PSYCHE

a proof-search engine based on sequent calculus

with an LCF-style architecture

Stéphane Graham-Lengrand
CNRS - Ecole Polytechnique - INRIA,
Gallium, 19th June 2014

PSYCHE in a nutshell

PSYCHE is a modular proof-search engine written in OCaml (4.00 at the moment)

designed as a platform for automated or interactive theorem proving

kernel/plugin architecture with LCF-style interface & guarantees

implementing bottom-up proof-search in Sequent Calculus

+ ability to call decision procedures

can produce proof objects (output in e.g. IATEX, though quickly too big)

Early days:

version 1.6 released in May (5547 l.0.c.), version 2.0 in progress

Contents

. Motivation

Il. PSYCHE’s architecture

lll. PSYCHE’s kernel

IV. PSYCHE’s plugins: My first SAT-solver
V. Last few things before demo

VI. Current work on quantifiers

VII. Conclusion

l. Motivation

Ménagerie

ok~ D

Tools concerned with theorem proving (in a large sense):
. Automated Theorem Provers

SAT/SMT-solvers

Proof assistants

“Logic programming” languages

A lot of research on making them collaborate:

(1+2), (1+3), (2+3),...

Central to collaborations: the question of trust

Active research on proof formats and proof exchange (e.g. PxTP workshop)

Possibly use backend proof-checker.

Different research efforts in that direction
e Translating to Coq, proofs from other provers
e Dedukti, based on Deduction Modulo @ Deducteam

e Miller's ProofCert project @ Parsifal
(Not concerned with the way external tools have found their proofs)

Or: (as in e.g. Isabelle) where every implementation of technique separates:

e the code implementing the actual reasoning steps (the same for everyone)

concerns correctness of answer

e the code implementing strategies concerns efficiency of producing answer
so that “answers” are correct-by-construction (no proof-checker needed)

LCF style

Kernel knows of private type for theorems
(constructors of not known outside kernel)
offers API so proof-construction becomes programmable outside kernel

producing inhabitants of

—> inhabitants of are trusted as proved theorems if kernel is trusted

(regardless of the rest of the code)

LCF highly programmable, but kernel is of little help for the proof-search per se

Proof-search in LCF

LCF API’s primitives are for proof reconstruction rather than proof-search:

Given logical rule
prem; ... prem,

name
conc

kernel offers top-down API primitive name: —> ... => —>

Proof-search usually uses above rule bottom-up, as in tableaux or Prolog

(but not the inverse method)

Bottom-up proof-search would have to be programmed outside kernel in

Continuation-Passing-Style

Kernel does not organise exploration of search-space, especially backiracking

LCF architecture guarantees correctness of answer, not completeness

PSYCHE

...experiments a new version of LCF

where the kernel performs some actual proof-search “a la Prolog”

However, efficient proof-search requires the use of heuristics
whose code should certainly not be in kernel
it'd be nice if each call to kernel’s primitives terminated
Proposed solution: split the code of proof-search between
1. systematic steps that can be performed wlog and without intelligence
2. steps that require smart choices to be made by heuristics

Exercise: in Prolog? More generally: provides such a division of labour

1. to be performed by kernel

2. to be programmed as plugins

Different division of labour than in traditional LCF

Different approaches

Besides internal tableau implementation, Isabelle can use Metis+Sledgehammer to

delegate the search to on-the-shelf black boxes (SMT-solvers, ATPs).

In PSYCHE we open black boxes, reprogram their algorithms directly in LCF style

Black box approach requires

e feeding black box with input that it can entirely treat

(usually, abstraction of current proof state)

e waiting until the call finishes (no progress is made until then)

...Whereas PSYCHE could run a technique up to a point,
then possibly change technique according to the shape of new proof state

—> new possibilities of technique combination

PsYCHE = Proof-Search factorY for Collaborative HEuristics

So far, we experimented PSYCHE by implementing as plugin

10

Il. PSYCHE’s architecture

11

A stupid metaphore

Interaction between a kernel, a theory and a plugin

Theory = land/terrain
Kernel = road network + a car moving on it
Plugin = driver in the car

Common objective: reach a destination

interaction between Kernel and Plugin is organised so that the car stays on the road

cannot claim the destination is reached if it isn’t

In other words: trust the car for correctness, hope driver is efficient at driving it

Driver gets into unfamiliar neighbourhood? Change driver!

12

More seriously

Kernel knows search-space, which portion has been explored, which remains to be

(takes branching and backtracking into account)

Plugin drives kernel through search-space (which branch explore first? which depth?)

Kernel says when a proof has been found, or no proof exists

Safety of output

How? As in LCF-style, a private type (known only to kernel) is used

Given logical rule
prem; ... prem,

name
conc

LCF-style kernel offers API primitive name: > ... =>

In PSYCHE, rule wrapped in unique API primitive:
machine: —>

such that machine (conc) triggers recursive calls

machine (prem_.1l),...,machine (prem.n)

13

Not the plugin

—>

private type

How it is structured

Top-level call

Plugin.solve (Kernel.machine (Parser.parse 1input))

For plugin, output type of P1ugin.solve (called) is abstract:
it cannot construct a value of that type,

can only pass on a value provided by (Kernel .machine)

= plugin cannot cheat

= no need to understand or certify plugin’s code to have a guarantee about the output

14

Kernel = slot machine

Plugin computes after kernel? not quite
type = Final of | Temp of * (—>)
kernel’s machine outputs

e cither final answer provable or not provable

e or “temp” output (= unfinished computation):
for computation to continue, plugin “inserts another coin in the slot machine”;

depending on coin, proof-search will resume in a certain way.

In brief: Kernel performs proof-search while no decision needs to be made
(on which backtrack may later be needed)

stops and asks further instructions from plugin when decision needs to be made.

Objective: hit jackpot with kernel outputting value Final (.. .)

type = Provable of * | NotProvable of

answer is private

15

Contents of /src

/src/.
/src/run_tools
/src/parsers
/src/1lib

/src/kernel

/src/generic—-plugins/Common
/src/generic-plugins/DPLL_WL

/src/generic—-plugins/...

/src/theories/Empty
/src/theories/LRA
/src/theories/CC

/src/theories/. ..

16

top-level (237 lines)

O (193 lines)

(DIMACS, SMTLib2) (367 lines)
()

common library (518 lines
kernel files (lines)
commons files for plugins (312 lines)

plugin DPLL_WL (406 lines)

propositional logic (234 lines)
linear rational arithmetic (1000 lines)
congruence closure (1074 lines)

lll. PSYCHE’s kernel

17

Generalities

The kernel is an implementation of a focused sequent calculus, which provides a

“natural generalisation” of logic programming beyond Horn clauses / HH formulae
Logic of PSYCHE 1.6: polarised quantifier-free classical logic modulo theories

Why polarised?

e inference rules = basic reasoning steps with which proving techniques (i.e. the
plugins) are implemented

e different inference rules for AT and A, for V' and V™~

= more proof-search primitives offered to implement plugins

e polarisation identifies:
reasoning steps that are w.l.0.g (invertible inference rules)

from reasoning steps creating backtrack point (non-invertible inference rules)

18

Logical system

AB,...:= l|ANTB| AVTB | AN B | AV™B

involutive negation on literals {, extended to all formulae

negatives have invertible introduction rules

positives are their negations

Literals are not a priori polarised proof-search will polarise them on the fly

Focusing is the ability to recursively chain decomposition of positives without loosing

completeness:

Just after decomposing (A1V ™ A2)VT A3 by going for the left, we can assume wlog
that we can directly go for A1 or Ao instead of working on another formula (we don't

risk loosing provability)

19

Inference rules (similar to Liang-Miller’'s LKF)

P: set of literals declared to be positive (negations are negative)

I[': (multi)set of positive literals, A: (multi)set of positive formulae

Ty [A]JA Tkp [BIA Ty [Ai]A

Synchronous phase
I'p [ANTB]A I'Fp [AVTA]A

Thpy N | A

N not positive
Tpkp,pplA Thp[N]A

Fl_pA,H’A Fl_PB,H|A FI_'PAl,AQ,H’A

Asynchronous phase
Fl_'P A/_B,H|A Fl_fp Alv_A27H|A

I'FrII| AP T, 00 by, T A
P positive : [not positive
['bp PII| A Thp 11| A

['bp [P]A, P

Structural rule
I I—p | A, P

20

Properties

Cuts are admissible, such as:
T A|A ThHp AT | A
Thp | A

System is sound and complete for pure propositional logic,
no matter the polarities of connectives and literals

(these only affect shapes of proofs / algorithmics of proof-search)

Is extended in PSYCHE for quantifier-free logic

sound and complete (provided some condition on the polarity of literals)

Can be extended to first-order logic (V is negative, d is positive)

21

Division of labour

Kernel knows the rules
applies asynchronous rules automatically

until hits point with choice and potential backtrack

At each of those points, plugin instructs kernel how to perform synchronous phase

Kernel records alternatives when plugin makes choice
organises backtracking

realises by itself when backtrack points are exhausted and no proof has been found

22

IV. PSYCHE’s plugins: My first SAT-solver

23

Motivation...

... was to make different techniques available on the same platform

Challenge:

understand each technique as bottom-up proof-search in focused sequent calculus

Each technique / each combination of techniques,
is to be implemented as an OCaml module of type

module type PluginType = s1g

solve: output—->answer

end

PSYCHE works with any module of that type

24

Today

We know how to do

e analytic tableaux (closest to sequent calculus)
e clause tableaux

e Prolog proof-search

e Resolution

e DPLL(T)
e human user

In PSYCHE 1.6 we have implemented

e DPLL(T)

We investigate how to do
e controlled instantiation using triggers

e specific treatment of equality

25

DPLL

® :

[||¢ = T,1%|¢ where I €T, 1+ & T, 1 € lit(¢)
® :

['||¢p, C' = UNSAT if ' = —C' and there is no decision literal in I"
[

I'1,1%Ts||¢p,C = I',1H]|¢,C itT'1,1, Ty = —~C and no decision literal is in I'

U, CVI=T,l|¢p,C VI where' = -C, 1 g T,1+ ¢T

lit(¢) denotes the set of literals that appear / whose negation appear in ¢

26

How it is represented in sequent calculus

Aclause C' = [V ...V [, is represented in sequent calculus by [1 V™ ... V™ [,
so C+ :llL/\jL.../\lepL

DPLL starts with a state 0)||C1, ..., C)

in sequent calculus we try to prove + | Cit, ..., Cpt
DPLL finishes on UNSAT = proof constructed in sequent calculus
DPLL finishes on model = no proof exists in sequent calculus

Intermediary states ||C1,...,C, =—* T||C4,...,C, of DPLL:
in sequent calculus

e we have constructed a partial proof-tree of F | CH, e C,+
e we are leftto prove I' Fp | Cit, ..., Cyt

e cach decision literal in 1" corresponds to a branch of the proof-tree being constructed,
that is still open

27

How DPLL is simulated in sequent calculus

Fail using clause C' & Focus on C+
Backtrack using clause = Focus on C+
Unit propagate using clause C & Focus on C'+

Decide = Cut-rule (analytic cases!)

28

What about more sophisticated features of DPLL?

Backjump and Learn cut a lot of branches

Forget and Restart can speed up the process as well

Backjump and Learn can be simulated as proof-search by extending several branches

of incomplete proof with the same steps.

To do this efficiently in PSYCHE:

Memoisation of the proof-search function

Restart in PSYCHE:
plugin keeps track of 1st plugin-kernel interaction and resumes there

implemented in PSYCHE 1.6

29

V. Last few things before demo

30

Theories

Again, Theory = any OCaml module of type
module type TheoryType = s1g

conslstency: literals set —-> (literals set) option

end

Currently implemented as such a module:
e empty theory (propositional logic)
o |RA

e congruence closure

31

Implementation choices

In OCaml

3 data structures on which Kernel+Plugin have to agree
e Data structure for the implementation of formulae
e Data structure for the implementation of sets of formulae

e Data structure for the implementation of sets of literals

“have to agree” = currently provided by plugin
Correctness of data structures have to be checked/assumed

to guarantee correctness of the whole thing

32

Implementation issues

Most data structures are using hash consing techniques:

a given structure can only be stored in memory once

Memoisation table is implemented using Patricia tries
(persistent yet efficient representation of sets and maps

unique representation of a given set or map

they are hash-consed)

33

DEMO

34

VI. Current work on quantifiers

35

Quantifiers

I'p {!x/x}A,H]A—uf I'Fp [{ ?ajx}A]A—Mf
'Fp VAL | A— o I'p |3z A]A— o)

Eigenvariables !x, ly, . . . (a.k.a skolem symbols)

In proof-search: meta-variables 7z, 7y, . . .
+ some way to record dependencies between eigen- and meta-variables
e alatype theory (e.g. Coq): introduction of metas records existing eigens
e a lafirst-order theorem proving: introduction of eigens records existing metas

(skolem symbols are applied)
This records one graph or its complement. — maitter of implementation

Closing branches generates constraints on meta-variables
In pure logic (ProLog, 1st-order tableaux,...): constraints = 1st-order unifiers

In presence of theory... e.g. LRA: constraints can be convex polytops

Need for modular treament of constraints in kernel (in PSYCHE: abstract type)

36

Branching

Meta-variables are shared between proof-tree branches

Closing branches can no longer be done independently

Fl—pAQ,H‘A%O'O Fl—pAl,H‘A%O'l
Fl—PA()/\Al,H’A%O‘o/\O'l

Again, in pure logic, og /A 01 = most general unifier of g and o

in LRA, og /\ 01 can be polytop intersection

oc—-Tkp A TT| A= 0o o > Thp A, II| A"
oc—-Thkp AgNALTT| A= o

Goal: propagation of constraints through branches generalises Prolog-like propagation

of substitutions through branches

37

Abstraction and modularity

D. Rouhling, A. Mahboubi & SGL axiomatised
e the algebraic structure of constraints (some variant of meet-semilattice)

e the specs of decision procedures called at leaves

for the system to work (and to be equivalent to system w/o meta-variables)

J-M Notin & SGL preparing PSYCHE 2.0 according to the above

Backtrack mechanisms get tricky

We also hope that this architecture can capture triggers-based instantiation

mechanisms of SMT

38

VIl. Conclusion

39

Current plugins and decision procedures are illustrative toys

e DPLL plugin very basic
(though already improved with known techniques of 2-watched literals, clause

learning and restarts)

e LRA decision procedure also basic, not incremental

PSYCHE is a platform where people knowing good and efficient techniques should be
able to program them

Further work (nothing surprising):
e improve current decision procedures and add new ones
e add new techniques as plugins (e.g. user-interactive)
e improve DPLL(7) plugins to better handle non-clausal formulae

e proof-terms and classical program extraction
(focused & polarised systems for classical logic originally designed to identify

computational content of classical proofs, in connection to classical realisability).

40

Thank you!

www.lix.polytechnique.fr/~lengrand/Psyche

41

www.lix.polytechnique.fr/~lengrand/Psyche

Abstract focusing

PsYCHE 3.0 will also gain a level of abstraction by having logic as a parameter:

Following Zeilberger’s work, it is possible to describe the concept of focusing

(independently from logical connectives and logical system) as an abstract system F’
where

e intuitionistic focused sequent calculus

® mono-sided classical focused sequent calculus

e bi-sided classical focused sequent calculus

are instances Fy, Fiir1, Fio.

Possible to generalise Munch’s work on realisability and focusing in classical logic

& define generic notion of realisability algebra R A _to define realisability models of F’,

RAj (resp. RAg1, RAg9) forming models of F'y (resp. F'ic1, Fii2)

42

Abstract focusing modulo theories

Lifting in the same abstract way our focused sequent calculus with decision
procedures, we get an abstract focusing system modulo theories in the form of a
functor F' (- [|, F) transforming a pair of derivability relations (-, []) (focused,

unfocused) into a more general one (F' [],+')

(just like DPLL(7) transforms a decision procedure 7 for conjunction of atoms into a
decision procedure for arbitrary CNF)
Thinking in terms of compositionable functors seems a convenient way to combine
theories
Conjectures:
e By composing functor F' with S-normalisation, we should get a functor F_B such that
HOL = (F5)®(triv, triv)
e By composing functor F with rewrite rules, we should get a functor '~ such that

(FP)®° (triv, triv) does deduction modulo

43

