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Abstract

Separation logic involves two dual forms of modularity:
local reasoning makes part of the store invisible within a
static scope, whereas hiding local state makes part of the
store invisible outside a static scope. In the recent litera-
ture, both idioms are explained in terms of a higher-order
frame rule. I point out that this approach to hiding local
state imposes continuation-passing style, which is imprac-
tical. Instead, I introduce a higher-order anti-frame rule,
which permits hiding local state in direct style. I formal-
ize this rule in the setting of a type system, equipped with
linear capabilities, for an ML-like programming language,
and prove type soundness via a syntactic argument. Several
applications illustrate the expressive power of the new rule.

1 Introduction

Setting the stage There are several approaches to reason-
ing about imperative programs with dynamic memory al-
location. The literature offers type systems equipped with
regions, singleton types, and linear capabilities [13, 5, 3];
separation logic, a Hoare logic extended with formulae that
assert ownership of a fragment of the heap [12, 10, 9, 11, 2];
and Hoare Type Theory [8, 7], which marries an expressive
dependent type system with aspects of separation logic.

The gap between the type systems and the program log-
ics cited above is rather narrow. Regions and singleton
types are just a way of assigning static names to objects,
or to collections of objects, while avoiding some of the dif-
ficulties associated with dependency in the presence of ef-
fects. Capabilities are just lightweight separation logic as-
sertions [10], which describe the shape of the store, but do
not allow expressing arbitrary properties of values.

The ideas presented in this paper can be developed in-
differently within a “type system” or within a “logic”. I
choose a recent type system [3], with which I am familiar.
Although less expressive than a logic, it is nevertheless an
appropriate setting in which to reason about hidden state.

On hidden state One often designs a piece of software so
that its implementation is imperative and relies on an inter-
nal state, but its specification does not betray this fact. By
this, I do not mean that the state appears under an abstract
type in the specification, so that clients do not have access to
its concrete representation. I mean that the very existence
of an internal state is not revealed in the specification, so
that clients have no knowledge whatsoever of it. A typical
example is that of a memory manager [9, 2, 7]: no knowl-
edge of the manager’s internal free list should be necessary
when reasoning about a client.

One might think that it is seldom possible to hide an in-
ternal state, on the basis that, in many situations, its exis-
tence is betrayed by the code’s observable behavior. How-
ever, it is important to understand that it is not the code’s ac-
tual behavior that matters, but only its specification. Spec-
ifications are partial descriptions of the behavior: the more
partial they are, the more opportunities for hidden state
arise. Consider, for instance, a prime number generator.
In order to express the fact that each invocation returns
the next prime number, a full specification must reveal the
existence of an internal state. However, a partial specifi-
cation, which merely states that each invocation produces
some prime number, need not mention the generator’s state,
which can thus be hidden. In general, as specifications be-
come less precise, opportunities for hidden state increase.
In particular, when specifications are built out of types and
capabilities, as in this paper, these opportunities are quite
numerous.

Motivation Why is it important not to reveal the existence
of an internal state? For one thing, revealing it pollutes
client code with an invariant (that is, a capability). Mak-
ing this invariant abstract [11, 7] helps, but does not elimi-
nate the problem. Indeed, the inconvenience becomes par-
ticularly acute when an unbounded number of objects are
allocated at runtime, each with its own internal state and in-
variant. Then, clients have to keep track of an unbounded
collection of invariants, which can be difficult, and perhaps
impossible.

Here is a technical description of this problem. A func-
tion that owns a piece of internal state, described by an ab-
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stract capability γ, has type:

∃γ.(((χ1 ∗ γ) → (χ2 ∗ γ)) ∗ γ)

where γ does not occur free in χ1 or χ2. This is an ex-
istential package, containing a pair of a function that re-
quires and returns an abstract capability γ, and of γ itself.
Because capabilities are linear, the above type, which con-
tains a capability as a component, must be linear too. In
short, when internal state is abstract, but not hidden, objects
with internal state must be linear. This means that one must
carefully keep track of ownership and aliasing information
about these objects. On the other hand, when internal state
is hidden via the machinery presented in this paper, then the
above function has type:

χ1 → χ2

This type is simpler, but that is not the main point. The
point is, this type is non-linear. In the presence of an appro-
priate treatment of hidden state, objects with internal state
are ordinary values.

I have just argued that hiding an invariant is preferable to
abstracting it. However, as I have pointed out earlier, hid-
ing an invariant is possible only under a sufficiently weak
specification, whereas abstracting it is always possible. As
a result, both techniques are useful, and should co-exist.

The higher-order frame rule The frame rule of separa-
tion logic [12] states that, if a term t behaves correctly in a
certain store, then it also behaves correctly in a larger store,
and does not affect the part of the store that it does not know
about. In the present paper, as in [3], this is stated like this:

FRAME
Γ ° t : χ

Γ, C ° t : χ ∗ C

The capability C is not known within t, even though it is
available to the enclosing context. Up to βη, this rule is
equivalent to a simple subtyping axiom:

χ1 → χ2 ≤ (χ1 ∗ C) → (χ2 ∗ C)

Does this rule allow hiding a piece of local state? No. This
rule hides a capability within a static scope, while making
it visible outside this scope. To hide a piece of local state is
the exact dual: to make a capability available within a static
scope, while hiding it outside this scope.

In order to address this need, O’Hearn et al. [9] intro-
duce a generalized version of the frame rule, known as the
hypothetical frame rule. Soon afterwards, Birkedal et al. [2]
present an even more general version, known as the higher-
order frame rule. This rule again takes the form of a simple
subtyping axiom:

HIGHER-ORDER FRAME

χ ≤ χ ⊗ C

Here, χ is an arbitrary type, possibly a higher-order func-
tion type. The type χ ⊗ C (read: “χ in the presence of C”,
or “χ under C” for short) describes exactly the same be-
havior as χ, but additionally requires the capability C to be
available at every interaction between the term and its con-
text. Perhaps more concretely, χ ⊗ C can be thought of as
a modified version of χ, where an extra C is added on the
left-hand and right-hand sides of every arrow. This is ex-
pressed by the following axiom (together with a family of
structural axioms, see Figure 2):

(χ1 → χ2) ⊗ C = ((χ1 ⊗ C) ∗ C) → ((χ2 ⊗ C) ∗ C)

The higher-order frame rule can also be presented in a form
that operates on judgements:

HIGHER-ORDER FRAME
Γ ° t : χ

(Γ ⊗ C), C ° t : (χ ⊗ C) ∗ C

Hidden state via the higher-order frame rule It has
been argued [9, 2] that the higher-order frame rule permits
hidden state. How does this work? Let us assume that
we have built a term (the provider) of type ((χ1 ∗ C) →
(χ2 ∗ C)) ∗ C. For simplicity, assume that χ1 and χ2 are
base types, so that χ1 ⊗C is χ1 and χ2 ⊗C is χ2. We now
wish to hide C and pretend that provider has type χ1 → χ2.
The higher-order frame rule does not directly allow this.
Instead, the idea is to explicitly parameterize the rest of
the program (the client) with respect to provider. That is,
we implement client as a term of type (χ1 → χ2) → χ,
where χ is some answer type. (Again, assume χ is a base
type.) We now apply the higher-order frame rule to client,
and find that it also has type ((χ1 → χ2) → χ)⊗C, that is,

(((χ1 ∗ C) → (χ2 ∗ C)) ∗ C) → (χ ∗ C)

so the application (client provider), which represents the en-
tire program, is well-typed and has type χ ∗ C. By subtyp-
ing, it also has type χ. As a last step, if we are implementing
provider as a separate module, without advance knowledge
of its clients, then we must abstract provider over its future
clients. That is, we package it as λclient.(client provider).
This term has type ((χ1 → χ2) → χ) → χ, the double
negation of the type that we wished for.

To a certain extent, the goal is met: the client has no
knowledge of C, and is type-checked under the assumption
that the provider has type χ1 → χ2. However, this approach
imposes continuation-passing style: when an object with
hidden internal state is built, it cannot be returned, but must
instead be passed on to a continuation. This is impractical.

A higher-order anti-frame rule Instead of applying a
frame rule to an explicit continuation, it seems more nat-
ural to work in direct style and to apply an anti-frame rule,
that is, a dual of the frame rule. An anti-frame rule should
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formalize the following idea: if a term owns a piece of state,
initially described by a capability C, and if every interaction
between the term and its context requires and preserves C,
then it is sound for the context to have no knowledge of this
internal state. In short, C is a hidden invariant.

A simple, but unsound, approximation of such a rule is:

(χ ⊗ C) ∗ C ≤ χ (unsound)

On the left-hand side, the conjunct C represents the require-
ment that the invariant initially hold, while the conjunct
χ ⊗ C is supposed to encode the requirement that the in-
variant hold whenever control is transferred from term to
context or from context to term. On the right-hand side, C
disappears: the invariant becomes hidden, and supposedly
can never be violated.

The reason why the above subtyping axiom is unsound
is that the interaction between a term and its context is de-
scribed not just by its type χ, but also by the type environ-
ment under which the term is type-checked. As a result, this
environment, too, must receive different inside and outside
views. A sound, higher-order anti-frame rule is:

ANTI-FRAME
Γ ⊗ C ° t : (χ ⊗ C) ∗ C

Γ ° t : χ

The outside type environment, Γ, becomes Γ ⊗ C on the
inside. This means that, if the term t wishes to invoke a
function supplied by the context, then the invariant C must
hold upon invocation, and will hold upon return.

There are various ways for a function to be “supplied by
the context”. It can be passed as an argument, if, say, the
environment contains a binding x : χ1 → χ2. It can be
stored in a reference cell, if, say, the environment contains
a capability {σ : ref (χ1 → χ2)}. Both cases are accounted
for by the above rule: indeed, the effect of Γ ⊗ C is to turn
all of the arrows within Γ into C-preserving arrows.

It is important to note that, in the presence of higher-
order store, the law C1 ⊗ C2 = C1 is invalid. This equality
holds only if no arrow (or type variable) occurs in C1. As
a consequence, the law ( · ⊗ C1) ⊗ C2 = · ⊗ (C1 ∗ C2),
found in Birkedal et al.’s work [2], is also invalid. Instead,
I have:

( · ⊗ C1) ⊗ C2 = · ⊗ (C1 ◦ C2)

where the composition C1 ◦C2 stands for (C1 ⊗C2) ∗ C2.

Applications The anti-frame rule has many applications.
The classic example of a memory manager, which main-
tains a private free list [9, 2, 7], is expressible, provided ob-
jects have uniform size. This works even if an unbounded
number of memory manager objects can be dynamically al-
located, each with its own free list [11].

In this paper, I sketch three applications of the anti-frame
rule, which have practical and theoretical interest.

Values v ::= x | () | inji v | (v1, v2) | (λx.t) | p | l

PrimOps. p ::= case | proji | ref | get | set
Terms t ::= v | (v t)

((λx.t) v) / s −→ ([x → v] t) / s

(proji (v1, v2)) / s −→ vi / s

(case ((inji v), v1, v2)) / s −→ (vi v) / s
(ref v) / s −→ l / s ] [l 7→ v]
(get l) / s −→ s[l] / s
(set (l, v)) / s −→ () / s[l 7→ v]
(v t) / s −→ (v t′) / s′

if t / s −→ t′ / s′

Figure 1. Untyped syntax and semantics

The first application is an encoding of untracked refer-
ences, that is, references that can be read and written with-
out exhibiting any capability. The type system does not have
primitive untracked references. This encoding shows that it
can simulate them. This makes it an extension of the ML
type system [15], a property that would not hold in the ab-
sence of the anti-frame rule. This application involves first-
order functions, and is comparable in nature with the mem-
ory manager example.

The second application is an encoding of untracked lazy
evaluation thunks. The third one is a generic fixed point
combinator. These two applications involve higher-order
interaction (at orders 2 and 3, respectively), and illustrate
how the type system statically deals with several potential
re-entrancy issues.

Summary The main contribution of this paper is a higher-
order anti-frame rule, together with a syntactic proof of type
soundness (sketched), and three non-trivial applications.

The paper is laid out as follows. The programming lan-
guage and its type system are presented (§2). A syntactic
type soundness argument is sketched (§3). Then, several
applications are described (§4). The paper ends with dis-
cussions of related and future work (§5, §6).

2 The type system

2.1 Basic machinery

I use a calculus equipped with sums, products, first-class
functions, and first-class references. It is identical to that
studied by Charguéraud and Pottier [3]. Its untyped syntax
and semantics appear in Figure 1. There are syntactic cate-
gories for values (v), primitive operations (p), and terms (t).
The small-step operational semantics (−→) reduces config-
urations, that is, pairs of a term and a memory store (m).

The type system is closely based upon Charguéraud and
Pottier’s earlier system [3]. Present there, but omitted here,

3



Capabilities C ::= C ⊗ C | ∅ | {σ : θ} | C1 ∗ C2 | ∃σ.C
Value types τ ::= τ ⊗ C | ⊥ | unit | τ + τ | τ × τ | χ → χ | [σ]
Memory types θ ::= θ ⊗ C | ⊥ | unit | θ + θ | θ × θ | χ → χ | [σ] | ref θ | θ ∗ C | ∃σ.θ
Computation types χ ::= χ ⊗ C | τ | χ ∗ C | ∃σ.χ
Duplicable environments ∆ ::= ∆ ⊗ C | ∅ | ∆, x : τ
Linear environments Γ ::= Γ ⊗ C | ∅ | Γ, x : χ | Γ, C

Capabilities (Duplicable and linear) environments
∅ ⊗ C = ∅ ∅ ⊗ C = ∅

{σ : θ} ⊗ C = {σ : θ ⊗ C} (Γ, x : χ) ⊗ C = (Γ ⊗ C), x : (χ ⊗ C)
(Γ, C1) ⊗ C2 = (Γ ⊗ C2), C1 ⊗ C2

Value and memory types
⊥⊗ C = ⊥ Shared among several syntactic categories

unit ⊗ C = unit ( · ∗ · ) ⊗ C = ( · ⊗ C) ∗ ( · ⊗ C)
(θ1 + θ2) ⊗ C = (θ1 ⊗ C) + (θ2 ⊗ C) (∃σ. · ) ⊗ C = ∃σ.( · ⊗ C)
(θ1 × θ2) ⊗ C = (θ1 ⊗ C) × (θ2 ⊗ C) ( · ⊗ C1) ⊗ C2 = · ⊗ ((C1 ⊗ C2) ∗ C2)

(χ1 → χ2) ⊗ C = ((χ1 ⊗ C) ∗ C) → ((χ2 ⊗ C) ∗ C) = · ⊗ (C1 ◦ C2)
[σ] ⊗ C = [σ]

(ref θ) ⊗ C = ref (θ ⊗ C)

Figure 2. Syntax and structural equivalence of capabilities and types

VAR
(x : τ) ∈ ∆

∆ ` x : τ

UNIT

∆ ` () : unit

INJ
∆ ` v : τi

∆ ` (inji v) : (τ1 + τ2)

PRIM
p : τ

∆ ` p : τ

PAIR
∆ ` v1 : τ1 ∆ ` v2 : τ2

∆ ` (v1, v2) : (τ1 × τ2)

FUN
∆, x : χ1 ° t : χ2

∆ ` (λx.t) : χ1 → χ2

VAL
∆ ` v : τ

∆ ° v : τ

APP
∆ ` v : χ1 → χ2

∆, Γ ° t : χ1

∆, Γ ° (v t) : χ2

SUB
Γ ° t : χ1

χ1 ≤ χ2

Γ ° t : χ2

∗-INTRO (FRAME)
Γ ° t : χ

Γ, C ° t : χ ∗ C

∗-ELIM-1
Γ, (x : χ1), C ° t : χ2

Γ, x : (χ1 ∗ C) ° t : χ2

∗-ELIM-2
Γ, C1, C2 ° t : χ

Γ, (C1 ∗ C2) ° t : χ

∃-ELIM-1
Γ, x : χ1 ° t : χ2

Γ, x : ∃σ.χ1 ° t : χ2

∃-ELIM-2
Γ, C ° t : χ

Γ, ∃σ.C ° t : χ

ANTI-FRAME
Γ ⊗ C ° t : (χ ⊗ C) ∗ C

Γ ° t : χ

Figure 3. Type-checking values and terms

References Miscellaneous
ref : τ → ∃σ.[σ] ∗ {σ : ref τ} C ≤ ∅
get : [σ] ∗ {σ : ref τ} → τ ∗ {σ : ref τ} ⊥ ≤ ·
set : ([σ] × τ2) ∗ {σ : ref τ1} → unit ∗ {σ : ref τ2} τ ≤ ∃σ.[σ] ∗ {σ : τ}
FOCUS-REF : {σ1 : ref θ} ≡ ∃σ2.{σ1 : ref [σ2]} ∗ {σ2 : θ} [σ] ∗ {σ : τ} ≤ τ ∗ {σ : τ}

{σ1 : ∃σ2.θ} ≡ ∃σ2.{σ1 : θ}
Pairs {σ1 : θ ∗ C} ≡ {σ1 : θ} ∗ C
proj1 : [σ] ∗ {σ : τ1 × θ2} → τ1 ∗ {σ : τ1 × θ2} C1 ∗ C2 ≡ C2 ∗ C1

FOCUS-PAIR1 : {σ : θ1 × θ2} ≡ ∃σ1.{σ : [σ1] × θ2} ∗ {σ1 : θ1} · ∗ (C1 ∗ C2) ≡ ( · ∗ C1) ∗ C2

· ∗ ∅ ≡ ·
Sums ∃σ1.∃σ2. · ≡ ∃σ2.∃σ1. ·
case :

(
((∃σ1.([σ1] ∗ {σ : [σ1] + ⊥} ∗ {σ1 : θ1} ∗ C)) → χ) · ∗ (∃σ.C) ≡ ∃σ.( · ∗ C)

× ((∃σ2.([σ2] ∗ {σ : ⊥ + [σ2]} ∗ {σ2 : θ2} ∗ C)) → χ) [σ → σ′] · ≤ ∃σ. ·
× [σ]

)
∗ {σ : θ1 + θ2} ∗ C → χ

FOCUS-SUM1 : {σ : θ1 + ⊥} ≡ ∃σ1.{σ : [σ1] + ⊥} ∗ {σ1 : θ1}

Figure 4. Primitive operations and subtyping
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are group regions, adoption, and focus. These mechanisms
are orthogonal to the issue of hiding state.

A singleton region σ is a static name for a value. The
type [σ] is the type of the single value that inhabits region σ.
It is a singleton type. A singleton capability {σ : θ} is a
static token that serves two roles. First, it represents owner-
ship of the value denoted by σ. Second, it carries the type
of this value, namely θ. For instance, a singleton capability
of the form {σ : ref θ} asserts that the value denoted by σ
is the address of a reference cell, and, simultaneously, rep-
resents an exclusive right to read and write this cell. Com-
pound capabilities are built via conjunction and existential
quantification over regions (Figure 2). These constructs cor-
respond to singleton heaps, separating conjunction, and ex-
istential quantification over values in separation logic [12].

The system involves non-linear value types (τ ), linear
computation types (χ), and linear memory types (θ). Dupli-
cable type environments (∆) bind variables to value types,
while linear type environments (Γ) bind variables to com-
putation types, and also contain capabilities. Typing judge-
ments about values and terms respectively take the form:

∆ ` v : τ and Γ ° t : χ

The environment Γ describes the shape of the store before
the term t is run, while the type χ describes its shape after
t is run. They can be thought of as a precondition and a
postcondition: judgements about terms in this type system
are analogous to Hoare triples in separation logic. Memory
types appear within capabilities: in a capability {σ : θ}, the
memory type θ describes the extent of the piece of memory
that this capability controls.

The typing judgements for values and terms are defined
in Figure 3. The types of the primitive operations and the
subtyping rules appear in Figure 4. The typing rules are
identical to those found in [3], with the addition of the anti-
frame rule (ANTI-FRAME).

2.2 New machinery

I introduce the type constructor · ⊗ C, borrowed from
Birkedal et al. [2], which intuitively “adds a copy of C to
the left-hand and right-hand sides of every arrow within its
left-hand argument.” I assume that capabilities and types
are equated modulo the equational theory in Figure 2.

I introduce recursive capabilities and recursive types, for
two reasons. First, they are needed to describe situations
where functions access the store and the store contains func-
tions. This is noted by Thielecke [14], and illustrated by the
examples in §4. Second, perhaps more surprisingly, recur-
sive capabilities seem necessary for the proof of Revelation
(Lemma 3.1) to go through.

In order to keep things lightweight, I do not introduce
any notation (such as µ binders) for recursive capabilities

and types. I simply do not regard the definition of capa-
bilities and types in Figure 2 as inductive. That is, I for-
bid structural induction over capabilities or types. In order
to construct recursive capabilities or types, I assume that
systems of contractive recursive equations have unique so-
lutions. I assume that the operator ⊗ is contractive in its
right-hand side. More work is admittedly needed in order
to clarify why these assumptions are consistent.

3 Type soundness

I now give some elements of the syntactic type sound-
ness proof. I omit the actual statements of subject reduction
and progress: they would be similar to those found in [3].

Let the meta-variable R stand for a capability. The Rev-
elation lemma states that each of the judgements that appear
in the definition of the type system is preserved when R is
revealed. In other words, the higher-order frame rule is ad-
missible. It is interesting to find that this property plays a
key role in explaining ANTI-FRAME.

Lemma 3.1 (Revelation) The following hold:

C1 ≤ C2 implies C1 ⊗ R ≤ C2 ⊗ R
χ1 ≤ χ2 implies χ1 ⊗ R ≤ χ2 ⊗ R
Γ ` v : τ implies Γ ⊗ R ` v : τ ⊗ R
Γ ° t : χ implies (Γ ⊗ R), R ° t : (χ ⊗ R) ∗ R ¦

Proof. By (mutual) structural induction. I present two of
the more interesting cases in the proof of the last assertion
above.

◦ Case APP. We begin with:

∆ ` v : χ1 → χ2 ∆,Γ ° t : χ1

∆, Γ ° (v t) : χ2

Apply an induction hypothesis to each premise, and build a
new instance of APP:

∆ ⊗ R ` v : (χ1 → χ2) ⊗ R
(∆ ⊗ R), (Γ ⊗ R), R ° t : (χ1 ⊗ R) ∗ R

(∆ ⊗ R), (Γ ⊗ R), R ° (v t) : (χ2 ⊗ R) ∗ R

This is a valid instance of APP, thanks to the equality:

(χ1 → χ2) ⊗ R = ((χ1 ⊗ R) ∗ R) → ((χ2 ⊗ R) ∗ R)

◦ Case ANTI-FRAME. We begin with:

Γ ⊗ C ° t : (χ ⊗ C) ∗ C

Γ ° t : χ

Let R′ and C ′ be the (unique) two capabilities that satisfy
the following (contractive) recursive equations:

C ′ = C ⊗ R′

R′ = R ⊗ C ′
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These capabilities are chosen so that:

C ◦ R′ = (C ⊗ R′) ∗ R′ (by def. of ◦)
= C ′ ∗ R′ (by def. of C ′)
= C ′ ∗ (R ⊗ C ′) (by def. of R′)
= R ◦ C ′ (by def. of ◦)

In other words, we have a commutation property:

(· ⊗ C) ⊗ R′ = (· ⊗ R) ⊗ C ′

Now, apply the induction hypothesis to ANTI-FRAME’s
premise, revealing R′:

(Γ ⊗ C) ⊗ R′, R′ ° t : ((χ ⊗ C) ⊗ R′) ∗ (C ⊗ R′) ∗ R′

By the commutation property, this can also be written:

(Γ ⊗ R) ⊗ C ′, R′ ° t : ((χ ⊗ R) ⊗ C ′) ∗ (C ⊗ R′) ∗ R′

By definition of C ′ and R′, this is:

((Γ ⊗ R), R) ⊗ C ′ ° t : (((χ ⊗ R) ∗ R) ⊗ C ′) ∗ C ′

This is in the format of a premise of ANTI-FRAME. Build a
new instance of ANTI-FRAME, hiding C ′, to conclude:

(Γ ⊗ R), R ° t : (χ ⊗ R) ∗ R

This is the goal. We have shown that the sequence of hiding
C and revealing R is equivalent to the sequence of revealing
R′ and hiding C ′. When two originally independent hidden
invariants R and C meet, they become R′ and C ′, whose
definitions are, in general, mutually recursive. ¤

Here is a sketch of how the revelation lemma serves to
justify ANTI-FRAME. In the subject reduction proof, in-
stances of ANTI-FRAME become problematic when they
reach an evaluation position, that is, when considering a
type derivation for a closed term E[t], where E is an eval-
uation context (E ::= [·] | v E), and the sub-derivation for
the term t has an instance of ANTI-FRAME at its root. Let R
stand for the capability hidden by this instance of ANTI-
FRAME. Then, the term t “knows about” R, while the con-
text E doesn’t. Applying Lemma 3.1 to the type derivation
for E[·] yields a new type derivation for E[·], where, this
time, E “knows about” R. This in turn yields a new type
derivation for E[t], where ANTI-FRAME is used no longer
at the root of t, but at the root of the entire derivation.

In short, ANTI-FRAME extrudes up through evaluation
contexts. This is sufficient to get it “out of the way” in the
subject reduction proof. Intuitively, this means that hidden
local invariants are revealed, and become global invariants,
at runtime.

In order to allow ANTI-FRAME to float up, revelation is
applied to the context. By contrast, if revelation was used

to justify a higher-order frame rule, it would be applied to
the term. This idea is evidently present in Birkedal et al.’s
work [2]. The merit of the anti-frame rule is to allow apply-
ing revelation to the context without being forced to reify
the context as a term, that is, without having to switch to
continuation-passing style.

4 Applications

In what follows, the syntax “hide R = C outside of t”,
where R is a capability variable and C is a capability that
can have free occurrences of R, has the double effect of (i)
binding R to the unique solution of the recursive equation
R = C, and (ii) applying the anti-frame rule, so that R
becomes hidden outside of the term t.

According to the anti-frame rule, it is necessary for R to
be available only at exit of the “hide” construct, that is, at
the end of the execution of t. In the first two applications
that follow, R is in fact available already upon entry into
the “hide” construct. In the third application, this is not the
case: the full flexibility of the rule is exploited.

4.1 Encoding untracked references

The type system that I have used as a setting [3], as well
as previous capability-based type systems [13, 5], share the
following two features. First, references are tracked: a ref-
erence cannot be read or written unless an appropriate ca-
pability is presented. Second, a function closure cannot
capture a capability. These facts imply that any function
that reads or writes a piece of state requires a capability as
an argument, and returns another capability. This is heavy,
but offers an advantage: these capabilities specify precisely
how an invocation of the function alters the state.

By comparison, in the ML type system [15], references
are untracked. Because there is no way of deallocating a ref-
erence, every pointer remains valid forever. Because there
is no strong update operation, the type of the contents can
be carried in the type of the pointer. In short, “ref τ” is the
type of a pointer to a cell that holds a value of type τ . No
capability is required to read or write such a cell. This is
lightweight, but comes at a price: when a reference is un-
tracked, it is impossible to reason about the evolution of its
state over time.

In practice, it seems desirable to be able to mix tracked
and untracked references within a single program. Fortu-
nately, thanks to the anti-frame rule, it is possible to define
untracked references in terms of the primitive, tracked refer-
ences. Of course, in a practical system, one would provide
both flavors of references under a primitive form. The en-
coding presented here shows that untracked references are
sound, and, in theory, redundant.

The encoding is shown in Figure 5. In the pseudo-code,
I use polymorphism, which is not formalized in this paper
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def type uref α = – an untracked reference is represented as a pair of a getter and a setter
(unit → α) × (α → unit) – note that this is a value type, hence unrestricted (non-linear)

let mkuref : ∀α.α → uref α = – here is the function that creates a fresh untracked reference
λ(v : α).

let σ, (r : [σ]) = ref v in – allocate a tracked reference r within a fresh region σ; we hold { σ: ref α }
hide R = { σ: ref α } ⊗ R outside of – R is the internal invariant; we hold { σ: ref α } ⊗ R, that is, R
· – r now has type [σ] ⊗ R, that is, still just [σ]
· – note: R is also { σ: ref (α ⊗ R) }
let uget : (unit ∗ R) → ((α ⊗ R) ∗ R) = – define a getter function

λ(). get r – within uget, we hold R, so r can be read
and uset : ((α ⊗ R) ∗ R) → (unit ∗ R) = – define a setter function

λ(v : α ⊗ R). set (r, v) – within uset, we hold R, so r can be written
in (uget, uset) – this pair has type (uref α) ⊗ R, so, outside anti-frame, it has type (uref α)

Figure 5. Encoding untracked references

def type thunk α = – a thunk is represented as a force function
unit → α – note that this is a value type, hence unrestricted (non-linear)

def type state γ α = – the internal state of a thunk: white, grey, or black
W (unit ∗ γ) + G unit + B α – when white, the capability γ is stored in the thunk

let mkthunk : ∀γα.(((unit ∗ γ) → α) ∗ γ) → thunk α = – here is the function that creates a fresh thunk
λ(f : (unit ∗ γ) → α). – within mkthunk, we hold γ

let σ, (r : [σ]) = ref (W ()) in – allocate a tracked reference r within a fresh region σ
· – we hold γ ∗ { σ: ref (W unit + G ⊥ + B ⊥) }
· – by subtyping, this implies { σ: ref (W (unit ∗ γ) + G unit + B α) }
· – that is, { σ: ref (state γ α) }
hide R = { σ: ref (state γ α) } ⊗ R outside of – we now hold { σ: ref (state γ α) } ⊗ R, that is, R
· – note: R is also { σ: ref (state (γ ⊗ R) (α ⊗ R)) }
· – f now has type ((unit ∗ γ) → α) ⊗ R
· – that is, (unit ∗ (γ ⊗ R) ∗ R) → ((α ⊗ R) ∗ R)
let force : (unit ∗ R) → ((α ⊗ R) ∗ R) = – define a function that forces the thunk
λ().

case get r of – we hold R, so r can be read
| W () → – we hold { σ: ref (W unit + G ⊥ + B ⊥) } ∗ (γ ⊗ R)

set (r, G ()); – color the thunk grey
· – we hold { σ: ref (W ⊥ + G unit + B ⊥) } ∗ (γ ⊗ R)
· – by subtyping, this implies R ∗ (γ ⊗ R),
let v : (α ⊗ R) = f() in – so it is permitted to invoke f
· – we still hold R, but have consumed γ ⊗ R
set (r, B v); – store the result and color the thunk black
· – we hold { σ: ref (W ⊥ + G ⊥ + B (α ⊗ R)) }
· – by subtyping, this implies R
v – return the result, which has type α ⊗ R

| G () → – this thunk is being evaluated
fail – invoking f would be illegal, since we do not hold γ ⊗ R

| B (v : α ⊗ R) → – this thunk has been evaluated before
v – return the previously stored result, without affecting R

in force – force has type (thunk α) ⊗ R
– so, outside anti-frame, it has type (thunk α)

Figure 6. Encoding lazy evaluation thunks
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let fix : ∀α1α2.((α1 → α2) → (α1 → α2)) → α1 → α2 =
λ(f : (α1 → α2) → (α1 → α2)).

let σ, (r : [σ]) = ref () in – we hold { σ: ref unit }
hide R = { σ: ref (α1 → α2) } ⊗ R outside of – note that we do not hold R yet, because r has been initialized to unit
· – f now has type ((α1 → α2) → (α1 → α2)) ⊗ R
let g : (α1 → α2) ⊗ R = – g requires R, and invokes the function held in the reference r

λ(x : α1 ⊗ R). get r x – within g, we hold R, so r can be read
in let h : (α1 → α2) ⊗ R = – h requires R, and invokes f, routing recursive calls to g

λ(x : α1 ⊗ R). f g x
in set (r, h); – a strong update establishes { σ: ref ((α1 → α2) ⊗ R) }, that is, R
h – we hold R at this point, as required by anti-frame

– h has type (α1 → α2) ⊗ R, so, outside anti-frame, it has type α1 → α2

Figure 7. A fixed point combinator

(see [3]). The variable α ranges over value types. An un-
tracked reference is represented as a pair of functions that
allow reading and writing a hidden tracked reference. The
fact that these functions own and access a piece of state
is not apparent in their types: indeed, “uref α” is a non-
linear value type. As a result, an untracked reference can be
aliased and used without restriction, just like in ML.

4.2 Encoding lazy thunks

Pure functional programming languages rely on lazy
evaluation, whose efficient implementation involves the in-
place update of a suspension, or thunk. There is apparently
a paradox: the reason why functional programs are easy to
reason about is that they are free of side effects, yet their
execution does involve a side effect. Why is this sound?

The anti-frame rule provides an answer to this question:
thanks to it, thunks can be defined as a library. Again,
thunks are untracked: the type of a thunk is a non-linear
value type, so thunks can be freely aliased, and can be
forced any number of times without presenting any capa-
bility. The internal state of a thunk is hidden to its clients.

The encoding is shown in Figure 5. A thunk is cre-
ated by “mkthunk”, which expects a pair of a client func-
tion “f”, of type (unit ∗ γ) → α, and a capability γ. (The
variable γ ranges over capabilities; this application exploits
type and capability polymorphism.) A thunk is represented
as a “force” function, of type unit → α, which holds a hid-
den reference to the thunk’s internal state.

The capability γ is required, but not returned, by “f”:
it is consumed. Note that γ is supplied just once, when
the thunk is built; it is not supplied again when the thunk
is forced. Thus, the type system statically guarantees that,
even though the thunk is non-linear and may be forced sev-
eral times, the client function “f” is invoked at most once.

A thunk can be in one of three states. White (W) means
that the thunk is not yet evaluated: the capability γ is still
available, stored within the reference cell. Grey (G) means

that the thunk is being evaluated: the capability γ is gone,
but the result of the computation is not yet available. Black
(B) means that the thunk has been evaluated: its result is
stored within the reference cell.

It is interesting to examine how the type system deals
with the re-entrancy issue. Internally, the function “force”
requires the capability R and returns it, which means that it
requires the thunk to be in a consistent state, and preserves
this fact. To the client, however, “force” appears to have
type unit → α, which does not mention R: the client does
not know about the hidden reference. As a result, it is im-
portant to ensure that, whenever the client has control, the
invariant R holds. This means, in particular, that one must
not invoke the client function “f” at a time when R does not
hold: in the unlucky situation where invoking “f” leads to
forcing the current thunk again (a “black hole”), that would
be unsound. The type system enforces this by changing
the type of “f”, which externally is (unit ∗ γ) → α, to
((unit ∗ γ) → α) ⊗ R, which means that “f” requires R
(and preserves it).

This design rules out a few subtle potential errors. For
instance, omitting the instruction “set (r, G ())”, which col-
ors the thunk grey, makes the code ill-typed. Indeed, in-
voking “f” requires both R and γ ⊗ R, but, as long as the
thunk is colored white, it is impossible to hold both of these
capabilities simultaneously. Furthermore, it is impossible to
color the thunk black before invoking “f”, because the value
“v” is not yet available. As a result, a programmer who
naively thought that the colors black and white would suf-
fice is forced by the type system to introduce a third color,
namely grey, and to perform a dynamic check against black
holes.

4.3 A fixed point combinator

Figure 7 presents a generic fixed point combinator, based
on Landin’s classic trick of “tying a knot in the store”. The
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internal invariant is:

R = {σ : ref (α1 → α2)} ⊗ R

This invariant states that the reference “r” contains a func-
tion that requires, and preserves, the invariant. This is a
recursive statement, which is why R must be a recursive
capability.

The invariant R does not yet hold at the point where
the anti-frame rule is applied. It is established only later
by the instruction “set (r, h)”, which changes the type of
the contents “r” from unit to (α1 → α2) ⊗ R. This code
cannot be type-checked in ML. In ML, instead, one would
initialize “r” with a dummy function that fails if invoked.
Here, the benefit of avoiding such a dummy initialization is
marginal: we do get a static guarantee that the code cannot
fail, but no guarantee that it cannot loop. I present this vari-
ant of the code because it illustrates a more interesting use
of the anti-frame rule.

The definitions of the auxiliary functions “g” and “h” ex-
hibit η-redexes. Contracting either of these redexes would
be unsound—because then “r” would be read, or “f” would
be invoked, before the invariant R is established—and
would make the code ill-typed.

5 Related work

“Information hiding” was studied by O’Hearn et al. [9]
and by Birkedal et al. [2] in the setting of separation logic. I
continue this study in the setting of a capability-based type
system for an ML-like programming language, and propose
“a form of alias types with information hiding” [9]. I re-
use Birkedal et al.’s operator ⊗, but argue that their higher-
order frame rule does not offer a satisfactory mechanism for
hiding state, because it imposes continuation-passing style.

O’Hearn et al. [9] do not clearly distinguish hiding and
abstraction, whereas I argue that these are distinct mech-
anisms. The former hides a capability, so that clients are
not aware of the existence of an internal state, and are not
submitted to a linearity restriction. The latter reveals an ab-
stract capability, so that clients are aware of the existence of
an internal state, whose concrete representation is not dis-
closed. In that case, clients can be made aware, via abstract
predicates [11], that the internal state “represents”, or “im-
plements”, some abstract data structure, and evolves over
time. O’Hearn et al.’s memory manager [9, Table 2] is a
typical example of hiding, where the existence of a free list
is unknown to clients. On the other hand, their queue mod-
ule [9, Table 3], where “an abstract variable is exposed”, is
a typical example of abstraction. It can be explained purely
in terms of abstract types, capabilities, and predicates, with-
out recourse to a hiding mechanism such as the anti-frame
rule.

Nanevski et al. [7] study the memory manager example
using abstraction, but no hiding. As a result, an abstract
capability, I , is revealed, and client code is polluted. Simi-
larly, Parkinson and Bierman [11] study memory managers
as first-class objects (“connection pools”) in terms of ab-
straction.

To reiterate my stance, both hiding and abstraction are
useful. Hiding is preferable in situations where no informa-
tion whatsoever about the internal state is exposed, while
abstraction must be used in situations where some infor-
mation, such as the fact that the internal state “represents”
some abstract data structure, is exposed.

O’Hearn et al. [9] and Birkedal et al. [2] point out that
the generalized frame rule is unsound when used together
with “imprecise predicates” and Hoare’s conjunction rule.
I view Hoare’s conjunction rule as analogous to the dis-
tributivity rule for intersection types, which is unsound in
the presence of effects [4], so it seems sensible to simply
not introduce such a rule.

Concurrent separation logic [10] allows declaring a (stat-
ically scoped) lock, which guards a capability. Within the
scope of the lock, the capability is hidden, but is made vis-
ible again within the critical regions that the lock controls.
The proof rule for critical regions is analogous to the anti-
frame rule insofar as the hidden capability appears in the
premise, but not in the conclusion, of the rule. It is worth
noting that these two approaches have different ways of
achieving soundness in the face of re-entrancy. O’Hearn’s
proof rule for critical regions is sound only because the se-
mantics of critical regions dictates that a thread cannot ac-
quire a single lock twice, or it will deadlock—a runtime
failure. The anti-frame rule, on the other hand, does not
rely on a dynamic check: by systematically applying the ⊗
operator to all components of the typing judgement, it stat-
ically prevents re-entrancy. Of course, this is no panacea.
For one thing, in order to satisfy the anti-frame rule, the
programmer is sometimes forced to explicitly introduce a
dynamic check, as illustrated, for instance, in the encoding
of lazy thunks (§4.2). For another thing, the anti-frame rule
is sound only in a sequential setting.

Berdine and O’Hearn [1] present a system of bunched
types in which it is possible not only to hide a piece of
state, but also to deallocate it. As an example, they present
an integer counter object, whose state is hidden and shared
by three functions: “lookup”, “increment”, and “destroy”.
The type system guarantees that none of these functions can
be called after “destroy” has been invoked. Berdine and
O’Hearn impose continuation-passing style, and write: “it
is nontrivial to define a direct-style language that supports
disposal”. As if to confirm this claim, the anti-frame rule,
which is in direct style, does not support disposal. This is
illustrated, for instance, in the encoding of untracked ref-
erences (§4.1). The types assigned to “get” and “set” do
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not allow controlling when these functions are invoked, so
it would be unsound, and it is impossible, to define a “de-
stroy” function.

Lebresne [6] extends System F with exceptions and with
corruption, a version of the higher-order frame rule. It is
unclear whether an anti-frame rule would make sense in his
setting. The rule presented here relies on the persistence
of state, whereas exceptions do not seem to be persistent in
any sense.

6 Future work

It would be desirable to formalize a system where the
higher-order frame rule and the higher-order anti-frame rule
co-exist. I have not yet worked out the details of such a
combination.

I have argued that the anti-frame rule is a direct-style
analogue of the higher-order frame rule [2]. It would be in-
teresting to formalize this claim. One could wish to define a
continuation-passing transform that maps every instance of
the anti-frame rule to an instance of the higher-order frame
rule, applied to the current continuation.

I have provided a purely syntactic argument for the
soundness of the anti-frame rule. It would be desirable to
offer a deeper explanation of it, possibly via an interpreta-
tion in a denotational model, as commonly done in sepa-
ration logic [1, 2]. I understand Birkedal et al.’s model of
the higher-order frame rule as an encoding that introduces
a universal quantifier at every arrow. Perhaps, analogously,
anti-frame can be understood via an encoding that exploits
both universal and existential quantification.
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