
A parallel runtime system for Kahn process networks

A parallel runtime system for
Kahn process networks

——

Nhat Minh Lê Adrien Guatto Robin Morisset Albert Cohen

INRIA and ENS Paris

– 1 –



A parallel runtime system for Kahn process networks

Libkpn

• A lean and portable C library, written in C11

• Designed for modern multicore architectures (relaxed memory
model)

• Hand-written proofs for important parts (C11 formal memory
model)

• For parallel algorithms

• And it’s fast!

– 2 –



A parallel runtime system for Kahn process networks

The plan

1. A programmer’s introduction to libkpn

2. Inside libkpn

3. Comparisons and applications

– 3 –



A parallel runtime system for Kahn process networks

A programmer’s introduction to libkpn

– 4 –



A parallel runtime system for Kahn process networks

Kahn process networks with bounded channels

Simple deterministic concurrent programming model

• Sequential processes

• Single-producer single-consumer FIFO communication

• Blocking reads (pop) from channels

• Blocking writes (push) because of bounded channels

– 5 –



A parallel runtime system for Kahn process networks

KPN runtime

Lots of prior work on compilation of synchronous languages

• Such as Lucid Synchrone

• With semantics based on KPNs

• Compiled down to more general-purposes languages (e.g., C)

Libkpn is different

• KPNs with processes written directly in C

• And channels as C objects and functions

Why not use system processes with pipes?
Why not threads with shared-memory concurrent queues?

– 6 –



A parallel runtime system for Kahn process networks

Why a runtime system?

Designed for performance and low overhead
Libkpn is a specialized scheduling system

• Cooperative (Kahn processes cannot be forcefully preempted)

• No isolation nor protection (shared memory and address
space)

• Limited fairness

• No support for communication other than channels

In particular, does not need to support:

• Multi-channel select

• Disk and network I/O

• Locks

• Busy waiting (spin locks)

– 7 –



A parallel runtime system for Kahn process networks

When to use libkpn

Performance and low overhead for parallel algorithms

• Written as KPNs in libkpn

• Called from main C (or C-compatible) application

• Executed on dedicated libkpn threads

Main application (sequential or threaded) can offload heavy
parallel calculations to the KPN runtime

– 8 –



A parallel runtime system for Kahn process networks

Example use cases

Examples of things we’ve used libkpn for:

• Linear algebra (we have dense matrix factorization
competitive with LAPACK and Intel MKL)

• Error-correcting codes (we have a simple LDPC decoder)

• Signal processing (e.g., à la StreamIt)

• Work-in-progress: stencils, XML queries, . . .

– 9 –



A parallel runtime system for Kahn process networks

Basic terminology

• A Kahn process is basically a sequence of instructions that
may operate on channels (a special kind of lightweight thread,
if you will)

• A scheduler thread is a C thread (e.g., pthread) managed by
libkpn that schedules and executes Kahn processes

• A user thread is any other C thread, not managed by libkpn

• Runtime code is everything that is part of libkpn and not
written by the user

– 10 –



A parallel runtime system for Kahn process networks

A simple Kahn process network

1

��

nat

}}
+

��

1 1 1 1 1 . . .
nat 0 1 2 3 . . .
+ 1 2 3 4 . . .

• 3 Kahn processes: 1, nat, and +

• 3 channels: 1→ +, nat→ +, and the final output from +

– 11 –



A parallel runtime system for Kahn process networks

The 1 process in libkpn

#define BUF_SIZE (16 * sizeof(int))

void one_proc(void *kp) {

for (;;)

kpn_push(kp, 0, BUF_SIZE, &(int){ 1 }, sizeof 1);

}

• one_proc is called by the scheduler

• kp is a handle representing the Kahn process

• kpn_push(kp, 0, BUF_SIZE, &(int){ 1 }, sizeof 1)

memcpy sizeof 1 bytes pointed to by &(int){ 1 }

into the 0-th output channel of Kahn process kp

which is a bounded ring buffer of capacity BUF_SIZE

• kpn_push aborts and longjmp back to the scheduler if the
channel is full

– 12 –



A parallel runtime system for Kahn process networks

The nat process in libkpn

void nat_proc(void *kp) {

struct nat_mem *m = kp;

for (;; ++m->i)

kpn_push(kp, 0, BUF_SIZE, &m->i, sizeof m->i);

}

• A Kahn process is sequential and stateful

• nat_proc may be called multiple times

• nat_proc may only be interrupted by longjmp from an
aborted kpn_push

• m is a pointer to the user-defined state of the Kahn process
identified by kp

• m->i is a Kahn process-local variable whose value persists
between calls to nat_proc

– 13 –



A parallel runtime system for Kahn process networks

The + process in libkpn (1)

void plus_proc(void *kp) {

struct plus_mem *m = kp;

BEGIN(m);

for (;;) {

CHECKPOINT(m, 1);

kpn_pop(kp, 0, BUF_SIZE, &m->arg0, sizeof m->arg0);

CHECKPOINT(m, 2);

kpn_pop(kp, 1, BUF_SIZE, &m->arg1, sizeof m->arg1);

CHECKPOINT(m, 3);

int sum = m->arg0 + m->arg1;

kpn_push(kp, 0, BUF_SIZE, &sum, sizeof sum);

}

END(m);

}

– 14 –



A parallel runtime system for Kahn process networks

The + process in libkpn (2)

• kpn_pop(kp, 0, BUF_SIZE, &m->arg0,sizeof m->arg0)

memcpy sizeof m->arg0 bytes to location &m->arg0

from the 0-th input channel of Kahn process kp

which is a bounded ring buffer of capacity BUF_SIZE

• BEGIN, END and CHECKPOINT macros provide poor man’s
coroutine support through Duff’s device

• When embedded in a conventional C application, the final
output could be displayed with printf or written to shared
memory instead

– 15 –



A parallel runtime system for Kahn process networks

Building the process network (1)

void simple_kpn(void) {

KPN_TASK *one, *nat, *plus;

/* Create Kahn processes. */

one = kpn_spawn(one_proc, sizeof(KPN_TASK));

nat = kpn_spawn(nat_proc, sizeof(struct nat_mem));

plus = kpn_spawn(plus_proc, sizeof(struct plus_mem));

/* Add channels. */

kpn_pipe(one, plus, BUF_SIZE);

kpn_pipe(nat, plus, BUF_SIZE);

kpn_pipe(plus, NULL, BUF_SIZE);

/* Schedule Kahn processes. */

kpn_post(one);

kpn_post(nat);

kpn_post(plus);

}

– 16 –



A parallel runtime system for Kahn process networks

Building the process network (2)

Slightly simplified API calls (normal versions have more optional
parameters); error handling omitted

• kpn_spawn(f, n) creates a Kahn process running function f

with a state structure of size n >= sizeof(KPN_TASK)

• kpn_pipe(producer, consumer, n) creates a channel of
capacity n bytes from Kahn process producer to Kahn
process consumer

• kpn_post(kp) marks Kahn process kp as fully initialized and
ready for scheduling by the runtime

– 17 –



A parallel runtime system for Kahn process networks

Standalone run

int main(void) {

kpn_init(0, KPN_THREADING_STANDALONE);

kpn_start_threads(0);

simple_kpn();

kpn_stop_threads(0);

kpn_quit();

}

• kpn_init(n, KPN_THREADING_STANDALONE)

starts n (0: auto) scheduler threads on stand by

• kpn_start_threads(0) instructs all scheduler threads to
start accepting work; they run until all Kahn processes have
terminated (their functions have returned)

• kpn_stop_threads(0) joins all scheduler threads

• kpn_quit() frees all resources allocated for the runtime

– 18 –



A parallel runtime system for Kahn process networks

Inside libkpn

– 19 –



A parallel runtime system for Kahn process networks

What does libkpn do?

Similar to the process and scheduling subsystem in an OS

• Execute Kahn processes on available scheduler threads . . .

• . . . with load-balancing

• Manage ready/waiting Kahn processes

• Provide efficient scheduler-aware channel operations for
communication

Runtime code lives in:

• The scheduling loop, which fetches and executes work

• Runtime functions called from Kahn process procedures
(including channel operations such as push and pop)

– 20 –



A parallel runtime system for Kahn process networks

Scheduling loop
Each scheduler thread runs a scheduling loop

void schedule(int thread) {

KPN_TASK *kp;

while ((kp = fetch(thread)) != NULL) {

kp->thread = thread;

kp->proc(kp);

}

}

• thread identifies the thread among KPN scheduler threads

• fetch(thread) returns a Kahn process to be executed on
KPN scheduler thread thread

or NULL if kpn_quit() has been called and all Kahn
processes have terminated

• kp->proc(kp) calls the Kahn process procedure (e.g.,
plus_proc)

– 21 –



A parallel runtime system for Kahn process networks

Process states

The runtime system manages Kahn processes
Once created, each Kahn process is either

• Currently executing on a scheduler thread

• Not running but ready to be executed

• Or not executing and waiting to perform a channel operation

(Null)

zz

ee

Ready // Executing

��
Waiting

jj

When is a Kahn process considered in a given state?

– 22 –



A parallel runtime system for Kahn process networks

Sequential implementation (1)

In an implementation with a single scheduler thread

• A single Kahn process at a time is executing, when control is
currently not in runtime code

• A ready set holds all Kahn processes ready to be executed

• Each channel has a read waiting set that is either empty or
contains a single Kahn process waiting to pop

• Analogously each channel has a write waiting set

– 23 –



A parallel runtime system for Kahn process networks

Sequential implementation (2)

Runtime code moves Kahn processes from one set to another

• The scheduling loop makes one ready Kahn process executing

• An unsatisfied pop (resp. push) operation moves the
requesting Kahn process from executing into the read (resp.
write) waiting set

• A successful push or pop operation moves any Kahn process
from the opposite waiting set into the ready set

(Null)

zz

ee

Ready
fetch&call // Executing

push/pop
��

Waiting
pop/push

jj

– 24 –



A parallel runtime system for Kahn process networks

Multiple scheduler threads (1)

In an implementation with multiple scheduler threads

• Each scheduler thread may execute a different Kahn process
simultaneously (parallelism)

• All threads equally need to fetch ready Kahn processes, which
may generate contention

• Therefore, we want to distribute the ready set data structure
across scheduler threads

• Conversely, waiting sets have at most one element and gain
nothing by being distributed

– 25 –



A parallel runtime system for Kahn process networks

Multiple scheduler threads (2)

Thus, given N scheduler threads

• There are at most N executing Kahn processes at a time

• There are N ready sets

• There are still only two waiting sets per channel, shared by all
N scheduler threads

– 26 –



A parallel runtime system for Kahn process networks

What could go wrong?

If data structures representing the sets of Kahn processes are
always only accessed atomically (with a lock) by every thread, then
there is no problem
What if we want to work without locks?

• Half-complete accesses may interleave

• In a relaxed memory model, different states of the shared
memory may be visible to different threads

• Both situations yield inconsistent views of the data structures
in different threads

What could go wrong?

• Duplication of a Kahn process

• Loss of a Kahn process

– 27 –



A parallel runtime system for Kahn process networks

Duplication

Two cases of possible duplication

• Of ready Kahn processes removed from a ready set

• Of waiting Kahn processes removed from a waiting set

Requires atomic (exclusive) transitions between Ready and other
meaningful states

(Null)

zz

ee

Ready // Executing

��
Waiting

jj

– 28 –



A parallel runtime system for Kahn process networks

Non-duplication in libkpn

• We use work-stealing deques to represent ready sets (previous
work on Chase–Lev queue in a relaxed memory model)

• Two atomic pointers per channel, to represent the read and
write waiting sets

• Hand-written proof in C11 that duplication does not occur:
invocations of the same Kahn process are totally ordered by
happens-before (across all schedulers threads)

– 29 –



A parallel runtime system for Kahn process networks

Let’s take a step back (to our example)

What about losses?
We recall our simple example

1

��

nat

}}
+

��

We focus on the case where + may need to wait for 1 to produce
more values

– 30 –



A parallel runtime system for Kahn process networks

Loss

Executing Waiting

1

(0) ��

nat

(0)}}
+

(0)

��

1 is executing on A

1

(0) ��

nat

(0)}}
+

(0)

��

+ is executing on B

– 31 –



A parallel runtime system for Kahn process networks

Loss

Executing Waiting

1

(1) ��

nat

(0)}}
+

(0)

��

1 pushes the first number to its
output channel

1

(0) ��

nat

(0)}}
+

(0)

��

+ attempts to pop the first
number from its left input
channel and fails

– 32 –



A parallel runtime system for Kahn process networks

Loss

Executing Waiting

1

(2) ��

nat

(0)}}
+

(0)

��

A is not (yet) aware of + being
in the waiting set

1

(0) ��

nat

(0)}}
+

(0)

��

B returns to its scheduling
loop and puts + into the wait-
ing set of its left input channel

– 33 –



A parallel runtime system for Kahn process networks

Loss

Executing Waiting

1

(2) ��

nat

(0)}}
+

(0)

��

A is not (yet) aware of + being
in the waiting set

1

(0) ��

nat

(0)}}
+

(0)

��

B is not (yet) aware of the first
push

Which thread should ready + now?

– 34 –



A parallel runtime system for Kahn process networks

When can we ready a waiting process?

To remove a Kahn process from a waiting set

• There (obviously) needs to be a Kahn process waiting

• And an opposite operation needs to occur

• Once a thread confirms both conditions, it may attempt to
move the waiting Kahn process into its ready set

• How soon is “once?”

Whose responsibility is it to ready waiting Kahn processes?

• A thread executing the requesting Kahn process?
(In the previous example, B)

• A thread executing the opposite Kahn process?
(In the previous example, A)

• Another thread?

– 35 –



A parallel runtime system for Kahn process networks

Loss prevention strategies

• Different strategies (who, when) possible

• We present two: ASAP and (somewhat) lazy

• Both proven (by hand) not to induce losses, including in the
presence of cycles: not all Kahn processes in a KPN are
waiting in a deadlock if at least one of the waited on channels
has enough space or data

– 36 –



A parallel runtime system for Kahn process networks

ASAP strategy

Atomic (sequential) waiting and publishing operations
At the end of the previous example scenario

• Both A and B are responsible for readying + if possible

• After the succesful push of the i-th number, A checks whether
the waiting set is empty

• After moving + to the waiting set, B rechecks whether the
i-th number is now available

• Both of these checks are atomic with respect to each other:
they are totally ordered

• If either check succeeds, an attempt is made to atomically
remove + from the ready set (compare-and-swap)

– 37 –



A parallel runtime system for Kahn process networks

ASAP strategy illustrated

Executing Waiting

1

(0) ��

nat

(0)}}
+

(0)

��

1 is executing on A

1

(0) ��

nat

(0)}}
+

(0)

��

+ is executing on B

– 38 –



A parallel runtime system for Kahn process networks

ASAP strategy illustrated

Executing Waiting

1

(1) ��

nat

(0)}}
+

(0)

��

1 pushes the first number to its
output channel

1

(0) ��

nat

(0)}}
+

(0)

��

+ attempts to pop the first
number from its left input
channel and fails

– 39 –



A parallel runtime system for Kahn process networks

ASAP strategy illustrated

Executing Waiting

1

(2) ��

nat

(0)}}
+

(0)

��

A is not (yet) aware of + being
in the waiting set

1

(1) ��

nat

(0)}}
+

(0)

��

B returns to its scheduling
loop and puts + into the wait-
ing set of its left input channel,
and rechecks

– 40 –



A parallel runtime system for Kahn process networks

ASAP strategy illustrated

Executing Waiting

1

(2) ��

nat

(0)}}
+

(0)

��

A is not (yet) aware of + being
in the waiting set

1

(1) ��

nat

(0)}}
+

(0)

��

This time, B is aware of the
first push, and will ready +

– 41 –



A parallel runtime system for Kahn process networks

Lazy strategy

Idea: atomic checks are costly
Replace costly checks with relaxed tests as much as possible

• Only A is responsible for readying +

• After the succesful push of the i-th number, A non-atomically
checks whether the waiting set is empty

• Let’s call this non-atomic check probing

• Then A may probe again every now and then

• When A finishes executing +, it can stop probing and perform
an atomic check

– 42 –



A parallel runtime system for Kahn process networks

Lazy strategy illustrated

Executing Waiting

1

(0) ��

nat

(0)}}
+

(0)

��

1 is executing on A

1

(0) ��

nat

(0)}}
+

(0)

��

+ is executing on B

– 43 –



A parallel runtime system for Kahn process networks

Lazy strategy illustrated

Executing Waiting

1

(1) ��

nat

(0)}}
+

(0)

��

1 pushes the first number to its
output channel

1

(0) ��

nat

(0)}}
+

(0)

��

+ attempts to pop the first
number from its left input
channel and fails

– 44 –



A parallel runtime system for Kahn process networks

Lazy strategy illustrated

Executing Waiting

1

(2) ��

nat

(0)}}
+

(0)

��

A is not (yet) aware of + being
in the waiting set

1

(0) ��

nat

(0)}}
+

(0)

��

B returns to its scheduling
loop and puts + into the wait-
ing set of its left input channel

– 45 –



A parallel runtime system for Kahn process networks

Lazy strategy illustrated

Executing Waiting

1

(2) ��

nat

(0)}}
+

(0)

��

A is not (yet) aware of + being
in the waiting set

1

(0) ��

nat

(0)}}
+

(0)

��

B is not (yet) aware of the first
push

– 46 –



A parallel runtime system for Kahn process networks

Lazy strategy illustrated

Executing Waiting

1

(3) ��

nat

(0)}}
+

(0)

��

1 pushes a third time and
probes:
A is now aware of + being
in the waiting set

1

(0) ��

nat

(0)}}
+

(0)

��

B is still not aware of the first
push

– 47 –



A parallel runtime system for Kahn process networks

Atomic checks in the lazy strategy

Which Kahn processes do we atomically check?

a
(0) // b

(0)��
c

(0)

__

• b attempts to pop from a but fails

• a pushes to b, checks but b is not waiting yet

• a attempts to pop from c but fails

• a stops to wait (atomic check)

• b stops to wait (atomic check)

• c attempts to pop from b but fails

• c stops to wait (atomic check)

– 48 –



A parallel runtime system for Kahn process networks

Atomic checks in the lazy strategy

Which Kahn processes do we atomically check?

a
(1) // b

(0)��
c

(0)

__

• b attempts to pop from a but fails

• a pushes to b, checks but b is not waiting yet

• a attempts to pop from c but fails

• a stops to wait (atomic check)

• b stops to wait (atomic check)

• c attempts to pop from b but fails

• c stops to wait (atomic check)

– 49 –



A parallel runtime system for Kahn process networks

Atomic checks in the lazy strategy

Which Kahn processes do we atomically check?

a
(1) // b

(0)��
c

(0)

__

• b attempts to pop from a but fails

• a pushes to b, checks but b is not waiting yet

• a attempts to pop from c but fails

• a stops to wait (atomic check)

• b stops to wait (atomic check)

• c attempts to pop from b but fails

• c stops to wait (atomic check)

– 50 –



A parallel runtime system for Kahn process networks

Atomic checks in the lazy strategy

Which Kahn processes do we atomically check?

a
(1) // b

(0)��
c

(0)

__

• b attempts to pop from a but fails

• a pushes to b, checks but b is not waiting yet

• a attempts to pop from c but fails

• a stops to wait (atomic check)

• b stops to wait (atomic check)

• c attempts to pop from b but fails

• c stops to wait (atomic check)

– 51 –



A parallel runtime system for Kahn process networks

Atomic checks in the lazy strategy

Which Kahn processes do we atomically check?

a
(1) // b

(0)��
c

(0)

__

• b attempts to pop from a but fails

• a pushes to b, checks but b is not waiting yet

• a attempts to pop from c but fails

• a stops to wait (atomic check)

• b stops to wait (atomic check)

• c attempts to pop from b but fails

• c stops to wait (atomic check)

– 52 –



A parallel runtime system for Kahn process networks

Atomic checks in the lazy strategy

Which Kahn processes do we atomically check?

a
(1) // b

(0)��
c

(0)

__

• b attempts to pop from a but fails

• a pushes to b, checks but b is not waiting yet

• a attempts to pop from c but fails

• a stops to wait (atomic check)

• b stops to wait (atomic check)

• c attempts to pop from b but fails

• c stops to wait (atomic check)

– 53 –



A parallel runtime system for Kahn process networks

Atomic checks in the lazy strategy

Which Kahn processes do we atomically check?

a
(1) // b

(0)��
c

(0)

__

• b attempts to pop from a but fails

• a pushes to b, checks but b is not waiting yet

• a attempts to pop from c but fails

• a stops to wait (atomic check)

• b stops to wait (atomic check)

• c attempts to pop from b but fails

• c stops to wait (atomic check)

– 54 –



A parallel runtime system for Kahn process networks

A non-working strategy

Suppose we only check atomically channels we have operated on

a
(1) // b

(0)��
c

(0)

__

Atomic checks total order: a, b, c

• a has pushed to b thus checks atomically for b, but b is not
waiting yet; then waits

• b checks nothing because it didn’t push anything; then waits

• c checks nothing because it didn’t push anything; then waits

Result: deadlock

– 55 –



A parallel runtime system for Kahn process networks

A non-working strategy

Suppose we only check atomically channels we have operated on

a
(1) // b

(0)��
c

(0)

__

Atomic checks total order: a, b, c

• a has pushed to b thus checks atomically for b, but b is not
waiting yet; then waits

• b checks nothing because it didn’t push anything; then waits

• c checks nothing because it didn’t push anything; then waits

Result: deadlock

– 56 –



A parallel runtime system for Kahn process networks

A non-working strategy

Suppose we only check atomically channels we have operated on

a
(1) // b

(0)��
c

(0)

__

Atomic checks total order: a, b, c

• a has pushed to b thus checks atomically for b, but b is not
waiting yet; then waits

• b checks nothing because it didn’t push anything; then waits

• c checks nothing because it didn’t push anything; then waits

Result: deadlock

– 57 –



A parallel runtime system for Kahn process networks

A working strategy

Suppose we check atomically all connected channels

a
(1) // b

(0)��
c

(0)

__

Atomic checks total order: a, b, c

• a checks atomically for b, but b is not waiting yet; then waits

• b checks atomically for c, but c is not waiting yet; then waits

• c checks atomically for a, and readies a; then waits

• a is executed but cannot make progress

• a stops to wait

• a checks atomically for b, and readies b; then waits

Result: b will make progress when it is scheduled

– 58 –



A parallel runtime system for Kahn process networks

A working strategy

Suppose we check atomically all connected channels

a
(1) // b

(0)��
c

(0)

__

Atomic checks total order: a, b, c

• a checks atomically for b, but b is not waiting yet; then waits

• b checks atomically for c, but c is not waiting yet; then waits

• c checks atomically for a, and readies a; then waits

• a is executed but cannot make progress

• a stops to wait

• a checks atomically for b, and readies b; then waits

Result: b will make progress when it is scheduled

– 59 –



A parallel runtime system for Kahn process networks

A working strategy

Suppose we check atomically all connected channels

a
(1) // b

(0)��
c

(0)

__

Atomic checks total order: a, b, c

• a checks atomically for b, but b is not waiting yet; then waits

• b checks atomically for c, but c is not waiting yet; then waits

• c checks atomically for a, and readies a; then waits

• a is executed but cannot make progress

• a stops to wait

• a checks atomically for b, and readies b; then waits

Result: b will make progress when it is scheduled

– 60 –



A parallel runtime system for Kahn process networks

A working strategy

Suppose we check atomically all connected channels

a
(1) // b

(0)��
c

(0)

__

Atomic checks total order: a, b, c

• a checks atomically for b, but b is not waiting yet; then waits

• b checks atomically for c, but c is not waiting yet; then waits

• c checks atomically for a, and readies a; then waits

• a is executed but cannot make progress

• a stops to wait

• a checks atomically for b, and readies b; then waits

Result: b will make progress when it is scheduled

– 61 –



A parallel runtime system for Kahn process networks

A working strategy

Suppose we check atomically all connected channels

a
(1) // b

(0)��
c

(0)

__

Atomic checks total order: a, b, c

• a checks atomically for b, but b is not waiting yet; then waits

• b checks atomically for c, but c is not waiting yet; then waits

• c checks atomically for a, and readies a; then waits

• a is executed but cannot make progress

• a stops to wait

• a checks atomically for b, and readies b; then waits

Result: b will make progress when it is scheduled

– 62 –



A parallel runtime system for Kahn process networks

A working strategy

Suppose we check atomically all connected channels

a
(1) // b

(0)��
c

(0)

__

Atomic checks total order: a, b, c

• a checks atomically for b, but b is not waiting yet; then waits

• b checks atomically for c, but c is not waiting yet; then waits

• c checks atomically for a, and readies a; then waits

• a is executed but cannot make progress

• a stops to wait

• a checks atomically for b, and readies b; then waits

Result: b will make progress when it is scheduled

– 63 –



A parallel runtime system for Kahn process networks

Summary of loss prevention strategies

ASAP Lazy

Check per push/pop atomic relaxed
Check on wait atomic atomic

Combined checks on push/pop no yes
Must check all adjacent processes no yes

Faux-ready no yes

– 64 –



A parallel runtime system for Kahn process networks

Comparisons and applications

– 65 –



A parallel runtime system for Kahn process networks

Task-parallel models

• Libkpn can be seen as implementing a task-parallel model
where tasks are continuous execution intervals of Kahn
processes

• Libkpn implements dynamic Kahn process creation and
channels as first-class objects (can only be bound to a single
producer and a single consumer at a time)

• The KPN model thus implemented supersedes Cilk, SMPSs,
as well as hybrid models with SMPSs-style dependencies
between children of Cilk-like tasks

– 66 –



A parallel runtime system for Kahn process networks

Extensions to task-parallel models

From a purely task-oriented algorithm

• Kahn processes can be used to aggregate tasks

• Channels can be used to aggregate dependencies

• In practice, libkpn offers efficient and realistically usable
buffered communication and synchronization (“streaming”) to
task-parallel programs

– 67 –



A parallel runtime system for Kahn process networks

Cholesky and LU on x86-64
Cholesky

●

●

●

●

●

●

●

●
● ●

●

● ●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

0

50

100

150

200

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
Matrix size

G
FL

O
P

S

●

●

●

 KPN
 MKL
 PLASMA
 SMPSs
 OpenMP
 Swan
 KOMP

LU

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●
●

0

50

100

150

200

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
Matrix size

G
FL

O
P

S

Manually optimized to use Kahn processes and channels:

• Gains from aggregation

• Better creation balancing

– 68 –



A parallel runtime system for Kahn process networks

Conclusion

• We’ve got that cool library at PARKAS called libkpn

• It is built using modern C, is portable, and we are reasonably
sure its core algorithms aren’t totally faulty

• It lets you structure parallel C programs as KPNs

• It can compete with existing task-parallel runtimes while
allowing streaming capabilities that are actually usable

• If you take advantage of its features, it can run your KPNs
really fast, and we have a couple of applications to show off

– 69 –



A parallel runtime system for Kahn process networks

Extra

– 70 –



A parallel runtime system for Kahn process networks

To probe or not to probe (1)

How does A remember to probe?
When does A forget and stop probing?

• The KPN should not deadlock if a Kahn process network can
be readied (missed checks)

• As much as possible, we do not want multiple threads
checking the same condition (redundant checks)

• We do not want to ready a Kahn process unless the channel it
waits on meets the waiting conditions (faux-ready)

– 71 –



A parallel runtime system for Kahn process networks

To probe or not to probe (2)

As long as a Kahn process is running, only its executing thread
pushes to its output channels and pops from its input channels

• No other thread can ready Kahn processes waiting on those
channels (no redundant checks)

• If a probe misses, as long as the Kahn process is running,
waiting conditions do not change (no faux-ready)

– 72 –



A parallel runtime system for Kahn process networks

Atomic checks

• When a Kahn process stops and waits, its execution may
continue on another thread, thus further probing may be
redundant or induce faux-ready; hence, we should stop
checking

• When a Kahn process terminates, we want to release memory
allocated to it, including information on its channels; hence,
we should stop probing

• When we stop probing, we must atomically check and ready
any waiting adjacent Kahn process

We ready even those adjacent Kahn processes whose waiting
conditions are not satisfied; why is that?

– 73 –



A parallel runtime system for Kahn process networks

Why is the lazy strategy correct?

If there is a cycle of Kahn processes waiting on one another and at
least one of the connecting channel has enough data to keep the
network running, then it will eventually be found by the rippling
effects of atomic checks

a // b // c

��
f

OO

eoo doo

Any Kahn process waiting between the last Kahn process to stop
(e) and the first to be able to make progress (b) will be
faux-readied

– 74 –


	A programmer's introduction to libkpn
	Inside libkpn
	Comparisons and applications
	Extra

