Statistically profiling memory in OCaml

Jacques-Henri Jourdan

November 12th, 2019
Chameau sur le plateau, Gif-sur-Yvette

Memory profilers

Why does my program eat so much memory?

Memory leaks

Inefficient data structures

2 of 16

Solution 1: profiling allocations

Use a generic profiler for runtime

Focus on allocations

3 of 16

Solution 1: profiling allocations

Use a generic profiler for runtime

Focus on allocations

Released blocks should not be counted
= Does not faithfully represent the heap.

3 of 16

Solution 2: attach meta-data to blocks

At each allocation: attach meta-data about the allocation point.

When needed, analyze the meta-data in the heap.

Examples for OCaml:
Ocp-Memprof. identifier of allocation site

Spacetime: pointer to call graph (built on-the-fly)

4 of 16

Solution 2: attach meta-data to blocks

At each allocation: attach meta-data about the allocation point.

When needed, analyze the meta-data in the heap.

Examples for OCaml:
Ocp-Memprof. identifier of allocation site

Spacetime: pointer to call graph (built on-the-fly)

Runtime/memory overhead
= Limited amount of information

4 of 16

A statistical memory profiler

Track only a small, representative fraction of
allocations.

Much lower overhead
Tunable sampling rate

Relevant information even for low sampling rates

= Attach much larger meta-data

Full stack traces, values of some variables...

5 of 16

Architecture

In the runtime system:
only the sampling and tracking mechanisms

An arbitrary OCaml closure is called when:
a block is sampled,
a sampled block is promoted, or

a sampled block is deallocated.

A client library chooses, collects and displays relevant information.

6 of 16

Sampling engine

Allocated blocks
. X x X X N N]

See allocations as a stream of blocks, seen one after the other
Sizes are taken into account

7 of 16

Sampling engine

Allocated blocks
. X XX X X N N|

-
Samples

See allocations as a stream of blocks, seen one after the other
Sizes are taken into account

Choose sampled words at random (“binomial process”) at a
tunable rate

Some blocks not sampled, some sampled several times

Easy to simulate

E(Samples in a block) = Size of the block x Sampling rate

7 of 16

Interface of the sampler

type allocation = private { n_samples : int;
size : int;
tag : int;
unmarshalled : bool;
callstack : Printexc.raw_backtrace }
val start :
sampling_rate:float —
7callstack_size:int —
?minor_alloc_callback:(allocation — 'minor option) —
major_alloc_callback:(allocation — 'major option) —
?promote_callback:('minor — 'major option) —
?minor_dealloc_callback:('minor — unit) —
major_dealloc_callback:('major — unit) —
unit — unit

val stop : unit — unit

8 of 16

Sampling algorithm

Major heap: direct simulation of binomial distribution
Large blocks = Amortized cost

Minor heap:
51 52

So — 51 ~ Geom(\)

At each event:

Simulate position of next sample (geometric law)
Change lower limit of the minor allocation arena
= Control goes back to runtime system when sampling

Non-sampled allocations performed as usual
= No performance regression when \ <1

9 of 16

Lessons learnt from the prototype
ML workshop 2016

Every allocation can be sampled: C stubs, deserialized objects...

Good performances:

Sampling rate A =107° = < 1% runtime overhead
A=10"* = < 10%

Yet, very representative

Requires invasive changes to the runtime and compiler:

Deals with the “Comballoc” optimization
Needs good support for asynchronous callbacks (+cleanup)
Interacts subtly with the allocators

10 of 16

Challenge #1: The “Comballoc” optimization

Native compiler:
combines successive allocations

example: Some([0; 1; 2], 4, 4) = one allocation of size 16

What happens if a word in a “combined block” is sampled?
frame tables : description of combined allocations

changes needed in ocamlopt

StatMemprof determines which sub-block is sampled, and calls the
callback(s) correspondingly

11 of 16

Challenge #2: Async callback safety

It is not safe to run arbitrary OCaml code anywhere

12 of 16

Challenge #2: Async callback safety

It is not safe to run arbitrary OCaml code anywhere

Allocations from C code:
Example: allocating arrays, ...
Guarantees: no OCaml callback (in major heap: no GC allowed!)

StatMemprof postpones callbacks for these allocations

12 of 16

Challenge #2: Async callback safety

It is not safe to run arbitrary OCaml code anywhere

Allocations from C code:
Example: allocating arrays, ...
Guarantees: no OCaml callback (in major heap: no GC allowed!)

StatMemprof postpones callbacks for these allocations

Handling postponed callbacks:

Mechanism shared with signals and finalizers

In C code (incl. bytecode interpreter):
process_pending_actions called regularly at safe points

In native code:

Minor allocation arena closed = handled at next minor allocation
12 of 16

Challenge #3: Interaction with native allocator
The problem

Generated native (pseudo-)code for allocations (OCaml < 4.10)

redo:

young_ptr -= whsize;

if (young_ptr < young_limit) goto gc;
Hd_hp (young_ptr) = header;

[Rest of the function]

gc:
young_ptr += whsize;
call_runtime_system();
goto redo

The variable young_limit is used:
as the begining of the minor heap
for interrupting native code (e.g., signals)

by StatMemprof, for sampling

13 of 16

Challenge #3: Interaction with native allocator
The problem

Generated native (pseudo-)code for allocations (OCaml < 4.10)

redo:

young_ptr -= whsize;

if (young_ptr < young_limit) goto gc;
Hd_hp (young_ptr) = header;

[Rest of the function]

gc:
young_ptr += whsize;
call_runtime_system();
goto redo

If signal arrives just after sampling
signal handler will set young_limit := young_alloc_end
signal callback will perform its own allocations before ours

StatMemprof data structures will point to garbage
13 of 16

Challenge #3: Interaction with native allocator

The solution

Generated native (pseudo-)code for allocations (OCaml trunk)

young_ptr -= whsize;
if (young_ptr < young_limit) goto gc;
gc_done:

Hd_hp (young_ptr) = header;
[Rest of the function]

gc:
call_runtime_system();
goto gc_done

Same hot path, smaller code overall = performances OK

Very close to the bytecode/C code allocator = share more code
Runtime system now needs to know whsize
Read it from frame tables (StatMemprof needs it anyway)

14 of 16

Future work

Needed for the release (in OCaml 4.11):
Merge in OCaml trunk sampling for native code

Make StatMemprof reentrant
Thread preemption can occur during a callback

Optimizations (in OCaml, some day):
Faster capture of callstack

Faster generation of geometric random variables
Better PRNG, faster log approximation, vectorized computations

Client libraries:
Combine with Spacetime/Ocp-Memprof?
Dedicated library?

15 of 16

Conclusion

Together with Spacetime and Ocp-Memprof, we will soon have
efficient tools for understanding memory consumption in OCaml.
StatMemprof in 4.11:

Most of the code is merged.

Many improvements compared to initial prototype

Many thanks to Stephen Dolan, Jane Street, the core OCaml team !
Still a few PRs are needed

16 of 16

