
Functional programming languages
Part IV: monadic transformations, monadic programming

Xavier Leroy

INRIA Paris-Rocquencourt

MPRI 2-4, 2016–2017

X. Leroy (INRIA) Functional programming languages MPRI 2-4, 2016–2017 1 / 81

Monads in programming language theory

Monads are a technical device (inspired from category theory) with several
uses in programming:

To structure denotational semantics and make them easy to extend
with new language features. (E. Moggi, 1989.)
Not treated in this lecture.

To factor out commonalities between many program transformations
and between their proofs of correctness.

As a powerful programming techniques in pure functional languages.
(P. Wadler, 1992; the Haskell community).

X. Leroy (INRIA) Functional programming languages MPRI 2-4, 2016–2017 2 / 81

Outline

1 Introduction to monads

2 The monadic translation
Definition
Correctness
Application to some monads

3 Monadic programming
More examples of monads
Monad transformers

4 Bonus track: applicative structures

5 Bonus track: comonads

X. Leroy (INRIA) Functional programming languages MPRI 2-4, 2016–2017 3 / 81

Introduction to monads

Commonalities between program transformations

Consider the conversions to exception-returning style, state-passing style,
and continuation-passing style. For constants, variables and
λ-abstractions, we have:

[[N]] = V (N) [[N]] = λs.(N, s) [[N]] = λk .k N
[[x]] = V (x) [[x]] = λs.(x , s) [[x]] = λk .k x

[[λx .a]] = V (λx .[[a]]) [[λx .a]] = λs.(λx .[[a]], s) [[λx .a]] = λk .k (λx .[[a]])

in all three cases, we return (put in some appropriate wrapper) the values
N or x or λx .[[a]].

X. Leroy (INRIA) Functional programming languages MPRI 2-4, 2016–2017 4 / 81

Introduction to monads

Commonalities between program transformations

For let bindings, we have:

[[let x = a in b]] = match [[a]] with E (x)→ E (x) | V (x)→ [[b]]

[[let x = a in b]] = λs. match [[a]] s with (x , s ′)→ [[b]] s ′

[[let x = a in b]] = λk . [[a]] (λx . [[b]] k)

In all three cases, we extract (one way or another) the value contained in
the computation [[a]], bind it to the variable x , and proceed with the
computation [[b]].

X. Leroy (INRIA) Functional programming languages MPRI 2-4, 2016–2017 5 / 81

Introduction to monads

Commonalities between program transformations

Concerning function applications:

[[a b]] = match [[a]] with

| E (ea)→ E (ea)

| V (va)→
match [[b]] with E (eb)→ E (eb) | V (vb)→ va vb

[[a b]] = λs. match [[a]] s with (va, s
′)→

match [[b]] s ′ with (vb, s
′′)→ va vb s ′′

[[a b]] = λk . [[a]] (λva. [[b]] (λvb. va vb k))

We bind [[a]] to a variable va, then bind [[b]] to a variable vb, then perform
the application va vb.

X. Leroy (INRIA) Functional programming languages MPRI 2-4, 2016–2017 6 / 81

Introduction to monads

Interface of a monad

A monad is defined by a parameterized type α mon and operations ret,
bind and run, with types:

ret : ∀α. α→ α mon

bind : ∀α, β. α mon→ (α→ β mon)→ β mon

run : ∀α. α mon→ α

The type τ mon is the type of computations that eventually produce a
value of type τ .

ret a encapsulates a pure expression a : τ as a trivial computation (of
type τ mon) that immediately produces the value of a.

bind a (λx .b) performs the computation a : τ mon, binds its value to
x : τ , then performs the computation b : τ ′ mon.

run a is the execution of a monadic program a, extracting its return value.

X. Leroy (INRIA) Functional programming languages MPRI 2-4, 2016–2017 7 / 81

Introduction to monads

Monadic laws

The ret and bind operations of the monad are supposed to satisfy the
following algebraic laws:

bind (ret a) f ≈ f a

bind a (λx . ret x) ≈ a

bind (bind a (λx .b)) (λy .c) ≈ bind a (λx . bind b (λy .c))

The relation ≈ needs to be made more precise, but intuitively means
“behaves identically”.

X. Leroy (INRIA) Functional programming languages MPRI 2-4, 2016–2017 8 / 81

Introduction to monads

Example: the Exception monad
(also called the Error monad)

type α mon = V of α | E of exn

ret a = V(a)

bind m f = match m with E(x) -> E(x) | V(x) -> f x

run m = match m with V(x) -> x

bind encapsulates the propagation of exceptions in compound expressions
such as a b or let bindings.

Additional operations in this monad:

raise x = E(x)

trywith m f = match m with E(x) -> f x | V(x) -> V(x)

X. Leroy (INRIA) Functional programming languages MPRI 2-4, 2016–2017 9 / 81

Introduction to monads

Example: the State monad

type α mon = state → α× state

ret a = λs. (a, s)

bind m f = λs. match m s with (x, s’) -> f x s’

run m = match m empty_store with (x, s) -> x

bind encapsulates the threading of the state in compound expressions.

Additional operations in this monad:

ref x = λs. store_alloc x s

deref r = λs. (store_read r s, s)

assign r x = λs. ((), store_write r x s)

X. Leroy (INRIA) Functional programming languages MPRI 2-4, 2016–2017 10 / 81

Introduction to monads

Example: the Continuation monad

type α mon = (α→ answer)→ answer

ret a = λk. k a

bind m f = λk. m (λv. f v k)

run m = m (λx. x)

Additional operations in this monad:

callcc f = λk. f k k

throw x y = λk. x y

X. Leroy (INRIA) Functional programming languages MPRI 2-4, 2016–2017 11 / 81

Introduction to monads

Alternate presentation of a monad

The alternate presentation replaces bind by two operations
fmap and join:

ret : ∀α. α→ α mon

fmap : ∀α, β. (α→ β)→ (α mon→ β mon)

join : ∀α, (α mon) mon→ α mon

The two presentations are related as follows:

bind a f ≡ join(fmap f a)

fmap f m ≡ bind m (λx . ret(f x))

join mm ≡ bind mm (λm. m)

The alternate presentation is closer to category theory but less convenient
for programming,

X. Leroy (INRIA) Functional programming languages MPRI 2-4, 2016–2017 12 / 81

The monadic translation

Outline

1 Introduction to monads

2 The monadic translation
Definition
Correctness
Application to some monads

3 Monadic programming
More examples of monads
Monad transformers

4 Bonus track: applicative structures

5 Bonus track: comonads

X. Leroy (INRIA) Functional programming languages MPRI 2-4, 2016–2017 13 / 81

The monadic translation Definition

The monadic translation
Core constructs

[[N]] = ret N

[[x]] = ret x

[[λx .a]] = ret (λx .[[a]])

[[let x = a in b]] = bind [[a]] (λx .[[b]])

[[a b]] = bind [[a]] (λva. bind [[b]] (λvb. va vb))

These translation rules are shared between all monads.

Effect on types: if a : τ then [[a]] : [[τ]] mon
where [[τ1 → τ2]] = [[τ1]]→ [[τ2]] mon and [[τ]] = τ for base types τ .

X. Leroy (INRIA) Functional programming languages MPRI 2-4, 2016–2017 14 / 81

The monadic translation Definition

The monadic translation
Extensions

[[µf .λx .a]] = ret (µf .λx .[[a]])

[[a op b]] = bind [[a]] (λva. bind [[b]] (λvb. ret (va op vb)))

[[C (a1, . . . , an)]] = bind [[a1]] (λv1. . . .

bind [[an]] (λvn. ret(C (v1, . . . , vn))))

[[match a with . . . pi . . .]] = bind [[a]] (λva. match va with . . . [[pi]] . . .)

[[C (x1, . . . , xn)→ a]] = C (x1, . . . , xn)→ [[a]]

X. Leroy (INRIA) Functional programming languages MPRI 2-4, 2016–2017 15 / 81

The monadic translation Definition

Example of monadic translation

[[1 + f x]] =

bind (ret 1) (λv1.
bind (bind (ret f) (λv2.

bind (ret x) (λv3. v2 v3))) (λv4.
ret (v1 + v4)))

After administrative reductions using the first monadic law:

[[1 + f x]] =

bind (f x) (λv. ret (1 + v))

X. Leroy (INRIA) Functional programming languages MPRI 2-4, 2016–2017 16 / 81

The monadic translation Definition

Example of monadic translation

[[µfact. λn. if n = 0 then 1 else n * fact(n-1)]] =

ret (µfact. λn.
if n = 0

then ret 1

else bind (fact(n-1)) (λv. ret (n * v))

X. Leroy (INRIA) Functional programming languages MPRI 2-4, 2016–2017 17 / 81

The monadic translation Definition

The monadic translation
Monad-specific constructs and operations

Most additional constructs for exceptions, state and continuations can be
treated as regular function applications of the corresponding additional
operations of the monad. For instance, in the case of raise a:

[[raise a]] = bind (ret raise) (λvr .bind [[a]] (λva. vr va))
adm→ bind [[a]] (λva. raise va)

The bind takes care of propagating exceptions raised in a.

The only case where we need a special translation rule is the the
try. . . with construct:

[[try a with x → b]] = trywith [[a]] (λx .[[b]])

X. Leroy (INRIA) Functional programming languages MPRI 2-4, 2016–2017 18 / 81

The monadic translation Correctness

Syntactic properties of the monadic translation

Define the monadic translation of a value [[v]]v as follows:

[[N]]v = N [[λx .a]]v = λx .[[a]]

Lemma 1 (Translation of values)

[[v]] = ret [[v]]v for all values v . Moreover, [[v]]v is a value.

Lemma 2 (Monadic substitution)

[[a[x ← v]]] = [[a]][x ← [[v]]v] for all values v ,

X. Leroy (INRIA) Functional programming languages MPRI 2-4, 2016–2017 19 / 81

The monadic translation Correctness

Reasoning about reductions of the translations

If a reduces, is it the case that the translation [[a]] reduces? This depends
on the monad:

For the exception monad, this is true.

For the state and continuation monads, [[a]] is a λ-abstraction which
cannot reduce.

To reason about the evaluation of [[a]], we need in general to put this term
in an appropriate context, for instance

For the state monad: [[a]] s where s is a store value.

For the continuation monad: [[a]] k where k is a continuation λx . . .

X. Leroy (INRIA) Functional programming languages MPRI 2-4, 2016–2017 20 / 81

The monadic translation Correctness

Contextual equivalence

To overcome this problem, we assume that the monad defines an
equivalence relation a ≈ a′ between terms, which is reflexive, symmetric
and transitive, and satisfies the following properties:

1 (λx .a) v ≈ a[x ← v] (βv reduction)

2 bind (ret v) (λx .b) ≈ b[x ← v] (first monadic law)

3 bind a (λx .b) ≈ bind a′ (λx .b) if a ≈ a′ (compat. context)

4 If a ≈ ret v , then run a
∗→ v .

X. Leroy (INRIA) Functional programming languages MPRI 2-4, 2016–2017 21 / 81

The monadic translation Correctness

Correctness of the monadic translation

Theorem 3

If a⇒ v, then [[a]] ≈ ret [[v]]v .

The proof is by induction on a derivation of a⇒ v and case analysis on
the last evaluation rule.

The cases a = N, a = x and a = λx .b are obvious: we have a = v ,
therefore [[a]] = ret [[v]]v .

X. Leroy (INRIA) Functional programming languages MPRI 2-4, 2016–2017 22 / 81

The monadic translation Correctness

Correctness of the monadic translation

For the let case:
b ⇒ v ′ c[x ← v ′]⇒ v

let x = b in c ⇒ v

The following equivalences hold:

[[a]] = bind [[b]] (λx .[[c]])

(ind.hyp + prop.3) ≈ bind (ret [[v ′]]v) (λx .[[c]])

(prop.2) ≈ [[c]][x ← [[v ′]]v] = [[c[x ← v ′]]]

(ind.hyp.) ≈ ret [[v]]v

X. Leroy (INRIA) Functional programming languages MPRI 2-4, 2016–2017 23 / 81

The monadic translation Correctness

Correctness of the monadic translation
For the application case:

b ⇒ λx .d c ⇒ v ′ d [x ← v ′]⇒ v

b c ⇒ v

The following equivalences hold:

[[a]] = bind [[b]] (λy .bind [[c]] (λz . y z))

(ind.hyp + prop.3) ≈ bind (ret (λx .[[d]])) (λy .bind [[c]] (λz . y z))

(prop.2) ≈ bind [[c]] (λz . (λx .[[d]]) z))

(ind.hyp + prop.3) ≈ bind (ret [[v ′]]v (λz . (λx .[[d]]) z))

(prop.2) ≈ (λx .[[d]]) [[v ′]]v
(prop.1) ≈ [[d]][x ← [[v ′]]v] = [[d [x ← v]]]

(ind.hyp.) ≈ ret [[v]]v

X. Leroy (INRIA) Functional programming languages MPRI 2-4, 2016–2017 24 / 81

The monadic translation Correctness

Correctness of the monadic translation

Theorem 4

If a⇒ v, then run [[a]]
∗→ [[v]]v .

Proof.

Follows from theorem 3 and property 4 of ≈.

Note that we proved this theorem only for pure terms a that do not use
monad-specific constructs. These constructs add more cases, but often the
proof cases for application, etc, are unchanged. (Exercise.)

X. Leroy (INRIA) Functional programming languages MPRI 2-4, 2016–2017 25 / 81

The monadic translation Application to some monads

Application to the Exception monad

Define a1 ≈ a2 as ∃a, a1
∗→ a

∗← a2.

Some interesting properties of this relation:

If a→ a′ then a ≈ a′.

If a ≈ a′ and a
∗→ v , then a′ ∗→ v .

It is transitive, for if a1
∗→ a

∗← a2
∗→ a′ ∗← a3, determinism of the →

reduction implies that either a
∗→ a′ or a′ ∗→ a. In the former case,

a1
∗→ a′ ∗← a3, and in the latter case, a1

∗→ a
∗← a3.

It is compatible with reduction contexts: E [a1] ≈ E [a2] if a1 ≈ a2 and
E is a reduction context.

We now check that ≈ satisfies the hypothesis of theorem 3.

X. Leroy (INRIA) Functional programming languages MPRI 2-4, 2016–2017 26 / 81

The monadic translation Application to some monads

Application to the Exception monad

1 (λx .a) v ≈ a[x ← v]
Trivial since (λx .a) v → a[x ← v].

2 bind (ret v) (λx .b) ≈ b[x ← v]. We have

bind (ret v) (λx .b)

→ bind (V (v)) (λx .b)
∗→ match V (v) with E (y)→ y | V (z)→ (λx .b) z

→ (λx .b) v → b[x ← v]

3 bind a1 (λx .b) ≈ bind a2 (λx .b) if a1 ≈ a2.
Trivial since bind [] (λx .b) is an evaluation context.

4 If a ≈ ret v , then run a
∗→ v .

Since ret v
∗→ V (v), we have a

∗→ V (v) and the result follows.

X. Leroy (INRIA) Functional programming languages MPRI 2-4, 2016–2017 27 / 81

The monadic translation Application to some monads

Application to the Continuation monad

Define a1 ≈ a2 as ∀k ∈ Values, ∃a, a1 k
∗→ a

∗← a2 k .

1 (λx .a) v ≈ a[x ← v]
Trivial since (λx .a) v k → a[x ← v] k .

2 bind (ret v) (λx .b) ≈ b[x ← v]. We have

bind (ret v) (λx .b) k → bind (λk ′. k ′ v) (λx .b)
∗→ (λk ′. k ′ v) (λy . (λx .b) y k)

→ (λy . (λx .b) y k) v

→ (λx .b) v k)

→ b[x ← v] k

X. Leroy (INRIA) Functional programming languages MPRI 2-4, 2016–2017 28 / 81

The monadic translation Application to some monads

Application to the Continuation monad

1 bind a1 (λx .b) ≈ bind a2 (λx .b) if a1 ≈ a2

We have bind ai (λx .b) k
∗→ ai (λv . (λx .b) v k) for i = 1, 2.

Using the hypothesis a1 ≈ a2 with the continuation (λv . (λx .b) v k),

we obtain a term a such that ai (λv . (λx .b) v k)
∗→ a for i = 1, 2.

Therefore, bind ai (λx .b) k
∗→ a for i = 1, 2, and the result follows.

2 If a ≈ ret v , then run a
∗→ v .

The result follows from ret v (λx .x)
∗→ v .

X. Leroy (INRIA) Functional programming languages MPRI 2-4, 2016–2017 29 / 81

The monadic translation Application to some monads

Application to the State monad

Define a1 ≈ a2 as ∀s ∈ Values, ∃a, a1 s
∗→ a

∗← a2 s.

The proofs of hypotheses 1–4 are similar to those for exceptions.

X. Leroy (INRIA) Functional programming languages MPRI 2-4, 2016–2017 30 / 81

Monadic programming

Outline

1 Introduction to monads

2 The monadic translation
Definition
Correctness
Application to some monads

3 Monadic programming
More examples of monads
Monad transformers

4 Bonus track: applicative structures

5 Bonus track: comonads

X. Leroy (INRIA) Functional programming languages MPRI 2-4, 2016–2017 31 / 81

Monadic programming

Monads as a general programming technique

Monads provide a systematic way to structure programs into two
well-separated parts:

the algorithms proper, and

the “plumbing” of computations needed by these algorithms (state
passing, exception handling, non-deterministic choice, etc).
The “plumbing” can often be hidden inside a reusable library.

In addition, monads can also be used to modularize code and offer new
possibilities for reuse:

Code in monadic form can be parameterized over a monad and reused
with several monads.

Monads themselves can be built in an incremental manner.

X. Leroy (INRIA) Functional programming languages MPRI 2-4, 2016–2017 32 / 81

Monadic programming More examples of monads

The Counting monad (a.k.a. the Complexity monad)

Counts how many times the tick monadic operation is evaluated during
execution. A special case of the State monad, with only one integer
reference that can only be incremented.

module Count = struct

type α mon = int → α× int

let ret a = fun n -> (a, n)

let bind m f = fun n -> match m n with (x, n’) -> f x n’

let run m = m 0

let tick m = fun n -> m (n+1)

end

Infix notation: m >>= f for bind m f .

X. Leroy (INRIA) Functional programming languages MPRI 2-4, 2016–2017 33 / 81

Monadic programming More examples of monads

Example of use

Before monadic translation: (counts the number of comparisons)

let rec insert x l =

match l with

| [] -> [x]

| h :: t -> if tick(x < h) then x :: l else h :: insert x t

After monadic translation:

let rec insert x l =

match l with

| [] -> Count.ret [x]

| h :: t ->

Count.(tick (ret (x < h)) >>= fun b ->

if b

then ret (x::l)

else insert x t >>= fun r -> ret (h::r))

X. Leroy (INRIA) Functional programming languages MPRI 2-4, 2016–2017 34 / 81

Monadic programming More examples of monads

The Logging monad (a.k.a. the Writer monad)

Enables computations to log messages. A generalization of the Counting
monad, where a list of messages is maintained instead of a counter.

module Log = struct

type log = string list

type α mon = log → α× log

let ret a = fun l -> (a, l)

let bind m f = fun l -> match m l with (x, l’) -> f x l’

let run m = match m [] with (x, l) -> (x, List.rev l)

let log msg = fun l -> ((), msg :: l)

end

X. Leroy (INRIA) Functional programming languages MPRI 2-4, 2016–2017 35 / 81

Monadic programming More examples of monads

Example of use

Before monadic translation:

let abs n =

if n >= 0

then (log "positive"; n)

else (log "negative"; -n)

After monadic translation:

let abs n =

if n >= 0

then Log.(log "positive" >>= fun _ -> ret n)

else Log.(log "negative" >>= fun _ -> ret (-n))

X. Leroy (INRIA) Functional programming languages MPRI 2-4, 2016–2017 36 / 81

Monadic programming More examples of monads

The Environment monad (a.k.a. the Reader monad)

Propagate an environment “down” all branches of a computation.

module Environment = struct

type α mon = env -> α

let ret x = fun e -> x

let bind m f = fun e -> f (m e) e

let run m = m initial_env

let getenv varname =

fun e -> map_lookup varname e

end

X. Leroy (INRIA) Functional programming languages MPRI 2-4, 2016–2017 37 / 81

Monadic programming More examples of monads

Non-determinism, a.k.a. the List monad

Provides computations with non-deterministic choice as well as failure.
Underneath, computes the list of all possible results.

module Nondet = struct

type α mon = α list

let ret a = a :: []

let rec bind m f =

match m with [] -> [] | hd :: tl -> f hd @ bind tl f

let run m = match m with hd :: tl -> hd

let runall m = m

let fail = []

let either a b = a @ b

end

X. Leroy (INRIA) Functional programming languages MPRI 2-4, 2016–2017 38 / 81

Monadic programming More examples of monads

Example of use

All possible ways to insert an element x in a list l:

let rec insert x l =

Nondet.(either

(ret (x :: l))

(match l with

| [] -> fail

| hd :: tl -> insert x tl >>= fun l’ -> ret (hd :: l’)))

All permutations of a list l:

let rec permut l =

match l with

| [] -> Nondet.ret []

| hd :: tl -> Nondet.(permut tl >>= fun l’ -> insert hd l’)

X. Leroy (INRIA) Functional programming languages MPRI 2-4, 2016–2017 39 / 81

Monadic programming More examples of monads

The Parsing monad
A variant of the state monad where the state is the input text that
remains to be parsed. Supports failure like the Exception monad.

module Parsing = struct

type α result =

| Success of α * char list

| Failure

type α mon = char list -> α result

let ret (x: α): α mon = fun txt -> Success(x, txt)

let bind (m: α mon) (f: α -> β mon): β mon =

fun txt ->

match m txt with

| Failure -> Failure

| Success(x, txt’) -> f x txt’

X. Leroy (INRIA) Functional programming languages MPRI 2-4, 2016–2017 40 / 81

Monadic programming More examples of monads

The Parsing monad

Specific operations in this monad: symbol c (recognize and consume the
single character c) and either m1 m2 (alternative with backtracking).

let symbol c : char mon =

fun txt ->

match txt with

| [] -> Failure

| c’ :: txt’ -> if c’ = c then Success(c, txt’) else Failure

let either (m1: α mon) (m2: α mon): α mon =

fun txt ->

match m1 txt with

| Failure -> m2 txt

| Success(x, txt’) as res -> res

X. Leroy (INRIA) Functional programming languages MPRI 2-4, 2016–2017 41 / 81

Monadic programming More examples of monads

The Parsing monad

Some derived operations in this monad: 0 or 1 (opt), 0 or 1 or several
(star), and 1 or several (plus) occurrences of a given recognizer m.

let opt (m: α mon): α option mon =

either (m >>= fun x -> ret (Some x)) (ret None)

let rec star (m: α mon): α list mon =

either (plus m) (ret [])

and plus (m: α mon): α list mon =

m >>= fun x ->

star m >>= fun y ->

ret (x :: y)

X. Leroy (INRIA) Functional programming languages MPRI 2-4, 2016–2017 42 / 81

Monadic programming More examples of monads

Monads for randomized computations

Consider a source language with randomized constructs such as

rand n return a uniformly-distributed integer in [0, n[

choose p a b evaluate either a with probability p ∈ [0, 1]
or b with probability 1− p

In a monadic interpretation, these constructs have type

rand : int→ int mon

choose : ∀α. float→ α mon→ α mon→ α mon

X. Leroy (INRIA) Functional programming languages MPRI 2-4, 2016–2017 43 / 81

Monadic programming More examples of monads

Examples of randomized computations

let dice num_sides =

M.(rand num_sides >>= fun n -> ret (n + 1))

let roll_3d6 =

M.(dice 6 >>= fun d1 ->

dice 6 >>= fun d2 ->

dice 6 >>= fun d3 ->

ret (d1 + d2 + d3))

let traffic_light =

M.choose 0.05 (M.ret Yellow)

(M.choose 0.5 (M.ret Red)

(M.ret Green))

X. Leroy (INRIA) Functional programming languages MPRI 2-4, 2016–2017 44 / 81

Monadic programming More examples of monads

First implementation: the Simulation monad

Uses a pseudo-random number generator to give values to random
variables (Monte-Carlo simulation). This is a variant of the State monad.

module Random_Simulation = struct

type α mon = int → α× int

let ret a = fun s -> (a, s)

let bind m f = fun s -> match m s with (x, s) -> f x s

let next_state s = s * 25173 + 1725

let rand n = fun s -> ((abs s) mod n, next_state s)

let choose p a b = fun s ->

if float (abs s) <= p *. float max_int

then a (next_state s) else b (next_state s)

end

X. Leroy (INRIA) Functional programming languages MPRI 2-4, 2016–2017 45 / 81

Monadic programming More examples of monads

Second implementation: the Distribution monad
With the same interface, this monad computes the distribution of the
results: all possible result values along with their probabilities.
This is an extension of the List monad.

module Random_Distribution = struct

type α mon = (α× float) list

let ret a = [(a, 1.0)]

let bind m f =

[(y, p1 *. p2) | (x, p1) <- m, (y, p2) <- f x]

let rand n = [(0, 1
n); ...; (n-1, 1

n)]

let choose p a b =

[(x, p *. p1) | (x, p1) <- a] @

[(x, (1.0 -. p) *. p2) | (x, p2) <- b]

end

X. Leroy (INRIA) Functional programming languages MPRI 2-4, 2016–2017 46 / 81

Monadic programming More examples of monads

Third implementation: the Expectation monad

Still with the same interface, this monad computes the expectation of a
result (of type α) w.r.t. a given measure (a function α→ float).
This is an extension of the Continuation monad.

module Random_Expectation = struct

type α mon = (α -> float) -> float

let ret x = fun k -> k x

let bind x f = fun k -> x (fun vx -> f vx k)

let rand n = fun k -> 1
n *. k 0 +. ... +. 1

n *. k (n-1)

let choose p a b = fun k -> p *. a k +. (1.0 -. p) *. b k

end

X. Leroy (INRIA) Functional programming languages MPRI 2-4, 2016–2017 47 / 81

Monadic programming Monad transformers

Combining monads
What if we need both exceptions and state in an algorithm? We can write
(from scratch) a monad that supports both. Notice that there are several
choices:

type α mon = state→ (α× state) outcome

I.e. the state is discarded when we raise an exception.

type α mon = state→ α outcome× state

I.e. the state is kept when we raise an exception.

In the second case, trywith can be defined in two ways:

trywith m f = λs. match m s with

| (V (v), s ′)→ (V (v), s ′)

| (E (e), s ′)→ f e

(
s

s ′

)

The s choice backtracks the assignments made by the computation m;
the s ′ choice preserves them.

X. Leroy (INRIA) Functional programming languages MPRI 2-4, 2016–2017 48 / 81

Monadic programming Monad transformers

Composing two monads?

Given two monads

type α mon1 type α mon2

ret1 : α→ α mon1 ret2 : α→ α mon2

bind1 : α mon1→ (α→ β mon1) bind2 : α mon2→ (α→ β mon2)
→ β mon1 → β mon2

is there a generic way to compose them? Let’s try. . .

type α mon = α mon1 mon2

let ret (x : α) : α mon = ret2 (ret1 x)

let bind (x : α mon) (f : α→ β mon) : β mon =
bind2 x (λy : α mon1. ret2 (
bind1 y (λz : α. ???? (f z))))

X. Leroy (INRIA) Functional programming languages MPRI 2-4, 2016–2017 49 / 81

Monadic programming Monad transformers

Composing two monads?

Without additional operations provided by the second (outer) monad,
there is no way to define the bind of the composed monad:

let bind (x : α mon) (f : α→ β mon) : β mon =
bind2 x (λy : α mon1. ret2 (
bind1 y (λz : α. ???? (f z))))

Since f z : β mon1 mon2 and bind1 demands something of type β mon1,
we need a term ???? of type β mon1 mon2→ β mon1.

It is impossible to construct a closed, terminating term of this type just
from the ret2 and bind2 operations of the second monad!

X. Leroy (INRIA) Functional programming languages MPRI 2-4, 2016–2017 50 / 81

Monadic programming Monad transformers

Monad transformers

A monad transformer takes any monad M and returns a monad M ′ with
additional capabilities, e.g. exceptions, state, continuation. It also provides
a lift function that transforms M computations (of type α M.mon) into
M ′ computations (of type α M ′.mon)

In Caml, monad transformers are naturally presented as functors, i.e.
functions from modules to modules. (Haskell uses type classes.)

X. Leroy (INRIA) Functional programming languages MPRI 2-4, 2016–2017 51 / 81

Monadic programming Monad transformers

Signature for monads

The Caml module signature for a monad is:

module type MONAD = sig

type α mon

val ret: α -> α mon

val bind: α mon -> (α -> β mon) -> β mon

val run: α mon -> α
end

X. Leroy (INRIA) Functional programming languages MPRI 2-4, 2016–2017 52 / 81

Monadic programming Monad transformers

The Identity monad

The Identity monad is a trivial instance of this signature:

module Identity = struct

type α mon = α
let ret x = x

let bind m f = f m

let run m = m

end

X. Leroy (INRIA) Functional programming languages MPRI 2-4, 2016–2017 53 / 81

Monadic programming Monad transformers

Monad transformer for exceptions

module ExceptionTransf(M: MONAD) = struct

type α outcome = V of α | E of exn

type α mon = (α outcome) M.mon

let ret x = M.ret (V x)

let bind m f =

M.bind m (function E e -> M.ret (E e) | V v -> f v)

let lift x = M.bind x (fun v -> M.ret (V v))

let run m = M.run (M.bind m (function V x -> M.ret x))

let raise e = M.ret (E e)

let trywith m f =

M.bind m (function E e -> f e | V v -> M.ret (V v))

end

X. Leroy (INRIA) Functional programming languages MPRI 2-4, 2016–2017 54 / 81

Monadic programming Monad transformers

Monad transformer for state

module StateTransf(M: MONAD) = struct

type α mon = state -> (α * state) M.mon

let ret x = fun s -> M.ret (x, s)

let bind m f =

fun s -> M.bind (m s) (fun (x, s’) -> f x s’)

let lift m = fun s -> M.bind m (fun x -> M.ret (x, s))

let run m =

M.run (M.bind (m empty_store) (fun (x, s’) -> M.ret x))

let ref x = fun s -> M.ret (store_alloc x s)

let deref r = fun s -> M.ret (store_read r s, s)

let assign r x = fun s -> M.ret (store_write r x s)

end

X. Leroy (INRIA) Functional programming languages MPRI 2-4, 2016–2017 55 / 81

Monadic programming Monad transformers

Monad transformer for continuations

module ContTransf(M: MONAD) = struct

type α mon = (α -> answer M.mon) -> answer M.mon

let ret x = fun k -> k x

let bind m f = fun k -> m (fun v -> f v k)

let lift m = fun k -> M.bind m k

let run m = M.run (m (fun x -> M.ret x))

let callcc f = fun k -> f k k

let throw c x = fun k -> c x

end

X. Leroy (INRIA) Functional programming languages MPRI 2-4, 2016–2017 56 / 81

Monadic programming Monad transformers

Using monad transformers

module StateAndException = struct

include ExceptionTransf(State)

let ref x = lift (State.ref x)

let deref r = lift (State.deref r)

let assign r x = lift (State.assign r x)

end

This gives a type α mon = state→ α outcome× state,
i.e. state is preserved when raising exceptions.

The other combination, StateTransf(Exception) gives
α mon = state→ (α× state) outcome,
i.e. state is discarded when an exception is raised.

X. Leroy (INRIA) Functional programming languages MPRI 2-4, 2016–2017 57 / 81

Monadic programming Monad transformers

The Concurrency monad transformer
(Based on an approach by Tomas Petricek, 2011)

Given any monad M, we define concurrency (interleaving of computations)
via the following type of resumptions:

module Concur(M: MONAD) = struct

type α mon =

| Done of α
| Step of (α mon) M.mon

A resumption describes a sequence of computations in monad M:

Done v denotes no computations and a final result value v

Step m denotes the computation m followed by the resumption that
m returns as its value.

X. Leroy (INRIA) Functional programming languages MPRI 2-4, 2016–2017 58 / 81

Monadic programming Monad transformers

The Concurrency monad transformer

type α mon = Done of α | Step of (α mon) M.mon

A resumption can trivially be turned into a single computation in monad M,
then run:

let rec perform (x: α mon): α M.mon =

match x with

| Done res -> M.ret res

| Step m -> M.bind m perform

let run (x: α mon) = M.run (perform x)

However, by keeping the list-like structure of resumptions, we are able to
interleave two resumptions, simulating concurrent execution.

X. Leroy (INRIA) Functional programming languages MPRI 2-4, 2016–2017 59 / 81

Monadic programming Monad transformers

The Concurrency monad transformer

The ret operation of the Concurrency monad performs zero computations:

let ret (x: α): α mon = Done x

The act operation (also known as lift) performs just one computation:

let act (m: α M.mon): α mon =

Step (M.bind m (fun res -> M.ret (Done res)))

The bind operation is similar to list concatenation, appending two lists of
computations:

let rec bind (m: α mon) (f: α -> β mon): β mon =

match m with

| Done res -> f res

| Step s -> Step (M.bind s (fun m’ -> M.ret (bind m’ f)))

X. Leroy (INRIA) Functional programming languages MPRI 2-4, 2016–2017 60 / 81

Monadic programming Monad transformers

The Concurrency monad transformer

Finally, par interleaves the computations of two resumptions:

let rec par (m1: α mon) (m2: β mon) : (α * β) mon =

match m1, m2 with

| Done r1, Done r2 -> Done (r1, r2)

| Step s1, Step s2 ->

Step (M.bind s1 (fun m1’ ->

M.bind s2 (fun m2’ -> M.ret (par m1’ m2’))))

| Done r1, Step s2 ->

Step (M.bind s2 (fun m2’ -> M.ret (par (Done r1) m2’)))

| Step s1, Done r2 ->

Step (M.bind s1 (fun m1’ -> M.ret (par m1’ (Done r2))))

X. Leroy (INRIA) Functional programming languages MPRI 2-4, 2016–2017 61 / 81

Monadic programming Monad transformers

Example of use

module M = Concur(Log)

let rec loop n s =

if n <= 0

then M.ret ()

else M.(act (Log.log s) >>= fun _ -> loop (n-1) s)

M.(run (act (Log.log "start:") >>= fun _ ->

par (loop 6 "a") (loop 4 "b")))

This code will log “start:ababababaa”

X. Leroy (INRIA) Functional programming languages MPRI 2-4, 2016–2017 62 / 81

Bonus track: applicative structures

Outline

1 Introduction to monads

2 The monadic translation
Definition
Correctness
Application to some monads

3 Monadic programming
More examples of monads
Monad transformers

4 Bonus track: applicative structures

5 Bonus track: comonads

X. Leroy (INRIA) Functional programming languages MPRI 2-4, 2016–2017 63 / 81

Bonus track: applicative structures

Applicative structures

Monads impose a very “sequential” programming style, where all
subcomputations are explicitly sequenced. This is heavy style if the monad
has no effects or effects that commute (e.g. read effects).

Example: evaluating expressions containing variables using the
Environment monad.

In direct style: In monadic style:

let rec eval = function let rec eval = function

| Const n -> n | Const n -> ret n

| Var v -> getenv v | Var v -> getenv v

| Plus(a, b) -> | Plus(a, b) ->

eval a + eval b eval a >>= fun n ->

eval b >>= fun m ->

ret (n + m)

X. Leroy (INRIA) Functional programming languages MPRI 2-4, 2016–2017 64 / 81

Bonus track: applicative structures

Monadic application combinators

This can be improved by defining application combinators:

let mapp (f: α→ β) (m: α mon) : β mon =

bind m (fun x -> ret (f x))

let mapp2 (f: α→ β → γ) (m1: α mon) (m2: β mon): γ mon =

bind m1 (fun x1 -> bind m2 (fun x2 -> ret (f x1 x2)))

(etc). The eval function becomes nicer:

let rec eval = function

...

| Plus(a, b) -> mapp2 (+) (eval a) (eval b)

X. Leroy (INRIA) Functional programming languages MPRI 2-4, 2016–2017 65 / 81

Bonus track: applicative structures

The monadic application combinator

We can avoid defining a combinator for every arity, as follows:

let <*> (f: (α→ β) mon) (m: α mon) : β mon =

bind f (fun vf -> bind m (fun vm -> ret (vf vm)))

Using the fact that <*> associates to the left in OCaml, we get:

let rec eval = function

...

| Plus(a, b) -> ret (+) <*> eval a <*> eval b

More generally: ret f <*> m1 <*> · · · <*> mn

denotes the application of the pure function f to the results of the
monadic computations m1, . . . ,mn.

X. Leroy (INRIA) Functional programming languages MPRI 2-4, 2016–2017 66 / 81

Bonus track: applicative structures

Applicative structures
(C. McBride and R. Paterson, Applicative structures with effects, JFP 18(1), 2008)

An applicative structure is a parameterized type α app of effectful
computations producing a value of type α, plus two operations:

pure : ∀α, α→ α app

<*> : ∀αβ, (α→ β) app→ α app→ β app

pure embeds values (computations without effects) into computations.

<*>, pronounced “apply”, performs function application with propagation
of effects.

X. Leroy (INRIA) Functional programming languages MPRI 2-4, 2016–2017 67 / 81

Bonus track: applicative structures

The laws of applicative structures

pure (λx .x) <*> u ≈ u

pure (λf .λg .λx .f (g x)) <*> u <*> v <*> w ≈ u <*> (v <*> w)

pure f <*> pure x ≈ pure(f x)

u <*> pure x ≈ pure(λf . f x) <*> u

Intuitively: we can reorder/simplify pure computations, as long as the
order of effectful computations is preserved.

Categorically: a strong lax monoidal functor. . .

X. Leroy (INRIA) Functional programming languages MPRI 2-4, 2016–2017 68 / 81

Bonus track: applicative structures

Monads and applicative structures

Every monad M defines an applicative structure:

type α app = α M.mon

let pure x = M.ret x

let <*> f x =

M.bind f (fun vf -> M.bind x (fun vx -> M.ret (vf vx)))

(This is for left-to-right application. Can also do right-to-left by swapping the two bind.)

However:

Sometimes, other definitions of <*> are more useful.

Some types are not monads but have a useful applicative structure.

X. Leroy (INRIA) Functional programming languages MPRI 2-4, 2016–2017 69 / 81

Bonus track: applicative structures

Monads with nonstandard application

Consider the Exception monad. We’d like to collect all the exceptions
raised during the evaluation of an expression, not just the first one:

(raise A) + (raise B) ---> Uncaught exceptions: A, B

Let us redefine the type of the monad as

type α mon = V of α | E of exn list

let raise e = E [e]

let bind m f =

match m with

| V x -> f x

| E exnlist -> E exnlist

For bind m f , if m raises an exception, we have no value to pass to f , so
we cannot collect the exceptions raised by f . (Unavoidable!)

X. Leroy (INRIA) Functional programming languages MPRI 2-4, 2016–2017 70 / 81

Bonus track: applicative structures

Monads with nonstandard application

Rather than defining <*> in terms of bind, which will not collect all
exceptions, we provide a more useful definition:

let <*> f x =

match f, x with

| V vf, V vx -> V (vf vx)

| V vf, E ex -> E ex

| E ef, V vx -> E ef

| E ef, E ex -> E (ef @ ex) (* list concatenation *)

Thus, ret (+) <*> raise A <*> raise B

produces E [A; B], as desired.

X. Leroy (INRIA) Functional programming languages MPRI 2-4, 2016–2017 71 / 81

Bonus track: applicative structures

Applicative structures without bind

For some monads, we would like to compute both

static information on the structure of the computation, and

a dynamic interpretation that actually performs the computation,
perhaps using the static information to be more efficient.

Simple example: for arithmetic expressions with variables, compute the
free variables as static info and the function environment → value as
dynamic interpretation.

More realistic example: for parsing combinators, compute nullable and
first information on the parsers as static info, and the function
text → result × text as dynamic interpretation; use the static info to
quickly eliminate impossible cases in the either combinator.

X. Leroy (INRIA) Functional programming languages MPRI 2-4, 2016–2017 72 / 81

Bonus track: applicative structures

Free variables in the Environment monad

Let us try to extend the Environment monad with the computation of free
variables.

type α mon = stringset * (env -> α)

(static information × dynamic interpretation)

let ret x = (emptyset, fun e -> x)

let getenv v = (singleton v, fun e -> map_lookup v e)

let <*> (sf,df) (sx,dx) =

(union sf sx, fun e -> df (dx e) e)

X. Leroy (INRIA) Functional programming languages MPRI 2-4, 2016–2017 73 / 81

Bonus track: applicative structures

Free variables in the Environment monad

However, bind cannot be defined!

type α mon = stringset * (env -> α)

let bind (sx,dx : α mon) (f: α -> β mon) : β mon =

(union sx (fst (f ???)), fun e -> snd (f (dx e)))

When computing the static part of the result, we do not have any value to
pass to function f so that we can extract the static part of f’s result!

(Besides: the static part of f’s result can depend on the value being
passed to f.)

→ This extended Environment is an applicative structure that is not a
monad.

X. Leroy (INRIA) Functional programming languages MPRI 2-4, 2016–2017 74 / 81

Bonus track: applicative structures

Composing applicative structures

Another evidence that applicative structures differ from monads is that
applicative structures compose naturally: given

type α app1 type α app2

pure1 : α→ α app1 pure2 : α→ α app2

<*>1 : (α→ β)→ <*>2 : (α→ β)→
α app1→ β app1 α app2→ β app2

we can define

type α app = α app1 app2

let pure (x : α) : α app = pure2 (pure1 x)

let <*> (f : α→ β) : α app→ β app = <*>2 (<*>1 f)

X. Leroy (INRIA) Functional programming languages MPRI 2-4, 2016–2017 75 / 81

Bonus track: comonads

Outline

1 Introduction to monads

2 The monadic translation
Definition
Correctness
Application to some monads

3 Monadic programming
More examples of monads
Monad transformers

4 Bonus track: applicative structures

5 Bonus track: comonads

X. Leroy (INRIA) Functional programming languages MPRI 2-4, 2016–2017 76 / 81

Bonus track: comonads

Comonads
The categorical dual of monads (what else?)

A comonad is defined by a parameterized type α com and operations proj

and cobind, with types:

proj : ∀α. α com→ α

cobind : ∀α, β. (α com→ β)→ α com→ β com

The type τ com is the type of processes that produce values of type τ .
(For example: a collection of τ values.)

proj a extracts a value from such a process a.

cobind f a, given
– a function f that produces a β value from a α com process,
– and a α com process,
extends function f to construct a process producing β’s.

X. Leroy (INRIA) Functional programming languages MPRI 2-4, 2016–2017 77 / 81

Bonus track: comonads

Comonadic laws

The proj and cobind operations of the comonad are supposed to satisfy
the following algebraic laws:

proj(cobind k x) ≈ k x

cobind proj x ≈ x

cobind(k2 ◦ cobind k1) ≈ cobind k2 ◦ cobind k1

X. Leroy (INRIA) Functional programming languages MPRI 2-4, 2016–2017 78 / 81

Bonus track: comonads

Lazy evaluation as a comonad

module Lazy = struct

type α com = α status ref

and α status =

| Evaluated of α
| Suspended of unit -> α

let proj (x: α com): α =

match !x with

| Evaluated v -> v

| Suspended f -> let v = f() in x := Evaluated v; v

let cobind (f: α com -> β) (x: α com) : β com =

ref (Suspended (fun () -> f x))

end

X. Leroy (INRIA) Functional programming languages MPRI 2-4, 2016–2017 79 / 81

Bonus track: comonads

Lazy evaluation as a comonad

We can also equip lazy evaluation with monadic ret and monadic bind:

let ret (x: α) : α com = ref (Evaluated x)

let bind (x: α com) (f: α -> β com): β com =

f (proj x)

However, if we only have ret and bind, there is no way to suspend the
evaluation of a nontrivial computation: ret always evaluates its argument!

In contrast, cobind f x is equivalent to lazy(f x) in Caml and let us
suspend arbitrary computations.

X. Leroy (INRIA) Functional programming languages MPRI 2-4, 2016–2017 80 / 81

Bonus track: comonads

Other uses of comonads

Working with infinite, lazy data structures:
streams, bidirectional streams, etc.
(See example with cellular automata in companion file monads.ml)

Semantics of dataflow languages and reactive languages.
(Tarmo Uustalu, Varmo Vene. The Essence of Dataflow Programming. APLAS 2005.)

X. Leroy (INRIA) Functional programming languages MPRI 2-4, 2016–2017 81 / 81

