
Parsing [s]hell

Yann Régis-Gianas

Séminaire Gallium, September 18, 2017

Yann Régis-Gianas Séminaire Gallium September 18, 2017 1 / 32

CoLiS : Verification of Debian packages installation scripts

Package scripts are critical pieces of software! Right!

Let us verify they cannot break our systems! Yes!
By the way, they are written in POSIX shell! . . . Glups

Yann Régis-Gianas Séminaire Gallium September 18, 2017 2 / 32

CoLiS : Verification of Debian packages installation scripts

Package scripts are critical pieces of software! Right!
Let us verify they cannot break our systems! Yes!

By the way, they are written in POSIX shell! . . . Glups

Yann Régis-Gianas Séminaire Gallium September 18, 2017 2 / 32

CoLiS : Verification of Debian packages installation scripts

Package scripts are critical pieces of software! Right!
Let us verify they cannot break our systems! Yes!

By the way, they are written in POSIX shell!

. . . Glups

Yann Régis-Gianas Séminaire Gallium September 18, 2017 2 / 32

CoLiS : Verification of Debian packages installation scripts

Package scripts are critical pieces of software! Right!
Let us verify they cannot break our systems! Yes!

By the way, they are written in POSIX shell! . . . Glups

Yann Régis-Gianas Séminaire Gallium September 18, 2017 2 / 32

This talk

How to write a shell parser you can trust?

Yann Régis-Gianas Séminaire Gallium September 18, 2017 3 / 32

Compiler Construction 101

Lexer Parser
TokensCharacters Parse tree

Figure: Parsing “as in the textbook”.

From informal specifications to high-level formal ones

Rewrite the lexical conventions into a Lex specification.

Rewrite the BNF grammar into a Yacc specification.

Being declarative, these specifications are trustworthy.

Code generators, like compilers, are trustworthy too.

Yann Régis-Gianas Séminaire Gallium September 18, 2017 4 / 32

The [s]hell specification

The POSIX Shell Command Language

It is specified by the Open Group and IEEE.

The volume “Shell & Utilities” is the one we focus on.

It is accessible online at:

http://pubs.opengroup.org/onlinepubs/9699919799/

Yann Régis-Gianas Séminaire Gallium September 18, 2017 5 / 32

http://pubs.opengroup.org/onlinepubs/9699919799/

After deciphering

The POSIX Shell language defies conventional parsing wisdom

The specification is low-level, unconventional and informal. . .

It is also contradictory and ambiguous.

After some analysis, we understood that the Shell language “enjoys”:

a parsing-dependent lexical analysis ;
an undecidable parsing (when alias is used) ;
a lot of irregularities.

The forthcoming examples illustrate some of these problems.

Yann Régis-Gianas Séminaire Gallium September 18, 2017 6 / 32

Token recognition

Unconventional lexical conventions

In usual specifications, regular expressions with a longest-match
strategy descrube how to recognize the next lexeme in the input.

The Shell specification uses a state machine which explains instead
how tokens must be delimited in the input.

The Shell specification tells us how the delimited chunks of input
must be classified into two categories: words and operators.

Yann Régis-Gianas Séminaire Gallium September 18, 2017 7 / 32

Example of token recognition

1 BAR=’foo ’"ba"r

2 X=0 echo x$BAR" "$(echo $(date)) && true

Line 1 contains only one word.

Line 2 contains four words and one operator.

No big deal! I am not afraid of recognizing nested languages with
ocamllex and regular expressions can also be used to specify delimiters.

Yann Régis-Gianas Séminaire Gallium September 18, 2017 8 / 32

Example of token recognition

1 BAR=’foo ’"ba"r

2 X=0 echo x$BAR" "$(echo $(date)) && true

Line 1 contains only one word.

Line 2 contains four words and one operator.

No big deal! I am not afraid of recognizing nested languages with
ocamllex and regular expressions can also be used to specify delimiters.

Yann Régis-Gianas Séminaire Gallium September 18, 2017 8 / 32

Example of token recognition

1 BAR=’foo ’"ba"r

2 X=0 echo x$BAR" "$(echo $(date)) && true

Line 1 contains only one word.

Line 2 contains four words and one operator.

No big deal! I am not afraid of recognizing nested languages with
ocamllex and regular expressions can also be used to specify delimiters.

Yann Régis-Gianas Séminaire Gallium September 18, 2017 8 / 32

Comments

Recognition of comments

is not a delimiter.

Therefore, there is no comment in the following phrase:

1 ls foo#bar

but there is one here:

1 ls foo #bar

Yann Régis-Gianas Séminaire Gallium September 18, 2017 9 / 32

What does this newline mean?

Newline has four different meanings

1 $ for i in 0 1

2 > # Some interesting numbers

3 > do echo $i \

4 > + $i

5 > done

Some newline characters - but not all - occur in grammar rules.

Yann Régis-Gianas Séminaire Gallium September 18, 2017 10 / 32

What does this newline mean?

Newline has four different meanings

1 $ for i in 0 1

2 > # Some interesting numbers

3 > do echo $i \

4 > + $i

5 > done

Some newline characters - but not all - occur in grammar rules.

Yann Régis-Gianas Séminaire Gallium September 18, 2017 10 / 32

Here documents

Here-documents recognition is non-local

1 cat > notifications << EOF

2 Hi $USER ,

3 Enjoy your day!

4 EOF

5 cat > toJohn << EOF1 ; cat > toJane << EOF2

6 Hi John!

7 EOF1

8 Hi Jane!

9 EOF2

The word related to EOF1 is recognized several tokens after the
location of EOF1.

Yann Régis-Gianas Séminaire Gallium September 18, 2017 11 / 32

Which token is that?

Promotion of words

The grammar specification is not defined in terms of words and
operators but with respect to a more refined set of tokens.

Hence, words must sometimes be promoted into:

Assignment words, e.g. X=foo.
Reserved words, e.g. if, for, etc.

This promotion depends on the parsing context.

Yann Régis-Gianas Séminaire Gallium September 18, 2017 12 / 32

Promotion of a word to an assignment word

1 CC=gcc make

2 make CC=cc

3 ln -s /bin/ls "X=1"

4 "./X"=1 echo

Yann Régis-Gianas Séminaire Gallium September 18, 2017 13 / 32

Promotion of a word to a reserved word

1 for i in a b; do echo $i; done

2 ls for i in a b

Yann Régis-Gianas Séminaire Gallium September 18, 2017 14 / 32

Forbidden positions for specific reserved words

1 else echo foo

Yann Régis-Gianas Séminaire Gallium September 18, 2017 15 / 32

alias aka “decidability breaker”

Ice on the cake

1 if ./foo; then

2 alias x="ls"

3 else

4 alias x=""

5 fi

6 x for i in a b; do echo $i; done

Yann Régis-Gianas Séminaire Gallium September 18, 2017 16 / 32

Are you afraid of LR(1) conflicts?

Menhir has spoken

The Yacc grammar of the standard has five shift/reduce conflicts.

All of them are related to the token newline.

Does this newline is a separator (shift) or a terminator (reduce)?

Yann Régis-Gianas Séminaire Gallium September 18, 2017 17 / 32

Forget your textbooks! This is real world!

Existing implementations

Existing implementations are not following the textbook architecture.

The parser of Dash is made of 1569 lines of hand-crafted C.

The parser of Bash is based on a Yacc grammar (entirely different
from the standard) extended with an extra 5000 lines of C.

Yann Régis-Gianas Séminaire Gallium September 18, 2017 18 / 32

Just a glimpse

case TFOR:
i f (r e a d t o k e n () != TWORD | | q u o t e f l a g | | ! goodname (w o r d t e x t))

s y n e r r o r (”Bad f o r l o o p v a r i a b l e ”) ;
n1 = (union node ∗) s t a l l o c (s i z e o f (s t r u c t n f o r)) ;
n1−>t y p e = NFOR;
n1−>n f o r . l i n n o = s a v e l i n n o ;
n1−>n f o r . v a r = w o r d t e x t ;
checkkwd = CHKNL | CHKKWD | CHKALIAS ;
i f (r e a d t o k e n () == TIN) {

app = &ap ;
w h i l e (r e a d t o k e n () == TWORD) {

n2 = (union node ∗) s t a l l o c (s i z e o f (s t r u c t narg)) ;
n2−>t y p e = NARG;
n2−>narg . t e x t = w o r d t e x t ;
n2−>narg . backquote = b a c k q u o t e l i s t ;
∗app = n2 ;
app = &n2−>narg . n e x t ;

}
∗app = NULL ;
n1−>n f o r . a r g s = ap ;
i f (l a s t t o k e n != TNL && l a s t t o k e n != TSEMI)

s y n e x p e c t (−1);
} e l s e {

[. . .]
}
checkkwd = CHKNL | CHKKWD | CHKALIAS ;
i f (r e a d t o k e n () != TDO)

s y n e x p e c t (TDO) ;
n1−>n f o r . body = l i s t (0) ;
t = TDONE;
break ;

Yann Régis-Gianas Séminaire Gallium September 18, 2017 19 / 32

My feelings

Not the kind of code I would like to maintain.

Yann Régis-Gianas Séminaire Gallium September 18, 2017 20 / 32

Open your (advanced) textbooks again!

Lexer Parser
Tokens

LexerPrelexer Parser
Pretokens

Tokens

State

Figure: Another modular architecture for parsing.

Yann Régis-Gianas Séminaire Gallium September 18, 2017 21 / 32

Morbig, a parser for shell scripts

Key implementation aspects

Our Yacc grammar is a cut-and-paste from the standard.

Our prelexer is generated by a ”standard” ocamllex specification.

Our engine implements the two arrows of the previous diagram.

We crucially rely on the incremental and purely functional parsers
produced by Menhir.

Yann Régis-Gianas Séminaire Gallium September 18, 2017 22 / 32

Menhir functional and incremental parsing interface

Usually, parser generators produce a function of type:

1 parse : lexer -> ast

Menhir has an alternative signature, roughly speaking of type:

1 parse : unit -> ’a checkpoint

where

1 type ’a checkpoint = private

2 | InputNeeded of ’a env

3 | Shifting of ’a env * ’a env * bool

4 | AboutToReduce of ’a env * production

5 | HandlingError of ’a env

6 | Accepted of ’a

7 | Rejected

Yann Régis-Gianas Séminaire Gallium September 18, 2017 23 / 32

Menhir functional and incremental parsing interface

The interaction with the generated parser is done through:

1 val offer:

2 ’a checkpoint -> token * position * position

3 -> ’a checkpoint

4 val resume:

5 ’a checkpoint -> ’a checkpoint

Yann Régis-Gianas Séminaire Gallium September 18, 2017 24 / 32

Speculative parsing

1 let recognize_reserved_word_if_relevant =

2 fun checkpoint pstart pstop w ->

3 try

4 let kwd = keyword_of_string w in

5 let kwd ’ = (kwd , pstart , pstop) in

6 if accepted_token checkpoint kwd ’ then

7 return kwd

8 else

9 raise Not_found

10 with Not_found ->

11 if is_name w then

12 return (NAME (CST.Name w))

13 else

14 return (WORD (CST.Word w))

Yann Régis-Gianas Séminaire Gallium September 18, 2017 25 / 32

1 let accepted_token checkpoint token =

2 match checkpoint with

3 | InputNeeded _ ->

4 close (offer checkpoint token)

5 | _ ->

6 false

7

8 let rec close checkpoint = match checkpoint with

9 | AboutToReduce _ -> close (resume checkpoint)

10 | Rejected | HandlingError _ -> false

11 | Accepted _ | InputNeeded _ | Shifting _ -> true

Yann Régis-Gianas Séminaire Gallium September 18, 2017 26 / 32

Constrained parsing

1 | AboutToReduce (env , production) ->

2 begin try

3 if lhs production = X (N N_cmd_word)

4 || lhs production = X (N N_cmd_name) then

5 match top env with

6 | Some (Element (state , v, _, _)) ->

7 let analyse_top : type a. a symbol * a -> _ = function

8 | T T_NAME , Name w when is_reserved_word w

9 | T T_WORD , Word w when is_reserved_word w ->

10 raise ParseError

11 | _ -> assert false

12 in

13 analyse_top (incoming_symbol state , v)

14 | _ -> assert false

15 else

16 raise Not_found

17 with Not_found -> parse (resume checkpoint)

18 end

Yann Régis-Gianas Séminaire Gallium September 18, 2017 27 / 32

Other tricks

Here-documents

Switching between two lexers is easy in incremental mode.

We ”back-patch” semantic values of WORDs once here-documents are
entirely parsed. (Yes, using references.)

Newlines

Our lexer may produce one or more tokens at each (pre)lexing step.

A buffer synchronizes prelexer and parser.

Some newlines are manually ignored depending on parsing context.

Alias

No magic bullet about alias since we refuse to embed an interpreter.

We only accept toplevel aliases.

Yann Régis-Gianas Séminaire Gallium September 18, 2017 28 / 32

Conclusion

Morbig

A standalone program morbig and a library.

Successful parsing of 31521 Debian scripts ('40s on my i7)

A user-extensible lint for POSIX Shell

Do we trust Morbig (yet)?

As is, we will probably never trust it.

Our goal is to reach a state where:

there is a as-clearest-as-possible mapping between spec. and code ;
our view of POSIX is made explicit by the code and its testsuite.

Yann Régis-Gianas Séminaire Gallium September 18, 2017 29 / 32

Thanks for your attention
and sorry for the nightmares!

A release of morbig will happen in few weeks.

Yann Régis-Gianas Séminaire Gallium September 18, 2017 30 / 32

What I did not talk about, the secret monsters

Escaping

Shell escaping sequences are ”interesting”.

A well-chosen nesting of $(...)$ and ‘...‘ requires an exponential
number of backslashes.

Parsing a script

EOF in the grammar does not mean end-of-file.

It means end-of-phrase.

The specification forgets to say something about empty scripts.

Yann Régis-Gianas Séminaire Gallium September 18, 2017 31 / 32

More monsters

The syntax of the shell command language has an ambiguity for
expansions beginning with ”$((”, which can introduce an
arithmetic expansion or a command substitution that starts with
a subshell. Arithmetic expansion has precedence; that is, the
shell shall first determine whether it can parse the expansion as
an arithmetic expansion and shall only parse the expansion as a
command substitution if it determines that it cannot parse the
expansion as an arithmetic expansion.

Arithmetic expressions

This is not yet implemented.

Yann Régis-Gianas Séminaire Gallium September 18, 2017 32 / 32

