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Execution models for a programming language

1 Interpretation:
control (sequencing of computations) is expressed by a term of the
source language, represented by a tree-shaped data structure. The
interpreter traverses this tree during execution.

2 Compilation to native code:
control is compiled to a sequence of machine instructions, before
execution. These instructions are those of a real microprocessor and
are executed in hardware.

3 Compilation to abstract machine code:
control is compiled to a sequence of instructions. These instructions
are those of an abstract machine. They do not correspond to that of
an existing hardware processor, but are chosen close to the basic
operations of the source language.
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Arithmetic expressions

An abstract machine for arithmetic expressions
(Warm-up exercise)

Arithmetic expressions:

a ::= N | a1 + a2 | a1 − a2

The machine uses a stack to store intermediate results during expression
evaluation. (Cf. old Hewlett-Packard pocket calculators.)

Instruction set:

CONST(N) push integer N on stack

ADD pop two integers, push their sum

SUB pop two integers, push their difference
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Arithmetic expressions

Compilation scheme

Compilation (translation of expressions to sequences of instructions) is just
translation to “reverse Polish notation”:

C(N) = CONST(N)

C(a1 + a2) = C(a1); C(a2); ADD

C(a1 − a2) = C(a1); C(a2); SUB

Example 1

C(5− (1 + 2)) = CONST(5); CONST(1); CONST(2); ADD; SUB
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Arithmetic expressions

Transitions of the abstract machine

The machine has two components:

a code pointer c (the instructions yet to be executed)

a stack s (holding intermediate results).

Machine state before Machine state after

Code Stack Code Stack

CONST(N); c s c N.s

ADD; c n2.n1.s c (n1 + n2).s

SUB; c n2.n1.s c (n1 − n2).s

Notations for stacks: top of stack is to the left.

push v on s: s −→ v .s pop v off s: v .s −→ s
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Arithmetic expressions

Evaluating expressions with the abstract machine

Initial state: code = C(a) and stack = ε.

Final state: code = ε and stack = n.ε.
The result of the computation is the integer n (top of stack at end of
execution).

Example 2

Code Stack

CONST(5); CONST(1); CONST(2); ADD; SUB ε

CONST(1); CONST(2); ADD; SUB 5.ε

CONST(2); ADD; SUB 1.5.ε

ADD; SUB 2.1.5.ε

SUB 3.5.ε

ε 2.ε
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Arithmetic expressions

Executing abstract machine code: by interpretation

The interpreter is typically written in a low-level language such as C and
executes ≈ 5 times faster than a term interpreter (typically).

int interpreter(int * code)

{

int * s = bottom_of_stack;

while (1) {

switch (*code++) {

case CONST: *s++ = *code++; break;

case ADD: s[-2] = s[-2] + s[-1]; s--; break;

case SUB: s[-2] = s[-2] - s[-1]; s--; break;

case EPSILON: return s[-1];

}

}

}
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Arithmetic expressions

Executing abstract machine code: by expansion

Alternatively, abstract instructions can be expanded into canned sequences
for a real processor, giving an additional speedup by a factor of 5
(typically).

CONST(i) ---> pushl $i

ADD ---> popl %eax

addl 0(%esp), %eax

SUB ---> popl %eax

subl 0(%esp), %eax

EPSILON ---> popl %eax

ret
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Examples of abstract machines The Modern SECD

The Modern SECD: An abstract machine for call-by-value

Three components in this machine:

a code pointer c (the instructions yet to be executed)

an environment e (giving values to variables)

a stack s (holding intermediate results and pending function calls).

Instruction set (+ arithmetic operations as before):

ACCESS(n) push n-th field of the environment

CLOSURE(c) push closure of code c with current environment

LET pop value and add it to environment

ENDLET discard first entry of environment

APPLY pop function closure and argument, perform application

RETURN terminate current function, jump back to caller
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Examples of abstract machines The Modern SECD

Compilation scheme

Compilation scheme:

C( n ) = ACCESS(n)

C(λa) = CLOSURE(C(a); RETURN)

C(let a in b) = C(a); LET; C(b); ENDLET

C(a b) = C(a); C(b); APPLY

Constants and arithmetic: as before.

Example 3

Source term: (λx . x + 1) 2.

Code: CLOSURE(ACCESS(1); CONST(1); ADD; RETURN); CONST(2); APPLY.
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Examples of abstract machines The Modern SECD

Machine transitions

Machine state before Machine state after

Code Env Stack Code Env Stack

ACCESS(n); c e s c e e(n).s

LET; c e v .s c v .e s

ENDLET; c v .e s c e s

CLOSURE(c ′); c e s c e c ′[e].s

APPLY; c e v .c ′[e ′].s c ′ v .e ′ c .e.s

RETURN; c e v .c ′.e ′.s c ′ e ′ v .s

c[e] denotes the closure of code c with environment e.
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Examples of abstract machines The Modern SECD

Example of evaluation

Initial code CLOSURE(c); CONST(2); APPLY
where c = ACCESS(1); CONST(1); ADD; RETURN.

Code Env Stack

CLOSURE(c); CONST(2); APPLY e s

CONST(2); APPLY e c[e].s

APPLY e 2.c[e].s

c 2.e ε.e.s

CONST(1); ADD; RETURN 2.e 2.ε.e.s

ADD; RETURN 2.e 1.2.ε.e.s

RETURN 2.e 3.ε.e.s

ε e 3.s
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Examples of abstract machines The Modern SECD

An optimization: tail call elimination

Consider:

f = λ. ... g 1 ...

g = λ. h(...)

h = λ. ...

The call from g to h is a tail call: when h returns, g has nothing more to
compute, it just returns immediately to f.

At the machine level, the code of g is of the form . . . ; APPLY; RETURN
When g calls h, it pushes a return frame on the stack containing the code
RETURN. When h returns, it jumps to this RETURN in g, which jumps to the
continuation in f.

Tail-call elimination consists in avoiding this extra return frame and this
extra RETURN instruction, enabling h to return directly to f, and saving
stack space.
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Examples of abstract machines The Modern SECD

The importance of tail call elimination

(http://xkcd.com/1270, c© Randall Munroe, CC-BY-NC)
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Examples of abstract machines The Modern SECD

The importance of tail call elimination
Tail call elimination is important for recursive functions of the following
form — the functional equivalent to loops in imperative languages:

let rec fact n accu =

if n = 0 then accu else fact (n-1) (accu*n)

in fact 42 1

The recursive call to fact is in tail position. With tail call elimination, this
code runs in constant stack space. Without, it consumes O(n) stack space
and risks stack overflow.

Compare with the standard definition of fact, which is not tail recursive
and runs in O(n) stack space:

let rec fact n = if n = 0 then 1 else n * fact (n-1)

in fact 42
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Examples of abstract machines The Modern SECD

Tail call elimination in the Modern SECD

Split the compilation scheme in two functions: T for expressions in tail
call position, C for other expressions.

T (let a in b) = C(a); LET; T (b)

T (a b) = C(a); C(b); TAILAPPLY

T (a) = C(a); RETURN (otherwise)

C( n ) = ACCESS(n)

C(λa) = CLOSURE(T (a))

C(let a in b) = C(a); LET; C(b); ENDLET

C(a b) = C(a); C(b); APPLY

X. Leroy (INRIA) Functional programming languages MPRI 2-4, 2015–2016 18 / 82



Examples of abstract machines The Modern SECD

Tail call elimination in the Modern SECD

The TAILAPPLY instruction behaves like APPLY, but does not bother
pushing a return frame to the current function.

Machine state before Machine state after

Code Env Stack Code Env Stack

TAILAPPLY; c e v .c ′[e ′].s c ′ v .e ′ s

APPLY; c e v .c ′[e ′].s c ′ v .e ′ c .e.s
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Examples of abstract machines Krivine’s machine

Krivine’s machine: An abstract machine for call-by-name

As for the Modern SECD, three components in this machine:

Code c

Environment e

Stack s

However, stack and environment no longer contain values, but thunks:
closures c[e] representing expressions (function arguments) whose
evaluations are delayed until their value is needed.

This is consistent with the β-reduction rule for call by name:

(λ.a)[e] b[e ′]→ a[b[e ′].e]
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Examples of abstract machines Krivine’s machine

Compilation scheme

C( n ) = ACCESS(n)

C(λa) = GRAB; C(a)

C(a b) = PUSH(C(b)); C(a)

Instruction set:

ACCESS(N) start evaluating the N-th thunk found in the environment

PUSH(c) push a thunk for code c

GRAB pop one argument and add it to the environment
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Examples of abstract machines Krivine’s machine

Transitions of Krivine’s machine

Machine state before Machine state after

Code Env Stack Code Env Stack

ACCESS(n); c e s c ′ e ′ s if e(n) = c ′[e ′]

GRAB; c e c ′[e ′].s c c ′[e ′].e s

PUSH(c ′); c e s c e c ′[e].s

Initial state: code = C(a), stack = ε.
Final state: code = GRAB; c, stack = ε.
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Examples of abstract machines Krivine’s machine

How does it work?

The stack encodes the spine of applications in progress.
The code and environment encode the term at the bottom left of the
spine.

@

@ a2[e2]

n[e] a1[e1]

StackCode

@

@ a2[e2]

(λa)[e ′] a1[e1]

@

a[a1[e1].e ′] a2[e2]

ACCESS GRAB
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Examples of abstract machines Krivine’s machine

Call-by-name in practice

Realistic abstract machines for call-by-name are more complex than
Krivine’s machine in two respects:

Constants and primitive operations:
Operations such as addition are strict: they must fully evaluate their
arguments before reducing. Extra mechanisms are needed to force
evaluation of sub-expressions to values.

Lazy evaluation, i.e. sharing of computations:
Call-by-name evaluates an expression every time its value is needed.
Lazy evaluation performs the evaluation the first time, then caches
the result for later uses.

See: Implementing lazy functional languages on stock hardware: the Spineless Tagless

G-machine, S.L. Peyton Jones, Journal of Functional Programming 2(2), Apr 1992.
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Examples of abstract machines Krivine’s machine

Eval-apply vs. push-enter

The SECD and Krivine’s machine illustrate two subtly different ways to
evaluate function applications f a:

Eval-apply: (e.g. SECD)
Evaluate f to a closure c[e], evaluate a, extend environment e ′,
jump to c.
The β-reduction is performed by the caller.

Push-enter: (e.g. Krivine but also Postscript, Forth)
Push a on stack, evaluate f to a closure c[e], jump to c ,
pop argument, extend environment e with it.
The β-reduction is performed by the callee.

The difference becomes significant for curried function applications

f a1 a2 . . . an = . . . ((f a1) a2) . . . an where f = λ . . . λb
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Examples of abstract machines Krivine’s machine

Eval-apply vs. push-enter for curried applications

Consider f a1 a2 where f = λ.λ.b.

Eval-apply Push-enter

eval f push a2

eval a1 push a1

APPLY find & enter f
↘ ↘

CLOSURE(λ.b) GRAB

RETURN GRAB

↙ eval b
eval a2

APPLY

↘
eval b
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Examples of abstract machines Krivine’s machine

Eval-apply vs. push-enter for curried applications

Compared with push-enter, eval-apply of a n-argument curried application
performs extra work:

Jumps n − 1 times from caller to callee and back
(the sequences APPLY – CLOSURE – RETURN).

Builds n − 1 short-lived intermediate closures.

Can we combine push-enter and call-by-value? Yes, see the ZAM.
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Examples of abstract machines The ZAM

The ZAM (Zinc abstract machine)

(The model underlying the bytecode interpretors of Caml Light and OCaml.)

A call-by-value, push-enter model where the caller pushes one or several
arguments on the stack and the callee pops them and put them in its
environment.

Needs special handling for

partial applications: (λx .λy .b) a

over-applications: (λx .x) (λx .x) a
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Examples of abstract machines The ZAM

Compilation scheme

T for expressions in tail call position, C for other expressions.

T (λ.a) = GRAB; T (a)

T (let a in b) = C(a); GRAB; T (b)

T (a a1 . . . an) = C(an); . . . ; C(a1); T (a)

T (a) = C(a); RETURN (otherwise)

C( n ) = ACCESS(n)

C(λ.a) = CLOSURE(GRAB; T (a))

C(let a in b) = C(a); GRAB; C(b); ENDLET

C(a a1 . . . an) = PUSHRETADDR(k); C(an); . . . ; C(a1); C(a); APPLY

where k is the code that follows the APPLY

Note right-to-left evaluation of applications.
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Examples of abstract machines The ZAM

ZAM transitions

� is a special value (the “marker”) delimiting applications in the stack.

Machine state before Machine state after

Code Env Stack Code Env Stack

GRAB; c e v .s c v .e s

GRAB; c e �.c ′.e ′.s c ′ e ′ (GRAB; c)[e].s

RETURN; c e v .�.c ′.e ′.s c ′ e ′ v .s

RETURN; c e c ′[e ′].s c ′ e ′ s

PUSHRETADDR(c ′); c e s c e �.c ′.e.s

APPLY; c e c ′[e ′].s c ′ e ′ s

ACCESS, CLOSURE, ENDLET: like in the Modern SECD.
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Examples of abstract machines The ZAM

Handling of applications
Consider the code for λ.λ.λ.a:

GRAB; GRAB; GRAB; C(a); RETURN

Total application to 3 arguments:
stack on entry is v1.v2.v3.�.c ′.e ′.
The three GRAB succeed → environment v3.v2.v1.e.
RETURN sees the stack v .�.c ′.e ′ and returns v to caller.

Partial application to 2 arguments:
stack on entry is v1.v2.�.c ′.e ′.
The third GRAB fails and returns (GRAB; C(a); RETURN)[v2.v1.e],
representing the result of the partial application.

Over-application to 4 arguments:
stack on entry is v1.v2.v3.v4.�.c ′.e ′.
RETURN sees the stack v .v4.�.c ′.e ′ and tail-applies v (which better
has be a closure) to v4.
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Correctness proofs

Correctness proofs for abstract machines

At this point of the lecture, we have two ways to execute a given source
term:

1 Evaluate directly the term: a
∗→ v or ε ` a⇒ v .

2 Compile it, then execute the resulting code using the abstract
machine:




code = C(a)
env = ε
stack = ε


 ∗→




code = ε
env = e
stack = v .ε




Do these two execution paths agree? Does the abstract machine compute
the correct result, as predicted by the semantics of the source term?
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Correctness proofs Generalities on semantic preservation

Semantic preservation, in general

Let P1 and P2 be two programs, possibly in different languages.

(E.g. P1 is a mini-ML term and P2 is Modern SECD machine code
produced by compiling P1.)

We have operational semantics that associate to P1, P2

sets of observable behaviors B(P1), B(P2).

Observable behaviors are, in our example,

Termination on [a state representing] a value v .

Divergence.

Error (getting stuck).

(For richer languages: add termination on an uncaught exception, traces
of I/O operations performed, etc.)
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Correctness proofs Generalities on semantic preservation

Notions of semantic preservation

What are the conditions for P2 to be a “correct” compilation of P1?

Observational equivalence (a.k.a. “bisimulation”):

B(P2) = B(P1)

Spelled out in our example:

a
∗→ v ⇐⇒ (C(a), ε, ε)

∗→ (ε, ε, C(v).ε)

a→∞ ⇐⇒ (C(a), ε, ε)→∞
a
∗→ a′ 6→ ⇐⇒ (C(a), ε, ε)

∗→ . . . 6→
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Correctness proofs Generalities on semantic preservation

Notions of semantic preservation

Refinement (a.k.a. “backward simulation” or “upward simulation”):

B(P2) ⊆ B(P1)

In other words: any behavior of P2 is a possible behavior of P1.

Happens if P1 has internal nondeterminism (e.g. partially-specified
evaluation order) and the compiler reduces this nondeterminism (e.g.
commits on a particular evaluation order).
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Correctness proofs Generalities on semantic preservation

Notions of semantic preservation

Preservation (a.k.a. “forward simulation” or “downward simulation”):

B(P1) ⊆ B(P2)

In other words: any behavior of P1 can happen in P2, but P2 can have
more behaviors. . . Useful in conjunction with determinism:

Theorem 4

Preservation ∧ Refinement =⇒ Equivalence

If P2 is deterministic, Preservation =⇒ Equivalence.

If P1 is deterministic, Refinement =⇒ Equivalence.

(Proof: if P is deterministic, B(P) is a singleton.
If ∅ ⊂ A ⊆ B and B is a singleton, then A = B.)
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Correctness proofs Generalities on semantic preservation

Notions of semantic preservation

Often, compilation does not preserve error behaviors.

Example 5

The source term 0x3fd25ac6c674 42 is stuck.
Its compiled code can print 42 if 0x3fd25ac6c674 happens to be the
address of the print_int function.

This is legitimate because:

We only compile terms that type-check in a sound type system.

Or just “garbage in, garbage out” (C compilers).

Refinement for safe programs: if error /∈ B(P1) then B(P2) ⊆ B(P1).

Preservation for safe programs: if error /∈ B(P1) then B(P1) ⊆ B(P2).
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Correctness proofs Generalities on semantic preservation

Relating the various notions

Equivalence

Refinement

Refinement
for safe progs

Preservation

Preservation
for safe progs

if P2 deterministic

if P1 deterministic

if P2 deterministic

if P1 deterministic

if P1 deterministicif P2 deterministic

if P1 safe if P1 safe
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Correctness proofs Total correctness for Krivine’s machine

Total correctness for Krivine’s machine

We start with Krivine’s machine because it enjoys a very nice refinement
property:

Every transition of Krivine’s machine simulates one reduction
step in the call-by-name λ-calculus with explicit substitutions.

To make the simulation explicit, we first extend the compilation scheme C
as follows:

C(a[e]) = C(a)[C(e)]

(a term a viewed under substitution e compiles down to a machine thunk)

C(e) = C(a1[e1]) . . . C(an[en]) if e = a1[e1] . . . an[en]

(a substitution e of thunks for de Bruijn variables compiles down to a
machine environment)
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Correctness proofs Total correctness for Krivine’s machine

Decompiling states of Krivine’s machine

A state of the machine of the following form

code = C(a)

env = C(e)

stack = C(a1)[C(e1)] . . . C(an)[C(en)]

decompiles to the following source-level term:

@

@

@

an[en]

a2[e2]

a1[e1]a[e]
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Correctness proofs Total correctness for Krivine’s machine

Decompilation and simulation

initial
state

state 1 state 2

term a term a1 term a2

transition transition

reduction reduction

compilation decompilation decompilation decompilation
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Correctness proofs Total correctness for Krivine’s machine

The simulation lemma

Lemma 6 (Simulation)

If the machine state (c , e, s) decompiles to the source term a, and if the
machine makes a transition (c , e, s)→ (c ′, e ′, s ′), then there exists a term
a′ such that

1 a→ a′ (reduction in the CBN λ-calculus with explicit substitutions)

2 (c ′, e ′, s ′) decompiles to a′.

Proof.

By case analysis on the machine transition. (Next 3 slides).
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Correctness proofs Total correctness for Krivine’s machine

The simulation lemma - GRAB case

The transition is:

(GRAB; C(a), C(e), C(a1)[C(e1)] . . . C(an)[C(en)])
↓

(C(a), C(a1[e1].e), C(a2)[C(e2)] . . . C(an)[C(en)])

It corresponds to a β-reduction (λ.a)[e] a1[e1]→ a[a1[e1].e]:

@

@

@

an[en]

a2[e2]

a1[e1](λ.a)[e]

@

@ an[en]

a2[e2]a[a1[e1].e]
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Correctness proofs Total correctness for Krivine’s machine

The simulation lemma - PUSH case
The transition is:

(PUSH(C(b)); C(a), C(e), C(a1)[C(e1)] . . . C(an)[C(en)])
↓

(C(a), C(e), C(b)[C(e)].C(a1)[C(e1)] . . . C(an)[C(en)])

It corresponds to a reduction (a b)[e]→ a[e] b[e]:

@

@

@

an[en]

a2[e2]

a1[e1](a b)[e]

@

@

@

@

an[en]

a2[e2]

a1[e1]

b[e]a[e]
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Correctness proofs Total correctness for Krivine’s machine

The simulation lemma - ACCESS case

The transition is:

(ACCESS(n), C(e), C(a1)[C(e1)] . . . C(an)[C(en)])
↓

(C(a′), C(e ′), C(a1)[C(e1)] . . . C(an)[C(en)])

if e(n) = a′[e ′]. It corresponds to a reduction n[e]→ e(n):

@

@

@

an[en]

a2[e2]

a1[e1]n[e]

@

@

@

an[en]

a2[e2]

a1[e1]a′[e ′]
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Other lemmas

Lemma 7 (Initial states)

The initial state (C(a), ε, ε) decompiles to the term a.

Lemma 8 (Final states)

If the machine stops on a state (c, e, s) that decompiles to the term a,

either the state is a final state (GRAB; c, e ′, ε) and a is the value
(λ.a)[e] with c = C(a) and e ′ = C(e);

or the state is not final and a is not a value and does not reduce.
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The correctness theorem

Theorem 9 (Refinement for Krivine’s machine)

If we start the machine in initial state (C(a), ε, ε) . . .

1 and the machine stops on a final state (c , e, s), then a
∗→ v and the

state (c, e, s) decompiles to the value v;

2 and the machine stops on a non-final state (c , e, s), then a
∗→ a′ 6→;

3 and the machine performs an infinite number of transitions, then
a reduces infinitely.

X. Leroy (INRIA) Functional programming languages MPRI 2-4, 2015–2016 48 / 82



Correctness proofs Total correctness for Krivine’s machine

Diagrammatic proof
By the initial state and simulation lemmas:

(C(a), ε, ε) · · · (cn, en, sn)

a · · · an

transition transition

reduction reduction

decompilation decompilation decompilation

If the machine makes infinitely many transitions, we have an infinite
reduction sequence starting with a.

If the machine stops on a state (cn, en, sn) that decompiles to an,

either the state is final and by the final state lemma we have a finite
reduction sequence a

∗→ (λa′)[e];

or the state is not final and by the final state lemma the source term
goes wrong a

∗→ a′ 6→.
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Partial correctness for the Modern SECD

Total correctness for the Modern SECD is significantly harder to prove
than for Krivine’s machine. It is however straightforward to prove partial
correctness through a preservation argument restricted to terminating
source programs:

Theorem 10 (Partial preservation for the Modern SECD)

If a
∗→ v under call-by-value, then the machine started in state (C(a), ε, ε)

terminates in state (ε, ε, v ′.ε), and the machine value v ′ corresponds with
the source value v. In particular, if v is an integer N, then v ′ = N.

The key to a simple proof is to use natural semantics e ` a⇒ v instead of
the reduction semantics a

∗→ v .
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Compositionality and natural semantics

The compilation scheme is compositional: every sub-term a′ of the
program a is compiled to a code sequence that evaluates a and leaves its
value on the top of the stack.

This follows exactly an evaluation derivation of e ` a⇒ v in natural
semantics. This derivation contains sub-derivations e ′ ` a′ ⇒ v ′ for each
sub-term a′.
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Partial correctness using natural semantics

Theorem 11 (Partial preservation for the Modern SECD)

If e ` a⇒ v, then



C(a); k
C(e)
s


 +→




k
C(e)
C(v).s




The compilation scheme C is extended to values and environments as
follows:

C(N) = N

C((λa)[e]) = (C(a); RETURN)[C(e)]

C(v1 . . . vn.ε) = C(v1) . . . C(vn).ε
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Partial preservation using natural semantics

The proof of the partial preservation theorem proceeds by induction over
the derivation of e ` a⇒ v and case analysis on the last rule used.

The cases a = N, a = n and a = λ.b are straightforward: the machine
performs exactly one CONST, ACCESS or CLOSURE transition in these cases.

The interesting case is that of function application:

e ` a⇒ (λc)[e ′] e ` b ⇒ v ′ v ′.e ′ ` c ⇒ v

e ` a b ⇒ v

(The let rule is similar.)
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( C(a); C(b); APPLY; k | C(e) | s )

↓ + (induction hypothesis on first premise)

( C(b); APPLY; k | C(e) | (C(c); RETURN)[C(e ′)].s )

↓ + (induction hypothesis on second premise)

( APPLY; k | C(e) | C(v ′).(C(c); RETURN)[C(e ′)].s )

↓ (APPLY transition)

( C(c); RETURN | C(v ′.e ′) | k.C(e).s )

↓ + (induction hypothesis on third premise)

( RETURN | C(v ′.e ′) | C(v).k .C(e).s )

↓ (RETURN transition)

( k | C(e) | C(v).s )
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Total correctness for the Modern SECD

The partial preservation theorem applies only to terminating source terms.
But for terms a that diverge or get stuck, e ` a⇒ v does not hold for any
e, v and the theorem does not apply.

We do not know what the machine is going to do when started on such
terms.

(The machine could loop, as expected, but could as well get stuck or stop
and answer “42”.)
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Total correctness for the Modern SECD

To obtain a stronger correctness result, we can try to match machine
transitions with source-level reductions, like we did with Krivine’s machine.

However, decompilation of Modern SECD machine states is significantly
complicated by the following fact:

There are intermediate states of the Modern SECD where the
code component is not the compilation of any source term, e.g.

code = APPLY; k ( 6= C(a) for all a)

⇒ Define decompilation by symbolic execution
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Warm-up: symbolic execution for the HP calculator

Consider the following alternate semantics for the abstract machine:

Machine state before Machine state after

Code Stack Code Stack

CONST(N); c s c N.s

ADD; c a2.a1.s c +
↙ ↘

a1 a2

.s

SUB; c a2.a1.s c −
↙ ↘

a1 a2

.s

The stack contains arithmetic expressions instead of integers.
The instruction ADD, SUB construct arithmetic expressions instead of
performing integer computations.

X. Leroy (INRIA) Functional programming languages MPRI 2-4, 2015–2016 57 / 82

Correctness proofs Total correctness for the Modern SECD

Warm-up: symbolic execution for the HP calculator

To decompile the machine state (c , s), we execute the code c with the
symbolic machine, starting in the stack s (viewed as a stack of constant
expressions rather than a stack of integer values).
If the symbolic machine stops with code = ε and stack = a.ε, the
decompilation is the expression a.

Example 12

Code Stack

CONST(3); SUB; ADD 2.1.ε

SUB; ADD 3.2.1.ε

ADD (2− 3).1.ε

ε 1 + (2− 3).ε

The decompilation is 1 + (2− 3).
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Decompilation by symbolic execution of the Modern SECD

Same idea: use a symbolic variant of the Modern SECD that operates over
expressions rather than machine values.
Decompilation of machine values:

D(N) = N D(c[e]) = (λa)[D(e)] if c = C(a); RETURN

Decompilation of environments and stacks:

D(v1 . . . vn.ε) = D(v1) . . .D(vn).ε

D(. . . v . . . c .e . . .) = . . .D(v) . . . c .D(e) . . .

Decompilation of machine states: D(c , e, s) = a if the symbolic machine,
started in state (c,D(e),D(s)), stops in state (ε, e ′, a.ε).
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Transitions for symbolic execution of the Modern SECD

Machine state before Machine state after

Code Env Stack Code Env Stack

ACCESS(n); c e s c e e(n).s

LET; c e a.s c a.e s

ENDLET; c a.e b.s c e (let a in b).s

CLOSURE(c ′); c e s c e D(c ′)[e].s

APPLY; c e b.a.s c e (a b).s

RETURN; c e a.c ′.e ′.s c ′ e ′ a.s
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Simulation for the Modern SECD

Lemma 13 (Simulation)

If the machine state (c , e, s) decompiles to the source term a, and if the
machine makes a transition (c , e, s)→ (c ′, e ′, s ′), then there exists a term
a′ such that

1 a
∗→ a′

2 (c ′, e ′, s ′) decompiles to a′.

Note that we conclude a
∗→ a′ instead of a→ a′ as in Krivine’s machine.

This is because many transitions of the Modern SECD correspond to no
reductions: they move data around without changing the decompiled
source term. Only the APPLY and LET transitions simulates one reduction
step.
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The stuttering problem

This makes it possible that the machine could “stutter”: perform infinitely
many transitions that correspond to zero reductions of the source term.

state 1 state 2 state 3 state 4

term a

transition transition transition

decompilation

In this case, the machine could diverge even though the source term
terminates (normally or on an error).
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Simulation without stuttering

We can show that the stuttering problem does not occur by proving a
stronger version of the simulation lemma:

Lemma 14 (Simulation without stuttering)

If the machine state (c , e, s) decompiles to the source term a, and if the
machine makes a transition (c , e, s)→ (c ′, e ′, s ′), then there exists a term
a′ such that

1 Either a→ a′, or a = a′ and M(c ′, e ′, s ′) < M(c , e, s)

2 (c ′, e ′, s ′) decompiles to a′.

Here, M is a measure associating nonnegative integers to machine states.
A suitable definition of M is:

M(c , e, s) = length(c) +
∑

c ′∈s
length(c ′)
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Total correctness for the Modern SECD

We can finish the proof by showing the Initial state and Final state lemmas
with respect to CBV reduction semantics.
⇒ The Modern SECD is totally correct, after all.

But:

The proofs are heavy.

The definition of decompilation is complicated, hard to reason about,
and hard to extend to more optimized compilation scheme.

Is there a better way?
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Outline

1 Warm-up exercise: abstract machine for arithmetic expressions

2 Examples of abstract machines for functional languages
The Modern SECD
Krivine’s machine
The ZAM

3 Correctness proofs for abstract machines
Generalities on semantic preservation
Total correctness for Krivine’s machine
Partial correctness for the Modern SECD
Total correctness for the Modern SECD

4 Natural semantics for divergence
Definition and properties
Application to proofs of abstract machines
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Reduction semantics versus natural semantics

Pros and cons of reduction semantics:

+ Accounts for all possible outcomes of evaluation:
Termination: a

∗→ v
Divergence: a

∗→ a′ → . . . (infinite sequence)

Error: a
∗→ a′ 6→

− Compiler correctness proofs are painful.

Pros and cons of natural semantics:

− Describes only terminating evaluations a⇒ v .
If a 6⇒ v for all v , we do not know whether a diverges or causes an
error. (Cf. exercise 1.3.)

+ Convenient for compiler correctness proofs

Idea: try to describe either divergence or errors using natural semantics.
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Natural semantics for erroneous terms
Describing erroneous evaluations in natural semantics is easy: just give
rules defining the predicate a⇒ err, “the term a causes an error when
evaluated”.

x ⇒ err
a⇒ err

a b ⇒ err

a⇒ v b ⇒ err

a b ⇒ err

a⇒ v b ⇒ v ′ v is not a λ

a b ⇒ err

a⇒ λx .c b ⇒ v ′ c[x ← v ′]⇒ err

a b ⇒ err

Then, we can define diverging terms negatively:
a diverges if a 6⇒ err and ∀v , a 6⇒ v .

A positive definition of diverging terms would be more convenient.
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Natural semantics for divergence

More challenging but more interesting is the description of divergence in
natural semantics.

Idea: what are terms that diverge in reduction semantics?

They must be applications a b — other terms do not reduce.

An infinite reduction sequence for a b is necessarily of one of the following
three forms:

1 a b → a1 b → a2 b → a3 b → . . .
i.e. a reduces infinitely.

2 a b
∗→ v b → v b1 → v b2 → v b3 → . . .

i.e. a terminates, but b reduces infinitely.

3 a b
∗→ (λx .c) b

∗→ (λx .c) v → c[x ← v ]→ . . .
i.e. a and b terminate, but the term after β-reduction reduces
infinitely.
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Natural semantics for divergence

Transcribing these three cases of divergence as inference rules in the style
of natural semantics, we get the following rules for a⇒∞
(read: “the term a diverges”).

a⇒∞

a b ⇒∞

a⇒ v b ⇒∞

a b ⇒∞
a⇒ λx .c b ⇒ v c[x ← v ]⇒∞

a b ⇒∞

There are no axioms!
To make sense, these rules must be interpreted coinductively.
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Inductive and coinductive interpretations of inference rules

A set of axioms and inference rules defines not one but two logical
predicates of interest:

Inductive interpretation:
the predicate holds iff it is the conclusion of a finite derivation tree.

Coinductive interpretation:
the predicate holds iff it is the conclusion of a finite or infinite
derivation tree.
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Exercise

Consider the following inference rules for the predicate even(n)

even(0)
even(n)

even(S(S(n)))

Assume that n ranges over N ∪ {∞}, with S(∞) =∞.

With the inductive interpretation of the rules, what are the numbers n
such that even(n) holds? {2n | n ∈ N}

With the coinductive interpretation of the rules, what are the numbers n
such that even(n) holds? {∞} ∪ {2n | n ∈ N}
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Inductive and coinductive interpretations of inference rules

We saw the proof-theoretic interpretation of inductive and coinductive
inference systems. The standard interpretation is in terms of fixpoints of
an operator F associated with the inference system:

F : {initial facts} → {facts that can be inferred in one step}
For instance, in the case of even,

F (X ) = {even(0)} ∪ {even(S(S(n))) | even(n) ∈ X}

Facts true in the inductive interpretation = lfp(F ) (least fixpoint of F ).
Facts true in the coinductive interpretation = gfp(F ) (greatest fixpoint).

For more details and an equivalence between the two interpretations, see section 2 of

Coinductive big-step operational semantics, X. Leroy and H. Grall, Information &

Computation 207(2), 2009.
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Example of diverging evaluation

The inductive interpretation of a⇒∞ is always false: there are no
axioms, hence no finite derivations.

The coinductive interpretation captures classic examples of divergence.
Taking e.g. δ = λx . x x , we have the following infinite derivation:

δ ⇒ λx . x x δ ⇒ δ

δ ⇒ λx . x x δ ⇒ δ
δ ⇒ λx. x x δ ⇒ δ

δ ⇒ λx. x x δ ⇒ δ

.

.

.

δ δ ⇒ ∞

δ δ ⇒ ∞

δ δ ⇒∞

δ δ ⇒∞
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Equivalence between ⇒∞ and infinite reductions

Theorem 15

If a⇒∞, then a reduces infinitely.

Proof.

We show that for all n and a, if a⇒∞, then there exists a reduction
sequence of length n starting with a. The proof is by induction over n,
then induction over a, then case analysis on the rule used to conclude
a⇒∞. (Exercise.)
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Equivalence between ⇒∞ and infinite reductions

Theorem 16

If a reduces infinitely, then a⇒∞.

Proof.

Using the coinduction principle associated with the rules defining ⇒∞.
See Coinductive big-step operational semantics, X. Leroy and H. Grall,
Information & Computation 207(2), 2009.

X. Leroy (INRIA) Functional programming languages MPRI 2-4, 2015–2016 75 / 82

Natural semantics for divergence Definition and properties

Divergence rules with environments and closures

We can follow the same approach for evaluations using environments and
closures, obtaining the following rules for e ` a⇒∞
(read: “in environment e, the term a diverges”).

e ` a⇒∞

e ` a b ⇒∞

e ` a⇒ v e ` b ⇒∞

e ` a b ⇒∞
e ` a⇒ (λ.c)[e ′] e ` b ⇒ v v .e ′ ` c ⇒∞

e ` a b ⇒∞

(Again: coinductive interpretation.)
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Back to the total correctness of the Modern SECD

We can now use the e ` a⇒∞ predicate to obtain a simpler proof that
the Modern SECD correctly executes terms that diverge:

Theorem 17

If e ` a⇒∞, then for all k and s, the Modern SECD performs infinitely
many transitions starting from the state



C(a); k
C(e)
s
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Proof principle

Lemma 18

Let X be a set of machine states such that

∀S ∈ X , ∃S ′ ∈ X , S
+→ S ′

Then, the machine, started in a state
S ∈ X , performs infinitely many transitions.

X
•

• •

•

•

•

Proof.

Assume the lemma is false and consider a minimal counterexample, that
is, S ∈ X

∗→ S ′ 6→ and the number of transitions from S to S ′ is minimal
among all such counterexamples.
By hypothesis over X and determinism of the machine, there exists a state

S1 such that S
+→ S1 ∈ X

∗→ S ′ 6→. But then S1 is a counterexample
smaller than S . Contradiction.
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Application to the theorem

Consider

X =







C(a); k
C(e)
s



∣∣∣∣∣ e ` a⇒∞





It suffices to show ∀S ∈ X , ∃S ′ ∈ X , S
+→ S ′ to establish the theorem.
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The proof

Take S ∈ X , that is, S =



C(a); k
C(e)
s


 with e ` a⇒∞.

We show ∃S ′ ∈ X , S
+→ S ′ by induction over a.

First case: a = a1 a2 and e ` a1 ⇒∞.
C(a); k = C(a1); (C(a2); APPLY; k). The result follows by induction
hypothesis

Second case: a = a1 a2 and e ` a1 ⇒ v and e ` a2 ⇒∞.

S =



C(a1); C(a2); APPLY; k
C(e)
s


 +→



C(a2); APPLY; k
C(e)
C(v).s


 = S ′

and we have S ′ ∈ X .
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The proof

Third case: a = a1 a2 and e ` a1 ⇒ (λc)[e ′] and e ` a2 ⇒ v and
v .e ′ ` c ⇒∞

S =



C(a); k
C(e)
s


 +→



C(a2); APPLY; k
C(e)
C(λc[e ′]).s




+→




APPLY; k
C(e)
C(v).C(λc[e ′]).s




→



C(c); RETURN
C(v .e ′)
k.C(e).s


 = S ′

and we have S ′ ∈ X , as expected.
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Summary

Combining theorems 11 and 17, we obtain the following total correctness
theorem for the Modern SECD:

Theorem 19 (Preservation for the Modern SECD)

Let a be a closed program. Starting the Modern SECD in state
(C(a), ε, ε),

If ε ` a⇒ v, the machine executes a finite number of transitions and
stops on the final state (ε, ε, C(v).ε).

If ε ` a⇒∞, the machine executes an infinite number of transitions.
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