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Generalities on program transformations

In the broadest sense: all translations between programming languages
that preserve the meaning of programs.

Focus in this lecture: examples of program transformations that eliminate
high-level features of a (mostly) functional programming language and
target a smaller or lower-level language.

I.e. translate from language L1 having features A,B,C ,D
to language L2 having features B,C ,D,E .
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Uses for program transformations

1 As passes in a compiler.
Progressively bridge the gap between high-level source languages and
machine code.

2 To give semantics to the source language.
The semantics of feature A is defined in terms of that of features
B,C ,D,E .

3 To program in languages that lack the desired feature A.
E.g. use higher-order functions or objects in C;
use imperative programming in Haskell or Coq.
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Outline

1 Closure conversion
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4 State-passing style
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7 Bonus track: callcc + constructive logic = ?
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Closure conversion

Closure conversion

Goal: make explicit the construction of closures and the accesses to the
environment part of closures.

Input: a functional programming language with general functions
(possibly having free variables) as first-class values.

Output: the same language where only closed functions (without free
variables) are first-class values. Such closed functions can be represented
at run-time as code pointers, just as in C for instance.

Idea: every function receives its own closure as an extra argument, from
which it recovers values for its free variables. Such functions are closed.
Function closures are explicitly represented as a tuple (closed function,
values of free variables).

Uses: compilation; functional programming in C, Java, . . .
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Closure conversion

Definition of closure conversion

[[x ]] = x

[[λx .a]] = tuple(λc, x . let x1 = field1(c) in

. . .
let xn = fieldn(c) in

[[a]],
x1, . . . , xn)

where x1, . . . , xn are the free variables of λx .a

[[a b]] = let c = [[a]] in field0(c)(c , [[b]])

The translation extends isomorphically to other constructs, e.g.

[[let x = a in b]] = let x = [[a]] in [[b]]

[[a + b]] = [[a]] + [[b]]
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Closure conversion

Example of closure conversion
Source program in Caml:

fun x lst ->

let rec map f lst =

match lst with [] -> [] | hd :: tl -> f hd :: map f tl

in

map (fun y -> x + y) lst

Result of partial closure conversion for the f argument of map:

fun x lst ->

let rec map f lst =

match lst with [] -> []

| hd :: tl -> field0(f)(f,hd) :: map f tl

in

map tuple(λc,y. let x = field1(c) in x + y,

x)

lst
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Closure conversion

Closure conversion for recursive functions

In a recursive function µf .λx .a, the body a needs access to f , i.e. the
closure for itself. This closure can be found in the extra function
parameter that closure conversion introduces.

[[µf .λx .a]] = tuple(λf , x . let x1 = field1(f ) in

. . .
let xn = fieldn(f ) in

[[a]],
x1, . . . , xn)

where x1, . . . , xn are the free variables of µf .λx .a

Note that regular functions λx .a are converted exactly like
pseudo-recursive functions µf .λx .a where f is a variable not free in a.
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Closure conversion

Minimal environments in closures

Closures built by closure conversions have minimal environments: they
contain values only for variables actually free in the function.

In contrast, closures built by the abstract machines of lecture II have full
environments containing values for all variables in scope when the function
is evaluated.

Minimal closures consume less memory and enable a garbage collector to
reclaim other data structures earlier. Consider:

let l = <big list> in λx. x+1

With full closures, the list l is reachable from the closure of λx .x + 1 and
cannot be reclaimed as long as this closure is live.

With minimal closures, no reference to l is kept in the closure, enabling
earlier garbage collection.
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Closure conversion

Closure conversion in object-oriented style

If the target of the conversion is an object-oriented language in the style of
Java, we can use the following variant of closure conversion:

[[x ]] = x

[[λx .a]] = new Cλx .a(x1, . . . , xn)

where x1, . . . , xn are the free variables of λx .a

[[a b]] = [[a]].apply([[b]])
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Closure conversion

Closure conversion in object-oriented style

The class Cλx .a (one for each λ-abstraction in the source) is defined as
follows:

class Cλx .a {

Object x1; ...; Object xn;

Cλx .a(Object x1, ..., Object xn) {
this.x1 = x1; ...; this.xn = xn;

}

Object apply(Object x) {
return [[a]];

}
}
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Closure conversion

Closures and objects

In more general terms:

Closure ≈ Object with a single apply method

Object ≈ Closure with multiple entry points

Both function application and method invocation compile down to
self application:

[[fun arg ]] = let c = [[fun]] in field0(c)(c, [[arg ]])

[[obj .meth(arg)]] = let o = [[obj ]] in o.meth(o, [[arg ]])
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Defunctionalization

Outline

1 Closure conversion

2 Defunctionalization

3 Exception-returning style

4 State-passing style
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6 Bonus track: CPS + defunctionalization = ?

7 Bonus track: callcc + constructive logic = ?
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Defunctionalization

Defunctionalization

Goal: like closure conversion, make explicit the construction of closures
and the accesses to the environment part of closures. Unlike closure
conversion, do not use closed functions as first-class values.

Input: a functional programming language, with general functions
(possibly having free variables) as first-class values.

Output: any first-order language (no functions as values).

Idea: represent each function value λx .a as a data structure C (v1, . . . , vn)
where the constructor C uniquely identifies the function, and the
constructor arguments v1, . . . , vn are the values of the free variables
x1, . . . , xn.

Uses: functional programming in Pascal, Ada, . . .
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Defunctionalization

Definition of defunctionalization

[[x ]] = x

[[λx .a]] = Cλx .a(x1, . . . , xn)

where x1, . . . , xn are the free variables of λx .a

[[µf .λx .a]] = Cµf .λx .a(x1, . . . , xn)

where x1, . . . , xn are the free variables of µf .λx .a

[[a b]] = apply([[a]], [[b]])

(Other constructs: isomorphically.)
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Defunctionalization

Definition of defunctionalization

The apply function collects the bodies of all functions and dispatches on
its first argument. There is one case per function occurring in the source
program.

let rec apply(fun, arg) =
match fun with

| Cλx .a(x1, . . . , xn)→ let x = arg in [[a]]
| Cµf ′.λx ′.a′(x

′
1, . . . , x

′
n′)→ let f ′ = fun in let x ′ = arg in [[a′]]

| . . .
in [[program]]

Note: this is a whole-program transformation, unlike closure conversion.
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Defunctionalization

Example

Defunctionalization of (λx .λy .x) 1 2:

let rec apply (fn, arg) =

match fn with

| C1() -> let x = arg in C2(x)

| C2(x) -> let y = arg in x

in

apply(apply(C1(), 1), 2)

We write C1 for Cλx .λy .x and C2 for Cλy .x .
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Exceptions

Outline

1 Closure conversion

2 Defunctionalization
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7 Bonus track: callcc + constructive logic = ?
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Exceptions

Exceptions

Exceptions are a control structure useful for error reporting, error handling,
and more generally all situations that need “early exit” out of a
computation.

let f x =

try 1 + (if x = 0 then raise Error else 100 / x)

with Error -> 101

In try a with Error → b, if a evaluates normally without raising an
exception, its value is returned as the value of the try...with. For
instance, f 4 = 26.

If a raises the Error exception, control branches to b, which becomes the
result of the try...with. For instance, f 0 = 101.
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Exceptions

Exceptions

For a more realistic example of early exit, consider the computation of the
product of a list of integers, returning 0 as soon as a list element is 0:

let product lst =

let rec prod = function

| [] -> 1

| 0 :: tl -> raise Exit

| hd :: tl -> hd * prod tl

in

try prod lst with Exit -> 0
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Exceptions

Reduction semantics for exceptions

In Felleisen style, add two head reduction rules for try...with and a
generic exception propagation rule:

(try v with x → b)
ε→ v

(try raise v with x → b)
ε→ b[x ← v ]

F [raise v ]
ε→ raise v if F 6= [ ]

Exception propagation contexts F are like reduction contexts E but do not
allow crossing a try...with

Reduction contexts:
E ::= [ ] | E b | v E | try E with x → b | . . .

Exception propagation contexts:
F ::= [ ] | F b | v F | . . .
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Exceptions

Reduction semantics for exceptions
Assume the current program is p = E [raise v ], that is, we are about to
raise an exception. If there is a try. . . with that encloses the raise, the
program will be decomposed as

p = E ′[try F [raise v ] with x → b]

where F contains no try. . . with constructs.
F [raise v ] head-reduces to raise v , and E ′[try [ ] with x → b] is an
evaluation context. The reduction sequence is therefore:

p = E ′[try F [raise v ] with x → b] → E ′[try raise v with x → b]

→ E ′[b[x ← v ]]

If there are no try. . . with around the raise, E is an exception
propagation context F and the reduction is therefore

p = E [raise v ]→ raise v
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Exceptions

Reduction semantics for exceptions

Considering reduction sequences, a fourth possible outcome of evaluation
appears: termination on an uncaught exception.

Termination: a
∗→ v

Uncaught exception: a
∗→ raise v

Divergence: a
∗→ a′ → . . .

Error: a
∗→ a′ 6→ where a 6= v and a 6= raise v .
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Exceptions

Natural semantics for exceptions

In natural semantics, the evaluation relation becomes a⇒ r
where evaluation results are r ::= v | raise v .
Add the following rules for try...with:

a⇒ v

try a with x → b ⇒ v

a⇒ raise v ′ b[x ← v ′]⇒ r

try a with x → b ⇒ r

as well as exception propagation rules such as:

a⇒ raise v

a b ⇒ raise v

a⇒ v ′ b ⇒ raise v

a b ⇒ raise v
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Exceptions

Conversion to exception-returning style

Goal: get rid of exceptions.

Input: a functional language featuring exceptions (raise and
try...with).

Output: a functional language with pattern-matching but no exceptions.

Idea: every expression a evaluates to either

V (v) if a evaluates normally to a value v

E (v) if a terminates early by raising exception v .

(V ,E are datatype constructors.)

Uses: giving semantics to exceptions; programming with exceptions in
Haskell; reasoning about exceptions in Coq.
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Exceptions

Definition of the conversion: Core constructs

[[N]] = V (N)

[[x ]] = V (x)

[[λx .a]] = V (λx . [[a]])

[[let x = a in b]] = match [[a]] with E (x)→ E (x) | V (x)→ [[b]]

[[a b]] = match [[a]] with

| E (ea)→ E (ea)

| V (va)→
match [[b]] with E (eb)→ E (eb) | V (vb)→ va vb

Effect on types: if a : τ then [[a]] : [[τ ]] outcome
where [[τ1 → τ2]] = [[τ1]]→ [[τ2]] outcome and [[τ ]] = τ for base types
and where type ’a outcome = V of ’a | E of exn.
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Exceptions

Definition of the conversion: Exception-specific constructs

[[raise a]] = match [[a]] with E (ea)→ E (ea) | V (va)→ E (va)

[[try a with x → b]] = match [[a]] with E (x)→ [[b]] | V (va)→ V (va)
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Exceptions

Example of conversion

[[try fn arg with exn → 0]] =

match

match V(fn) with

| E(x) → E(x)

| V(x) →
match V(arg) with

| E(y) → E(y)

| V(y) → x y

with

| V(z) → V(z)

| E(exn) → V(0)
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Exceptions

Administrative reductions

The naive conversion generates many useless match constructs over
arguments whose shape V (. . .) or E (. . .) is known at compile-time.

These can be eliminated by performing administrative reductions
adm→ at

compile-time, just after the conversion:

(match E (v) with E (x)→ b | V (x)→ c)
adm→ b[x ← v ]

(match V (v) with E (x)→ b | V (x)→ c)
adm→ c[x ← v ]
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Exceptions

Example of conversion

After application of administrative reductions, we obtain:

[[try fn arg with exn → 0]] =

match fn arg with

| V(z) → V(z)

| E(exn) → V(0)

X. Leroy (INRIA) Functional programming languages MPRI 2-4, 2016–2017 31 / 101

Exceptions

Correctness of the conversion

Define the conversion of a value [[v ]]v as [[N]]v = N and [[λx .a]]v = λx .[[a]]

Theorem 1

1 If a⇒ v , then [[a]]⇒ V ([[v ]]v ).

2 If a⇒ raise v , then [[a]]⇒ E ([[v ]]v ).

3 If a⇒∞, then [[a]]⇒∞.

Proof.

(1) and (2) are proved simultaneously by induction on the derivation of
a⇒ r where r is an evaluation result. (3) is by coinduction. All three
proofs use the substitution lemma [[a[x ← v ]]] = [[a]][x ← [[v ]]v ].
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State

Outline

1 Closure conversion

2 Defunctionalization

3 Exception-returning style

4 State-passing style

5 Continuation-passing style

6 Bonus track: CPS + defunctionalization = ?

7 Bonus track: callcc + constructive logic = ?
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State

State (imperative programming)

The word state in programming language theory refers to the
distinguishing feature of imperative programming: the ability to assign
(change the value of) variables after their definition, and to modify data
structures in place after their construction.
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State

References (recap)

A simple yet adequate way to model state is to introduce references:
indirection cells / one-element arrays that can be modified in place. The
basic operations over references are:

ref a
Create a new reference containing initially the value of a.

deref a also written !a
Return the current contents of reference a.

assign a b also written a := b
Replace the contents of reference a with the value of b.
Subsequent deref a operations will return this value.
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State

Uses of references

A let-bound reference emulates an imperative variable:

int x = 3; let x = ref 3 in

x = x + 1; ---> x := !x + 1;

return x; !x

(We write a; b instead of let z = a in b if z is not free in b.)

Such references also enable a function to maintain an internal state:

let make_pseudo_random_generator seed =

let state = ref seed in

λn. state := (!state * A + B) mod C; !state mod n
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State

Uses of references

Arrays ≈ list of references (or better: primitive arrays).

Records with mutable fields ≈ tuples of references.

Imperative singly-linked list, with in-place concatenation:

type ’a mlist = ’a mlist_content ref

and ’a mlist_content = Nil | Cons of ’a * ’a mlist

let rec concat l1 l2 =

match !l1 with

| Nil → l1 := !l2

| Cons(x, r) → concat !r l2
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State

Uses of references

Memoization = caching of already-computed results.

let fib_cache = ref map_empty

let rec fib n =

match map_find n !fib_cache with

| Some res -> res

| None ->

let res =

if n < 2 then 1 else fib(n-1) + fib(n-2) in

fib_cache := map_add n res !fib_cache;

res
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State

Lazy evaluation = CBV + references

Implementation of lazy evaluation:

type ’a state =

| Unevaluated of unit -> ’a

| Evaluated of ’a

type ’a lazy = (’a state) ref

let force (lz: ’a lazy) : ’a =

match !lz with

| Evaluated v -> v

| Unevaluated f ->

let v = f() in lz := Evaluated v; v

+ syntactic sugar: lazy e ≡ ref(Unevaluated(fun ()→ e))
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State

Semantics of references

Semantics based on substitutions fail to account for sharing between
references:

let r = ref 1 in r := 2; !r 6→ (ref 1) := 2; !(ref 1)

Left: the same reference r is shared between assignment and reading;
result is 2.
Right: two distinct references are created, one is assigned, the other read;
result is 1.

To account for sharing, we must use an additional level of indirection:

ref a expressions evaluate to locations ` : a new kind of variable
identifying references uniquely. (Locations ` are values.)

A global environment called the store associates values to locations.
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State

Reduction semantics for references

Reduction over configurations a / s: pairs of a term a and a store s
mapping locations to values.

One-step reduction a / s → a′ / s ′

(read: in initial store s, a reduces to a′ and updates the store to s ′)

(λx .a) v / s
ε→ a[x ← v ] / s

ref v / s
ε→ ` / (s + ` 7→ v) where ` /∈ Dom(s)

deref ` / s
ε→ s(`) / s

assign ` v / s
ε→ ( ) / (s + ` 7→ v)

a / s
ε→ a′ / s ′

(context)
E (a) / s → E (a′) / s ′
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State

Example of reduction sequence

In red: the active redex at every step.

let r = ref 3 in let x = r := !r + 1 in !r / ∅
→ let r = ` in let x = r := !r + 1 in !r / {` 7→ 3}
→ let x = ` := !`+ 1 in !` / {` 7→ 3}
→ let x = ` := 3 + 1 in !` / {` 7→ 3}
→ let x = ` := 4 in !` / {` 7→ 3}
→ let x = ( ) in !` / {` 7→ 4}
→ !` / {` 7→ 4}
→ 4
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State

Conversion to state-passing style

Goal: get rid of state.

Input: a functional language with imperative references.

Output: a pure functional language.

Idea: every expression a becomes a function that takes a run-time
representation of the current store and returns a pair (result value,
updated store).

Uses: give semantics to references; program imperatively in Haskell;
reason over imperative code in Coq.
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State

Definition of the conversion: Core constructs

[[N]] = λs.(N, s)

[[x ]] = λs.(x , s)

[[λx .a]] = λs.(λx .[[a]], s)

[[let x = a in b]] = λs. match [[a]] s with (x , s ′)→ [[b]] s ′

[[a b]] = λs. match [[a]] s with (va, s
′)→

match [[b]] s ′ with (vb, s
′′)→ va vb s ′′

Effect on types: if a : τ then [[a]] : store→ [[τ ]]× store

where [[τ1 → τ2]] = [[τ1]]→ store→ [[τ2]]× store

and [[τ ]] = τ for base types.
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State

Definition of the conversion:
Constructs specific to references

[[ref a]] = λs. match [[a]] s with (va, s
′)→ store alloc va s ′

[[!a]] = λs. match [[a]] s with (va, s
′)→ (store read va s ′, s ′)

[[a := b]] = λs. match [[a]] s with (va, s
′)→

match [[b]] s ′ with (vb, s
′′)→ (ε, store write va vb s ′′)

The operations store_alloc, store_read and store_write provide a
concrete implementation of the store.
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State

Example of conversion
Administrative reductions:

(λs ′.b)s
adm→ b[s ← s ′] if s variable

(match (a, s) with (x , s ′)→ b)
adm→ let x = a in b[s ′ ← s]

let x = v in b
adm→ b[x ← v ]

let x = y in b
adm→ b[x ← y ]

Example of translation after administrative reductions:

[[ let r = ref 3 in let x = r := !r + 1 in !r ]] =

λs. match store_alloc s 3 with (r, s1) ->

let t = store_read r s1 in

let u = t + 1 in

match (ε, store_write r u s1) with (x, s2) ->

(store_read r s2, s2)
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State

An implementation of the store

Locations = integers.

Stores = pairs (location, finite map location 7→ value).

store alloc v (n,m) = (n, (n + 1,m + {n 7→ v}))

store read ` (n,m) = m(`)

store write ` v (n,m) = (n,m + {` 7→ v})
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State

Typing the store?

Easy: static typing of a monomorphic store, where all values stored in
references are of the same type sval:

store alloc : sval→ store→ location× store

store read : location→ store→ sval

store write : location→ sval→ store→ store

Much more challenging (programming exercise III.6): a type-safe
implementation of a polymorphic store.

store alloc : ∀α. α→ store→ α location× store

store read : ∀α. α location→ store→ α

store write : ∀α. α location→ α→ store→ store
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Continuations

Outline
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7 Bonus track: callcc + constructive logic = ?
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Continuations

Notion of continuation

Given a program p and a subexpression a of p, the continuation of a is the
computations that remain to be done once a is evaluated to obtain the
result of p.

It can be viewed as a function: (value of a) 7→ (value of p).

Example 2

Consider the program p = (1 + 2) ∗ (3 + 4).

The continuation of a = (1 + 2) is λx . x ∗ (3 + 4).

The continuation of a′ = (3 + 4) is λx . 3 ∗ x .

(Not λx . (1 + 2) ∗ x because 1 + 2 has already been evaluated to 3.)
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Continuations

Continations and reduction contexts

Continuations closely correspond with reduction contexts in Felleisen-style
reduction semantics:
If p = E [a] and a can reduce, then the continuation of a is λx . E [x ].

Example 3

Consider again p = (1 + 2) ∗ (3 + 4).

p = (1 + 2) ∗ (3 + 4) = E [1 + 2] with E = [ ] ∗ (3 + 4)

→ p′ = 3 ∗ (3 + 4) = E ′[3 + 4] with E ′ = 3 ∗ [ ]

→ 3 ∗ 7 → 21

The continuation of 1 + 2 in p is λx .E [x ] = λx . x ∗ (3 + 4).
The continuation of 3 + 4 in p′ is λx .E ′[x ] = λx . 3 ∗ x .
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Continuations

Continuations as first-class values

The Scheme language offers a primitive callcc (call with current
continuation) that enables a subexpression a of the program to capture its
continuation (as a function ‘value of a’ 7→ ‘value of the program’) and
manipulate this continuation as a first-class value.

The expression callcc (λk .a) evaluates as follows:

The continuation of this expression is passed as argument to λk .a.

Evaluation of a proceeds; its value is the value of callcc (λk .a).

If, during the evaluation of a or at any later time, we evaluate
throw k v , evaluation continues as if callcc (λk .a) returned v .
That is, the continuation of the callcc expression is reinstalled and
restarted with v as the result provided by this expression.

The types are:
callcc : ∀α, (α cont→ α)→ α throw : ∀αβ, α cont→ α→ β.
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Continuations

Using first-class continuations

Libraries for lists, sets, and other collection data types often provide an
imperative iterator iter, e.g.

(* list_iter: (’a -> unit) -> ’a list -> unit *)

let rec list_iter f l =

match l with

| [] -> ()

| head :: tail -> f head; list_iter f tail
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Continuations

Using first-class continuations

Using first-class continuations, an existing imperative iterator can be
turned into a function that returns the first element of a collection
satisfying a given predicate pred.

let find pred lst =

callcc (λk.
list_iter

(λx. if pred x then throw k (Some x) else ())

lst;

None)

If an element x is found such that pred x = true, the throw causes
Some x to be returned immediately as the result of find pred lst.
If no such element exists, list_iter terminates normally, and None is
returned.
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Continuations

Using first-class continuations

The previous example can also be implemented with exceptions. However,
callcc adds the ability to backtrack the search.

let find pred lst =

callcc (λk.
list_iter

(λx. if pred x

then callcc (λk’. throw k (Some(x, k’)))

else ())

lst;

None)

When x is found such that pred x = true, find returns not only x but
also a continuation k’ which, when thrown, will cause backtracking: the
search in lst restarts at the element following x.
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Continuations

Using first-class continuations

The following use of find will print all list elements satisfying the
predicate:

let printall pred lst =

match find pred list with

| None -> ()

| Some(x, k) -> print_string x; throw k ()

The throw k () restarts find pred list where it left the last time.
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Continuations

First-class continuations

callcc and other control operators are difficult to use directly (“the goto

of functional languages”), but in combination with references, can
implement a variety of interesting control structures:

Exceptions (exercise III.8)

Backtracking.

Imperative iterators (such as Python’s yield).

Checkpointing and replay debugging.

Coroutines / cooperative multithreading (next slides).
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Continuations

Coroutines

Consider a simple subroutine (procedure) that does side-effects:

let task message increment =

let rec loop n =

if n >= 10 then () else begin

print_string message; print_int n;

loop(n + increment)

end

in loop 0

let _ = task " A" 1; task " B" 2; task " C" 3

Execution is purely sequential, producing

A0 A1 A2 A3 A4 A5 A6 A7 A8 A9 B0 B2 B4 B6 B8 C0 C3 C9
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Continuations

Coroutines
Coroutines interleave their executions, explicitly yielding control to other
coroutines.

let task message increment =

fun () ->

let rec loop n =

if n >= 10 then terminate() else begin

print_string message; print_int n;

yield();

loop(n + increment)

end

in loop 0

let _ = fork(task " A" 1); fork(task " B" 2); fork(task " C" 3)

Execution is interleaved, producing for instance

A0 B0 A1 C0 B2 A2 C3 B4 A3 C6 B6 A4 C9 B8 A5 A6 A7 A8 A9
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Continuations

Implementing coroutines with continuations

Maintain a queue of continuations corresponding to coroutines that have
not started yet or have previously yielded control.

let queue = ref []

let enqueue x = queue := !queue @ [x]

let dequeue () =

match !queue with x :: q’ -> queue := q’; x | [] -> assert false

let queue_is_empty () =

match !queue with [] -> true | x :: q’ -> false
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Continuations

Implementing coroutines with continuations
fork proc executes proc() but enqueues a continuation corresponding
to the computation following fork proc.

let fork (proc: unit -> unit) =

callcc (fun k -> enqueue k; proc())

yield() yields control within its caller and restarts another suspended
computation (if any) or the caller itself (otherwise).

let yield () =

callcc (fun k -> enqueue k; throw (dequeue()) ())

terminate() terminates its caller, restarting another suspended
computation (if any) or terminating the whole program (otherwise).

let terminate () =

if queue_is_empty()

then exit 0

else throw (dequeue()) ()
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Continuations

Reduction semantics for continuations

In Felleisen’s style, keep the same head reductions
ε→ and the same

context rule as before, and add two whole-program reduction rules (→) for
callcc and throw:

E [callcc v ] → E [v (λx .E [x ])]

E [throw k v ] → k v

Same evaluation contexts E as before.

Note the non-linear use of the context E :

The rule for callcc duplicates the current context E .

The rule for throw discards the current context E .
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Continuations

Example of reductions

E [callcc (λk . 1 + throw k 0)]

→ E [(λk . 1 + throw k 0) (λx .E [x ])]

→ E [1 + throw (λx .E [x ]) 0]

→ (λx .E [x ]) 0

→ E [0]

Note how throw discards the current context E [1 + [ ]] and reinstalls the
saved context E instead.
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Continuations

Conversion to continuation-passing style (CPS)

Goal: make explicit the handling of continuations.

Input: a call-by-value functional language with callcc.

Output: a call-by-value or call-by-name, pure functional language
(no callcc).

Idea: every term a becomes a function λk . . . that receives its
continuation k as an argument, computes the value v of a, and finishes by
applying k to v .

Uses: compilation of callcc; semantics; programming with continuations
in Caml, Haskell, . . .
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Continuations

CPS conversion: Core constructs

[[N]] = λk . k N

[[x ]] = λk . k x

[[λx .a]] = λk . k (λx . [[a]])

[[let x = a in b]] = λk . [[a]] (λx . [[b]] k)

[[a b]] = λk . [[a]] (λva. [[b]] (λvb. va vb k))

A function λx .a becomes a function of two arguments, x and the
continuation k that will receive the value of a.

Effect on types: if a : τ then [[a]] : ([[τ ]]→ answer)→ answer

where [[τ ]] = τ for base types
and [[τ1 → τ2]] = [[τ1]]→ ([[τ2]]→ answer)→ answer.
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Continuations

CPS conversion: Continuation operators

[[callcc a]] = λk. [[a]] (λf . f k k)

[[throw a b]] = λk. [[a]] (λva. [[b]] (λvb. va vb))

In callcc a, the function value f of a receives the current continuation k
both as its argument and as its continuation.

In throw a b, we discard the current continuation k and apply directly the
value of a (which is a continuation captured by callcc) to the value of b.

Note (again) the non-linear use of the continuation k : callcc duplicates
k , and throw ignores k,
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Continuations

Administrative reductions

The CPS translation [[· · ·]] produces terms that are more verbose than one
would naturally write by hand, e.g. in the case of an application of a
variable to a variable:

[[f x ]] = λk . (λk1.k1 f ) (λv1. (λk2.k2 x) (λv2. v1 v2 k))

instead of the more natural λk . f x k .

This clutter can be eliminated by performing β reductions at
transformation time to eliminate the “administrative redexes” introduced
by the translation. In particular, we have

(λk. k v) (λx . a)
adm→ (λx . a) v

adm→ a[x ← v ]

whenever v is a value or variable.
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Continuations

Examples of CPS translation

[[f (f x)]]

= λk . f x (λv . f v k)))

[[µfact. λn. if n = 0 then 1 else n ∗ fact(n − 1)]]

= λk0. k0(

µfact. λn. λk . if n = 0 then k 1 else fact (n − 1) (λv . k (n ∗ v)))

[[callcc (λk.a)]]

= λk . [[a]] k
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Continuations

Execution of CPS-converted programs

Execution of a program prog is achieved by applying its CPS conversion to
the initial continuation λx .x :

[[prog ]] (λx .x)

Theorem 4

If a
∗→ v , then [[a]] (λx .x)

∗→ [[v ]]v . If a diverges, so does [[a]] (λx .x).

Where the CPS translation of values v is:

[[N]]v = N [[λx .a]]v = λx .[[a]]
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Continuations

Plotkin’s proof
G. Plotkin, Call-by-name, call-by-value and the lambda-calculus, TCS 1(2), 1975

A difficult proof based on the following simulation diagram:

a b

[[a]] k [[b]] k

a : k b : k

one reduction

CPS transformation CPS transformation

administrative
reductions

administrative
reductions

reductions

(no reductions,
in general)

a : k , the “colon translation”, reduces well-chosen administrative redexes.
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Continuations

A proof using natural semantics

These difficulties with administrative reductions can be avoided by using
natural semantics in the premises:

Theorem 5

If a⇒ v and k is a value, then [[a]] k
+→ k [[v ]]v .

If a⇒∞ and k is a value, then [[a]] k reduces infinitely.

Proof.

Part 1 is by induction on a derivation of a⇒ v . (Exercise.)
For part 2, consider the set X = {[[a]] k | a⇒∞∧ k value} and show that

∀a ∈ X ,∃a′ ∈ X , a
+→ a′, using part 1.

The two proofs are suprisingly similar to the proofs of thm 10 and 17 in lecture II
(correctness of the Modern SECD using natural semantics).
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Continuations

Danvy and Nielsen’s one-pass CPS transformation

Split source terms a into:

Atoms: t ::= N | x | λx .a
Serious terms: s ::= a1 a2

The one-pass CPS transformation:

[[t]] k = k Ψ(t) Ψ(N) = N
[[t1 t2]] k = Ψ(t1) Ψ(t2) k Ψ(x) = x
[[s1 t2]] k = [[s1]] (λv1. v1 Ψ(t2) k) Ψ(λx .a) = λx . λk. [[a]] k
[[t1 s2]] k = [[s2]] (λv2. Ψ(t1) v2 k)
[[s1 s2]] k = [[s1]] (λv1. [[s2]] (λv2. v1 v2 k))
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Continuations

Danvy and Nielsen’s one-pass CPS transformation

Not only does this CPS transformation produce terms free of
administrative redexes, but it also enjoys a simple simulation diagram:

a b

[[a]] k [[b]] k

one reduction

CPS transformation CPS transformation

one or several
reductions
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Continuations

CPS terms

The λ-terms produced by the CPS transformation have a very specific
shape, described by the following grammar:

CPS atom: atom ::= x | N | λv . body | λx .λk . body
CPS body: body ::= atom | atom1 atom2 | atom1 atom2 atom3

[[a]] is an atom, and [[a]] (λx .x) is a body .
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Continuations

Reduction of CPS terms

CPS atom: atom ::= x | N | λv . body | λx .λk . body
CPS body: body ::= atom | atom1 atom2 | atom1 atom2 atom3

Note that all applications (unary or binary) are in tail-position and at
application-time, their arguments are closed atoms, that is, values.

The following reduction rules suffice to evaluate CPS-converted programs:

(λx .λk . body) atom1 atom2 → body [x ← atom1, k ← atom2]

(λv . body) atom → body [v ← atom]

These reductions are always applied at the top of the program — there is
no need for reduction under a context!
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Continuations

The Indifference theorem
G. Plotkin, Call-by-name, call-by-value and the lambda-calculus, TCS 1(2), 1975

Theorem 6 (Indifference)

A closed CPS-converted program [[a]] (λx .x) evaluates in the same way in
call-by-name, in left-to-right call-by-value, and in right-to-left call-by-value.

Proof.
Since closed atoms are values, the reduction rules

(λx .λk. body) atom1 atom2 → body [x ← atom1, k ← atom2]

(λv . body) atom → body [v ← atom]

are admissible both under call-by-value and call-by-name. Since we do not reduce
under application nodes, left-to-right or right-to-left evaluation of application
makes no difference.
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Continuations

CPS conversion and reduction strategy
CPS conversion encodes the reduction strategy in the structure of the
converted terms. For instance, right-to-left call-by-value is obtained by
taking

[[a b]] = λk . [[b]] (λvb. [[a]] (λva. va vb k))

and call-by-name is achieved by taking

[[x ]] = λk. x k (or just [[x ]] = x)

[[a b]] = λk. [[a]] (λva. va [[b]] k)

Note change of viewpoint:

in CBV, a variable is a value, so we apply the continuation to this value
([[x ]] = λk. k x)

in CBN, a variable is a suspended computation, so we apply this
computation to the continuation ([[x ]] = λk. x k)
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Continuations

Compilation of CPS terms

CPS terms can be executed by a stackless abstract machines with
components

a code pointer c

an environment e

three registers R1, R2, R3.

Instruction set:

ACCESSi (n) store n-th field of the environment in Ri

CONSTi (N) store the integer N in Ri

CLOSUREi (c) store closure of c in Ri

TAILAPPLY1 apply closure in R1 to argument R2

TAILAPPLY2 apply closure in R1 to arguments R2,R3
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Continuations

Compilation of CPS terms

Compilation of atoms Ai (atom) (leaves the value of atom in Ri ):

Ai (n) = ACCESSi (n)

Ai (N) = CONSTi (N)

Ai (λ
1.a) = CLOSUREi (B(a))

Ai (λ
2.a) = CLOSUREi (B(a))

Compilation of bodies B(body):

B(a) = A1(a)

B(a1 a2) = A1(a1);A2(a2); TAILAPPLY1

B(a1 a2 a3) = A1(a1);A2(a2);A3(a3); TAILAPPLY2
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Continuations

Transitions of the CPS abstract machine

Machine state before Machine state after

Code Env R1 R2 R3 Code Env R1 R2 R3

TAILAPPLY1; c e c ′[e ′] v c ′ v .e ′

TAILAPPLY2; c e c ′[e ′] v1 v2 c ′ v2.v1.e
′

ACCESS1(n); c e v2 v3 c e e(n) v2 v3

CONST1(n); c e v2 v3 c e N v2 v3

CLOSURE1(c ′); c e v2 v3 c e c ′[e] v2 v3

(Similarly for the other ACCESS, CONST and CLOSURE instructions.)
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Continuations

Continuations vs. stacks

That CPS terms can be executed without a stack is not surprising, given
that the stack of a machine such as the Modern SECD is isomorphic to
the current continuation in a CPS-based approach.

f x = 1 + g x g x = 2 * h x h x = ...

Consider the execution point where h is entered. In the CPS model, the
continuation at this point is

k = λv . k ′ (2 ∗ v) with k ′ = λv . k ′′ (1 + v) and k ′′ = λv .v

In the Modern SECD model, the stack at this point is

(MUL; RETURN).eg .2︸ ︷︷ ︸
≈k

. (ADD; RETURN).ef .1︸ ︷︷ ︸
≈k ′

. ε.ε︸︷︷︸
≈k ′′
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Continuations

Continuations vs. stacks

At the machine level, stacks and continuations are two ways to represent
the call chain: the chain of function calls currently active.

Continuations: as a singly-linked list of heap-allocated closures, each
closure representing a function activation. These closures are
reclaimed by the garbage collector.

Stacks: as contiguous blocks in a memory area outside the heap, each
block representing a function activation. These blocks are explicitly
deallocated by RETURN instructions.

Stacks are more efficient in terms of GC costs and memory locality, but
need to be copied in full to implement callcc.

Compiling with continuations, A. Appel, Cambridge University Press, 1992.
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Bonus track: CPS + defunctionalization = ?

Outline

1 Closure conversion

2 Defunctionalization

3 Exception-returning style

4 State-passing style

5 Continuation-passing style

6 Bonus track: CPS + defunctionalization = ?

7 Bonus track: callcc + constructive logic = ?
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Bonus track: CPS + defunctionalization = ?

Making functions tail-recursive

Contemporary OS put arbitrary, rather low limitations on stack size.

→ Sometimes, programmers need to rewrite recursive functions so that
they are tail recursive and run in constant stack space.

A systematic way to do so:
CPS conversion followed by defunctionalization!
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Bonus track: CPS + defunctionalization = ?

Tail-recursion by hand: list concatenation

Natural definition, runs in stack space O(length(x)):

let rec app x y =

match x with

| [] -> y

| x1 :: xs -> x1 :: app xs y

Tail-recursive definition, using rev_app (reverse & append):

let rec rev_app x y =

match x with

| [] -> y

| x1 :: xs -> rev_app xs (x1 :: y)

let app x y = rev_app (rev_app x []) y
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Bonus track: CPS + defunctionalization = ?

Systematic way, 1: CPS transformation

We apply the CPS transformation locally to the app function:

let rec cps_app x y k =

match x with

| [] -> k y

| x1 :: xs -> cps_app xs y (fun res -> k (x1 :: res))

then pass it the initial continuation:

let app x y = cps_app x y (fun res -> res)

The result runs in constant stack space but is less readable and less
efficient than the rev_app implementation.
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Bonus track: CPS + defunctionalization = ?

Systematic way, 2: defunctionalization
Let’s defunctionalize cps_app.

type ’a funval =

| A (* fun res -> res *)

| B of ’a * ’a funval (* fun res -> k (x1 :: res) *)

let rec defun_app x y k =

match x with

| [] -> apply k y

| x1 :: xs -> defun_app xs y (B(x1, k))

and apply k res =

match k with

| A -> res

| B(x1, k’) -> apply k’ (x1 :: res)

let app x y = defun_app x y A

X. Leroy (INRIA) Functional programming languages MPRI 2-4, 2016–2017 87 / 101

Bonus track: CPS + defunctionalization = ?

Systematic way, 3: squinting

Note that the type funval of function “closures” is isomorphic to list.

let rec defun_app x y k =

match x with

| [] -> apply k y

| x1 :: xs -> defun_app xs y (x1 :: k)

and apply k res =

match k with

| [] -> res

| x1 :: k’ -> apply k’ (x1 :: res)

let app x y = defun_app x y []

Note that apply is really rev_app,
and defun_app x y k is really rev_app (rev_app x k) y . . .
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Bonus track: CPS + defunctionalization = ?

Tail-recursive interpreters
(Ager, Biernacki, Danvy and Midtgaard, 2003)

What happens if we apply the “CPS + defunctionalization” trick to an
interpreter for a functional language?

Let’s see on an interpreter for call-by-name, using environments and de
Bruijn indices.
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Bonus track: CPS + defunctionalization = ?

A CBN interpreter with environments

type term = Var of int | Lam of term | App of term * term

type thunk = Thunk of term * env

and env = thunk list

and value = Clos of term * env

let rec eval (e: env) (a: term) : value =

match a with

| Var n ->

let (Thunk(a’, e’)) = List.nth e n in eval e’ a’

| Lam a ->

Clos(a, e)

| App(b, c) ->

let (Clos(d, e’)) = eval e b in eval (Thunk(c, e) :: e’) d
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Bonus track: CPS + defunctionalization = ?

After CPS conversion . . .

let rec cps_eval e a k =

match a with

| Var n ->

let (Thunk(a’, e’)) = List.nth e n in cps_eval e’ a’ k

| Lam a ->

k (Clos(a, e))

| App(b, c) ->

cps_eval e b (fun Clos(d, e’) ->

cps_eval (Thunk(c, e) :: e’) d k)

let eval e a = cps_eval e a (fun res -> res)
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Bonus track: CPS + defunctionalization = ?

. . . then defunctionalization . . .

type funval =

| A (* fun res -> res *)

| B of term * env * funval

(* fun (Clos...) -> ... c ... e ... k *)

let rec defun_eval e a k =

match a with

| Var n -> let (Thunk(a’, e’)) = List.nth e n in defun_eval e’ a’ k

| Lam a -> apply k (Clos(a, e))

| App(b, c) -> defun_eval e b (B(c, e, k))

and apply k res =

match k with

| A -> res

| B(c, e, k) ->

let (Clos(d, e’)) = res in defun_eval (Thunk(c, e) :: e’) d k

let eval e a = defun_eval e a A
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Bonus track: CPS + defunctionalization = ?

. . . and a bit of cleanup . . .

(funval isomorphic to thunk list; inlining of apply)

let rec tail_eval e a k =

match a, k with

| Var n, _ -> let (Thunk(a’, e’)) = List.nth e n in tail_eval e’ a’ k

| Lam a, [] -> Clos(a, e)

| Lam a, Thunk(c, e’) :: k -> tail_eval (Thunk(c, e’) :: e) a k

| App(b, c), _ -> tail_eval e b (Thunk(c, e) :: k)

let eval e a = tail_eval e a []

X. Leroy (INRIA) Functional programming languages MPRI 2-4, 2016–2017 93 / 101

Bonus track: CPS + defunctionalization = ?

. . . we obtain Krivine’s machine!

As can be seen by extracting from tail_eval the underlying transition
function over (e, a, k) triples.

type step_result = Finished of value | Next of env * term * thunk list

let step = function

| (e, Var n, k) -> let (Thunk(a’, e’)) = List.nth e n in Next(e’, a’, k)

| (e, Lam a, []) -> Finished(Clos(a, e))

| (e, Lam a, Thunk(c, e’) :: k) -> Next(Thunk(c, e’) :: e, a, k)

| (e, App(b, c), k) -> Next(e, b, Thunk(c, e) :: k)

let rec tail_eval e a k =

match step (e, a, k) with

| Finished v -> v | Next(e’,a’,k’) -> tail_eval e’ a’ k’

(Compare with the ACCESS, GRAB and PUSH transitions of Krivine’s
machine.)
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Bonus track: CPS + defunctionalization = ?

What about call-by-value?

If we apply the same trick to the CBV interpreter from lecture I, we do not
obtain the Modern SECD, but something that is very close to another
CBV abstract machine: the CEK machine of Felleisen and Friedman.

A Functional Correspondence between Evaluators and Abstract Machines.

Mads Sig Ager, Dariusz Biernacki, Olivier Danvy and Jan Midtgaard. PPDP 2003.
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Outline

1 Closure conversion

2 Defunctionalization

3 Exception-returning style

4 State-passing style

5 Continuation-passing style

6 Bonus track: CPS + defunctionalization = ?

7 Bonus track: callcc + constructive logic = ?
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Bonus track: callcc + constructive logic = ?

Propositions-as-types
(The Curry-Howard isomorphism)

Type expressions look a lot like logical formulas:

Types Logical propositions

Function type A→ B ≈ Implication A→ B

Product type A× B ≈ Conjunction A ∧ B

Sum type A + B ≈ Disjunction A ∨ B

Polymorphic type ∀α.A ≈ Universal quantification ∀α.A

Where product types and sum types can be defined as

type ’a * ’b = Pair of ’a * ’b

type ’a + ’b = Left of ’a | Right of ’b
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Proofs-as-programs, propositions-as-types

Likewise, constructive proofs of propositions look a lot like terminating
programs of the corresponding type.

A proof of . . . is . . .

A→ B ≈ a total function from proofs of A to proofs of B.

A ∧ B ≈ a pair of proofs, one for A and another for B.

A ∨ B ≈ a computation that decides which of A and B holds
and returns either Left with a proof of A or Right
with a proof of B.

∀x : A. B(x) ≈ a total function from values v : A to proofs of
B(v).

(Much more details in course 2-7-1, “Foundations of proof systems”.)
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Bonus track: callcc + constructive logic = ?

Curry-Howard isomorphism for classical logic

Is it possible to extend this correspondence to classical (not just
constructive) logic?

For example: is there a program that “implements” the law of
excluded middle?

∀P. P ∨ ¬P

Answer: yes, but we need callcc or similar control operators!

A Formulæ-as-Types Notion of Control, T. Griffin, POPL 1990.
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Bonus track: callcc + constructive logic = ?

“Implementing” excluded middle

Modulo Curry-Howard, the law of excluded middle

∀P. P ∨ ¬P ≡ ∀P. P ∨ (P → False)

corresponds to the type

∀P. P + (P → False)

where + is the sum type (Left and Right constructors)
and False an empty type.

The following term “implements” excluded middle:

callcc(λk. Right(λp. throw k (Left(p))))
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Bonus track: callcc + constructive logic = ?

“Implementing” excluded middle

callcc(λk. Right(λp. throw k (Left(p))))

How does it work?

The rest of the proof term asks “P or not P?”

The term above returns Right(λp . . .), i.e. “P → False”.

The only thing the rest of the proof can do with this proof is to apply
it to a proof p of P to derive a contradiction.

. . . at which time the continuation is invoked, restarting the original
proof with Left(p), i.e. “P is true”.
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