
Effective programming
Bringing algebraic effects and handlers to OCaml

Leo White1 Stephen Dolan2 Matija Pretnar3 KC
Sivaramakrishnan2

1Jane Street

2University of Cambridge 3University of Ljublijana

1/ 69

Algebraic effects and handlers

2/ 69

Algebraic effects and handlers

▶ Algebraic effecects originally introduced to study the
semantics of computational effects.

– Algebraic Operations and Generic Effects
Plotkin and Power, 2002

▶ The addition of handlers turned them into a construct for
implementing such effects.

– Handlers of Algebraic Effects
Plotkin and Pretnar, 2009

3/ 69

Algebraic effects and handlers

▶ Algebraic effecects originally introduced to study the
semantics of computational effects.

– Algebraic Operations and Generic Effects
Plotkin and Power, 2002

▶ The addition of handlers turned them into a construct for
implementing such effects.

– Handlers of Algebraic Effects
Plotkin and Pretnar, 2009

3/ 69

Simple example

let f () =

(perform Get) + (perform Get) + 2

match f () with

| ret -> ret

| effect Get , k -> continue k 9

-: int = 20

match f () with

| ret -> ret

| effect Get , k -> continue k 99

-: int = 200

4/ 69

Syntax

Performing effects

e ::= . . .
∣∣ perform E e?

Handling effects

e ::= . . .∣∣ match e with(
| x -> e

)∗(
| effect E x?, x -> e

)∗
Resuming a continuation

e ::= . . .
∣∣ continue e e

5/ 69

Typing (unchecked)

E : A → B Γ ⊢ e : A
Γ ⊢ perform E e : B

Γ ⊢ e : (A,B) cont Γ ⊢ e ′ : A

Γ ⊢ continue e e ′ : B

6/ 69

Typing (unchecked)

Γ ⊢ e : A
Γ ; x : A ⊢ e ′ : B

Ei : Ci → Di

Γ ; xi : Ci ; ki : (Di,B) cont ⊢ e ′′i : B

Γ ⊢
match e with

| x -> e ′

| effect Ei xi, ki -> e ′′i

: B

7/ 69

Semantics

v ::= . . . (values)
r ::= v

∣∣ effect E v v (results)
C[] ::= . . . (delimited contexts)

C[perform E v] −→ effect E v (λx .C[x])

continue v v ′ −→ v v ′

8/ 69

Semantics

match v with

| x -> e

| effect Ei xi, ki -> e ′i

−→ e[v/x]

9/ 69

Semantics

match effect E v v ′ with

| x -> e

| effect Ei xi, ki -> e ′i

−→ e ′j [v/xj , vcont/kj]

where E = Ej and

vcont = λy .

match v ′y with

| x -> e

| effect Ei xi, ki -> e ′i

10/ 69

Semantics

C

[match effect E v v ′ with

| x -> e ′

| effect Ei xi, ki -> e ′′i

]

−→

effect E v (λy .C

[match v ′ y with

| x -> e ′

| effect Ei xi, ki -> e ′′i

]
)

where ∀j .E ̸= Ej

11/ 69

Examples: Exceptions

let raise (msg : string) : ’a =

perform Raise msg

let run f =

match f () with

| ret -> Ok ret

| effect Raise msg , k -> Error msg

12/ 69

Examples: State

let put (v : int) : unit = perform Put v

let get () : int = perform Get

let run init f =

let comp =

match f () with

| ret ->

(fun s -> ret)

| effect Put s’, k ->

(fun s -> continue k () s’)

| effect Get , k ->

(fun s -> continue k s s)

in

comp init

13/ 69

Examples: Choice

let select () : bool = perform Select

let run_true f =

match f () with

| ret -> ret

| effect Select , k ->

continue k true

let run_all f =

match f () with

| ret -> [ret]

| effect Select , k ->

continue k true @ continue k false

14/ 69

Algebraic effects in OCaml

15/ 69

Defining (unchecked) effects

effect Get : int

effect Put : int -> unit

16/ 69

Default handlers

effect Yield : unit

with function Yield -> ()

17/ 69

Affine continuations

let select () : bool = perform Select

let run_all f =

match f () with

| ret -> [ret]

| effect Select , k ->

continue k true @ continue k false

let _ = run_all select

Exception: Invalid argument "continuation already taken"

18/ 69

Implementation

▶ Fibers: Heap allocated, dynamically resized stacks

– 10s of bytes

▶ Entering an effect handler creates a fresh fiber

▶ Call stack becomes a linked list of fibers

19/ 69

Implementation

20/ 69

Implementation

21/ 69

Implementation

22/ 69

Fibers

▶ Stack overflow checks for OCaml functions

▶ Simple static analysis eliminates many checks

▶ FFI calls are more expensive due to stack switching

23/ 69

Fibers

Normalized time (lower is better)

Fibers around 0.9% slower

24/ 69

Algebraic effects for
concurrency

25/ 69

Concurrency effects

effect Async : (’a -> ’b) * ’a -> ’b promise

effect Await : ’a promise -> ’a

effect Write :

file_descr * bytes * int * int -> int

with function Write(fd, buf , ofs , len) ->

Unix.write fd buf ofs len

. . .

26/ 69

Scheduler

let rec schedule state =

if Queue.is_empty state.run_q then

if empty state.reads &&

empty state.writes then ()

else select state

else

Queue.pop state.run_q ()

27/ 69

Scheduler

let wait state p k =

match !p with

| Done v -> continue k v

| Waiting l ->

p := Waiting (k::l);

schedule state

let finish state p v =

match !p with

| Waiting l ->

p := Done v;

List.iter (fun k ->

Queue.push (fun () -> continue k v)

state.run_q)

l

| _ -> assert false

28/ 69

Scheduler

let rec run state p f x ->

match f x with

| v -> finish state p v; schedule state

| effect Async(f, x), k ->

let p = promise () in

Queue.push (fun () -> continue k p)

state.run_q;

run state p f x

| effect Await p, k -> wait state p k

29/ 69

Interface

val async : (’a -> ’b) -> ’a -> ’b future

val await : ’a future -> ’a

val write :

file_descr -> bytes -> int -> int -> int

. . .

val run : (unit -> unit) -> unit

30/ 69

An effect system for OCaml

31/ 69

Effect system

A,B,... ::= . . .
∣∣ A

∆−→ B

Γ ; x : A ⊢ e : B ! ∆

Γ ⊢ λx .e : A
∆−→ B ! []

Γ ⊢ e : A
∆−→ B ! ∆ Γ ⊢ e ′ : A ! ∆
Γ ⊢ e e ′ : B ! ∆

32/ 69

Requirements

Soundness
If a program receives a type A ! ∆, every potential effect e should
be captured in ∆.

Usefulness
An effect system that annotates each program with every possible
effect there is, is obviously sound, but not very useful. Thus, an
effect information should not mention an effect that is guaranteed
not to happen.

Backwards compatibility

We want each program that was typable before introducing effects
to remain typable.

33/ 69

Requirements

if e then perform E1

else perform E2

Two established approaches to providing the required flexibility:

▶ Subtyping

▶ Row polymorphism

34/ 69

Requirements

if e then perform E1

else perform E2

Two established approaches to providing the required flexibility:

▶ Subtyping

▶ Row polymorphism

34/ 69

Subtyping

Γ ⊢ e : A ! ∆ A <: B
Γ ⊢ e : B ! ∆

Full implicit subtyping is difficult to add to OCaml:

▶ OCaml supports invariant type parameters.

▶ Requires constrained types of the form A|C where C is a set of
constraints between type parameters.

▶ Constrained types do not interact well with OCaml’s module
system.

▶ Constraint generation needs to be directed to correctly track
variance.

35/ 69

Row polymorphism

∆::= [E | ∆]
∣∣ [ρ]

∣∣[]

∆ ∼= ∆′

[E |∆] ∼= [E |∆′]

[E | E ′ |∆] ∼= [E ′ | E |∆]

36/ 69

Row polymorphism

E : A → B ∈ E Γ ⊢ e : A ! [E |∆]

Γ ⊢ perform E e : B ! [E |∆]

37/ 69

Row polymorphism

let raise msg = perform Raise msg;;

val raise : string -[exn | !p]-> unit

38/ 69

Row polymorphism

Γ ⊢ e : A ! [E |∆]

Γ ; x : A ⊢ e ′ : B ! ∆

E =
{
Ei : Ci → Di

}
Γ ; xi : Ci ; ki : (Di,B) cont ⊢ e ′′i : B ! ∆

Γ ⊢
match e with

| x -> e ′

| effect Ei xi, ki -> e ′′i

: B ! ∆

39/ 69

Row polymorphism

let run f =

match f () with

| ret -> Ok ret

| effect Raise msg , k -> Error msg

val run : (unit -[exn | !p]-> ’a)

-[!p]-> (’a, string) result

40/ 69

Row polymorphism

val old_fun : int -> int

let new_fun p =

if p then old_fun 10

else perform Get

Error: This expression performs effect [state| !r], but

it was expected to perform [io].

41/ 69

Row polymorphism

type t = int -> int

Error: Unbound type parameter !r.

42/ 69

A compromise

Γ ⊢ e : ∀αρ.A ! ∆ open+(A) = ∀ρ′.B
Γ ⊢ e : B[C/α,∆′/ρ,∆′′/ρ′] ! ∆

open+([E1| . . . |En]) = ∀ρ.[E1| . . . |En|ρ]

open+(A
∆−→ B) = open−(A)

open+∆−−−−−→ open+(B)

. . .

open−([E1| . . . |En]) = [E1| . . . |En]

open−(A
∆−→ B) = open+(A)

open−∆−−−−−→ open−(B)

. . .

43/ 69

A compromise

val old_fun : int -> int

let new_fun p =

if p then old_fun 10

else perform Get

val new_fun : bool -[state | !p]-> int

44/ 69

A compromise

Γ ⊢ e : A ! [] αρ /∈ ftv(Γ) close+(∀αρ.A) = ∀αρ′.B
Γ ⊢ e : ∀αρ′.B ! ∆

close+(∀αρ.A) = ∀αρ.A[[]/closable+(A, ρ)]

closable+(∆, ρ) = ρ

closable+(A
∆−→ B, ρ) = closable−(A, ρ) ∩ closable+∆ ∩ closable+(B)

. . .

closable−([E1| . . . |En|ρ], ρ) = ρ \ ρ

closable−(A
∆−→ B, ρ) = closable+(A, ρ) ∩ closable−(∆) ∩ closable−(B)

. . .

45/ 69

A compromise

let raise msg = perform Raise msg;;

val raise : unit -[exn]-> int

46/ 69

Defining effects

effect state =

| Get : int

| Put : int -> unit

47/ 69

Defining effects

effect fail =

| Failure of string

48/ 69

Purity

Define a built-in abstract effect:

effect io

Treat OCaml’s built-in side-effects as performing it:

val ref : ’a -[io]-> ’a ref

As with Haskell, divergence and raising exceptions are still
considered “pure”.

49/ 69

Usability

50/ 69

Useful short-hands

-> = -[io]->

->> = -[]->

∼> = -[io | !∼]->

∼>> = -[!∼]->

51/ 69

Useful short-hands

val map : (’a ∼>> ’b) ->> ’a list ∼>> ’b list

val map : (’a ∼> ’b) ->> ’a array ∼> ’b array

52/ 69

Updating the standard library

▶ The standard library is 101 files totalling 23675 lines

▶ 72 files changed, 3 insertions(+),

160 deletions(-), 4618 modifications(!)

▶ 2410 lines: changing value specifications – no explict effect
variables needed

-val map : (’a -> ’b) -> ’a list -> ’b list

+val map : (’a ∼>> ’b) ->>

’a list ∼>> ’b list

▶ 220 lines: avoiding polymorphic comparison

-if x = y then

+if Int_compare .(x = y) then

53/ 69

Updating the standard library

▶ 214 lines: pure versions of Set and Map – implementations
shared with impure versions but some boilerplate required

+module type OrderedTypePure =

+ sig

+ type t

+ val compare: t ->> t ->> int

+end

▶ 1892 lines: Adding an effect parameter to format strings.

-val printf :

(’a, out_channel , unit) format -> ’a

+val printf :

(’a, out_channel , unit , ![io | !p]) format

-[io | !p]-> ’a

54/ 69

Updating the standard library

▶ And 2 type annotations:

-let printers = ref []

+let printers :

(exn -> string option) list ref =

ref []

-let locfmt = format_of_string "...";;

+let locfmt : _ format6e = "...";;

55/ 69

Replacing Not found the standard library

▶ 34 files changed, 31 insertions(+),

332 modifications(!)

▶ 130 lines changing raise to perform and with to
with effect

-raise Not_found

+perform Not_found

▶ 158 lines: updating value specifications

-val find :

(’a ∼>> bool) ->> ’a list ∼>> ’a

+val find :

(’a -[not_found | !p]-> bool) ->>

’a list -[not_found | !p]-> ’a

56/ 69

Replacing Not found in the standard library

▶ 35 lines: adding handlers for cases that were not expected to
occur

+try

min_binding t

+with effect Not_found -> assert false

▶ 1 type annotation

-and parse_integer str_ind end_ind =

+and parse_integer :

int ->> int -> int * int =

57/ 69

Replacing Not found in the standard library

▶ 2 coercions related to sharing implementations between the
pure and impure versions of Set/Map

+let compare_not_found =

+ (Ord.compare

+ : _ -[.. as ![] E.eff]-> _

+ -[.. as ![] E.eff]-> _

+ :> _ -[not_found | .. as ![] E.eff]-> _

+ -[not_found | .. as ![] E.eff]-> _)

58/ 69

Typed concurrency effects

effect async =

| Async :

(’a -[aio|async|io]-> ’b) * ’a ->

’b promise

| Await : ’a promise -> ’a

effect aio =

| Write :

file_descr * bytes * int * int -> int

| . . .
with function

| Write(fd , buf , ofs , len) ->

Unix.write fd buf ofs len

| . . .

59/ 69

Typed concurrency interface

effect async

val async :

(’a -[async|aio|io]-> ’b) ->> ’a

-[async]-> ’b promise

val await : ’a promise -[async]-> ’a

effect aio with function

val write :

file_descr ->> bytes ->> int ->> int

-[aio]-> int

val run : (unit -[async|aio|io]-> unit) -> unit

60/ 69

Challenges

61/ 69

Affine continuations and purity

effect yield = Yield : unit

let f () =

match perform Yield with

| _ -> ‘None

| effect Yield , k -> ‘Some k

let x = f ()

let y = f ()

let _ =

match x, y with

| ‘Some x, ‘Some y ->

continue x (), continue y ()

| p -> p

62/ 69

Affine continuations and purity

effect yield = Yield : unit

let f () =

match perform Yield with

| _ -> ‘None

| effect Yield , k -> ‘Some k

let x = f ()

let y = x

let _ =

match x, y with

| ‘Some x, ‘Some y ->

continue x (), continue y ()

| p -> p

63/ 69

Effect parameters and abstraction

effect ’a state =

| Get : ’a

| Put : ’a -> unit

let fold f l init =

let comp =

match

List.iter

(fun x ->

perform Put (f x (perform Get))) l

with

| () -> fun s -> s

| effect Get , k -> fun s -> continue k s s

| effect Put s, k ->

fun _ -> continue k () s

in

comp init

64/ 69

Effect parameters and abstraction

let fold (type acc) f l init =

let effect state =

| Get : acc

| Put : acc -> unit in

let comp =

match

List.iter

(fun x ->

perform Put (f x (perform Get)))

l

with

| () -> fun s -> s

| effect Get , k -> fun s -> continue k s s

| effect Put s, k ->

fun _ -> continue k () s

in

comp init

65/ 69

Effect parameters and abstraction

module M : sig

effect ’a fold2

val pfrm : unit -[int fold2]-> unit

val handle : (’a -[int fold2 | !p]-> ’b) ->

’a -[!p]-> ’b

end = struct

effect ’a fold2 = ’a fold

let pfrm () = perform Put 0

let handle f x =

match f x with

| y -> y

| effect Get , k = continue k 0

| effect Put _, k = continue k ()

end

66/ 69

Effect parameters and abstraction

let _ =

M.handle (fun () ->

let comp =

match M.pfrm (); perform Get with

| x -> fun _ -> x

| effect Get , k ->

fun s -> continue k s s

| effect Put s, k ->

fun _ -> continue k () s

in

print_string (comp "init"))

67/ 69

Nominative vs Structural

▶ Nominative definitions in OCaml are all abstractable. Can’t
really restrict abstraction whilst effects are treated
nominatively.

▶ Could avoid abstraction by treating effects structurally:

let get : unit -[‘Get : ’a]-> ’a =

fun () -> perform ‘Get

▶ Allows parameterised effects

▶ How to handle io – which is an abstract effect?

▶ How to handle default handlers?

68/ 69

So...

▶ Algebraic effects and handlers are a good mechanism for
modelling effects

▶ Algebraic effects and handlers enable users to efficiently and
composably implement their own concurrent schedulers

▶ Effect systems can be used to manage algebraic effects as well
as side-effects more generally

▶ It is possible to create effect systems that are both usable and
backwards compatible with existing languages like OCaml

69/ 69

