Functional programming languages

Part III: program transformations

Xavier Leroy
INRIA Paris-Rocquencourt

MPRI 2-4, 2016-2017

Generalities on program transformations

In the broadest sense: all translations between programming languages that preserve the meaning of programs.

Focus in this lecture: examples of program transformations that eliminate high-level features of a (mostly) functional programming language and target a smaller or lower-level language.
I.e. translate from language L_{1} having features A, B, C, D
to language L_{2} having features B, C, D, E.

Uses for program transformations

(1) As passes in a compiler.

Progressively bridge the gap between high-level source languages and machine code.
(2) To give semantics to the source language.

The semantics of feature A is defined in terms of that of features B, C, D, E.
(3) To program in languages that lack the desired feature A.
E.g. use higher-order functions or objects in C; use imperative programming in Haskell or Coq.

Big picture of compilation

Outline

(1) Closure conversion
(2) Defunctionalization
(3) Exception-returning style

4 State-passing style
(5) Continuation-passing style
(6) Bonus track: CPS + defunctionalization $=$?
(7) Bonus track: callcc + constructive logic $=$?

Closure conversion

Closure conversion

Goal: make explicit the construction of closures and the accesses to the environment part of closures.

Input: a functional programming language with general functions (possibly having free variables) as first-class values.

Output: the same language where only closed functions (without free variables) are first-class values. Such closed functions can be represented at run-time as code pointers, just as in C for instance.

Idea: every function receives its own closure as an extra argument, from which it recovers values for its free variables. Such functions are closed. Function closures are explicitly represented as a tuple (closed function, values of free variables).

Uses: compilation; functional programming in C, Java, ...

Definition of closure conversion

$$
\begin{aligned}
\llbracket x \rrbracket= & x \\
\llbracket \lambda x . a \rrbracket= & \operatorname{tuple}\left(\lambda c, x . \text { let } x_{1}=\text { field }_{1}(c)\right. \text { in } \\
& \ldots \\
& \text { let } x_{n}=\text { field }_{n}(c) \text { in } \\
& \llbracket a \rrbracket, \\
& \left.x_{1}, \ldots, x_{n}\right) \\
& \text { where } x_{1}, \ldots, x_{n} \text { are the free variables of } \lambda x . a \\
\llbracket a b \rrbracket= & \text { let } c=\llbracket a \rrbracket \text { in field }(c)(c, \llbracket b \rrbracket)
\end{aligned}
$$

The translation extends isomorphically to other constructs, e.g.

$$
\begin{aligned}
\llbracket \text { let } x=a \text { in } b \rrbracket & =\text { let } x=\llbracket a \rrbracket \text { in } \llbracket b \rrbracket \\
\llbracket a+b \rrbracket & =\llbracket a \rrbracket+\llbracket b \rrbracket
\end{aligned}
$$

Closure conversion

Example of closure conversion

Source program in Caml:

```
fun x lst ->
    let rec map f lst =
    match lst with [] -> [] | hd :: tl -> f hd :: map f tl
    in
        map (fun y -> x + y) lst
```

Result of partial closure conversion for the f argument of map:
fun x lst ->
let rec map f lst =
match lst with [] -> []
hd :: tl -> fieldo(f) (f,hd) :: map f tl
in
map tuple $\left(\lambda c, y\right.$. let $x=$ field $_{1}(c)$ in $x+y$,
x)
lst

Closure conversion for recursive functions

In a recursive function $\mu f . \lambda x . a$, the body a needs access to f, i.e. the closure for itself. This closure can be found in the extra function parameter that closure conversion introduces.

$$
\begin{array}{r}
\llbracket \mu f . \lambda x . a \rrbracket=\operatorname{tuple}(\lambda f, x . \\
\ldots \text { let } x_{1}=\operatorname{field}_{1}(f) \text { in } \\
\\
\text { let } x_{n}=\operatorname{field}_{n}(f) \text { in } \\
\llbracket a \rrbracket, \\
\left.x_{1}, \ldots, x_{n}\right)
\end{array}
$$

Note that regular functions $\lambda x . a$ are converted exactly like pseudo-recursive functions $\mu f . \lambda x$.a where f is a variable not free in a.

Closure conversion

Minimal environments in closures

Closures built by closure conversions have minimal environments: they contain values only for variables actually free in the function.

In contrast, closures built by the abstract machines of lecture II have full environments containing values for all variables in scope when the function is evaluated.

Minimal closures consume less memory and enable a garbage collector to reclaim other data structures earlier. Consider:

$$
\text { let } 1=\langle\text { big list> in } \lambda \mathrm{x} . \mathrm{x}+1
$$

With full closures, the list 1 is reachable from the closure of $\lambda x \cdot x+1$ and cannot be reclaimed as long as this closure is live.

With minimal closures, no reference to 1 is kept in the closure, enabling earlier garbage collection.

Closure conversion in object-oriented style

If the target of the conversion is an object-oriented language in the style of Java, we can use the following variant of closure conversion:

$$
\begin{aligned}
\llbracket x \rrbracket= & x \\
\llbracket \lambda x . a \rrbracket= & \text { new } C_{\lambda x . a}\left(x_{1}, \ldots, x_{n}\right) \\
& \text { where } x_{1}, \ldots, x_{n} \text { are the free variables of } \lambda x . a \\
\llbracket a b \rrbracket= & \llbracket a \rrbracket . \operatorname{apply}(\llbracket b \rrbracket)
\end{aligned}
$$

Closure conversion in object-oriented style

The class $C_{\lambda x \text {.a }}$ (one for each λ-abstraction in the source) is defined as follows:

```
class }\mp@subsup{C}{\lambdax.a}{}
    Object }\mp@subsup{x}{1}{\prime; ...; Object }\mp@subsup{x}{n}{}\mathrm{ ;
    C \גx.a
        this. }\mp@subsup{x}{1}{}=\mp@subsup{x}{1}{\prime; ...; this. }\mp@subsup{x}{n}{}=\mp@subsup{x}{n}{\prime}
}
    Object apply(Object x) {
        return \llbracketa\rrbracket;
    }
}
```


Closures and objects

In more general terms:

- Closure \approx Object with a single apply method
- Object \approx Closure with multiple entry points

Both function application and method invocation compile down to self application:

$$
\begin{aligned}
\llbracket f u n \arg \rrbracket & =\text { let } c=\llbracket f u n \rrbracket \text { in fieldo }(c)(c, \llbracket \arg \rrbracket) \\
\llbracket o b j . m e t h(\arg) \rrbracket & =\text { let } o=\llbracket o b j \rrbracket \text { in o.meth }(o, \llbracket \arg \rrbracket)
\end{aligned}
$$

Outline

(1) Closure conversion
(2) Defunctionalization
(3) Exception-returning style

4 State-passing style
(5) Continuation-passing style
(6) Bonus track: CPS + defunctionalization $=$?
(7) Bonus track: callcc + constructive logic $=$?

Defunctionalization

Goal: like closure conversion, make explicit the construction of closures and the accesses to the environment part of closures. Unlike closure conversion, do not use closed functions as first-class values.

Input: a functional programming language, with general functions (possibly having free variables) as first-class values.

Output: any first-order language (no functions as values).
Idea: represent each function value $\lambda x . a$ as a data structure $C\left(v_{1}, \ldots, v_{n}\right)$ where the constructor C uniquely identifies the function, and the constructor arguments v_{1}, \ldots, v_{n} are the values of the free variables x_{1}, \ldots, x_{n}.

Uses: functional programming in Pascal, Ada, ...

Defunctionalization

Definition of defunctionalization

$$
\begin{aligned}
\llbracket x \rrbracket= & x \\
\llbracket \lambda x . a \rrbracket= & C_{\lambda x . a}\left(x_{1}, \ldots, x_{n}\right) \\
& \text { where } x_{1}, \ldots, x_{n} \text { are the free variables of } \lambda x . a \\
\llbracket \mu f . \lambda x . a \rrbracket= & C_{\mu f . \lambda x . a}\left(x_{1}, \ldots, x_{n}\right) \\
& \text { where } x_{1}, \ldots, x_{n} \text { are the free variables of } \mu f . \lambda x . a \\
\llbracket a b \rrbracket= & \operatorname{apply}(\llbracket a \rrbracket, \llbracket b \rrbracket)
\end{aligned}
$$

(Other constructs: isomorphically.)

The apply function collects the bodies of all functions and dispatches on its first argument. There is one case per function occurring in the source program.

```
let \(\operatorname{rec} \operatorname{apply}(f u n, \arg )=\)
    match fun with
        \(C_{\lambda x . a}\left(x_{1}, \ldots, x_{n}\right) \rightarrow\) let \(x=\arg\) in \(\llbracket a \rrbracket\)
    \(C_{\mu f^{\prime} \cdot \lambda x^{\prime} \cdot a^{\prime}}\left(x_{1}^{\prime}, \ldots, x_{n^{\prime}}^{\prime}\right) \rightarrow\) let \(f^{\prime}=\) fun in let \(x^{\prime}=\arg\) in \(\llbracket a^{\prime} \rrbracket\)
in \(\llbracket p r o g r a m \rrbracket\)
```

Note: this is a whole-program transformation, unlike closure conversion.

Example

Defunctionalization of $(\lambda x . \lambda y . x) 12$:

```
let rec apply (fn, arg) =
    match fn with
    | C1 () \(\quad->\) let \(x=\arg\) in \(C 2(x)\)
    | C2(x) \(\quad->\) let \(y=\arg\) in \(x\)
```

in
apply(apply(C1(), 1), 2)

We write C 1 for $C_{\lambda x . \lambda y . x}$ and C 2 for $C_{\lambda y . x}$.

Outline

(1) Closure conversion

(2) Defunctionalization

(3) Exception-returning style

4 State-passing style

(5) Continuation-passing style

(6) Bonus track: CPS + defunctionalization $=$?

(7) Bonus track: callcc + constructive logic $=$?

Exceptions

Exceptions are a control structure useful for error reporting, error handling, and more generally all situations that need "early exit" out of a computation.

```
let f x =
    try 1 + (if x = 0 then raise Error else 100 / x)
    with Error -> 101
```

In try a with Error $\rightarrow b$, if a evaluates normally without raising an exception, its value is returned as the value of the try...with. For instance, f $4=26$.

If a raises the Error exception, control branches to b, which becomes the result of the try...with. For instance, f $0=101$.

Exceptions

For a more realistic example of early exit, consider the computation of the product of a list of integers, returning 0 as soon as a list element is 0 :
let product lst =
let rec prod = function
| [] -> 1
| 0 :: tl -> raise Exit
| hd :: tl -> hd * prod tl
in
try prod lst with Exit -> 0

Exceptions

Reduction semantics for exceptions

In Felleisen style, add two head reduction rules for try...with and a generic exception propagation rule:

$$
\begin{array}{rll}
(\operatorname{try} v \text { with } x \rightarrow b) & \xrightarrow{\varepsilon} v \\
(\text { try raise } v \text { with } x \rightarrow b) & \xrightarrow{\varepsilon} b[x \leftarrow v] \\
F[\text { raise } v] & \xrightarrow{\varepsilon} \text { raise } v \quad \text { if } F \neq[]
\end{array}
$$

Exception propagation contexts F are like reduction contexts E but do not allow crossing a try...with

Reduction contexts:

$$
E::=[]|E b| v E \mid \operatorname{try} E \text { with } x \rightarrow b \mid \ldots
$$

Exception propagation contexts:

$$
F::=[]|F b| \vee F \mid \ldots
$$

Reduction semantics for exceptions

Assume the current program is $p=E$ [raise $v]$, that is, we are about to raise an exception. If there is a try... with that encloses the raise, the program will be decomposed as

$$
p=E^{\prime}[\operatorname{try} F[\text { raise } v] \text { with } x \rightarrow b]
$$

where F contains no try...with constructs.
F [raise v] head-reduces to raise v, and $E^{\prime}[$ try [] with $x \rightarrow b$] is an evaluation context. The reduction sequence is therefore:

$$
\begin{aligned}
p=E^{\prime}[\operatorname{try} F[\text { raise } v] \text { with } x \rightarrow b] & \rightarrow E^{\prime}[\text { try raise } v \text { with } x \rightarrow b] \\
& \rightarrow E^{\prime}[b[x \leftarrow v]]
\end{aligned}
$$

If there are no try... with around the raise, E is an exception propagation context F and the reduction is therefore

$$
p=E[\text { raise } v] \rightarrow \text { raise } v
$$

Exceptions

Reduction semantics for exceptions

Considering reduction sequences, a fourth possible outcome of evaluation appears: termination on an uncaught exception.

- Termination: $a \xrightarrow{*} v$
- Uncaught exception: $a \xrightarrow{*}$ raise v
- Divergence: $a \xrightarrow{*} a^{\prime} \rightarrow \ldots$
- Error: $a \xrightarrow{*} a^{\prime} \nrightarrow$ where $a \neq v$ and $a \neq$ raise v.

Natural semantics for exceptions

In natural semantics, the evaluation relation becomes $a \Rightarrow r$ where evaluation results are $r::=v \mid$ raise v.
Add the following rules for try...with:
$\frac{a \Rightarrow v}{\operatorname{try} a \text { with } x \rightarrow b \Rightarrow v} \quad \frac{a \Rightarrow \text { raise } v^{\prime} \quad b\left[x \leftarrow v^{\prime}\right] \Rightarrow r}{\operatorname{try} a \text { with } x \rightarrow b \Rightarrow r}$
as well as exception propagation rules such as:

$a \Rightarrow$ raise v	
$a b \Rightarrow$ raise v	$a \Rightarrow v^{\prime} b \Rightarrow$ raise v
$a b \Rightarrow$ raise v	

Conversion to exception-returning style

Goal: get rid of exceptions.
Input: a functional language featuring exceptions (raise and try...with).

Output: a functional language with pattern-matching but no exceptions.
Idea: every expression a evaluates to either

- $V(v)$ if a evaluates normally to a value v
- $E(v)$ if a terminates early by raising exception v.
(V, E are datatype constructors.)
Uses: giving semantics to exceptions; programming with exceptions in Haskell; reasoning about exceptions in Coq.

Definition of the conversion: Core constructs

$$
\begin{aligned}
\llbracket N \rrbracket= & V(N) \\
\llbracket x \rrbracket= & V(x) \\
\llbracket \lambda x \cdot a \rrbracket= & V(\lambda x . \llbracket a \rrbracket) \\
\llbracket \text { let } x=a \text { in } b \rrbracket= & \text { match } \llbracket a \rrbracket \text { with } E(x) \rightarrow E(x) \mid V(x) \rightarrow \llbracket b \rrbracket \\
\llbracket a b \rrbracket= & \text { match } \llbracket a \rrbracket \text { with } \\
& \mid E\left(e_{a}\right) \rightarrow E\left(e_{a}\right) \\
& \mid V\left(v_{a}\right) \rightarrow \\
& \text { match } \llbracket b \rrbracket \text { with } E\left(e_{b}\right) \rightarrow E\left(e_{b}\right) \mid V\left(v_{b}\right) \rightarrow v_{a} v_{b}
\end{aligned}
$$

Effect on types: if $a: \tau$ then $\llbracket a \rrbracket: \llbracket \tau \rrbracket$ outcome where $\llbracket \tau_{1} \rightarrow \tau_{2} \rrbracket=\llbracket \tau_{1} \rrbracket \rightarrow \llbracket \tau_{2} \rrbracket$ outcome and $\llbracket \tau \rrbracket=\tau$ for base types and where type 'a outcome $=\mathrm{V}$ of 'a | E of exp.

Definition of the conversion: Exception-specific constructs

$$
\llbracket \text { raise } a \rrbracket=\text { match } \llbracket a \rrbracket \text { with } E\left(e_{a}\right) \rightarrow E\left(e_{a}\right) \mid V\left(v_{a}\right) \rightarrow E\left(v_{a}\right)
$$

$\llbracket \operatorname{try} a$ with $x \rightarrow b \rrbracket=$ match $\llbracket a \rrbracket$ with $E(x) \rightarrow \llbracket b \rrbracket \mid V\left(v_{a}\right) \rightarrow V\left(v_{a}\right)$

Example of conversion

【try fn arg with exn $\rightarrow 0 \rrbracket=$ match
match V(fn) with
$\mid \mathrm{E}(\mathrm{x}) \rightarrow \mathrm{E}(\mathrm{x})$
$\mid \mathrm{V}(\mathrm{x}) \rightarrow$
match V(arg) with
$\mid E(y) \rightarrow E(y)$
$\mathrm{I} V(\mathrm{y}) \rightarrow \mathrm{x} y$
with
| V (z) $\rightarrow \mathrm{V}(\mathrm{z})$
| E(exn) \rightarrow V(0)

Administrative reductions

The naive conversion generates many useless match constructs over arguments whose shape $V(\ldots)$ or $E(\ldots)$ is known at compile-time.

These can be eliminated by performing administrative reductions $\xrightarrow{\text { adm }}$ at compile-time, just after the conversion:

$$
\begin{aligned}
& (\text { match } E(v) \text { with } E(x) \rightarrow b \mid V(x) \rightarrow c) \\
& (\text { match } V(v) \text { with } E(x) \rightarrow b \mid V(x) \rightarrow c)
\end{aligned} \stackrel{\text { adm }}{\rightarrow} \quad b[x \leftarrow v] \quad c[x \leftarrow v]
$$

Example of conversion

After application of administrative reductions, we obtain:
【try fn arg with exn \rightarrow 0】 = match fn arg with
$\mathrm{l} \mathrm{V}(\mathrm{z}) \rightarrow \mathrm{V}(\mathrm{z})$
I $\mathrm{E}(\mathrm{exn}) \rightarrow \mathrm{V}(0)$

Correctness of the conversion

Define the conversion of a value $\llbracket v \rrbracket_{v}$ as $\llbracket N \rrbracket_{v}=N$ and $\llbracket \lambda x . a \rrbracket_{v}=\lambda x . \llbracket a \rrbracket$

Theorem 1

(1) If $a \Rightarrow v$, then $\llbracket a \rrbracket \Rightarrow V\left(\llbracket v \rrbracket_{v}\right)$.
(2) If $a \Rightarrow$ raise v, then $\llbracket a \rrbracket \Rightarrow E\left(\llbracket v \rrbracket_{v}\right)$.
(3) If $a \Rightarrow \infty$, then $\llbracket a \rrbracket \Rightarrow \infty$.

Proof.

(1) and (2) are proved simultaneously by induction on the derivation of $a \Rightarrow r$ where r is an evaluation result. (3) is by coinduction. All three proofs use the substitution lemma $\llbracket a[x \leftarrow v] \rrbracket=\llbracket a \rrbracket \llbracket x \leftarrow \llbracket v \rrbracket \downarrow]$.

Outline

(1) Closure conversion

(2) Defunctionalization
(3) Exception-returning style

4 State-passing style
(5) Continuation-passing style
(6) Bonus track: CPS + defunctionalization $=$?
(7) Bonus track: callcc + constructive $\operatorname{logic}=$?

State (imperative programming)

The word state in programming language theory refers to the distinguishing feature of imperative programming: the ability to assign (change the value of) variables after their definition, and to modify data structures in place after their construction.

References (recap)

A simple yet adequate way to model state is to introduce references: indirection cells / one-element arrays that can be modified in place. The basic operations over references are:
ref a

Create a new reference containing initially the value of a.
deref a also written !a
Return the current contents of reference a.
assign $a b$ also written $a:=b$
Replace the contents of reference a with the value of b.
Subsequent deref a operations will return this value.

State

Uses of references

A let-bound reference emulates an imperative variable:

$$
\begin{array}{ll}
\text { int } \mathrm{x}=3 ; & \text { let } \mathrm{x}=\text { ref } 3 \text { in } \\
\mathrm{x}=\mathrm{x}+1 ; & ---> \\
\text { return } \mathrm{x} ; & \mathrm{x}:=!\mathrm{x}+1 ; \\
!\mathrm{x}
\end{array}
$$

(We write $a ; b$ instead of let $z=a$ in b if z is not free in b.)
Such references also enable a function to maintain an internal state:
let make_pseudo_random_generator seed =
let state $=$ ref seed in
入n. state := (!state * A + B) mod C; !state mod n

Uses of references

Arrays \approx list of references (or better: primitive arrays).
Records with mutable fields \approx tuples of references.

Imperative singly-linked list, with in-place concatenation:

```
type 'a mlist = 'a mlist_content ref
and 'a mlist_content = Nil | Cons of 'a * 'a mlist
let rec concat l1 12 =
    match !l1 with
    | Nil }->\mathrm{ l1 := !l2
    | Cons(x, r) }->\mathrm{ concat !r 12
```


Uses of references

Memoization $=$ caching of already-computed results.

```
let fib_cache = ref map_empty
let rec fib n =
    match map_find n !fib_cache with
    | Some res -> res
    | None ->
        let res =
        if n < 2 then 1 else fib(n-1) + fib(n-2) in
        fib_cache := map_add n res !fib_cache;
        res
```


Lazy evaluation $=$ CBV + references

Implementation of lazy evaluation:

```
        type 'a state =
    | Unevaluated of unit -> 'a
    | Evaluated of 'a
type 'a lazy = ('a state) ref
let force (lz: 'a lazy) : 'a =
    match !lz with
    | Evaluated v -> v
    | Unevaluated f ->
        let v = f() in lz := Evaluated v; v
+ syntactic sugar: lazy e \equivref(Unevaluated(fun () }->e)\mathrm{ )
```


State

Semantics of references

Semantics based on substitutions fail to account for sharing between references:

$$
\text { let } r=\text { ref } 1 \text { in } r:=2 ;!r \quad \nrightarrow \quad(\text { ref } 1):=2 ;!(\text { ref } 1)
$$

Left: the same reference r is shared between assignment and reading; result is 2.
Right: two distinct references are created, one is assigned, the other read; result is 1 .

To account for sharing, we must use an additional level of indirection:

- ref a expressions evaluate to locations ℓ : a new kind of variable identifying references uniquely. (Locations ℓ are values.)
- A global environment called the store associates values to locations.

Reduction semantics for references

Reduction over configurations a / s : pairs of a term a and a store s mapping locations to values.

One-step reduction $a / s \rightarrow a^{\prime} / s^{\prime}$
(read: in initial store s, a reduces to a^{\prime} and updates the store to s^{\prime})

$$
\begin{aligned}
(\lambda x . a) v / s & \xrightarrow[\rightarrow]{\varepsilon} a[x \leftarrow v] / s \\
\text { ref } v / s & \xrightarrow[\rightarrow]{\varepsilon} \ell /(s+\ell \mapsto v) \quad \text { where } \ell \notin \operatorname{Dom}(s) \\
\text { deref } \ell / s & \xrightarrow{\varepsilon} s(\ell) / s \\
\text { assign } \ell v / s & \xrightarrow{\varepsilon}() /(s+\ell \mapsto v) \\
& \frac{a / s \xrightarrow{\varepsilon} a^{\prime} / s^{\prime}}{E(a) / s \rightarrow E\left(a^{\prime}\right) / s^{\prime}} \text { (context) }
\end{aligned}
$$

Example of reduction sequence

In red: the active redex at every step.

$$
\begin{aligned}
& \text { let } r=\text { ref } 3 \text { in let } x=r:=!r+1 \text { in }!r / \emptyset \\
& \rightarrow \text { let } r=\ell \text { in let } x=r:=!r+1 \text { in }!r /\{\ell \mapsto 3\} \\
& \rightarrow \text { let } x=\ell:=!\ell+1 \text { in }!\ell /\{\ell \mapsto 3\} \\
& \rightarrow \text { let } x=\ell:=3+1 \text { in }!\ell /\{\ell \mapsto 3\} \\
& \rightarrow \text { let } x=\ell:=4 \text { in }!\ell /\{\ell \mapsto 3\} \\
& \rightarrow \text { let } x=() \text { in }!\ell /\{\ell \mapsto 4\} \\
& \rightarrow!\ell /\{\ell \mapsto 4\} \\
& \rightarrow 4
\end{aligned}
$$

Conversion to state-passing style

Goal: get rid of state.
Input: a functional language with imperative references.
Output: a pure functional language.
Idea: every expression a becomes a function that takes a run-time representation of the current store and returns a pair (result value, updated store).

Uses: give semantics to references; program imperatively in Haskell; reason over imperative code in Coq.

Definition of the conversion: Core constructs

$$
\begin{aligned}
\llbracket N \rrbracket & =\lambda s .(N, s) \\
\llbracket x \rrbracket & =\lambda s .(x, s) \\
\llbracket \lambda x . a \rrbracket & =\lambda s .(\lambda x . \llbracket a \rrbracket, s) \\
\llbracket \text { let } x=a \text { in } b \rrbracket= & \lambda s . \text { match } \llbracket a \rrbracket s \text { with }\left(x, s^{\prime}\right) \rightarrow \llbracket b \rrbracket s^{\prime} \\
\llbracket a b \rrbracket= & \lambda s . \operatorname{match} \llbracket a \rrbracket s \text { with }\left(v_{a}, s^{\prime}\right) \rightarrow \\
& \text { match } \llbracket b \rrbracket s^{\prime} \text { with }\left(v_{b}, s^{\prime \prime}\right) \rightarrow v_{a} v_{b} s^{\prime \prime}
\end{aligned}
$$

Effect on types: if $a: \tau$ then $\llbracket a \rrbracket$: store $\rightarrow \llbracket \tau \rrbracket \times$ store where $\llbracket \tau_{1} \rightarrow \tau_{2} \rrbracket=\llbracket \tau_{1} \rrbracket \rightarrow$ store $\rightarrow \llbracket \tau_{2} \rrbracket \times$ store and $\llbracket \tau \rrbracket=\tau$ for base types.

Definition of the conversion:

Constructs specific to references

$$
\begin{aligned}
\llbracket r e f a \rrbracket= & \lambda s . \text { match } \llbracket a \rrbracket s \text { with }\left(v_{a}, s^{\prime}\right) \rightarrow \text { store_alloc } v_{a} s^{\prime} \\
\llbracket!a \rrbracket= & \lambda s . \text { match } \llbracket a \rrbracket s \text { with }\left(v_{a}, s^{\prime}\right) \rightarrow\left(\text { store_read } v_{a} s^{\prime}, s^{\prime}\right) \\
\llbracket a:=b \rrbracket= & \lambda s . \operatorname{match} \llbracket a \rrbracket s \text { with }\left(v_{a}, s^{\prime}\right) \rightarrow \\
& \text { match } \llbracket b \rrbracket s^{\prime} \text { with }\left(v_{b}, s^{\prime \prime}\right) \rightarrow\left(\varepsilon, \text { store_write } v_{a} v_{b} s^{\prime \prime}\right)
\end{aligned}
$$

The operations store_alloc, store_read and store_write provide a concrete implementation of the store.

Example of conversion

Administrative reductions:

$$
\begin{aligned}
&\left(\lambda s^{\prime} . b\right) s \xrightarrow{\text { adm }} b\left[s \leftarrow s^{\prime}\right] \text { if } s \text { variable } \\
&\text { (match } \left.(a, s) \text { with }\left(x, s^{\prime}\right) \rightarrow b\right) \xrightarrow[\rightarrow]{\text { adm }} \text { let } x=a \text { in } b\left[s^{\prime} \leftarrow s\right] \\
& \text { let } x=v \text { in } b \xrightarrow{\text { adm }} b[x \leftarrow v] \\
& \text { let } x=y \text { in } b \xrightarrow{\text { adm }} b[x \leftarrow y]
\end{aligned}
$$

Example of translation after administrative reductions:
[[let r = ref 3 in let $\mathrm{x}=\mathrm{r}:=$! $\mathrm{r}+1$ in ! r$]]=$ λs. match store_alloc s 3 with (r, s1) ->
let $\mathrm{t}=$ store_read r s1 in
let $u=t+1$ in
match (ε, store_write r u s1) with (x, s2) ->
(store_read r s2, s2)

An implementation of the store

Locations $=$ integers.

Stores $=$ pairs (location, finite map location \mapsto value).

$$
\begin{aligned}
\text { store_alloc } v(n, m) & =(n,(n+1, m+\{n \mapsto v\})) \\
\text { store_read } \ell(n, m) & =m(\ell) \\
\text { store_write } \ell v(n, m) & =(n, m+\{\ell \mapsto v\})
\end{aligned}
$$

Typing the store?

Easy: static typing of a monomorphic store, where all values stored in references are of the same type sval:

$$
\begin{aligned}
\text { store_alloc }: & \text { sval } \rightarrow \text { store } \rightarrow \text { location } \times \text { store } \\
\text { store_read }: & \text { location } \rightarrow \text { store } \rightarrow \text { sval } \\
\text { store_write }: & \text { location } \rightarrow \text { sval } \rightarrow \text { store } \rightarrow \text { store }
\end{aligned}
$$

Much more challenging (programming exercise III.6): a type-safe implementation of a polymorphic store.

$$
\begin{aligned}
\text { store_alloc }: & \forall \alpha . \alpha \rightarrow \text { store } \rightarrow \alpha \text { location } \times \text { store } \\
\text { store_read }: & \forall \alpha . \alpha \text { location } \rightarrow \text { store } \rightarrow \alpha \\
\text { store_write }: & \forall \alpha . \alpha \text { location } \rightarrow \alpha \rightarrow \text { store } \rightarrow \text { store }
\end{aligned}
$$

Outline

(1) Closure conversion

2) Defunctionalization

(3) Exception-returning style

4 State-passing style

(5) Continuation-passing style
(6) Bonus track: CPS + defunctionalization $=$?
(7) Bonus track: callcc + constructive logic $=$?

Continuations

Notion of continuation

Given a program p and a subexpression a of p, the continuation of a is the computations that remain to be done once a is evaluated to obtain the result of p.

It can be viewed as a function: (value of $a) \mapsto($ value of $p)$.

Example 2

Consider the program $p=(1+2) *(3+4)$.
The continuation of $a=(1+2)$ is $\lambda x \cdot x *(3+4)$.
The continuation of $a^{\prime}=(3+4)$ is $\lambda x .3 * x$.
(Not $\lambda x .(1+2) * x$ because $1+2$ has already been evaluated to 3 .)

Continations and reduction contexts

Continuations closely correspond with reduction contexts in Felleisen-style reduction semantics:
If $p=E[a]$ and a can reduce, then the continuation of a is $\lambda x . E[x]$.

Example 3

Consider again $p=(1+2) *(3+4)$.

$$
\begin{aligned}
p & =(1+2) *(3+4)=E[1+2] \text { with } E=[] *(3+4) \\
& \rightarrow p^{\prime}=3 *(3+4)=E^{\prime}[3+4] \text { with } E^{\prime}=3 *[] \\
& \rightarrow 3 * 7 \rightarrow 21
\end{aligned}
$$

The continuation of $1+2$ in p is $\lambda x \cdot E[x]=\lambda x . x *(3+4)$.
The continuation of $3+4$ in p^{\prime} is $\lambda x \cdot E^{\prime}[x]=\lambda x .3 * x$.

Continuations

Continuations as first-class values

The Scheme language offers a primitive callcc (call with current continuation) that enables a subexpression a of the program to capture its continuation (as a function 'value of a ' \mapsto 'value of the program') and manipulate this continuation as a first-class value.

The expression callcc ($\lambda k . a$) evaluates as follows:

- The continuation of this expression is passed as argument to λ k.a.
- Evaluation of a proceeds; its value is the value of callcc ($\lambda k . a$).
- If, during the evaluation of a or at any later time, we evaluate throw $k v$, evaluation continues as if callcc ($\lambda k . a$) returned v. That is, the continuation of the callcc expression is reinstalled and restarted with v as the result provided by this expression.

The types are:
callcc : $\forall \alpha,(\alpha$ cont $\rightarrow \alpha) \rightarrow \alpha \quad$ throw : $\forall \alpha \beta, \alpha$ cont $\rightarrow \alpha \rightarrow \beta$.

Using first-class continuations

Libraries for lists, sets, and other collection data types often provide an imperative iterator iter, e.g.

```
(* list_iter: ('a -> unit) -> 'a list -> unit *)
let rec list_iter f l =
    match 1 with
    | [] -> ()
    | head :: tail -> f head; list_iter f tail
```


Using first-class continuations

Using first-class continuations, an existing imperative iterator can be turned into a function that returns the first element of a collection satisfying a given predicate pred.
let find pred lst = callcc ($\lambda \mathrm{k}$.
list_iter
($\lambda \mathrm{x}$. if pred x then throw k (Some x) else ()) lst;
None)
If an element x is found such that pred $\mathrm{x}=$ true, the throw causes Some x to be returned immediately as the result of find pred lst. If no such element exists, list_iter terminates normally, and None is returned.

Using first-class continuations

The previous example can also be implemented with exceptions. However, callcc adds the ability to backtrack the search.
let find pred lst = callcc ($\lambda \mathrm{k}$.

```
list_iter
    (\lambdax. if pred x
    then callcc ( }\lambda\textrm{k}\mathrm{ '. throw k (Some(x, k')))
            else ())
    lst;
None)
```

When x is found such that pred $\mathrm{x}=$ true, find returns not only x but also a continuation k ' which, when thrown, will cause backtracking: the search in lst restarts at the element following x .

Using first-class continuations

The following use of find will print all list elements satisfying the predicate:
let printall pred lst = match find pred list with
| None -> ()
| Some(x, k) -> print_string x; throw k ()

The throw k () restarts find pred list where it left the last time.

First-class continuations

callcc and other control operators are difficult to use directly ("the goto of functional languages"), but in combination with references, can implement a variety of interesting control structures:

- Exceptions (exercise III.8)
- Backtracking.
- Imperative iterators (such as Python's yield).
- Checkpointing and replay debugging.
- Coroutines / cooperative multithreading (next slides).

Coroutines

Consider a simple subroutine (procedure) that does side-effects:
let task message increment = let rec loop $\mathrm{n}=$

```
            if n >= 10 then () else begin
            print_string message; print_int n;
            loop(n + increment)
            end
    in loop 0
```

let _ = task " A" 1; task " B" 2; task " C" 3

Execution is purely sequential, producing
A0 A1 A2 A3 A4 A5 A6 A7 A8 A9 B0 B2 B4 B6 B8 C0 C3 C9

Coroutines

Coroutines interleave their executions, explicitly yielding control to other coroutines.

```
let task message increment =
    fun () ->
    let rec loop n =
        if n >= 10 then terminate() else begin
            print_string message; print_int n;
            yield();
            loop(n + increment)
            end
    in loop 0
```

let _ = fork(task " A" 1); fork(task " B" 2); fork(task " C" 3)

Execution is interleaved, producing for instance
A0 B0 A1 C0 B2 A2 C3 B4 A3 C6 B6 A4 C9 B8 A5 A6 A7 A8 A9

Implementing coroutines with continuations

Maintain a queue of continuations corresponding to coroutines that have not started yet or have previously yielded control.
let queue = ref []
let enqueue $\mathrm{x}=$ queue := !queue © [x]
let dequeue () =
match !queue with x :: q' -> queue := q'; x | [] -> assert false
let queue_is_empty () = match !queue with [] -> true | x :: q' -> false

Implementing coroutines with continuations

fork proc executes proc() but enqueues a continuation corresponding to the computation following fork proc.

```
let fork (proc: unit -> unit) =
    callcc (fun k -> enqueue k; proc())
```

yield() yields control within its caller and restarts another suspended computation (if any) or the caller itself (otherwise).

```
let yield () =
    callcc (fun k -> enqueue k; throw (dequeue()) ())
```

terminate() terminates its caller, restarting another suspended computation (if any) or terminating the whole program (otherwise).

```
let terminate () =
    if queue_is_empty()
    then exit 0
    else throw (dequeue()) ()
```


Reduction semantics for continuations

In Felleisen's style, keep the same head reductions $\xrightarrow{\varepsilon}$ and the same context rule as before, and add two whole-program reduction rules (\rightarrow) for callcc and throw:

$$
\begin{aligned}
E[\text { callcc } v] & \rightarrow E[v(\lambda x . E[x])] \\
E[\text { throw } k v] & \rightarrow k v
\end{aligned}
$$

Same evaluation contexts E as before.

Note the non-linear use of the context E :

- The rule for callcc duplicates the current context E.
- The rule for throw discards the current context E.

Example of reductions

$$
\begin{aligned}
& E[\text { callcc }(\lambda k .1+\text { throw } k 0)] \\
& \quad \rightarrow E[(\lambda k .1+\text { throw } k 0)(\lambda x . E[x])] \\
& \rightarrow E[1+\text { throw }(\lambda x . E[x]) 0] \\
& \rightarrow(\lambda x \cdot E[x]) 0 \\
& \rightarrow E[0]
\end{aligned}
$$

Note how throw discards the current context $E[1+[]]$ and reinstalls the saved context E instead.

Continuations

Conversion to continuation-passing style (CPS)

Goal: make explicit the handling of continuations.
Input: a call-by-value functional language with callcc.
Output: a call-by-value or call-by-name, pure functional language (no callcc).

Idea: every term a becomes a function $\lambda k \ldots$ that receives its continuation k as an argument, computes the value v of a, and finishes by applying k to v.

Uses: compilation of callcc; semantics; programming with continuations in Caml, Haskell, ...

CPS conversion: Core constructs

$$
\begin{aligned}
\llbracket N \rrbracket & =\lambda k \cdot k N \\
\llbracket x \rrbracket & =\lambda k \cdot k x \\
\llbracket \lambda x \cdot a \rrbracket & =\lambda k \cdot k(\lambda x \cdot \llbracket a \rrbracket) \\
\llbracket \text { let } x=a \text { in } b \rrbracket & =\lambda k \cdot \llbracket a \rrbracket(\lambda x \cdot \llbracket b \rrbracket k) \\
\llbracket a b \rrbracket & =\lambda k \cdot \llbracket a \rrbracket\left(\lambda v_{a} \cdot \llbracket b \rrbracket\left(\lambda v_{b} \cdot v_{a} v_{b} k\right)\right)
\end{aligned}
$$

A function λx.a becomes a function of two arguments, x and the continuation k that will receive the value of a.

Effect on types: if $a: \tau$ then $\llbracket a \rrbracket:(\llbracket \tau \rrbracket \rightarrow$ answer $) \rightarrow$ answer where $\llbracket \tau \rrbracket=\tau$ for base types
and $\llbracket \tau_{1} \rightarrow \tau_{2} \rrbracket=\llbracket \tau_{1} \rrbracket \rightarrow\left(\llbracket \tau_{2} \rrbracket \rightarrow\right.$ answer $) \rightarrow$ answer

Continuations

CPS conversion: Continuation operators

$$
\begin{aligned}
\llbracket \mathrm{callcc} a \rrbracket & =\lambda k . \llbracket a \rrbracket(\lambda f . f k k) \\
\llbracket \text { throw } a b \rrbracket & =\lambda k . \llbracket a \rrbracket\left(\lambda v_{a} \cdot \llbracket b \rrbracket\left(\lambda v_{b} \cdot v_{a} v_{b}\right)\right)
\end{aligned}
$$

In callcc a, the function value f of a receives the current continuation k both as its argument and as its continuation.

In throw a b, we discard the current continuation k and apply directly the value of a (which is a continuation captured by callcc) to the value of b. Note (again) the non-linear use of the continuation k : callcc duplicates k, and throw ignores k,

Administrative reductions

The CPS translation $\llbracket \cdots \rrbracket$ produces terms that are more verbose than one would naturally write by hand, e.g. in the case of an application of a variable to a variable:

$$
\llbracket f x \rrbracket=\lambda k \cdot\left(\lambda k_{1} \cdot k_{1} f\right)\left(\lambda v_{1} \cdot\left(\lambda k_{2} \cdot k_{2} x\right)\left(\lambda v_{2} \cdot v_{1} v_{2} k\right)\right)
$$

instead of the more natural $\lambda k . f \times k$.
This clutter can be eliminated by performing β reductions at transformation time to eliminate the "administrative redexes" introduced by the translation. In particular, we have

$$
(\lambda k . k v)(\lambda x . a) \xrightarrow{\text { adm }}(\lambda x . a) v \xrightarrow{\text { adm }} a[x \leftarrow v]
$$

whenever v is a value or variable.

Continuations

Examples of CPS translation

$$
\begin{aligned}
& \llbracket f(f x) \rrbracket \\
& \quad=\lambda k . f \times(\lambda v . f v k)))
\end{aligned}
$$

$\llbracket \mu$ fact. λn. if $n=0$ then 1 else $n * \operatorname{fact}(n-1) \rrbracket$

$$
=\lambda k_{0} \cdot k_{0}(
$$

$$
\mu f a c t \text {. } \lambda n \text {. } \lambda k \text {. if } n=0 \text { then } k 1 \text { else fact }(n-1)(\lambda v . k(n * v)))
$$

【callcc $(\lambda k . a) \rrbracket$

$$
=\lambda k \cdot \llbracket a \rrbracket k
$$

Execution of CPS-converted programs

Execution of a program prog is achieved by applying its CPS conversion to the initial continuation $\lambda x . x$:

$$
\llbracket p r o g \rrbracket(\lambda x . x)
$$

Theorem 4
If $a \xrightarrow{*} v$, then $\llbracket a \rrbracket(\lambda x . x) \xrightarrow{*} \llbracket v \rrbracket_{v}$. If a diverges, so does $\llbracket a \rrbracket(\lambda x . x)$.

Where the CPS translation of values v is:

$$
\llbracket N \rrbracket_{v}=N \quad \llbracket \lambda x \cdot a \rrbracket_{v}=\lambda x \cdot \llbracket a \rrbracket
$$

Continuations

Plotkin's proof

G. Plotkin, Call-by-name, call-by-value and the lambda-calculus, TCS 1(2), 1975

A difficult proof based on the following simulation diagram:

$a: k$, the "colon translation", reduces well-chosen administrative redexes.

A proof using natural semantics

These difficulties with administrative reductions can be avoided by using natural semantics in the premises:

Theorem 5

If $a \Rightarrow v$ and k is a value, then $\llbracket a \rrbracket k \xrightarrow{+} k \llbracket v \rrbracket_{v}$.
If $a \Rightarrow \infty$ and k is a value, then $\llbracket a \rrbracket k$ reduces infinitely.

Proof.

Part 1 is by induction on a derivation of $a \Rightarrow v$. (Exercise.)
For part 2, consider the set $X=\{\llbracket a \rrbracket k \mid a \Rightarrow \infty \wedge k$ value $\}$ and show that $\forall a \in X, \exists a^{\prime} \in X, a \xrightarrow{+} a^{\prime}$, using part 1.
The two proofs are suprisingly similar to the proofs of thm 10 and 17 in lecture II (correctness of the Modern SECD using natural semantics).

Continuations

Danvy and Nielsen's one-pass CPS transformation

Split source terms a into:
Atoms: $\quad t::=N|x| \lambda x . a$
Serious terms: $s::=a_{1} a_{2}$

The one-pass CPS transformation:

$$
\left.\begin{array}{rlrl}
\llbracket t \rrbracket k & =k \Psi(t) & \Psi(N) & =N \\
\llbracket t_{1} & t_{2} \rrbracket k & =\Psi\left(t_{1}\right) \Psi\left(t_{2}\right) k & \Psi(x)
\end{array}\right)=x
$$

Danvy and Nielsen's one-pass CPS transformation

Not only does this CPS transformation produce terms free of administrative redexes, but it also enjoys a simple simulation diagram:

CPS terms

The λ-terms produced by the CPS transformation have a very specific shape, described by the following grammar:

CPS atom: atom $::=x|N| \lambda v$. body $\mid \lambda x . \lambda k$. body CPS body: body $::=$ atom \mid atom $_{1}$ atom $_{2} \mid$ atom $_{1}$ atom $_{2}$ atom $_{3}$
$\llbracket a \rrbracket$ is an atom, and $\llbracket a \rrbracket(\lambda x, x)$ is a body.

Reduction of CPS terms

CPS atom: atom $::=x|N| \lambda v$. body $\mid \lambda x . \lambda k$. body
CPS body: body $::=$ atom \mid atom $_{1}$ atom $_{2} \mid$ atom $_{1}$ atom $_{2}$ atom $_{3}$

Note that all applications (unary or binary) are in tail-position and at application-time, their arguments are closed atoms, that is, values.

The following reduction rules suffice to evaluate CPS-converted programs:

$$
\begin{aligned}
(\lambda x \cdot \lambda k . \text { body }) \text { atom }_{1} \text { atom }_{2} & \rightarrow \operatorname{body}\left[x \leftarrow \text { atom }_{1}, k \leftarrow \text { atom }_{2}\right] \\
(\lambda v . \text { body }) \text { atom } & \rightarrow \operatorname{body}[v \leftarrow \text { atom }]
\end{aligned}
$$

These reductions are always applied at the top of the program - there is no need for reduction under a context!

Continuations

The Indifference theorem

G. Plotkin, Call-by-name, call-by-value and the lambda-calculus, TCS 1(2), 1975

Theorem 6 (Indifference)

A closed CPS-converted program 【a】 ($\lambda x . x$) evaluates in the same way in call-by-name, in left-to-right call-by-value, and in right-to-left call-by-value.

Proof.

Since closed atoms are values, the reduction rules

$$
\begin{aligned}
&\left(\lambda x \cdot \lambda k \cdot{\text { body }) \text { atom }_{1} \text { atom }_{2}} \rightarrow \text { body }\left[x \leftarrow \text { atom }_{1}, k \leftarrow \text { atom }_{2}\right]\right. \\
&(\lambda v . \text { body }) \text { atom } \rightarrow \text { body }[v \leftarrow \text { atom }]
\end{aligned}
$$

are admissible both under call-by-value and call-by-name. Since we do not reduce under application nodes, left-to-right or right-to-left evaluation of application makes no difference.

CPS conversion and reduction strategy

CPS conversion encodes the reduction strategy in the structure of the converted terms. For instance, right-to-left call-by-value is obtained by taking

$$
\llbracket a b \rrbracket=\lambda k \cdot \llbracket b \rrbracket\left(\lambda v_{b} \cdot \llbracket a \rrbracket\left(\lambda v_{a}, v_{a} v_{b} k\right)\right)
$$

and call-by-name is achieved by taking

$$
\begin{aligned}
\llbracket x \rrbracket & =\lambda k \cdot x k \quad \text { (or just } \llbracket x \rrbracket=x) \\
\llbracket a b \rrbracket & =\lambda k \cdot \llbracket a \rrbracket\left(\lambda v_{a} \cdot v_{a} \llbracket b \rrbracket k\right)
\end{aligned}
$$

Note change of viewpoint:

- in CBV, a variable is a value, so we apply the continuation to this value $(\llbracket \times \rrbracket=\lambda k . k x)$
- in CBN, a variable is a suspended computation, so we apply this computation to the continuation $(\llbracket \times \rrbracket=\lambda k . \times k)$

Continuations

Compilation of CPS terms

CPS terms can be executed by a stackless abstract machines with components

- a code pointer c
- an environment e
- three registers R_{1}, R_{2}, R_{3}.

Instruction set:
$\operatorname{ACCESS}_{i}(n) \quad$ store n-th field of the environment in R_{i}
$\operatorname{ConSt}_{i}(N) \quad$ store the integer N in R_{i}
$\operatorname{CLOSURE}_{i}(c)$ store closure of c in R_{i}
TAILAPPLY1 apply closure in R_{1} to argument R_{2}
TAILAPPLY2 apply closure in R_{1} to arguments R_{2}, R_{3}

Compilation of CPS terms

Compilation of atoms \mathcal{A}_{i} (atom) (leaves the value of atom in R_{i}):

$$
\begin{aligned}
\mathcal{A}_{i}(\underline{n}) & =\operatorname{ACCESS}_{i}(n) \\
\mathcal{A}_{i}(N) & =\operatorname{CoNST}_{i}(N) \\
\mathcal{A}_{i}\left(\lambda^{1} . a\right) & =\operatorname{CLOSURE}_{i}(\mathcal{B}(a)) \\
\mathcal{A}_{i}\left(\lambda^{2} . a\right) & =\operatorname{CLOSUR}_{i}(\mathcal{B}(a))
\end{aligned}
$$

Compilation of bodies \mathcal{B} (body):

$$
\begin{aligned}
\mathcal{B}(a) & =\mathcal{A}_{1}(a) \\
\mathcal{B}\left(a_{1} a_{2}\right) & =\mathcal{A}_{1}\left(a_{1}\right) ; \mathcal{A}_{2}\left(a_{2}\right) ; \text { TAILAPPLY } 1 \\
\mathcal{B}\left(a_{1} a_{2} a_{3}\right) & =\mathcal{A}_{1}\left(a_{1}\right) ; \mathcal{A}_{2}\left(a_{2}\right) ; \mathcal{A}_{3}\left(a_{3}\right) ; \text { TAILAPPLY2 }
\end{aligned}
$$

Continuations

Transitions of the CPS abstract machine

Machine state before					Machine state after				
Code	Env	R_{1}	R_{2}	R_{3}	Code	Env	R_{1}	R_{2}	R_{3}
TAILAPPLY1; C	e	$c^{\prime}\left[e^{\prime}\right]$	v	-	c^{\prime}	v.e ${ }^{\prime}$	-	-	-
TAILAPPLY2; C	e	$c^{\prime}\left[e^{\prime}\right]$	v_{1}	v_{2}	c^{\prime}	$v_{2} \cdot v_{1} \cdot e^{\prime}$	-	-	-
$\operatorname{ACCESS}_{1}(n) ; \mathrm{C}$	e		V_{2}	V3	c	e	$e(n)$	V_{2}	V3
$\mathrm{CONST}_{1}(n) ; \mathrm{c}$	e	-	v_{2}	V3	c	e	N	V_{2}	V3
$\mathrm{CLOSURE}_{1}\left(c^{\prime}\right) ; ~ c$	e		v_{2}	V3	c	e	$c^{\prime}[e]$	v_{2}	V3

(Similarly for the other ACCESS, CONST and CLOSURE instructions.)

Continuations vs. stacks

That CPS terms can be executed without a stack is not surprising, given that the stack of a machine such as the Modern SECD is isomorphic to the current continuation in a CPS-based approach.

$$
f \mathrm{x}=1+\mathrm{gx} \quad \mathrm{~g} \mathrm{x}=2 * \mathrm{~h} \mathrm{x} \quad \mathrm{~h} \mathrm{x}=\ldots
$$

Consider the execution point where h is entered. In the CPS model, the continuation at this point is

$$
k=\lambda v . k^{\prime}(2 * v) \text { with } k^{\prime}=\lambda v . k^{\prime \prime}(1+v) \text { and } k^{\prime \prime}=\lambda v \cdot v
$$

In the Modern SECD model, the stack at this point is

Continuations

Continuations vs. stacks

At the machine level, stacks and continuations are two ways to represent the call chain: the chain of function calls currently active.

- Continuations: as a singly-linked list of heap-allocated closures, each closure representing a function activation. These closures are reclaimed by the garbage collector.
- Stacks: as contiguous blocks in a memory area outside the heap, each block representing a function activation. These blocks are explicitly deallocated by RETURN instructions.

Stacks are more efficient in terms of GC costs and memory locality, but need to be copied in full to implement callcc.

Compiling with continuations, A. Appel, Cambridge University Press, 1992.

Outline

(1) Closure conversion
(2) Defunctionalization
(3) Exception-returning style

4 State-passing style
(5) Continuation-passing style

6 Bonus track: CPS + defunctionalization $=$?
(7) Bonus track: callcc + constructive logic $=$?

Making functions tail-recursive

Contemporary OS put arbitrary, rather low limitations on stack size.
\rightarrow Sometimes, programmers need to rewrite recursive functions so that they are tail recursive and run in constant stack space.

A systematic way to do so:
CPS conversion followed by defunctionalization!

Tail-recursion by hand: list concatenation

Natural definition, runs in stack space $O($ length $(x))$:

```
let rec app x y =
    match x with
    | [] -> y
    | x1 :: xs -> x1 :: app xs y
```

Tail-recursive definition, using rev_app (reverse \& append):

```
let rec rev_app x y =
    match x with
        | [] -> y
        x1 :: xs -> rev_app xs (x1 :: y)
let app x y = rev_app (rev_app x []) y
```

Bonus track: CPS + defunctionalization $=$?
Systematic way, 1: CPS transformation

We apply the CPS transformation locally to the app function:

```
let rec cps_app x y k =
    match x with
    | [] -> k y
    | x1 :: xs -> cps_app xs y (fun res -> k (x1 :: res))
```

then pass it the initial continuation:
let app x y = cps_app x y (fun res -> res)

The result runs in constant stack space but is less readable and less efficient than the rev_app implementation.

Systematic way, 2: defunctionalization

Let's defunctionalize cps_app.

```
type 'a funval =
    | A (* fun res -> res *)
    | B of 'a * 'a funval (* fun res -> k (x1 :: res) *)
let rec defun_app x y k =
    match x with
    | [] -> apply k y
    | x1 :: xs -> defun_app xs y (B(x1, k))
and apply k res =
    match k with
    | A -> res
    | B(x1, k') -> apply k' (x1 :: res)
let app x y = defun_app x y A
```

Bonus track: CPS + defunctionalization $=$?
Systematic way, 3: squinting

Note that the type funval of function "closures" is isomorphic to list.

```
let rec defun_app x y k =
    match x with
    | [] -> apply k y
    | x1 :: xs -> defun_app xs y (x1 :: k)
and apply k res =
    match k with
    | [] -> res
    | x1 :: k' -> apply k' (x1 :: res)
let app x y = defun_app x y []
```

Note that apply is really rev_app,
and defun_app x y k is really rev_app (rev_app $\mathrm{x} k$) $\mathrm{y} . .$.

Tail-recursive interpreters

(Ager, Biernacki, Danvy and Midtgaard, 2003)

What happens if we apply the "CPS + defunctionalization" trick to an interpreter for a functional language?

Let's see on an interpreter for call-by-name, using environments and de Bruijn indices.

A CBN interpreter with environments

```
type term = Var of int | Lam of term | App of term * term
type thunk \(=\) Thunk of term \(*\) env
    and env = thunk list
    and value \(=\) Clos of term * env
let rec eval (e: env) (a: term) : value =
    match a with
        | Var n ->
            let (Thunk(a', e')) = List.nth e \(n\) in eval e' \(a^{\prime}\)
        | Lam a ->
            Clos(a, e)
        | \(\operatorname{App}(b, c)\)->
            let (Clos(d, e')) = eval e b in eval (Thunk(c, e) :: e') d
```


After CPS conversion ...

```
let rec cps_eval e a k =
    match a with
    | Var n ->
        let (Thunk(a', e')) = List.nth e \(n\) in cps_eval e' a' \(k\)
    | Lam a ->
        \(\mathrm{k}(\operatorname{Clos}(\mathrm{a}, \mathrm{e}))\)
    | \(\operatorname{App}(\mathrm{b}, \mathrm{c})\)->
        cps_eval e b (fun Clos(d, e') ->
        cps_eval (Thunk (c, e) : : e') d k)
```

let eval e a = cps_eval e a (fun res -> res)
then defunctionalization ...

```
type funval =
    | A
        (* fun res -> res *)
    | B of term * env * funval
    (* fun (Clos...) -> ... c ... e ... k *)
let rec defun_eval e a k =
    match a with
    Var n -> let (Thunk(a', e')) = List.nth e n in defun_eval e' a' k
    | Lam a -> apply k (Clos(a, e))
    | App(b, c) -> defun_eval e b (B(c, e, k))
and apply k res =
    match k with
    | A -> res
    | B(c, e, k) ->
        let (Clos(d, e')) = res in defun_eval (Thunk(c, e) :: e') d k
let eval e a = defun_eval e a A
```


and a bit of cleanup ...

(funval isomorphic to thunk list; inlining of apply)

```
let rec tail_eval e a k =
    match a, k with
    | Var n, _ \(->\) let (Thunk(a', e')) = List.nth e n in tail_eval e' a' k
    | Lam a, [] -> Clos(a, e)
    | Lam a, Thunk(c, e') :: k \(\rightarrow\) tail_eval (Thunk(c, e') :: e) a k
    | App(b, c), _ -> tail_eval e b (Thunk (c, e) : : k)
let eval e a = tail_eval e a []
```

As can be seen by extracting from tail_eval the underlying transition function over (e, a, k) triples.

```
type step_result = Finished of value | Next of env * term * thunk list
```

```
let step = function
    | (e, Var n, k) -> let (Thunk(a', e')) = List.nth e n in Next(e', a', k)
    | (e, Lam a, []) -> Finished(Clos(a, e))
    | (e, Lam a, Thunk(c, e') :: k) -> Next(Thunk(c, e') :: e, a, k)
    | (e, App(b, c), k) -> Next(e, b, Thunk(c, e) :: k)
let rec tail_eval e a k =
    match step (e, a, k) with
    | Finished v -> v | Next(e',a',k') -> tail_eval e' a' k'
```

(Compare with the ACCESS, GRAB and PUSH transitions of Krivine's machine.)

What about call-by-value?

If we apply the same trick to the CBV interpreter from lecture I, we do not obtain the Modern SECD, but something that is very close to another CBV abstract machine: the CEK machine of Felleisen and Friedman.

A Functional Correspondence between Evaluators and Abstract Machines. Mads Sig Ager, Dariusz Biernacki, Olivier Danvy and Jan Midtgaard. PPDP 2003.

Outline

(1) Closure conversion

Defunctionalization(3) Exception-returning style

4 State-passing style
(5) Continuation-passing style
(6) Bonus track: CPS + defunctionalization $=$?
(7) Bonus track: callcc + constructive logic $=$?

Propositions-as-types

(The Curry-Howard isomorphism)
Type expressions look a lot like logical formulas:
Types
Function type $A \rightarrow B \approx$ Implication $A \rightarrow B$
Product type $A \times B \approx$ Conjunction $A \wedge B$
Sum type $A+B \quad \approx$ Disjunction $A \vee B$
Polymorphic type $\forall \alpha . A \approx$ Universal quantification $\forall \alpha . A$
Where product types and sum types can be defined as

```
type 'a * 'b = Pair of 'a * 'b
type 'a + 'b = Left of 'a | Right of 'b
```


Bonus track: callcc + constructive logic $=$?

Proofs-as-programs, propositions-as-types

Likewise, constructive proofs of propositions look a lot like terminating programs of the corresponding type.

A proof of ... is ...
$A \rightarrow B \quad \approx$ a total function from proofs of A to proofs of B.
$A \wedge B \quad \approx$ a pair of proofs, one for A and another for B.
$A \vee B \quad \approx$ a computation that decides which of A and B holds and returns either Left with a proof of A or Right with a proof of B.
$\forall x: A . B(x) \approx a$ total function from values $v: A$ to proofs of $B(v)$.
(Much more details in course 2-7-1, "Foundations of proof systems".)

Curry-Howard isomorphism for classical logic

Is it possible to extend this correspondence to classical (not just constructive) logic?

For example: is there a program that "implements" the law of excluded middle?

$$
\forall P . \quad P \vee \neg P
$$

Answer: yes, but we need callcc or similar control operators!

A Formulæ-as-Types Notion of Control, T. Griffin, POPL 1990.
"Implementing" excluded middle

Modulo Curry-Howard, the law of excluded middle

$$
\forall P . \quad P \vee \neg P \equiv \forall P . \quad P \vee(P \rightarrow \text { False })
$$

corresponds to the type

$$
\forall P . \quad P+(P \rightarrow \text { False })
$$

where + is the sum type (Left and Right constructors) and False an empty type.

The following term "implements" excluded middle:

$$
\operatorname{callcc}(\lambda k . \operatorname{Right}(\lambda p . \text { throw } k(\operatorname{Left}(p))))
$$

"Implementing" excluded middle

$$
\operatorname{callcc}(\lambda k . \operatorname{Right}(\lambda p . \text { throw } k(\operatorname{Left}(p))))
$$

How does it work?

- The rest of the proof term asks " P or not P ?"
- The term above returns Right $(\lambda p \ldots)$, i.e. " $P \rightarrow$ False".
- The only thing the rest of the proof can do with this proof is to apply it to a proof p of P to derive a contradiction.
- ... at which time the continuation is invoked, restarting the original proof with Left (p), i.e. " P is true".

