | T > T |TXxT]|...
v = Int | Bool | Char
MNx)=r Mx:mkEt:m Fr-t:m—mn l-t:n

l-x:71 M- fun(x:7).t:m M-t th:m

Overview

m Pulsar is based on the simply-typed A-calculus extended with a
built-in stream type.

Tu= v|Stream(7) | T > T |TXxT]|...

v = Int | Bool | Char
MNx)=r Mx:mkEt:m Fr-t:m—mn l-t:n
l-x:71 M- fun(x:7).t:m M-t th:m

m To the above, it adds the warp modality
T = .- | *PT

plus guarded recursion, subtyping, and a new construct.

m Formally, warps are sup-preserving functions from w + 1 to
itself, i.e. monotonic functions such that

f(0)=0 flw) = |_|f(i)

i<w

m Formally, warps are sup-preserving functions from w + 1 to
itself, i.e. monotonic functions such that

f(0)=0 flw) = |_|f(i)
i<w
m We restrict ourselves to warps defined as running sums O p of

ultimately periodic number sequences p.

(Op)(i)zJprU] for0<i<w

Jj=0

For example:

m Formally, warps are sup-preserving functions from w + 1 to
itself, i.e. monotonic functions such that

f(0)=0 flw) = |_|f(i)
i<w
m We restrict ourselves to warps defined as running sums O p of

ultimately periodic number sequences p.

(Op)(i)zJprU] for0<i<w

Jj=0
For example:

(0(0))()) =0

m Formally, warps are sup-preserving functions from w + 1 to
itself, i.e. monotonic functions such that

f(0)=0 flw) = |_|f(i)
i<w
m We restrict ourselves to warps defined as running sums O p of

ultimately periodic number sequences p.

(Op)(i)zJprU] for0<i<w

Jj=0
For example:

©@)(H=0 (O)H) =i

m Formally, warps are sup-preserving functions from w + 1 to
itself, i.e. monotonic functions such that

f(0)=0 flw) = |_|f(i)
i<w
m We restrict ourselves to warps defined as running sums O p of

ultimately periodic number sequences p.

(Op)(i)zJprU] for0<i<w

Jj=0
For example:

©o@O)H=0 (O@)YH=i (O0)()=i-1

m Formally, warps are sup-preserving functions from w + 1 to
itself, i.e. monotonic functions such that

f(0)=0 flw) = |_|f(i)
i<w
m We restrict ourselves to warps defined as running sums O p of

ultimately periodic number sequences p.

(Op)(i)zJprU] for0<i<w

j=0
For example:
@) =0 (O@)iH)=i (O0Q)()=i-1
(0(2)(7) = 2i

m Formally, warps are sup-preserving functions from w + 1 to
itself, i.e. monotonic functions such that

f(0)=0 flw) = |_|f(i)
i<w
m We restrict ourselves to warps defined as running sums O p of

ultimately periodic number sequences p.

(Op)(i)zJprU] for0<i<w

j=0
For example:
@) =0 (O@)iH)=i (O0Q)()=i-1
(O2)(i)=2i (O(w))(i)=wfori>0

Guarded Recursion in Pulsar

Demonstration 2
Let us try to write zeroes.

Guarded Recursion in Pulsar

Demonstration 2
Let us try to write zeroes.

Guarded recursion is formulated with » 7 £ *o(1) T as expected.

Fox:ikoy7he:r

Nrec(x:7)e:r
Similarly, primitives have types
(::) 1 T — %o (1) Stream(7) — Stream()

head : Stream(7) — 7 tail : Stream(7) — % (1) Stream(7)

Warp Composition

Demonstration 3
Let us try to write weird.

Warp Composition

Demonstration 3
Let us try to write weird.

As expected, there is no 7 such that F weird : Stream(7) holds.
However, I weird : %) Stream(7) holds for any 7. Why?

Warp Composition

Demonstration 3
Let us try to write weird.

As expected, there is no 7 such that F weird : Stream(7) holds.
However, I weird : %) Stream(7) holds for any 7. Why?

Kpeg T = KpXKqT
The operator *, called warp composition, is characterized by
O(pxq)=0qo0p
hence we have

%0 (1) %(0) Stream(7T) = % (1)«(0) Stream(7) = % g Stream(7)

Warping and Delays

Demonstration 3
Let us try to write map.

Warping and Delays

Demonstration 3
Let us try to write map.

N-e:7
p,Febyp:k,7

Warping and Delays

Demonstration 3
Let us try to write map.

N-e:7
p,Febyp:k,7

map : *q(1) ((Int — Int) — Stream(Int) — Stream(Int))
f: Int—Int

xs 1 *q(1) Stream(Int)

Warping and Delays

Demonstration 3
Let us try to write map.

N-e:7
p,Febyp:k,7 T= kT

map : *q(1) ((Int — Int) — Stream(Int) — Stream(Int))
f: Int — Int = sy (Int — Int)
xs 1 *q(1) Stream(Int)

Warping and Delays

Demonstration 3
Let us try to write map.

lFe:T g<p

kpHebyp:*,T T=3k)T kpT < kg T

map : *q(1) ((Int — Int) — Stream(Int) — Stream(Int))
f: Int — Int = () (Int = Int) <: kg (q) (Int — Int)
xs 1 *q(1) Stream(Int)

Putting it all Together: Mutual Recursion

Demonstration 4
Let us write nat and spos.

Putting it all Together: Fine-Grained Dependencies

Demonstration 5
Let us write thuemorse.

Metatheoretical Aspects

A Two-Level Calculus

m Implicit terms correspond to user programs:

to=x|fun(x:7).ttt[pricqoryt|Trec (x:7).ttbyp

A Two-Level Calculus

m Implicit terms correspond to user programs:
to=x|fun(x:7).ttt[pricqoryt|Trec (x:7).ttbyp
m Explicit terms have coercions and syntax-directed typing rules:
ex=x|fun(x:7).e|eel(ee)|priye|rec(x:7)elebyp
| (Ee) | (vit)
MN-e:7 a:t<1 vl <T M-e:7
ME(a;e): 7 ME(y;e):

A Two-Level Calculus

m Implicit terms correspond to user programs:
to=x|fun(x:7).ttt[pricqoryt|Trec (x:7).ttbyp
m Explicit terms have coercions and syntax-directed typing rules:

ex=x|fun(x:7).e|eel(ee)|priye|rec(x:7)elebyp

| (ta) [(vit)
Mle: 7 a:T <71 vy <T MlFe: T
r'l—(a;e):T' F'I—(’y;e):T

m Every explicit term e erases to a unique implicit term U(e).

The Dynamics of Pulsar

Pulsar enjoys two distinct semantics, both defined on explicit terms:

m Operational, as a big-step evaluation relation

The Dynamics of Pulsar

Pulsar enjoys two distinct semantics, both defined on explicit terms:

m Operational, as a big-step evaluation relation

m Denotational, as an interpretation in the topos of trees

[7] € |o] [MHe:7]ew([r]I)

Operational Semantics

v 1= nil|s|vav|(v,v)]|(x.e){c}]| (p,v)

Operational Semantics

v 1= nil|s|vav|(v,v)]|(x.e){c}]| (p,v)

vi:Ten+1 vo : Stream(7) @ n v:Tep(n)
nil:7@0 vi v Stream(T) @ n+1 (p,v):kpT@n

Operational Semantics

v 1= nil|s|vav|(v,v)]|(x.e){c}]| (p,v)

vi:Ten+1 vo : Stream(7) @ n v:Tep(n)
nil:7@0 vi v Stream(T) @ n+1 (p,v):kpT@n
e;ma(0) Yp(ny v x.e;0;nil iy v

e;o {onil eby p;o Un (p,v) rec (x:7).e;0 Inv

Operational Semantics

v 1= nil|s|vav|(v,v)]|(x.e){c}]| (p,v)

vi:Ten+1 vo : Stream(7) @ n v:Tep(n)
nil:7@0 vi v Stream(T) @ n+1 (p,v):kpT@n
e;ma(0) Yp(ny v x.e;0;nil iy v
e;o {onil eby p;o Un (p,v) rec (x:7).e;0 Inv
m<n e|olmx— V], x.e ;v fimp v’ m>n

1
x.e;0, v m vV x.e;0, vV

Denotational Semantics: the Topos of Trees

Definition:

O = [wo,Set]

Denotational Semantics: the Topos of Trees

Definition:
B [wOP,]

Concretely:

Denotational Semantics: the Topos of Trees

Definition:
B [wOP,]

Concretely:

Denotational Semantics: the Topos of Trees

Definition:
B [wOP,]

Concretely:

Denotational Semantics: the Topos of Trees

Definition:
o £ [w,Set]
Concretely:

rX rX I’X rX
X(0) 2 X(1) «— X(2) <= X(3) > X(4)

Denotational Semantics: the Topos of Trees

Definition:
o £ [w,Set]
Concretely:

rX rX I’X rX
X(0) 2 X(1) «— X(2) <= X(3) > X(4)

rY rY I’Y rY
Y(0) <2 Y(1) ¢— Y(2) <>~ Y(3) < Y(4)

Denotational Semantics: the Topos of Trees

Definition:
o £ [w,Set]
Concretely:

rX rX I’X rX
X(0) 2 X(1) «— X(2) <= X(3) > X(4)

rY rY I’Y rY
Y(0) <2 Y(1) ¢— Y(2) <>~ Y(3) < Y(4)

Denotational Semantics: the Topos of Trees

Definition:
o £ [w,Set]
Concretely:

rX rX I’X rX
X(0) 2 X(1) «— X(2) <= X(3) > X(4)

Jfo Jﬁ sz Jfé Jﬁl
Y y Y Y

Y(0) - v(1) &= v(2) < v(3) - v(4)

Denotational Semantics: the Interpretation, Abridged

The language is mostly interpreted by exploiting the cartesian-closed
structure of toposes, following Birkedal et al. In addition:
m Warps are (isomorphic to) endofunctors of w, and thus of w°.
m Thus, if X is a presheaf, so is X o p. In other words:

[xp 7(n) = [71(p(n))

For example:

Stream B BY «+— B! « B2 « B3 «+ B* «+—

* (0 2) Stream(BB)

Denotational Semantics: the Interpretation, Abridged

The language is mostly interpreted by exploiting the cartesian-closed
structure of toposes, following Birkedal et al. In addition:
m Warps are (isomorphic to) endofunctors of w, and thus of w°.
m Thus, if X is a presheaf, so is X o p. In other words:

[xp 7(n) = [71(p(n))

For example:

Stream B BY «+— B! « B2 « B3 «+ B* «+—

* (0 2) Stream(BB)

Denotational Semantics: the Interpretation, Abridged

The language is mostly interpreted by exploiting the cartesian-closed
structure of toposes, following Birkedal et al. In addition:
m Warps are (isomorphic to) endofunctors of w, and thus of w°.
m Thus, if X is a presheaf, so is X o p. In other words:

[xp 7(n) = [71(p(n))

For example:

Stream B BY «+— B! « B2 « B3 «+ B* «+—

*(0 2) Stream(B) BO

Denotational Semantics: the Interpretation, Abridged

The language is mostly interpreted by exploiting the cartesian-closed
structure of toposes, following Birkedal et al. In addition:
m Warps are (isomorphic to) endofunctors of w, and thus of w°.
m Thus, if X is a presheaf, so is X o p. In other words:

[xp 7(n) = [71(p(n))

For example:

Stream B BY «+— B! « B2 « B3 «+ B* «+—

*(0 2) Stream(B) BO

Denotational Semantics: the Interpretation, Abridged

The language is mostly interpreted by exploiting the cartesian-closed
structure of toposes, following Birkedal et al. In addition:
m Warps are (isomorphic to) endofunctors of w, and thus of w°.
m Thus, if X is a presheaf, so is X o p. In other words:

[xp 7(n) = [71(p(n))

For example:

Stream B BC «— B! +— B%2+— B3« B* «+— ...
takeg take; takes takes takeg

*(0 2) Stream(B) B «_- B°

Denotational Semantics: the Interpretation, Abridged

The language is mostly interpreted by exploiting the cartesian-closed
structure of toposes, following Birkedal et al. In addition:
m Warps are (isomorphic to) endofunctors of w, and thus of w°.
m Thus, if X is a presheaf, so is X o p. In other words:

[xp 7(n) = [71(p(n))

G2 O

1 < 2 < 3 < 4

For example:

Stream B BC «— B! +— B?2 ¢+ B3« B* «— ...
takeg take; takes takes takeg

*(0 2) Stream(B) B «_- B°

Denotational Semantics: the Interpretation, Abridged

The language is mostly interpreted by exploiting the cartesian-closed
structure of toposes, following Birkedal et al. In addition:
m Warps are (isomorphic to) endofunctors of w, and thus of w°.
m Thus, if X is a presheaf, so is X o p. In other words:

[xp 7(n) = [71(p(n))

G2 O

1 < 2 < 3 < 4

For example:

Stream B BC «— B! +— B%2+— B3« B* «+— ...
takeg take; takes takes takeg

*(0 2) Stream(B) B «—- B eslean B

Denotational Semantics: the Interpretation, Abridged

The language is mostly interpreted by exploiting the cartesian-closed
structure of toposes, following Birkedal et al. In addition:
m Warps are (isomorphic to) endofunctors of w, and thus of w°.
m Thus, if X is a presheaf, so is X o p. In other words:

[xp 7(n) = [71(p(n))

Co L

1 < 2 4

For example:

Stream B BC «— B! +— B?2 ¢+ B3« B* «— ...
takeg take; takes takes takeg

*(0 2) Stream(B) B «—- B eslean B

Denotational Semantics: the Interpretation, Abridged

The language is mostly interpreted by exploiting the cartesian-closed
structure of toposes, following Birkedal et al. In addition:
m Warps are (isomorphic to) endofunctors of w, and thus of w°.
m Thus, if X is a presheaf, so is X o p. In other words:

[xp 7(n) = [71(p(n))

Co L

1 < 2 4

For example:

Stream B BC «— B! +— B%2+— B3« B* «+— ...
takeg take; takes takes takeg

*(0 2) Stream(B) B «—- B celeas 1 B? « B?

Denotational Semantics: the Interpretation, Abridged

The language is mostly interpreted by exploiting the cartesian-closed
structure of toposes, following Birkedal et al. In addition:
m Warps are (isomorphic to) endofunctors of w, and thus of w°.
m Thus, if X is a presheaf, so is X o p. In other words:

[xp 7(n) = [71(p(n))

Co CL Co

1 < 2

For example:

Stream B BC «— B! +— B?2 ¢+ B3« B* «+— ...
takeg take; takes takes takeg

*(0 2) Stream(B) B «—- B celeas 1 B? « B?

Denotational Semantics: the Interpretation, Abridged

The language is mostly interpreted by exploiting the cartesian-closed
structure of toposes, following Birkedal et al. In addition:
m Warps are (isomorphic to) endofunctors of w, and thus of w°.
m Thus, if X is a presheaf, so is X o p. In other words:

[xp 7(n) = [71(p(n))

Co CL Co

1 < 2

For example:

Stream B BC «— B! +— B%2+— B3« B* «+— ...
takeg take; takes takes takeg

*(0 2) Stream(B) B? - B° eslean B

id I t €23

Denotational Semantics: the Interpretation, Abridged

The language is mostly interpreted by exploiting the cartesian-closed
structure of toposes, following Birkedal et al. In addition:
m Warps are (isomorphic to) endofunctors of w, and thus of w°.
m Thus, if X is a presheaf, so is X o p. In other words:

[xp 7(n) = [71(p(n))

For example:

Stream B BC «— B! +— B?2 ¢+ B3« B* «+— ...
takeg take; takes takes takeg

*(0 2) Stream(B) B? - B° eslean B

id I t €23

Denotational Semantics: the Interpretation, Abridged

The language is mostly interpreted by exploiting the cartesian-closed
structure of toposes, following Birkedal et al. In addition:
m Warps are (isomorphic to) endofunctors of w, and thus of w°.
m Thus, if X is a presheaf, so is X o p. In other words:

[xp 7(n) = [71(p(n))

For example:

Stream B BC «— B! +— B%2+— B3« B* «+— ...
takeg take; takes takes takeg

*(0 2) Stream(B) B? - B° eslean B

id I ta €23 id

Conjectural Results

Operational Semantics: Soundness and Totality

Iflf'-e:7and o : I @n, then thereisvst. e;ol,vandv:7Ten

Denotational Semantics: Adequacy
f[FTFe:7]=[+é:7] then Tt ey € : 7.

Algorithmic Type Checking

Subtyping and Coherence

In map, we used
f:Int — Int = % (g) (Int — Int) <t %q (1) (Int — Int)
In fact, the compiler did
f: Int = Int = %(g) (Int — Int) <t %gp(q) (Int — Int)

= %o (1)x2(1) (Int = Int)
= %q(1) *2(1) (Int — Int)

and then

%2 (1) (Int — Int) < %(q) (Int — Int) <t Int — Int

Coherence Issues
m Distinct explicit terms mean different things a priori.

m Programmer writes implicit terms, compiler elaborates them
into explicit ones. Is this reasonable?

Type-Checking and Elaboration

Goals

m Define an algorithm ' =t ~ e : 7 taking (I', t) and
returning (e, 7) such that U(e) =t and M+ e: 7.

m Make this choice canonical in a certain sense.

Type-Checking and Elaboration

Goals

m Define an algorithm ' =t ~ e : 7 taking (I', t) and
returning (e, 7) such that U(e) =t and M+ e: 7.

m Make this choice canonical in a certain sense.

In other words, we have to decide where to add (—; «) and (v; —)
in t. This involves two main questions:

m Infer coercions o : 71 <: T given 71 and 7.

m Infer coercions «y : 'y <: %, [given ['1 and p.

Deciding Subtyping in Three Steps

1. The algorithmic judgment |7' >t~ a2 d |:

m impliesa:7<:7°and o/ : 75 < T,
m implies that 7° respects the following grammar.
T8 i= ok, | T8 X TC

7" = v | Stream(7°) | 7° — 7°

Deciding Subtyping in Three Steps

1. The algorithmic judgment |7' >t~ a2 d |:

m impliesa:7<:7°and o/ : 75 < T,
m implies that 7° respects the following grammar.
T8 i= ok, | T8 X TC

7" = v | Stream(7°) | 7° — 7°

2. The algorithmic judgment :

m impliesa: 7 < 7';
m holds iff 7 is coercible to 7/ using only delays.

Deciding Subtyping in Three Steps

1. The algorithmic judgment |7' >t~ a2 d |:

m impliesa:7<:7°and o/ : 75 < T,
m implies that 7° respects the following grammar.

T8 i= ok, | T8 X TC

7" = v | Stream(7°) | 7° — 7°

2. The algorithmic judgment :

m impliesa: 7 < 7';
m holds iff 7 is coercible to 7/ using only delays.

3. Algorithmic subtyping can then be defined by

TL> T~ 2 — > T~ — 203 TL > T5 ~ Qg

T1 <! T2 Q1;02;,03

Type-Checking Warping

To type-check e by p in ', for any 7 in I we must find 7P such that

T < %,7P

Type-Checking Warping

To type-check e by p in ', for any 7 in I we must find 7P such that
T < %,7P
Moreover, to be complete we need the best solution, i.e. for any 7/

T < >l<p7"<:>T” < 7

Type-Checking Warping

To type-check e by p in ', for any 7 in I we must find 7P such that
T < %,7P
Moreover, to be complete we need the best solution, i.e. for any 7/
T<kpT &TP <7
Fortunately, there exists an operation —/p on types such that

T< ¥k, 7 & T/p< T

Type-Checking Warping

To type-check e by p in ', for any 7 in I we must find 7P such that
T < %,7P
Moreover, to be complete we need the best solution, i.e. for any 7/
T<kpT &TP <7
Fortunately, there exists an operation —/p on types such that
T< ¥k, 7 & T/p< T
It reduces to a similar operation on warps.

q=pxreq/p>r

We are looking for a Galois connection (—/g) 4 (— o g).

hog<f<h<f/g

We are looking for a Galois connection (—/g) 4 (— o g).
hog<f<h<f/g

Such a thing exists for purely order-theoretic reasons. It can be built
from the right Kan extension of f along g.

(Rang(f))(n) =[] *(g.(1)

We are looking for a Galois connection (—/g) 4 (— o g).
hog<f<h<f/g

Such a thing exists for purely order-theoretic reasons. It can be built
from the right Kan extension of f along g.

(Rang(f))(n) =[] *(g.(1)

The right Kan extension is presentable by a ultimately periodic
sequence when both f and g are, and can be computed.

(1)/0(1) = 2(1) (1)/(2) = (10) (10)/(10) = (1)
(1)/(0) = (w) (1)/(w) = 1(0)

Main Results

Coherence of Subtyping

If «:7 <7 and o : 71 <: 7 then

[a:m < n)=[d:m < 7]

Main Results

Coherence of Subtyping

If «:7 <7 and o : 71 <: 7 then
[a:m < n)=[d:m < 7]

Completeness of Type-Checking
For any I' - e : 7, there is ey, Tm, @ such that

Fr-uUe)~ em:Tm FEem: Tm Ty, <IT

[TE(ema):7]=[TFe:T]

Main Results

Coherence of Subtyping

If «:7 <7 and o : 71 <: 7 then
[a:m < n)=[d:m < 7]

Completeness of Type-Checking
For any I' - e : 7, there is ey, Tm, @ such that
F=uU(e) ~ em: ™ l-em: ™ QT <! T
[TE(ema):7]=[TFe:T]

Corollary: Coherence
IfIFr'-e :7and I e : 7 then

TFe:7]=[TFe:7]

Perspectives

Frontend
m More ambitious subtyping.

m Type inference.

Backend
m Single-loop code generation.
m Typing restrictions to run within finite space.

What | Didn’t Talk About

* g X
kp *q X
g X

*psq)

Conclusion

m | have presented a higher-order language with a rich notion of
time. It handles programs that were previously out of reach of
both synchronous languages and guarded type theories.

m Certain aspects of synchronous dataflow languages can be
generalized through semantical intuitions in a natural way. |
believe that this approach could be pushed much further.

Thank you!

	Introduction
	Programming in a Language with Time Warps
	Metatheoretical Aspects
	Algorithmic Type Checking
	Perspectives

