
A Functional Synchronous Language
with Time Warps

Adrien Guatto

Inria Paris

Gallium - 06/11/2017

1 / 36

2 / 36

Streams in Programs and Proofs

Infinite sequences of values

Stream(X) ≈ N→ X

Kahn’s insight: a deterministic reactive system can be
described as a mathematical function

Stream(X)→ Stream(Y)

Exploited in various languages and formalisms:
lazy functional languages, e.g. Haskell;
synchronous dataflow languages, e.g. Lustre;
proof assistants based on Type Theory, e.g. Coq.

3 / 36

Recursive Stream Definitions

Streams, as infinite objects, have to be introduced via
self-referential definitions.
For example, zeroes can be characterized as the solution of

zeroes = 0 :: zeroes

and defined as such in Haskell, Lustre, and Coq.
What about equations with several or no solutions?

weird = weird

Different languages follow different approaches.

Demonstration 1
Try the above in our three prototypical languages.

4 / 36

Recursive Stream Definitions

Streams, as infinite objects, have to be introduced via
self-referential definitions.
For example, zeroes can be characterized as the solution of

zeroes = 0 :: zeroes

and defined as such in Haskell, Lustre, and Coq.
What about equations with several or no solutions?

weird = weird

Different languages follow different approaches.

Demonstration 1
Try the above in our three prototypical languages.

4 / 36

Productivity and its Enforcement

Productivity
A stream definition is productive when any finite prefix of the
stream can be computed in finite time.

Productivity can be enforced by:
Syntactic criteria (e.g., Coq and Lustre)

3 Simple and well-understood
7 Anti-modular, inexpressive

Type systems (e.g., guarded type theories, Lucid Synchrone)
3 Modular
? Expressive

5 / 36

Productivity and its Enforcement

Productivity
A stream definition is productive when any finite prefix of the
stream can be computed in finite time.

Productivity can be enforced by:
Syntactic criteria (e.g., Coq and Lustre)

3 Simple and well-understood
7 Anti-modular, inexpressive

Type systems (e.g., guarded type theories, Lucid Synchrone)
3 Modular
? Expressive

5 / 36

Guarded Type Theories and the Later Modality

Nakano’s Key Idea
In a recursive definition, self-references are only available later.

Formally:

Enrich the type language with a modality

τ ::= · · · | � τ

and related operations.
Give appropriate types to the stream constructor/destructors;

(::) : X → �Stream(X)→ Stream(X)

head : Stream(X)→ X tail : Stream(X)→ �Stream(X)

Have a special typing rule for recursive definitions.

6 / 36

Guarded Type Theories and the Later Modality

Nakano’s Key Idea
In a recursive definition, self-references are only available later.

Formally:

Enrich the type language with a modality

τ ::= · · · | � τ

and related operations.
Give appropriate types to the stream constructor/destructors;

(::) : X → �Stream(X)→ Stream(X)

head : Stream(X)→ X tail : Stream(X)→ �Stream(X)

Have a special typing rule for recursive definitions.

6 / 36

Guarded Type Theories and the Later Modality

Nakano’s Key Idea
In a recursive definition, self-references are only available later.

Formally:

Enrich the type language with a modality

τ ::= · · · | � τ

and related operations.
Give appropriate types to the stream constructor/destructors;

(::) : X → �Stream(X)→ Stream(X)

head : Stream(X)→ X tail : Stream(X)→ �Stream(X)

Have a special typing rule for recursive definitions.

6 / 36

Guarded Type Theories and the Later Modality

Nakano’s Key Idea
In a recursive definition, self-references are only available later.

Formally:
Enrich the type language with a modality

τ ::= · · · | � τ

and related operations.

Give appropriate types to the stream constructor/destructors;

(::) : X → �Stream(X)→ Stream(X)

head : Stream(X)→ X tail : Stream(X)→ �Stream(X)

Have a special typing rule for recursive definitions.

6 / 36

Guarded Type Theories and the Later Modality

Nakano’s Key Idea
In a recursive definition, self-references are only available later.

Formally:
Enrich the type language with a modality

τ ::= · · · | � τ

and related operations.
Give appropriate types to the stream constructor/destructors;

(::) : X → �Stream(X)→ Stream(X)

head : Stream(X)→ X tail : Stream(X)→ �Stream(X)

Have a special typing rule for recursive definitions.

6 / 36

Guarded Type Theories and the Later Modality

Nakano’s Key Idea
In a recursive definition, self-references are only available later.

Formally:
Enrich the type language with a modality

τ ::= · · · | � τ

and related operations.
Give appropriate types to the stream constructor/destructors;

(::) : X → �Stream(X)→ Stream(X)

head : Stream(X)→ X tail : Stream(X)→ �Stream(X)

Have a special typing rule for recursive definitions.

6 / 36

Guarded Recursive Definitions

Γ, x : � τ ` t : τ
Γ ` rec (x : τ).t : τ

The following definition is well-typed.

zeroes = 0 :: zeroes

This one is not:

rec (weird : Stream(Int)).weird

“This expression has type �Stream(Int) but was expected to
have type Stream(Int).”

7 / 36

Guarded Recursive Definitions

Γ, x : � τ ` t : τ
Γ ` rec (x : τ).t : τ

The following definition is well-typed.

zeroes = 0 :: zeroes

This one is not:

rec (weird : Stream(Int)).weird

“This expression has type �Stream(Int) but was expected to
have type Stream(Int).”

7 / 36

Guarded Recursive Definitions

Γ, x : � τ ` t : τ
Γ ` rec (x : τ).t : τ

The following definition is well-typed.

rec (zeroes : Stream(Int)).(0 :: zeroes)

This one is not:

rec (weird : Stream(Int)).weird

“This expression has type �Stream(Int) but was expected to
have type Stream(Int).”

7 / 36

Guarded Recursive Definitions

Γ, x : � τ ` t : τ
Γ ` rec (x : τ).t : τ

The following definition is well-typed.

rec (zeroes : Stream(Int)).(0 :: zeroes)

This one is not:

rec (weird : Stream(Int)).weird

“This expression has type �Stream(Int) but was expected to
have type Stream(Int).”

7 / 36

Guarded Recursive Definitions

Γ, x : � τ ` t : τ
Γ ` rec (x : τ).t : τ

The following definition is well-typed.

rec (zeroes : Stream(Int)).(0 :: zeroes)

This one is not:

rec (weird : Stream(Int)).weird

“This expression has type �Stream(Int) but was expected to
have type Stream(Int).”

7 / 36

Later and its Limitations

Following Nakano, many works from Birkedal, Krishnaswami,
McBride, Møgelberg, Bizjak and others, studying:

powerful (dependent) type systems;
denotational and operational semantics;
practical and theoretical use cases, from

nat = 0 :: map (λx.x + 1) nat

to step-indexed models of programming languages.

However, current guarded type theories struggle with. . .
mutual recursion:

nat = 0 :: spos spos = map (λx.x + 1) nat

fine-grained dependencies:

thuemorse = false :: tail (h thuemorse)
where h (x :: xs) = x :: (not x) :: h xs

8 / 36

Later and its Limitations

Following Nakano, many works from Birkedal, Krishnaswami,
McBride, Møgelberg, Bizjak and others, studying:

powerful (dependent) type systems;
denotational and operational semantics;
practical and theoretical use cases, from

nat = 0 :: map (λx.x + 1) nat

to step-indexed models of programming languages.
However, current guarded type theories struggle with. . .

mutual recursion:

nat = 0 :: spos spos = map (λx.x + 1) nat

fine-grained dependencies:

thuemorse = false :: tail (h thuemorse)
where h (x :: xs) = x :: (not x) :: h xs

8 / 36

Later and its Limitations

Following Nakano, many works from Birkedal, Krishnaswami,
McBride, Møgelberg, Bizjak and others, studying:

powerful (dependent) type systems;
denotational and operational semantics;
practical and theoretical use cases, from

nat = 0 :: map (λx.x + 1) nat

to step-indexed models of programming languages.
However, current guarded type theories struggle with. . .

mutual recursion:

nat = 0 :: spos spos = map (λx.x + 1) nat

fine-grained dependencies:

thuemorse = false :: tail (h thuemorse)
where h (x :: xs) = x :: (not x) :: h xs

8 / 36

Beyond Later: Time Warps

Models of guarded recursion interpret types by ω-indexed
families of sets of observations.

(Stream(Int))n ≈ Intn

The later modality applies a simple transformation to a type:
delaying what can be observed one step into the future.

(�Stream(Int))n ≈ Intn−1

Main Claims of This Talk

By considering a large class of transformations, time warps, we
obtain a very general parametric modality.
It is possible to design a type system around this modality to
make it both usable and implementable.

Pulsar is a prototype implementation of these ideas.

9 / 36

Beyond Later: Time Warps

Models of guarded recursion interpret types by ω-indexed
families of sets of observations.

(Stream(Int))n ≈ Intn

The later modality applies a simple transformation to a type:
delaying what can be observed one step into the future.

(�Stream(Int))n ≈ Intn−1

Main Claims of This Talk

By considering a large class of transformations, time warps, we
obtain a very general parametric modality.
It is possible to design a type system around this modality to
make it both usable and implementable.

Pulsar is a prototype implementation of these ideas.

9 / 36

Beyond Later: Time Warps

Models of guarded recursion interpret types by ω-indexed
families of sets of observations.

(Stream(Int))n ≈ Intn

The later modality applies a simple transformation to a type:
delaying what can be observed one step into the future.

(�Stream(Int))n ≈ Intn−1

Main Claims of This Talk
By considering a large class of transformations, time warps, we
obtain a very general parametric modality.

It is possible to design a type system around this modality to
make it both usable and implementable.

Pulsar is a prototype implementation of these ideas.

9 / 36

Beyond Later: Time Warps

Models of guarded recursion interpret types by ω-indexed
families of sets of observations.

(Stream(Int))n ≈ Intn

The later modality applies a simple transformation to a type:
delaying what can be observed one step into the future.

(�Stream(Int))n ≈ Intn−1

Main Claims of This Talk
By considering a large class of transformations, time warps, we
obtain a very general parametric modality.
It is possible to design a type system around this modality to
make it both usable and implementable.

Pulsar is a prototype implementation of these ideas.

9 / 36

Beyond Later: Time Warps

Models of guarded recursion interpret types by ω-indexed
families of sets of observations.

(Stream(Int))n ≈ Intn

The later modality applies a simple transformation to a type:
delaying what can be observed one step into the future.

(�Stream(Int))n ≈ Intn−1

Main Claims of This Talk
By considering a large class of transformations, time warps, we
obtain a very general parametric modality.
It is possible to design a type system around this modality to
make it both usable and implementable.

Pulsar is a prototype implementation of these ideas.
9 / 36

Outline

1 Introduction

2 Programming in a Language with Time Warps

3 Metatheoretical Aspects

4 Algorithmic Type Checking

5 Perspectives

10 / 36

Outline

1 Introduction

2 Programming in a Language with Time Warps

3 Metatheoretical Aspects

4 Algorithmic Type Checking

5 Perspectives

11 / 36

Overview

Pulsar is based on the simply-typed λ-calculus extended with a
built-in stream type.

τ ::= ν | Stream(τ) | τ → τ | τ × τ | . . .
ν ::= Int | Bool | Char

Γ(x) = τ

Γ ` x : τ
Γ, x : τ1 ` t : τ2

Γ ` fun (x : τ1).t : τ2

Γ ` t1 : τ1 → τ2 Γ ` t2 : τ1

Γ ` t1 t2 : τ2

To the above, it adds the warp modality

τ ::= · · · | ∗p τ

plus guarded recursion, subtyping, and a new construct.

12 / 36

Overview

Pulsar is based on the simply-typed λ-calculus extended with a
built-in stream type.

τ ::= ν | Stream(τ) | τ → τ | τ × τ | . . .
ν ::= Int | Bool | Char

Γ(x) = τ

Γ ` x : τ
Γ, x : τ1 ` t : τ2

Γ ` fun (x : τ1).t : τ2

Γ ` t1 : τ1 → τ2 Γ ` t2 : τ1

Γ ` t1 t2 : τ2

To the above, it adds the warp modality

τ ::= · · · | ∗p τ

plus guarded recursion, subtyping, and a new construct.

12 / 36

Time Warps

Formally, warps are sup-preserving functions from ω + 1 to
itself, i.e. monotonic functions such that

f (0) = 0 f (ω) =
⊔
i<ω

f (i)

We restrict ourselves to warps defined as running sums O p of
ultimately periodic number sequences p.

(O p)(i) =
j<i∑
j=0

p[j] for 0 < i < ω

For example:

(O (0))(i) = 0 (O (1))(i) = i (O 0 (1))(i) = i − 1

(O (2))(i) = 2i (O (ω))(i) = ω for i > 0

13 / 36

Time Warps

Formally, warps are sup-preserving functions from ω + 1 to
itself, i.e. monotonic functions such that

f (0) = 0 f (ω) =
⊔
i<ω

f (i)

We restrict ourselves to warps defined as running sums O p of
ultimately periodic number sequences p.

(O p)(i) =
j<i∑
j=0

p[j] for 0 < i < ω

For example:

(O (0))(i) = 0 (O (1))(i) = i (O 0 (1))(i) = i − 1

(O (2))(i) = 2i (O (ω))(i) = ω for i > 0

13 / 36

Time Warps

Formally, warps are sup-preserving functions from ω + 1 to
itself, i.e. monotonic functions such that

f (0) = 0 f (ω) =
⊔
i<ω

f (i)

We restrict ourselves to warps defined as running sums O p of
ultimately periodic number sequences p.

(O p)(i) =
j<i∑
j=0

p[j] for 0 < i < ω

For example:

(O (0))(i) = 0

(O (1))(i) = i (O 0 (1))(i) = i − 1

(O (2))(i) = 2i (O (ω))(i) = ω for i > 0

13 / 36

Time Warps

Formally, warps are sup-preserving functions from ω + 1 to
itself, i.e. monotonic functions such that

f (0) = 0 f (ω) =
⊔
i<ω

f (i)

We restrict ourselves to warps defined as running sums O p of
ultimately periodic number sequences p.

(O p)(i) =
j<i∑
j=0

p[j] for 0 < i < ω

For example:

(O (0))(i) = 0 (O (1))(i) = i

(O 0 (1))(i) = i − 1

(O (2))(i) = 2i (O (ω))(i) = ω for i > 0

13 / 36

Time Warps

Formally, warps are sup-preserving functions from ω + 1 to
itself, i.e. monotonic functions such that

f (0) = 0 f (ω) =
⊔
i<ω

f (i)

We restrict ourselves to warps defined as running sums O p of
ultimately periodic number sequences p.

(O p)(i) =
j<i∑
j=0

p[j] for 0 < i < ω

For example:

(O (0))(i) = 0 (O (1))(i) = i (O 0 (1))(i) = i − 1

(O (2))(i) = 2i (O (ω))(i) = ω for i > 0

13 / 36

Time Warps

Formally, warps are sup-preserving functions from ω + 1 to
itself, i.e. monotonic functions such that

f (0) = 0 f (ω) =
⊔
i<ω

f (i)

We restrict ourselves to warps defined as running sums O p of
ultimately periodic number sequences p.

(O p)(i) =
j<i∑
j=0

p[j] for 0 < i < ω

For example:

(O (0))(i) = 0 (O (1))(i) = i (O 0 (1))(i) = i − 1

(O (2))(i) = 2i

(O (ω))(i) = ω for i > 0

13 / 36

Time Warps

Formally, warps are sup-preserving functions from ω + 1 to
itself, i.e. monotonic functions such that

f (0) = 0 f (ω) =
⊔
i<ω

f (i)

We restrict ourselves to warps defined as running sums O p of
ultimately periodic number sequences p.

(O p)(i) =
j<i∑
j=0

p[j] for 0 < i < ω

For example:

(O (0))(i) = 0 (O (1))(i) = i (O 0 (1))(i) = i − 1

(O (2))(i) = 2i (O (ω))(i) = ω for i > 0

13 / 36

Guarded Recursion in Pulsar

Demonstration 2
Let us try to write zeroes.

Guarded recursion is formulated with � τ , ∗0 (1) τ as expected.

Γ, x : ∗0 (1) τ ` e : τ
Γ ` rec (x : τ).e : τ

Similarly, primitives have types

(::) : τ → ∗0 (1) Stream(τ)→ Stream(τ)

head : Stream(τ)→ τ tail : Stream(τ)→ ∗0 (1) Stream(τ)

14 / 36

Guarded Recursion in Pulsar

Demonstration 2
Let us try to write zeroes.

Guarded recursion is formulated with � τ , ∗0 (1) τ as expected.

Γ, x : ∗0 (1) τ ` e : τ
Γ ` rec (x : τ).e : τ

Similarly, primitives have types

(::) : τ → ∗0 (1) Stream(τ)→ Stream(τ)

head : Stream(τ)→ τ tail : Stream(τ)→ ∗0 (1) Stream(τ)

14 / 36

Warp Composition

Demonstration 3
Let us try to write weird.

As expected, there is no τ such that ` weird : Stream(τ) holds.
However, ` weird : ∗(0) Stream(τ) holds for any τ . Why?

∗p∗q τ ≡ ∗p ∗q τ

The operator ∗, called warp composition, is characterized by

O (p ∗ q) = O q ◦ O p

hence we have

∗0 (1)∗(0) Stream(τ) ≡ ∗0 (1)∗(0) Stream(τ) ≡ ∗(0) Stream(τ)

15 / 36

Warp Composition

Demonstration 3
Let us try to write weird.

As expected, there is no τ such that ` weird : Stream(τ) holds.
However, ` weird : ∗(0) Stream(τ) holds for any τ . Why?

∗p∗q τ ≡ ∗p ∗q τ

The operator ∗, called warp composition, is characterized by

O (p ∗ q) = O q ◦ O p

hence we have

∗0 (1)∗(0) Stream(τ) ≡ ∗0 (1)∗(0) Stream(τ) ≡ ∗(0) Stream(τ)

15 / 36

Warp Composition

Demonstration 3
Let us try to write weird.

As expected, there is no τ such that ` weird : Stream(τ) holds.
However, ` weird : ∗(0) Stream(τ) holds for any τ . Why?

∗p∗q τ ≡ ∗p ∗q τ

The operator ∗, called warp composition, is characterized by

O (p ∗ q) = O q ◦ O p

hence we have

∗0 (1)∗(0) Stream(τ) ≡ ∗0 (1)∗(0) Stream(τ) ≡ ∗(0) Stream(τ)

15 / 36

Warping and Delays

Demonstration 3
Let us try to write map.

Γ ` e : τ
∗p Γ ` e by p : ∗p τ

τ ≡ ∗(1) τ

q ≤ p
∗p τ <: ∗q τ

map : ∗0 (1) ((Int→ Int)→ Stream(Int)→ Stream(Int))
f : Int→ Int

≡ ∗(1) (Int→ Int) <: ∗0 (1) (Int→ Int)

xs : ∗0 (1) Stream(Int)

16 / 36

Warping and Delays

Demonstration 3
Let us try to write map.

Γ ` e : τ
∗p Γ ` e by p : ∗p τ

τ ≡ ∗(1) τ

q ≤ p
∗p τ <: ∗q τ

map : ∗0 (1) ((Int→ Int)→ Stream(Int)→ Stream(Int))
f : Int→ Int

≡ ∗(1) (Int→ Int) <: ∗0 (1) (Int→ Int)

xs : ∗0 (1) Stream(Int)

16 / 36

Warping and Delays

Demonstration 3
Let us try to write map.

Γ ` e : τ
∗p Γ ` e by p : ∗p τ

τ ≡ ∗(1) τ

q ≤ p
∗p τ <: ∗q τ

map : ∗0 (1) ((Int→ Int)→ Stream(Int)→ Stream(Int))
f : Int→ Int

≡ ∗(1) (Int→ Int) <: ∗0 (1) (Int→ Int)

xs : ∗0 (1) Stream(Int)

16 / 36

Warping and Delays

Demonstration 3
Let us try to write map.

Γ ` e : τ
∗p Γ ` e by p : ∗p τ τ ≡ ∗(1) τ

q ≤ p
∗p τ <: ∗q τ

map : ∗0 (1) ((Int→ Int)→ Stream(Int)→ Stream(Int))
f : Int→ Int ≡ ∗(1) (Int→ Int)

<: ∗0 (1) (Int→ Int)

xs : ∗0 (1) Stream(Int)

16 / 36

Warping and Delays

Demonstration 3
Let us try to write map.

Γ ` e : τ
∗p Γ ` e by p : ∗p τ τ ≡ ∗(1) τ

q ≤ p
∗p τ <: ∗q τ

map : ∗0 (1) ((Int→ Int)→ Stream(Int)→ Stream(Int))
f : Int→ Int ≡ ∗(1) (Int→ Int) <: ∗0 (1) (Int→ Int)

xs : ∗0 (1) Stream(Int)

16 / 36

Putting it all Together: Mutual Recursion

Demonstration 4
Let us write nat and spos.

17 / 36

Putting it all Together: Fine-Grained Dependencies

Demonstration 5
Let us write thuemorse.

18 / 36

Outline

1 Introduction

2 Programming in a Language with Time Warps

3 Metatheoretical Aspects

4 Algorithmic Type Checking

5 Perspectives

19 / 36

A Two-Level Calculus

Implicit terms correspond to user programs:

t ::= x | fun (x : τ).t | t t | (t, t) | pri∈{0,1}t | rec (x : τ).t | t by p

Explicit terms have coercions and syntax-directed typing rules:

e ::= x | fun (x : τ).e | e e | (e, e) | pri∈{0,1}e | rec (x : τ).e | e by p
| (t;α) | (γ; t)

. . .
Γ ` e : τ α : τ <: τ ′

Γ′ ` (α; e) : τ ′
γ : Γ′ <: Γ Γ ` e : τ

Γ′ ` (γ; e) : τ

Every explicit term e erases to a unique implicit term U(e).

20 / 36

A Two-Level Calculus

Implicit terms correspond to user programs:

t ::= x | fun (x : τ).t | t t | (t, t) | pri∈{0,1}t | rec (x : τ).t | t by p

Explicit terms have coercions and syntax-directed typing rules:

e ::= x | fun (x : τ).e | e e | (e, e) | pri∈{0,1}e | rec (x : τ).e | e by p
| (t;α) | (γ; t)

. . .
Γ ` e : τ α : τ <: τ ′

Γ′ ` (α; e) : τ ′
γ : Γ′ <: Γ Γ ` e : τ

Γ′ ` (γ; e) : τ

Every explicit term e erases to a unique implicit term U(e).

20 / 36

A Two-Level Calculus

Implicit terms correspond to user programs:

t ::= x | fun (x : τ).t | t t | (t, t) | pri∈{0,1}t | rec (x : τ).t | t by p

Explicit terms have coercions and syntax-directed typing rules:

e ::= x | fun (x : τ).e | e e | (e, e) | pri∈{0,1}e | rec (x : τ).e | e by p
| (t;α) | (γ; t)

. . .
Γ ` e : τ α : τ <: τ ′

Γ′ ` (α; e) : τ ′
γ : Γ′ <: Γ Γ ` e : τ

Γ′ ` (γ; e) : τ

Every explicit term e erases to a unique implicit term U(e).

20 / 36

The Dynamics of Pulsar

Pulsar enjoys two distinct semantics, both defined on explicit terms:

Operational, as a big-step evaluation relation

e;σ ⇓n v

Denotational, as an interpretation in the topos of trees

JτK ∈ |ω̂| JΓ ` e : τK ∈ ω̂(JΓK, JτK)

21 / 36

The Dynamics of Pulsar

Pulsar enjoys two distinct semantics, both defined on explicit terms:

Operational, as a big-step evaluation relation

e;σ ⇓n v

Denotational, as an interpretation in the topos of trees

JτK ∈ |ω̂| JΓ ` e : τK ∈ ω̂(JΓK, JτK)

21 / 36

Operational Semantics

v ::= nil | s | v :: v | (v , v) | (x .e){σ} | (p, v)

v : τ @ n

nil : τ @ 0
v1 : τ @ n + 1 v2 : Stream(τ) @ n

v1 :: v2 : Stream(τ) @ n + 1
. . .

v : τ @ p(n)
(p, v) : ∗p τ @ n

e;σ ⇓n v

e;σ ⇓0 nil
. . .

e;π2(σ) ⇓p(n) v
e by p;σ ⇓n (p, v)

x .e;σ; nil ⇑n
0 v

rec (x : τ).e;σ ⇓n v

x .e;σ; v ⇑n
m v ′

m < n e; bσcm[x 7→ v] ⇓v′ x .e;σ; v ′ ⇑n
m+1 v ′′

x .e;σ; v ⇑n
m v ′′

m ≥ n
x .e;σ; v ⇑n

m v

22 / 36

Operational Semantics

v ::= nil | s | v :: v | (v , v) | (x .e){σ} | (p, v)

v : τ @ n

nil : τ @ 0
v1 : τ @ n + 1 v2 : Stream(τ) @ n

v1 :: v2 : Stream(τ) @ n + 1
. . .

v : τ @ p(n)
(p, v) : ∗p τ @ n

e;σ ⇓n v

e;σ ⇓0 nil
. . .

e;π2(σ) ⇓p(n) v
e by p;σ ⇓n (p, v)

x .e;σ; nil ⇑n
0 v

rec (x : τ).e;σ ⇓n v

x .e;σ; v ⇑n
m v ′

m < n e; bσcm[x 7→ v] ⇓v′ x .e;σ; v ′ ⇑n
m+1 v ′′

x .e;σ; v ⇑n
m v ′′

m ≥ n
x .e;σ; v ⇑n

m v

22 / 36

Operational Semantics

v ::= nil | s | v :: v | (v , v) | (x .e){σ} | (p, v)

v : τ @ n

nil : τ @ 0
v1 : τ @ n + 1 v2 : Stream(τ) @ n

v1 :: v2 : Stream(τ) @ n + 1
. . .

v : τ @ p(n)
(p, v) : ∗p τ @ n

e;σ ⇓n v

e;σ ⇓0 nil
. . .

e;π2(σ) ⇓p(n) v
e by p;σ ⇓n (p, v)

x .e;σ; nil ⇑n
0 v

rec (x : τ).e;σ ⇓n v

x .e;σ; v ⇑n
m v ′

m < n e; bσcm[x 7→ v] ⇓v′ x .e;σ; v ′ ⇑n
m+1 v ′′

x .e;σ; v ⇑n
m v ′′

m ≥ n
x .e;σ; v ⇑n

m v

22 / 36

Operational Semantics

v ::= nil | s | v :: v | (v , v) | (x .e){σ} | (p, v)

v : τ @ n

nil : τ @ 0
v1 : τ @ n + 1 v2 : Stream(τ) @ n

v1 :: v2 : Stream(τ) @ n + 1
. . .

v : τ @ p(n)
(p, v) : ∗p τ @ n

e;σ ⇓n v

e;σ ⇓0 nil
. . .

e;π2(σ) ⇓p(n) v
e by p;σ ⇓n (p, v)

x .e;σ; nil ⇑n
0 v

rec (x : τ).e;σ ⇓n v

x .e;σ; v ⇑n
m v ′

m < n e; bσcm[x 7→ v] ⇓v′ x .e;σ; v ′ ⇑n
m+1 v ′′

x .e;σ; v ⇑n
m v ′′

m ≥ n
x .e;σ; v ⇑n

m v

22 / 36

Denotational Semantics: the Topos of Trees

Definition:
ω̂ , [ωop,Set]

Concretely:

0 1 2 3 4 . . .

X

X (0) X (1) X (2) X (3) X (4) . . .

Y Y (0) Y (1) Y (2) Y (3) Y (4) . . .

≤

rX
0

rY
0

≤

rX
1

rY
1

≤

rX
2

rY
2

≤

rX
3

rY
3

f f0 f1 f2 f3 f4

23 / 36

Denotational Semantics: the Topos of Trees

Definition:
ω̂ , [ωop,Set]

Concretely:

0 1 2 3 4 . . .

X

X (0) X (1) X (2) X (3) X (4) . . .

Y Y (0) Y (1) Y (2) Y (3) Y (4) . . .

≤

rX
0

rY
0

≤

rX
1

rY
1

≤

rX
2

rY
2

≤

rX
3

rY
3

f f0 f1 f2 f3 f4

23 / 36

Denotational Semantics: the Topos of Trees

Definition:
ω̂ , [ωop,Set]

Concretely:

0 1 2 3 4 . . .

X

X (0) X (1) X (2) X (3) X (4) . . .

Y Y (0) Y (1) Y (2) Y (3) Y (4) . . .

≤

rX
0

rY
0

≤

rX
1

rY
1

≤

rX
2

rY
2

≤

rX
3

rY
3

f f0 f1 f2 f3 f4

23 / 36

Denotational Semantics: the Topos of Trees

Definition:
ω̂ , [ωop,Set]

Concretely:

0 1 2 3 4 . . .

X

X (0) X (1) X (2) X (3) X (4) . . .

Y Y (0) Y (1) Y (2) Y (3) Y (4) . . .

≤

rX
0

rY
0

≤

rX
1

rY
1

≤

rX
2

rY
2

≤

rX
3

rY
3

f f0 f1 f2 f3 f4

23 / 36

Denotational Semantics: the Topos of Trees

Definition:
ω̂ , [ωop,Set]

Concretely:

0 1 2 3 4 . . .

X X (0) X (1) X (2) X (3) X (4) . . .

Y Y (0) Y (1) Y (2) Y (3) Y (4) . . .

≤

rX
0

rY
0

≤

rX
1

rY
1

≤

rX
2

rY
2

≤

rX
3

rY
3

f f0 f1 f2 f3 f4

23 / 36

Denotational Semantics: the Topos of Trees

Definition:
ω̂ , [ωop,Set]

Concretely:

0 1 2 3 4 . . .

X X (0) X (1) X (2) X (3) X (4) . . .

Y Y (0) Y (1) Y (2) Y (3) Y (4) . . .

≤

rX
0

rY
0

≤

rX
1

rY
1

≤

rX
2

rY
2

≤

rX
3

rY
3

f f0 f1 f2 f3 f4

23 / 36

Denotational Semantics: the Topos of Trees

Definition:
ω̂ , [ωop,Set]

Concretely:

0 1 2 3 4 . . .

X X (0) X (1) X (2) X (3) X (4) . . .

Y Y (0) Y (1) Y (2) Y (3) Y (4) . . .

≤

rX
0

rY
0

≤

rX
1

rY
1

≤

rX
2

rY
2

≤

rX
3

rY
3

f

f0 f1 f2 f3 f4

23 / 36

Denotational Semantics: the Topos of Trees

Definition:
ω̂ , [ωop,Set]

Concretely:

0 1 2 3 4 . . .

X X (0) X (1) X (2) X (3) X (4) . . .

Y Y (0) Y (1) Y (2) Y (3) Y (4) . . .

≤

rX
0

rY
0

≤

rX
1

rY
1

≤

rX
2

rY
2

≤

rX
3

rY
3

f f0 f1 f2 f3 f4

23 / 36

Denotational Semantics: the Interpretation, Abridged
The language is mostly interpreted by exploiting the cartesian-closed
structure of toposes, following Birkedal et al. In addition:

Warps are (isomorphic to) endofunctors of ω, and thus of ωop.
Thus, if X is a presheaf, so is X ◦ p. In other words:

J∗p τK(n) = JτK(p(n))

For example:

0 1 2 3 4 . . .

Stream B B0 B1 B2 B3 B4 . . .

∗(0 2) Stream(B)

B0 B0 B2 B2 B4 . . .

≤ ≤ ≤ ≤ ≤

take0 take1 take2 take3 take4

id take0,1 id take2,3 id

24 / 36

Denotational Semantics: the Interpretation, Abridged
The language is mostly interpreted by exploiting the cartesian-closed
structure of toposes, following Birkedal et al. In addition:

Warps are (isomorphic to) endofunctors of ω, and thus of ωop.
Thus, if X is a presheaf, so is X ◦ p. In other words:

J∗p τK(n) = JτK(p(n))

For example:

0 1 2 3 4 . . .

Stream B B0 B1 B2 B3 B4 . . .

∗(0 2) Stream(B)

B0 B0 B2 B2 B4 . . .

≤ ≤ ≤ ≤ ≤

take0 take1 take2 take3 take4

id take0,1 id take2,3 id

24 / 36

Denotational Semantics: the Interpretation, Abridged
The language is mostly interpreted by exploiting the cartesian-closed
structure of toposes, following Birkedal et al. In addition:

Warps are (isomorphic to) endofunctors of ω, and thus of ωop.
Thus, if X is a presheaf, so is X ◦ p. In other words:

J∗p τK(n) = JτK(p(n))

For example:

0 1 2 3 4 . . .

Stream B B0 B1 B2 B3 B4 . . .

∗(0 2) Stream(B) B0

B0 B2 B2 B4 . . .

≤ ≤ ≤ ≤ ≤

take0 take1 take2 take3 take4

id take0,1 id take2,3 id

24 / 36

Denotational Semantics: the Interpretation, Abridged
The language is mostly interpreted by exploiting the cartesian-closed
structure of toposes, following Birkedal et al. In addition:

Warps are (isomorphic to) endofunctors of ω, and thus of ωop.
Thus, if X is a presheaf, so is X ◦ p. In other words:

J∗p τK(n) = JτK(p(n))

For example:

0 1 2 3 4 . . .

Stream B B0 B1 B2 B3 B4 . . .

∗(0 2) Stream(B) B0

B0 B2 B2 B4 . . .

≤ ≤ ≤ ≤ ≤

take0 take1 take2 take3 take4

id take0,1 id take2,3 id

24 / 36

Denotational Semantics: the Interpretation, Abridged
The language is mostly interpreted by exploiting the cartesian-closed
structure of toposes, following Birkedal et al. In addition:

Warps are (isomorphic to) endofunctors of ω, and thus of ωop.
Thus, if X is a presheaf, so is X ◦ p. In other words:

J∗p τK(n) = JτK(p(n))

For example:

0 1 2 3 4 . . .

Stream B B0 B1 B2 B3 B4 . . .

∗(0 2) Stream(B) B0 B0

B2 B2 B4 . . .

≤ ≤ ≤ ≤ ≤

take0 take1 take2 take3 take4

id take0,1 id take2,3 id

24 / 36

Denotational Semantics: the Interpretation, Abridged
The language is mostly interpreted by exploiting the cartesian-closed
structure of toposes, following Birkedal et al. In addition:

Warps are (isomorphic to) endofunctors of ω, and thus of ωop.
Thus, if X is a presheaf, so is X ◦ p. In other words:

J∗p τK(n) = JτK(p(n))

For example:

0 1 2 3 4 . . .

Stream B B0 B1 B2 B3 B4 . . .

∗(0 2) Stream(B) B0 B0

B2 B2 B4 . . .

≤ ≤ ≤ ≤ ≤

take0 take1 take2 take3 take4

id take0,1 id take2,3 id

24 / 36

Denotational Semantics: the Interpretation, Abridged
The language is mostly interpreted by exploiting the cartesian-closed
structure of toposes, following Birkedal et al. In addition:

Warps are (isomorphic to) endofunctors of ω, and thus of ωop.
Thus, if X is a presheaf, so is X ◦ p. In other words:

J∗p τK(n) = JτK(p(n))

For example:

0 1 2 3 4 . . .

Stream B B0 B1 B2 B3 B4 . . .

∗(0 2) Stream(B) B0 B0 B2

B2 B4 . . .

≤ ≤ ≤ ≤ ≤

take0 take1 take2 take3 take4

id take0,1 id take2,3 id

24 / 36

Denotational Semantics: the Interpretation, Abridged
The language is mostly interpreted by exploiting the cartesian-closed
structure of toposes, following Birkedal et al. In addition:

Warps are (isomorphic to) endofunctors of ω, and thus of ωop.
Thus, if X is a presheaf, so is X ◦ p. In other words:

J∗p τK(n) = JτK(p(n))

For example:

0 1 2 3 4 . . .

Stream B B0 B1 B2 B3 B4 . . .

∗(0 2) Stream(B) B0 B0 B2

B2 B4 . . .

≤ ≤ ≤ ≤ ≤

take0 take1 take2 take3 take4

id take0,1 id take2,3 id

24 / 36

Denotational Semantics: the Interpretation, Abridged
The language is mostly interpreted by exploiting the cartesian-closed
structure of toposes, following Birkedal et al. In addition:

Warps are (isomorphic to) endofunctors of ω, and thus of ωop.
Thus, if X is a presheaf, so is X ◦ p. In other words:

J∗p τK(n) = JτK(p(n))

For example:

0 1 2 3 4 . . .

Stream B B0 B1 B2 B3 B4 . . .

∗(0 2) Stream(B) B0 B0 B2 B2

B4 . . .

≤ ≤ ≤ ≤ ≤

take0 take1 take2 take3 take4

id take0,1 id take2,3 id

24 / 36

Denotational Semantics: the Interpretation, Abridged
The language is mostly interpreted by exploiting the cartesian-closed
structure of toposes, following Birkedal et al. In addition:

Warps are (isomorphic to) endofunctors of ω, and thus of ωop.
Thus, if X is a presheaf, so is X ◦ p. In other words:

J∗p τK(n) = JτK(p(n))

For example:

0 1 2 3 4 . . .

Stream B B0 B1 B2 B3 B4 . . .

∗(0 2) Stream(B) B0 B0 B2 B2

B4 . . .

≤ ≤ ≤ ≤ ≤

take0 take1 take2 take3 take4

id take0,1 id take2,3 id

24 / 36

Denotational Semantics: the Interpretation, Abridged
The language is mostly interpreted by exploiting the cartesian-closed
structure of toposes, following Birkedal et al. In addition:

Warps are (isomorphic to) endofunctors of ω, and thus of ωop.
Thus, if X is a presheaf, so is X ◦ p. In other words:

J∗p τK(n) = JτK(p(n))

For example:

0 1 2 3 4 . . .

Stream B B0 B1 B2 B3 B4 . . .

∗(0 2) Stream(B) B0 B0 B2 B2 B4

. . .

≤ ≤ ≤ ≤ ≤

take0 take1 take2 take3 take4

id take0,1 id take2,3 id

24 / 36

Denotational Semantics: the Interpretation, Abridged
The language is mostly interpreted by exploiting the cartesian-closed
structure of toposes, following Birkedal et al. In addition:

Warps are (isomorphic to) endofunctors of ω, and thus of ωop.
Thus, if X is a presheaf, so is X ◦ p. In other words:

J∗p τK(n) = JτK(p(n))

For example:

0 1 2 3 4 . . .

Stream B B0 B1 B2 B3 B4 . . .

∗(0 2) Stream(B) B0 B0 B2 B2 B4 . . .

≤ ≤ ≤ ≤ ≤

take0 take1 take2 take3 take4

id take0,1 id take2,3 id

24 / 36

Denotational Semantics: the Interpretation, Abridged
The language is mostly interpreted by exploiting the cartesian-closed
structure of toposes, following Birkedal et al. In addition:

Warps are (isomorphic to) endofunctors of ω, and thus of ωop.
Thus, if X is a presheaf, so is X ◦ p. In other words:

J∗p τK(n) = JτK(p(n))

For example:

0 1 2 3 4 . . .

Stream B B0 B1 B2 B3 B4 . . .

∗(0 2) Stream(B) B0 B0 B2 B2 B4 . . .

≤ ≤ ≤ ≤ ≤

take0 take1 take2 take3 take4

id take0,1 id take2,3 id

24 / 36

Conjectural Results

Operational Semantics: Soundness and Totality
If Γ ` e : τ and σ : Γ @ n, then there is v s.t. e;σ ⇓n v and v : τ @ n.

Denotational Semantics: Adequacy
If JΓ ` e : τK = JΓ ` e′ : τK then Γ ` e ∼=ctx e′ : τ .

25 / 36

Outline

1 Introduction

2 Programming in a Language with Time Warps

3 Metatheoretical Aspects

4 Algorithmic Type Checking

5 Perspectives

26 / 36

Subtyping and Coherence
In map, we used

f : Int→ Int ≡ ∗(1) (Int→ Int) <: ∗0 (1) (Int→ Int)
In fact, the compiler did

f : Int→ Int ≡ ∗(1) (Int→ Int) <: ∗0 2 (1) (Int→ Int)
= ∗0 (1) ∗ 2 (1) (Int→ Int)
≡ ∗0 (1)∗2 (1) (Int→ Int)

and then

∗2 (1) (Int→ Int) <: ∗(1) (Int→ Int) <: Int→ Int

Coherence Issues
Distinct explicit terms mean different things a priori.
Programmer writes implicit terms, compiler elaborates them
into explicit ones. Is this reasonable?

27 / 36

Type-Checking and Elaboration

Goals
Define an algorithm Γ ` t ; e : τ taking (Γ, t) and
returning (e, τ) such that U(e) = t and Γ ` e : τ .
Make this choice canonical in a certain sense.

In other words, we have to decide where to add (−;α) and (γ;−)
in t. This involves two main questions:

Infer coercions α : τ1 <: τ2 given τ1 and τ2.
Infer coercions γ : Γ1 <: ∗p Γ2 given Γ1 and p.

28 / 36

Type-Checking and Elaboration

Goals
Define an algorithm Γ ` t ; e : τ taking (Γ, t) and
returning (e, τ) such that U(e) = t and Γ ` e : τ .
Make this choice canonical in a certain sense.

In other words, we have to decide where to add (−;α) and (γ;−)
in t. This involves two main questions:

Infer coercions α : τ1 <: τ2 given τ1 and τ2.
Infer coercions γ : Γ1 <: ∗p Γ2 given Γ1 and p.

28 / 36

Deciding Subtyping in Three Steps

1. The algorithmic judgment τ � τ s ; α� α′ :
implies α : τ <: τ s and α′ : τs <: τ ;
implies that τ s respects the following grammar.

τ s ::= ∗p τ
r | τ s × τ s

τ r ::= ν | Stream(τ s) | τ s → τ s

2. The algorithmic judgment τ ≥ τ ′ ; α :
implies α : τ <: τ ′;
holds iff τ is coercible to τ ′ using only delays.

3. Algorithmic subtyping τ1 <: τ2 ; α can then be defined by

τ1 � τ s
1 ; α1 � − τ2 � τ s

2 ; −� α3 τ s
1 ≥ τ s

2 ; α2

τ1 <: τ2 ; α1;α2;α3

29 / 36

Deciding Subtyping in Three Steps

1. The algorithmic judgment τ � τ s ; α� α′ :
implies α : τ <: τ s and α′ : τs <: τ ;
implies that τ s respects the following grammar.

τ s ::= ∗p τ
r | τ s × τ s

τ r ::= ν | Stream(τ s) | τ s → τ s

2. The algorithmic judgment τ ≥ τ ′ ; α :
implies α : τ <: τ ′;
holds iff τ is coercible to τ ′ using only delays.

3. Algorithmic subtyping τ1 <: τ2 ; α can then be defined by

τ1 � τ s
1 ; α1 � − τ2 � τ s

2 ; −� α3 τ s
1 ≥ τ s

2 ; α2

τ1 <: τ2 ; α1;α2;α3

29 / 36

Deciding Subtyping in Three Steps

1. The algorithmic judgment τ � τ s ; α� α′ :
implies α : τ <: τ s and α′ : τs <: τ ;
implies that τ s respects the following grammar.

τ s ::= ∗p τ
r | τ s × τ s

τ r ::= ν | Stream(τ s) | τ s → τ s

2. The algorithmic judgment τ ≥ τ ′ ; α :
implies α : τ <: τ ′;
holds iff τ is coercible to τ ′ using only delays.

3. Algorithmic subtyping τ1 <: τ2 ; α can then be defined by

τ1 � τ s
1 ; α1 � − τ2 � τ s

2 ; −� α3 τ s
1 ≥ τ s

2 ; α2

τ1 <: τ2 ; α1;α2;α3

29 / 36

Type-Checking Warping

To type-check e by p in Γ, for any τ in Γ we must find τp such that

τ <: ∗p τ
p

Moreover, to be complete we need the best solution, i.e. for any τ ′

τ <: ∗p τ
′ ⇔ τp <: τ ′

Fortunately, there exists an operation −/p on types such that

τ <: ∗p τ
′ ⇔ τ/p <: τ ′

It reduces to a similar operation on warps.

q ≥ p ∗ r ⇔ q/p ≥ r

30 / 36

Type-Checking Warping

To type-check e by p in Γ, for any τ in Γ we must find τp such that

τ <: ∗p τ
p

Moreover, to be complete we need the best solution, i.e. for any τ ′

τ <: ∗p τ
′ ⇔ τp <: τ ′

Fortunately, there exists an operation −/p on types such that

τ <: ∗p τ
′ ⇔ τ/p <: τ ′

It reduces to a similar operation on warps.

q ≥ p ∗ r ⇔ q/p ≥ r

30 / 36

Type-Checking Warping

To type-check e by p in Γ, for any τ in Γ we must find τp such that

τ <: ∗p τ
p

Moreover, to be complete we need the best solution, i.e. for any τ ′

τ <: ∗p τ
′ ⇔ τp <: τ ′

Fortunately, there exists an operation −/p on types such that

τ <: ∗p τ
′ ⇔ τ/p <: τ ′

It reduces to a similar operation on warps.

q ≥ p ∗ r ⇔ q/p ≥ r

30 / 36

Type-Checking Warping

To type-check e by p in Γ, for any τ in Γ we must find τp such that

τ <: ∗p τ
p

Moreover, to be complete we need the best solution, i.e. for any τ ′

τ <: ∗p τ
′ ⇔ τp <: τ ′

Fortunately, there exists an operation −/p on types such that

τ <: ∗p τ
′ ⇔ τ/p <: τ ′

It reduces to a similar operation on warps.

q ≥ p ∗ r ⇔ q/p ≥ r

30 / 36

Warp Division

We are looking for a Galois connection (−/g) a (− ◦ g).

h ◦ g ≤ f ⇔ h ≤ f /g

Such a thing exists for purely order-theoretic reasons. It can be built
from the right Kan extension of f along g .

(Rang (f))(n) =
l

f ∗(g∗(↑ n))

The right Kan extension is presentable by a ultimately periodic
sequence when both f and g are, and can be computed.

(1)/0 (1) = 2 (1) (1)/(2) = (1 0) (1 0)/(1 0) = (1)

(1)/(0) = (ω) (1)/(ω) = 1 (0)

31 / 36

Warp Division

We are looking for a Galois connection (−/g) a (− ◦ g).

h ◦ g ≤ f ⇔ h ≤ f /g

Such a thing exists for purely order-theoretic reasons. It can be built
from the right Kan extension of f along g .

(Rang (f))(n) =
l

f ∗(g∗(↑ n))

The right Kan extension is presentable by a ultimately periodic
sequence when both f and g are, and can be computed.

(1)/0 (1) = 2 (1) (1)/(2) = (1 0) (1 0)/(1 0) = (1)

(1)/(0) = (ω) (1)/(ω) = 1 (0)

31 / 36

Warp Division

We are looking for a Galois connection (−/g) a (− ◦ g).

h ◦ g ≤ f ⇔ h ≤ f /g

Such a thing exists for purely order-theoretic reasons. It can be built
from the right Kan extension of f along g .

(Rang (f))(n) =
l

f ∗(g∗(↑ n))

The right Kan extension is presentable by a ultimately periodic
sequence when both f and g are, and can be computed.

(1)/0 (1) = 2 (1) (1)/(2) = (1 0) (1 0)/(1 0) = (1)

(1)/(0) = (ω) (1)/(ω) = 1 (0)

31 / 36

Main Results

Coherence of Subtyping
If α : τ1 <: τ2 and α′ : τ1 <: τ2 then

Jα : τ1 <: τ2K = Jα′ : τ1 <: τ2K

Completeness of Type-Checking
For any Γ ` e : τ , there is em, τm, α such that

Γ ` U(e) ; em : τm Γ ` em : τm α : τm <: τ

JΓ ` (em;α) : τK = JΓ ` e : τK

Corollary: Coherence
If Γ ` e1 : τ and Γ ` e2 : τ then

JΓ ` e1 : τK = JΓ ` e2 : τK

32 / 36

Main Results

Coherence of Subtyping
If α : τ1 <: τ2 and α′ : τ1 <: τ2 then

Jα : τ1 <: τ2K = Jα′ : τ1 <: τ2K

Completeness of Type-Checking
For any Γ ` e : τ , there is em, τm, α such that

Γ ` U(e) ; em : τm Γ ` em : τm α : τm <: τ

JΓ ` (em;α) : τK = JΓ ` e : τK

Corollary: Coherence
If Γ ` e1 : τ and Γ ` e2 : τ then

JΓ ` e1 : τK = JΓ ` e2 : τK

32 / 36

Main Results

Coherence of Subtyping
If α : τ1 <: τ2 and α′ : τ1 <: τ2 then

Jα : τ1 <: τ2K = Jα′ : τ1 <: τ2K

Completeness of Type-Checking
For any Γ ` e : τ , there is em, τm, α such that

Γ ` U(e) ; em : τm Γ ` em : τm α : τm <: τ

JΓ ` (em;α) : τK = JΓ ` e : τK

Corollary: Coherence
If Γ ` e1 : τ and Γ ` e2 : τ then

JΓ ` e1 : τK = JΓ ` e2 : τK
32 / 36

Outline

1 Introduction

2 Programming in a Language with Time Warps

3 Metatheoretical Aspects

4 Algorithmic Type Checking

5 Perspectives

33 / 36

Future Work

Frontend
More ambitious subtyping.
Type inference.

Backend
Single-loop code generation.
Typing restrictions to run within finite space.

34 / 36

What I Didn’t Talk About

t

∗p∗q

∗p∗q X

X

Y

∗p∗q Y

= t

∗q
∗p

decat

concat

∗p∗q X

∗p ∗q X
∗q X

X

Y

∗q Y

∗p ∗q Y

∗p∗q Y
35 / 36

Conclusion

I have presented a higher-order language with a rich notion of
time. It handles programs that were previously out of reach of
both synchronous languages and guarded type theories.
Certain aspects of synchronous dataflow languages can be
generalized through semantical intuitions in a natural way. I
believe that this approach could be pushed much further.

Thank you!

36 / 36

	Introduction
	Programming in a Language with Time Warps
	Metatheoretical Aspects
	Algorithmic Type Checking
	Perspectives

