Theory and practice of granularity control

Umut Acar
Carnegie Mellon University / Inria

Vitaly Aksenov
Inria

Arthur Charguéraud
Inria & LRI Université Paris Sud, CNRS

Anna Malova

Mike Rainey
Inria

Marc Pasqualetto

Gallium seminar
September 2016
Speedups with multicores

Goal: using several cores, achieve good speedups compared to fast sequential code

Obstacles: lack of parallelism, memory wall, scheduling overheads
Granularity control

Scheduling overheads: they mainly depend on the number of threads

- too many threads \Rightarrow large overheads
- too few threads \Rightarrow limited parallelism

Granularity control: the problem of balancing between these two extremes
Importance of granularity control

Sequential code:

```c
int fibseq(int n)
    if (n < 2) return n
    int a = fibseq(n-1)
    int b = fibseq(n-2)
    return a+b
```

Parallel code:

```c
int fibpar(int n)
    if (n < 2) return n
    int a = spawn fibpar(n-1)
    int b = fibpar(n-2)
    sync
    return a+b
```

Time to compute 45th Fibonacci number

- 10 seconds on a single core
- 20 seconds on 42 cores

- 1.8 billion parallel threads created
- per-thread overhead of a few dozens memory accesses
Introduction of a threshold

Parallel code with threshold:

```c
int fibthresh(int n) {
    if (n <= threshold) {
        return fibseq(n);
    }
    int a = spawn fibthresh(n-1);
    int b = fibthresh(n-2);
    sync
    return a+b
}
```

What is the right value to use as threshold?
Selection of the threshold

Idea: Assume that every spawn costs \(\tau \). If the threshold leads to tasks of size \(\kappa \approx 100 \cdot \tau \), then the overheads are approximately equal to 1%.

Policy: threads predicted to take less than \(\kappa \) time are not parallelized

sample fork-join call tree

parallel branch

sequential leaf
Theory, assuming ideal oracle

Brent's theorem: (thread-creation costs completely ignored)

\[T_P \leq T_1/P + T_\infty \]

negligible when a lot of parallelism is available

Our theorem: (thread-creation cost = \(\tau \), sequentialize if running time < \(\kappa \))

\[T_P \leq (1 + \tau/\kappa)T_1/P + \kappa T_\infty \]

we choose \(\kappa \) such that \(\tau/\kappa \approx 1\% \)

term is increased but remains negligible
Theory, generalized model

- Let \(\phi \) be the cost of making a time prediction and a time measure.
- Let \(\mu \) be the maximal error factor for predictions.
- Let \(\gamma \) the max ratio between two time predictions (\(\gamma = 2 \) for most programs).

\[
T_P \leq \left(1 + \frac{\mu(\tau + \gamma \phi)}{\kappa}\right)\frac{T_1}{P} + (\kappa \mu + \phi + 1)T_\infty
\]

- Just a few percent
- Relatively small

Example:
- \(\tau = 100 \text{ ns} \)
- \(\phi = 200 \text{ ns} \)
- \(\kappa = 100,000 \text{ ns} \)
- \(\mu = 2 \)
- \(\gamma = 2 \)
- \(P = 30 \)
- \(T_1 = 10^9 \times 10 \text{ ns} \)
- \(T_\infty = 30 \)
How we predict execution times for a real program on a real machine

In addition to:

```c
int fibseq(int n)  
int fibpar(int n)
```

We require the user to provide an asymptotic cost function:

```c
int fibcost(int n)
return 1.68^n
```

We allocate one data structure, `fibprof`, that stores profiling data.

Report the time \(t \) that elapsed during given call `fib(n)`:

```c
fibprof.report(t / fibcost(n))
```

Predict running time \(t \) for given call `fib(n)`:

```c
t <- fibprof.predict(n)
```
How we make prediction robust

<table>
<thead>
<tr>
<th>time</th>
<th>core</th>
<th>A</th>
<th>B</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>M</td>
<td>I</td>
<td>I</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>M</td>
<td>I</td>
<td>W</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>W</td>
<td>W</td>
<td>M</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>W</td>
<td>W</td>
<td>M</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>W</td>
<td>I</td>
<td>W</td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td>W</td>
<td>W</td>
<td>W</td>
</tr>
<tr>
<td>6</td>
<td>6</td>
<td>M</td>
<td>W</td>
<td>I</td>
</tr>
<tr>
<td>7</td>
<td>7</td>
<td>M</td>
<td>M</td>
<td>I</td>
</tr>
<tr>
<td>8</td>
<td>8</td>
<td>I</td>
<td>M</td>
<td>W</td>
</tr>
</tbody>
</table>

Measured calls measure running time of serial calls and report profiling data.
Experimental evaluation

Benchmarks: 10 codes written by other researchers (PBBS benchmark suite of Blelloch et al)

Inputs: > 3 different inputs for each benchmark

Machine: 40 Intel Xeon cores @ 2Ghz / 1TB RAM

Platform: C++ / Cilk Plus

Examples of complexity functions:

```
return 1.618 ** n
return n * log n
return n ** 3
return high - low
return prefixsum[high] - prefixsum[low]
```
Benchmarking results

<table>
<thead>
<tr>
<th></th>
<th>-30%</th>
<th>-20%</th>
<th>-10%</th>
<th>≈</th>
<th>+10%</th>
<th>+20%</th>
<th>+30%</th>
</tr>
</thead>
<tbody>
<tr>
<td>comparison sort</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>radix sort</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>suffix array</td>
<td></td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>convex hull</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>nearest neighbors</td>
<td></td>
<td></td>
<td>x</td>
<td></td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>ray cast</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>delaunay triangulation</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>x</td>
<td></td>
<td></td>
</tr>
<tr>
<td>delaunay refine</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>bfs</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>x</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>remove duplicates</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>x</td>
<td></td>
</tr>
</tbody>
</table>

% speedup of oracle-guided over original
Our technique being used in lecture material and by undergraduates in CMU algorithms lab

- Our mergesort with automatic granularity control
- MIT mergesort with manual granularity control
Summary

Strengths:
• Many parallel codes can readily benefit from automatic granularity control.
• By switching to purely sequential code at the leaves, we can leverage on sequential optimizations.

Weaknesses:
• Irregular, nested parallelism is sometimes challenging because of complexity function.
• Complexity functions for higher-order functions are challenging, e.g., what is the complexity function for a map?
• Sometimes a suitable complexity function does not exist, e.g., string matching.
• Our technique is currently limited to fork join codes.
High-performance graph traversal

• In a *graph traversal*, computation proceeds from one vertex to the next through the edges in the graph.

• Improved performance for graph traversal means improved performance for many other algorithms.

• The main challenge is coping with irregularity in graphs.

• In this work, we present a new algorithm
 • to perform fast traversal over large, in-memory directed graphs
 • using a (single, dedicated) multicore system
 • achieving:
 • analytical bounds showing work-efficiency and high-parallelism, and
 • an implementation that outperforms state-of-the-art codes (almost always)
Motivation

• Most of the recent attention in the research literature on graph traversal is paid to parallel BFS.

• Why parallel BFS but not parallel DFS?
 • Parallel DFS with strict ordering is known to be P-complete (i.e., hard to parallelize).

• However, loosely ordered, parallel DFS:
 • relaxes the strict DFS ordering slightly
 • achieves a high degree of parallelism
 • has many applications, e.g.,
 • reachability analysis & graph search
 • parallel garbage collection (Jones et al 2011), etc…
 • KLA graph-processing framework (Harshvardhan et al 2014)

• When feasible, Pseudo DFS is preferred because it is usually faster than the alternatives.
Pseudo DFS (PDFS)

- Input:
 - directed graph and ID of source vertex

- Output:
 - the set of vertices connected by a path to the source vertex
PDFS

visited

vertex ids

frontier

migrate

pop-push

pop-push

pop-push

pop-push
PDFS vs. PBFS

Synchronization
• PDFS is \textit{asynchronous}:
 • Each core traverses independently from its frontier.
• PBFS is \textit{level synchronous}:
 • Cores traverse the graph level by level, in lock step, synchronizing between every two levels.

Data locality
• DFS is preferred in parallel GC.
 • e.g., mark sweep
• Why?
 • DFS visits heap objects in the order in which objects were allocated.
The granularity-control challenge

- The key tradeoff is between:
 - the cost to pay for migrating some chunk of work, and
 - the benefit of parallelizing the migrated work

- Migrate too often, it’s too slow; too infrequently, it’s too slow.

- Granularity control is a particular challenge for PDFS because, when you migrate a piece of frontier, you have little information about how much work you’re giving away.
Example in favor of aggressively sharing work
Example against sharing work
Granularity control by batching vertices

- A *batch* is a small, fixed-capacity buffer that stores part of the frontier.

- In batching, each work-stealing queue stores pointers to batches of vertices.

- Idea: use batches to amortize the cost of migrating work.

- Previous state of the art for PDFS:
 - Batching PDFS (Cong et al 2008)
 - Parallel mark-sweep GC (Endo 1997 and Seibert 2010)

- No batching PDFS so far guarantees against worst-case behavior.
Our work

Central question:
Can we bring to PDFS the analytical and empirical rigor that has been applied to PBFS, but keep the benefits of a DFS-like traversal?

• We present a new PDFS algorithm.

• In a realistic cost model:
 • We show that our PDFS is work efficient:
 • Running time on a single core is the same as that of serial DFS, up to constant factors.
 • We show that our PDFS is highly parallel.

• In experiments on a machine with 40 cores, we show the following.
 • Our PDFS outperforms alternative algorithms across many of a varied set of input graphs.
 • Our PDFS can exploit data locality like sequential DFS.
Our solution to granularity control

- Migration of work is realized by message passing.
 - Each core regularly polls the status of a cell (in RAM).
 - When core C_1 requests work from C_2, C_1 writes its ID into the cell owned by C_2.

- Each core owns a private frontier.

- Our granularity control technique: when receiving a query, a core shares its frontier only if one of the following two conditions is met:
 - The frontier is larger than some fixed constant, K.
 - The core has treated at least K edges already.

- The setting for K can be picked once based (solely) on the characteristics of the machine.
Why is our granularity-control technique effective?
Our PDFS algorithm

Tuning parameters:
• K: positive integer controlling the eagerness of work sharing
• D: positive integer controlling the frequency of polling

Each core does:
• if my frontier is empty
 • repeatedly query random cores until finding work
• else
 • handle an incoming request for work
 • process up to D edges:
 • for each edge ending at vertex v
 • if this core wins the race to claim v, push outgoing neighbors of v into the frontier
 • remove v from the frontier

To handle a work request, a core does:
• if frontier contains at least K edges or has at least two edges and has treated at least K edges since previously sending work:
 • transfer half of the local frontier to the frontier of the hungry core
 • notify the hungry core
Analytical bounds

Theorem 1
The number of migrations is $3m/K$.

Theorem 2
The total amount of work performed is linear in the size of the input graph.

Theorem 3
Each work query is matched by a response in $O(D + \log n)$ time.
Our frontier data structure

- It is based on our previous work on a chunked-tree data structure.
- It’s a sequence data structure storing weighted items.
- It can
 - push/pop in constant time
 - split in half according to the weights of the items in logarithmic time.
- In the PDFS frontier, a weight represents the outdegree of a vertex.
- It enables:
 - rapidly migrating large chunks of frontier on the fly
 - efficiently parallelizing high-outdegree vertices
Experimental results

higher = better

- 40 Xeon cores @ 2.4Ghz
- 1 TB RAM
Related work

• PDFS
 • Batching PDFS (Cong et al 2008)
 • Parallel mark-sweep GC (Endo 1997 and Seibert 2010)

• PBFS
 • Work-efficient Parallel BFS (Leiserson & Schardl 2010)
 • Direction-optimizing BFS (Beamer et al 2012)
 • Ligra (Shun & Blelloch 2013)

• Hybrid PDFS/PBFS
 • KLA graph-processing framework (Harshvardhan et al 2014)
Summary

• We presented a new PDFS algorithm.

• Our results lift PDFS to a level of rigor similar to that of work-efficient PBFS.

• In our paper:
 • We show that PDFS exploits data locality as effectively as serial DFS.

• Our results show that PDFS performs well both in theory and practice.

• The results suggest that our PDFS may be useful as a component of other algorithms and graph-processing systems.
Oracle-guided versus PDFS-style granularity control

• Oracle-guided can do something PDFS cannot:
 • switch irrevocably to pure sequential code
 • it's desirable because compilers know how to optimize sequential code & because there is no polling overhead

• PDFS can do something oracle-guided cannot:
 • handle larger space of computations
 • oracle guided, just divide & conquer; PDFS-style, arbitrary DAGs,
 • enables parallel pipelining, for example
 • no need for complexity functions (or any such annotations)

• Characteristic difference:
 • oracle guided: amortize against future work
 • PDFS-style: amortize against past work