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Static analysis in a nutshell

Statically infer properties of a program that hold for all its executions.

At this program point, 0 < x ≤ y and pointer p is not NULL.

Emphasis on infer: no help from the programmer.
(E.g. loop invariants are not written in the source.)

Emphasis on statically:

The inputs to the program are not known.

The analysis must terminate.

The analysis must run in reasonable time and space.
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Example of properties that can be inferred

Properties of the value of one variable: (value analysis)

x = a constant propagation

x > 0 ou x = 0 ou x < 0 signs

x ∈ [a, b] intervalles

x = a (mod b) congruences

valid(p[a . . . b]) memory validity

p pointsTo x or p 6= q (non-) aliasing between pointers

(a, b, c are constants inferred by the analyzer.)
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Example of properties that can be inferred

Properties of several variables: (relational analysis)

∑
aixi ≤ c polyhedra

±x1 ± · · · ± xn ≤ c octogons

expr1 = expr2 Herbrand equivalences

doubly-linked-list(p) shape analysis

Non-functional properties:

Memory consumption.

Worst-case execution time (WCET).
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Using static analysis for code optimization

Apply algebraic identities when their conditions are met:

x / 4 → x >> 2 if analysis says x ≥ 0

x + 1 → 1 if analysis says x = 0

Optimize array accesses and pointer dereferences:

a[i]=1; a[j]=2; x=a[i]; → a[i]=1; a[j]=2; x=1;

if analysis says i 6= j

*p = a; x = *q; → x = *q; *p = a;

if analysis says p 6= q

Automatic parallelization:

loop1; loop2 → loop1 ‖ loop2 if polyh(loop1) ∩ polyh(loop2) = ∅
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Using static analysis for verification

Use the results of static analysis to prove the absence of certain run-time
errors:

x ∈ [a, b] ∧ 0 /∈ [a, b] =⇒ x/y cannot fail

valid(p[a . . . b]) ∧ i ∈ [a, b] =⇒ p[i] cannot fail

Report an alarm otherwise.
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True alarms, false alarms

True alarm False alarm
(wrong behavior) (analysis too imprecise)

More precise analysis (polyhedron instead of intervals):
the false alarm goes away.
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Some properties verifiable by static analysis

Absence of run-time errors:

Arrays and pointers:
I No out-of-bound accesses.
I No dereferencing the null pointer.
I No access after a free.
I Alignment constraints are respected.

Integer arithmetic:
I No division by zero.
I No (signed) arithmetic overflows.

Floating-point arithmetic:
I No arithmetic overflows (result is ±∞)
I No undefined operations (result Not a Number)
I No catastrophic cancellation.

Simple programmer-inserted assertions:
e.g. assert (0 <= x && x < sizeof(tbl)).
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Basic idea:
analyzing a program is

executing it with a nonstandard semantics
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Abstract interpretation in a nutshell

Execute (“interpret”) the program with a semantics that:

Computes over an abstract domain of the desired properties
(e.g. “x ∈ [a, b]′′ for interval analysis)
instead of computing with concrete values and states
(e.g. numbers).

Handle Boolean conditions even if they cannot be resolved statically:
I The then and else branches of an if are both taken → joins.
I Loops and recursions execute arbitrarily many times → fixpoints.

Always terminates.
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Examples of abstract interpretation

In the concrete In the abstract

{ x = 3, y = 1 } { x# = [0, 9], y # = [−1, 1] }

z = x + 2 * y;

{ z = 3 + 2× 1 = 5 } { z# = [0, 9] +# 2×# [−1, 1] = [−2, 11] }

{ b = true, x = 3, y = 1 }
{ b# = >, x# = [0, 9], y # = [−1, 1] }

z = (if b then x else y);

{ z = 3 } { z# = [0, 9] t [−1, 1] = [−1, 9] }
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Idea #2:
a variable can have different abstractions

at different program points
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Sensitivity to control flow

Imperative variable assignment:

{ x# = [0, 9] }
x = x + 1;

{ x# = [1, 10] }

Refining the abstraction at conditionals:

{ x# = [0, 9] }
if (x == 0) {

{ x# = [0, 0] }
...

} else {
{ x# = [1, 9] }

...

}

X. Leroy (Inria) Verified static analyzer 2014-05-14 17 / 57



Sensitivity to control flow

Contrast with dependent pattern-matching, where the type of the
scrutinee is unchanged, but additional facts are added to the environment.

match eq_dec x 0 with

| left (EQ: x = 0) => ...

| right (NEQ: x <> 0) => ...

end.

match x as z return x = z -> T with

| None => fun (P: x = None) => ...

| Some y => fun (P: x = Some y) => ...

end (refl_equal x).

X. Leroy (Inria) Verified static analyzer 2014-05-14 18 / 57



Idea #3:
we can also infer relations

between the values of several variables
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Non-relational / relational analysis

Non-relational analysis:

abstract environment = variable 7→ abstract value

(Like simple typing environments.)

Relational analysis:
abstract environments are a domain of their own, featuring:

a semi-lattice structure: ⊥, >, @, t
an abstract operation for assignment / binding.

Example: polyhedra, i.e. conjunctions of linear inequalities
∑

aixi ≤ c .
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Idea # 4: widening
fixpoints can be computed

even in non-well-founded domains
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Fixpoints – the recurring problem

Static analysis of a loop:

{ e# = X0 }
while (...) {

{ e# = X }
...

{ e# = Φ(X ) }
}

Given X0 (the abstract state before the loop)
and Φ (the transfer function for the loop body),
find X (the loop invariant).

X w X0 (first iteration) X w Φ(X ) (next iterations)

X is, ideally, the smallest fixpoint of F = X 7→ X0 t Φ(X )
or at least any post-fixpoint of F (X w F (X )).
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Paradise

Theorem (Tarski)

Let (A,v,⊥) a partially ordered set such that A is well founded (no
infinite increasing sequences).
Let F : A→ A an increasing function.
Then F has a smallest fixpoint, obtained by finite iteration from ⊥:

∃n, ⊥ @ F (⊥) @ . . . @ F n(⊥) = F n+1(⊥)
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Paradise lost

Most abstract domains are not well founded. Examples:

Integer intervals: [0, 0] @ [0, 1] @ [0, 2] @ · · · @ [0, n] @ · · ·
Environments: variable 7→ abstract values.

Moreover, even when Tarski iteration converges, it converges too slowly:

x = 0; while (x <= 10000) { x = x + 1; }

(Starting with x# = [0, 0], it takes 10000 iterations to reach the fixpoint
x# = [0, 10000].)
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Paradise regained: widening

A widening operator ∇ : A→ A→ A computes a majorant of its second
argument in such a way that the following iteration converges always and
quickly:

X0 = ⊥ Xi+1 =

{
Xi if F (Xi ) v Xi

Xi ∇ F (Xi ) otherwise

The limit X of this sequence is a post-fixpoint: F (X ) v X .

Example: widening for intervals:

[l1, u1]∇ [l2, u2] = [if l2 < l1 then −∞ else l1,
if u2 > u1 then ∞ else u1]
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Widening in action

X

F (X )

Tarski iteration

Widened iteration
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Narrowing the post-fixpoint

The quality of the post-fixpoint can be improved by iterating F some more:

Y0 = a post-fixpoint Yi+1 = F (Yi )

If F is increasing, each Yi is a post-fixpoint: F (Yi ) v Yi .

Often, Yi @ Y0, improving the analysis quality.

Iteration can be stopped when Yi is a fixpoint, or at any time.
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Widening plus narrowing in action

X

F (X )

Tarski iteration

Widened iteration

Narrowing
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Specification of widening

A simple variation on the constructive definition of well foundedness:

Inductive Acc: A -> Prop :=

| Acc_intro: ∀x,
(∀y, yAx -> Acc y) ->

Acc x.

Definition well_founded :=

∀x, Acc x.

Inductive AccW: A -> Prop :=

| AccW_intro: ∀x,
(∀y, yAx -> AccW (x∇y)) ->

AccW x.

Definition widening_correct :=

∀x, AccW x.

Even Coq understands that widened iteration terminates:

Fixpoint postfixpoint (F: A->A) (x: A) (acc: AccW x) {struct acc} :=

let y := F x in

match decide (xvy) with

| left LE => x

| right GT => postfixpoint F (x∇y) (AccW_inv x acc y GT)

end.
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Idea #6: Galois connections:
abstract operators can be calculated

in a systematic, sound, and optimal manner
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A Galois connection

A semi-lattice A,v of abstract states and two functions:

Abstraction function α : set of concrete states → abstract state

Concretization function γ : abstract state → set of concrete states

(x , y) ∈ [1, 5]× [1, 3]

α γ

E.g. for intervals α(S) = [inf S , sup S ] and γ([a, b]) = {x | a ≤ x ≤ b}.
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Axioms of Galois connections
(x , y) ∈ [1, 5]× [1, 3]

α γ

α

The adjunction property:

∀a, S , α(S) @ a⇔ S ⊆ γ(a)

or, equivalently:

α increasing

∧ γ increasing

∧ ∀S , S ⊆ γ(α(S)) (soundness)

∧ ∀a, α(γ(a)) v a (optimality)
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Calculating abstract operators

For any concrete operator F : C → C we define its abstraction
F # : A→ A by

F#(a) = α{F (x) | x ∈ γ(a)}

This abstract operator is:

Sound: if x ∈ γ(a) then F (x) ∈ γ(F #(a)).

Optimally precise: every a′ such that x ∈ γ(a)⇒ F (x) ∈ γ(a′)
is such that F #(a) v a′.

Moreover, an algorithmic definition of F # can be calculated from the
definition above.
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Calculating +# for intervals

[a1, b1] +# [a2, b2]

= α{x1 + x2 | x1 ∈ γ[a1, b1], x2 ∈ γ[a2, b2]}

= [ inf{x1 + x2 | a1 ≤ x1 ≤ b1, a2 ≤ x2 ≤ b2},
sup{x1 + x2 | a1 ≤ x1 ≤ b1, a2 ≤ x2 ≤ b2} ]

= [+∞,−∞] if a1 > b1 or a2 > b2

= [a1 + b1, a2 + b2] otherwise

Note: the intuitive definition [a1, b1] +# [a2, b2] = [a1 + b1, a2 + b2] is
sound but not optimal.
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Trouble ahead:
Galois connections in type theory
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Type-theoretic difficulties

Minor issue: the calculations of abstract operators are poorly supported by
interactive theorem provers such as Coq:

F #a = α(λx .P) = α(λx .P ′) = . . .
↑

because ∀x ,P ⇔ P ′

Either:

use setoid equalities everywhere, or

add extensionality axioms (functional, propositional).
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Type-theoretic difficulties

Major issue: γ is easily modeled as

γ : A→ (C → Prop) (two-place predicate)

but α is generally not computable as soon as C is infinite:

α : (C → Prop)→ A morally constant functions only?
α : (C → bool)→ A can only query a finite number of C ’s

(E.g. α(S) = [inf S , sup S ], no more computable than inf and sup.)

→ Need more axioms (description, Hilbert’s epsilon).
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Fundamental difficulty

For some domains, the abstraction function α does not exist!
(The optimality condition a v α(γ(a)) cannot be satisfied.)

Example 1: intervals of rationals.

α{x | x2 ≤ 2} = ???

There is no best rational
approximation of [−

√
2,
√

2].

Example 2: polyhedra

α{(x , y) | x2 + y 2 ≤ 1} = ???

(It works in practice nonetheless, because the abstract interpreter and
abstract operators are set up in such a way that non-abstractible sets like
the above never occur.)
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Plan B:
soundness (γ) is essential,
optimality (α) is optional
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Getting rid of α

Remember the two properties of abstract operators F # calculated from
F #(a) = α{F (x) | x ∈ γ(a)} :

1 Soundness: if x ∈ γ(a) then F (x) ∈ γ(F #(a)).

2 Optimality: every a′ such that x ∈ γ(a)⇒ F (x) ∈ γ(a′)
is such that F #(a) v a′.

Instead of calculating F #, we can guess a definition for F #, then verify

property 1: soundness (mandatory!)

possibly property 2: optimality (optional sanity check).

These proofs only need the concretization relation γ, which is
unproblematic.
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Soundness first!

Having made optimality entirely optional, we can further simplify the
analyzer and its soundness proof, while increasing its algorithmic efficiency:

Abstract operators that return over-approximations (or just >) in
difficult / costly cases.

Join operators t that return an upper bound for their arguments but
not necessarily the least upper bound.

“Fixpoint” iterations that return a post-fixpoint but not necessarily
the smallest (widening + return > when running out of fuel).

Validation a posteriori of algorithmically-complex operations,
performed by an untrusted external oracle. (Next slide.)
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Validation a posteriori

Some abstract operations can be implemented by unverified code if it is
easy to validate the results a posteriori by a validator. Only the validator
needs to be proved correct.

Example: the join operator t over polyhedra.

Computing the join vs. Inclusion test
(convex hull) (Presburger formula)

The inclusion test can itself use validation a posteriori.
(Cf. talk by Fouilhe, Boulmé and Périn.)
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The Verasco project
Inria Celtique, Gallium, Abstraction, Toccata + Verimag + Airbus

Goal: develop and verify in Coq a realistic static analyzer by abstract
interpretation:

Language analyzed: the CompCert subset of C.

Nontrivial abstract domains, including relational domains.

Modular architecture inspired from Astrée’s.

Decent alarm reporting.

Slogan: if “CompCert = 1/10th of GCC but formally verified”,
likewise “Verasco = 1/10th of Astrée but formally verified”.

X. Leroy (Inria) Verified static analyzer 2014-05-14 44 / 57



Architecture

Abstract interpreter

CompCert C → Clight → C#minor → . . .

Memory & value domain

Z → bits

Polyhedra

VPL

Nonrel → Rel

Integer intervals
& congruences

F.P. intervals

Flocq

Alarms

ideal
numbers

machine
numbers

states

control flow

CompCert
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Upper layer: the abstract interpreter

CompCert C → Clight → C#minor → Cminor → RTL → . . .

Abstract
interp 1

Abstract
interp 2

Connected to the intermediate languages of the CompCert compiler.

Parameterized by a relational abstract domain for execution states
(environment + memory state + call stack).

1 Abstract interpreter for RTL (Blazy, Maronèze, Pichardie, SAS 2013)

Unstructured control → per-function fixpoints (Bourdoncle).

2 Abstract interpreter for C#minor (Jourdan, in progress)

Local fixpoints for each loop + per-function fixpoint for goto +
per-program fixpoint for function calls.
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Lower layer: numerical domains

Non-relational:

Integer intervals and congruences (over Z).

Floating-point intervals (on top of the Flocq library).

Relational:

The VPL library (Fouilhé, Monniaux, Périn, SAS 2013):
polyhedra with rational coefficients, implemented in OCaml,
producing certificates verifiable in Coq.

Integration in progress in Verasco.
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What is a generic interface for a numerical domain?

For a non-relational domain:

A semilattice (A,v) of abstract values.

A concretization relation γ : A→ Z→ Prop

Abstract operators such as

add: A -> A -> A;

add_sound: forall a b x y,

x ∈ γ a -> y ∈ γ b -> (x + y) ∈ γ (add a b);

Inverse abstract operators (to refine abstractions based on the results
of conditionals) such as

eq_inv: A -> A -> bool -> A * A;

eq_inv_sound: forall a b c x y,

x ∈ γ a -> y ∈ γ b ->

(if c then x = y else x <> y) ->

x ∈ γ (fst (eq_inv a b c))

∧ y ∈ γ (snd (eq_inv a b c));
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What is a generic interface for a numerical domain?

For a relational domain, the main abstract operations are:

assign var = expr

forget var = any-value

assume expr is true or expr is false

var are program variables or abstract memory locations.

expr are simple expressions (+ − × div mod . . .) over variables and
constants.

To report alarms, we also need to query the domain, e.g. “is x < y?”
or “is x mod 4 = 0?”. The basic query is

get_itv expr → variation interval

(Next slide: Coq interface.)
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Class ab_ideal_env (var t:Type) ‘{EqDec var}: Type := {
id_wl:> weak_lattice t;

id_gamma:> gamma_op t (var->ideal_num);

id_adom:> adom t (var->ideal_num) id_wl id_gamma;

get_itv: iexpr var -> t -> IdealIntervals.abs+⊥;
assign: var -> iexpr var -> t -> t+⊥;
forget: var -> t -> t+⊥;
assume: iexpr var -> bool -> t -> t+⊥;
get_itv_sound: forall e ρ ab,

ρ ∈ γ ab ->

eval_iexpr ρ e ⊆ γ (get_itv e ab);

assign_sound: forall x e ρ n ab,

ρ ∈ γ ab ->

n ∈ eval_iexpr ρ e ->

(upd ρ x n) ∈ γ (assign x e ab);

forget_sound: forall x ρ n ab,

ρ ∈ γ ab ->

(upd ρ x n) ∈ γ (forget x ab);

assume_sound: forall c ρ ab b,

ρ ∈ γ ab ->

(INz (if b:bool then 1 else 0)) ∈ eval_iexpr ρ c ->

ρ ∈ γ (assume c b ab)

}.
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Machine integers vs. mathematical integers

Machine integers = N-bit vectors, with arithmetic modulo 2N , and two
possible interpretations (signed or unsigned).

For intervals, ad-hoc solutions based on pairs of Z-intervals:

0−2N−1 2N−1 2N

unsigned interpretationsigned interpretation

or on cyclic intervals:

0
−1 = 2N − 1

max sint
min sint

What about relational domains?
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A domain transformer for machine integers
(J-H. Jourdan)

Given a relational domain (A, γ) over Z, construct a relational domain
over N-bit machine integers as follows:

Same abstract domain A.

New concretization:
γ′(a) = {b : bitvect(N) | ∃n : Z, n ∈ γ(a) ∧ n = b (mod 2N)}

Same abstract operators for addition, subtraction, multiplication.

For other operators (comparisons, division, . . . ): try first to reduce
the ideal integers modulo 2N to the interval [0, 2N) or [−2N−1, 2N−1),
depending on whether the operation is signed or unsigned.
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Middle layer: abstracting memory and state

The CompCert memory model: memory location = block b × offset δ.

b1: b2: b3:

δ2

Abstraction of offsets → integer domain.

Abstraction of blocks:

First attempt (Pichardie): 1 concrete block = 1 abstract block
“global variable x” or “local variable y of function f ”.

Recursion, dynamic allocation → need for imprecise abstract blocks
(standing for several concrete blocks).

In progress (Laporte): abstract memory model with block fusion and
weak updates.
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Conclusions

Trying to bridge elegant foundations and nitty-gritty details
(low-level language, algorithmic efficiency).

Abstract interpretation is a very effective guideline once we forget about
optimality of the analysis.
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Future work

Much remains to be done to reach a realistic static analyzer:

“Good” abstractions for memory.

More (combinations of) abstract domains:
symbolic equalities, reduced products, trace partitioning, . . .

Algorithmic efficiency needs more work, esp. on sharing between
representations of abstract states.

Good alarm reports.

Debugging the precision of the analyses.
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One step at a time. . .

. . . we get closer to the formal verification of the tools that participate in
the production and verification of critical embedded software.

C
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Compiler
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