ML 2006 START Conference Manager    

Type-Safe Distributed Programming for OCaml

John Billings, Peter Sewell, Mark Shinwell and Rok Strnisa

The 2006 ACM SIGPLAN Workshop on ML (ML 2006)
Portland, Oregon, 16th September 2006


Existing ML-like languages guarantee type-safety, ensuring memory safety and protecting the invariants of abstract types, but only within single executions of single programs. Distributed programming is becoming ever more important, and should benefit even more from such guarantees. In previous work on theoretical calculi and the Acute prototype language we outlined techniques to provide them for simple languages.

In this paper we put these ideas into practice, describing the HashCaml extension to the OCaml bytecode compiler, which supports type-safe and abstraction-safe marshalling, together with related naming constructs. Our contribution is threefold:

(1) We show how to define globally meaningful runtime type names for key OCaml type constructs that were not covered in our previous work, dealing with the generativity issues involved: user-defined variant and record types, substructures, functors, arbitrary ascription, separate compilation, and external C functions.

(2) We support marshalling within polymorphic functions by type-passing, requiring us to build compositional runtime type names and revisit the OCaml relaxed value restriction. We show that with typed marshalling one must fall back to the SML97 value restriction.

(3) We show how the above can be implemented with reasonable performance as an unintrusive modification to the existing OCaml language, implementation, and standard libraries. An alpha release of HashCaml, capable of bootstrapping itself, is available, along with a example type-safe distributed communication library written in the language.

START Conference Manager (V2.52.7)