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Memory profilers

Why does my program eat so much memory?

Memory leaks

Inefficient data structures
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Solution 1: profiling allocations

Use a generic profiler for runtime

Focus on allocations
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Solution 1: profiling allocations

Use a generic profiler for runtime

Focus on allocations

Released blocks should not be counted
= Does not faithfully represent the heap.
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Solution 2: attach meta-data to blocks

At each allocation: attach meta-data about the allocation point.

When needed, analyze the meta-data in the heap.

Examples for OCaml:
Ocp-Memprof. identifier of allocation site

Spacetime: pointer to call graph (built on-the-fly)
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Solution 2: attach meta-data to blocks

At each allocation: attach meta-data about the allocation point.

When needed, analyze the meta-data in the heap.

Examples for OCaml:
Ocp-Memprof. identifier of allocation site

Spacetime: pointer to call graph (built on-the-fly)

Runtime/memory overhead
= Limited amount of information
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A statistical memory profiler

Track only a small, representative fraction of
allocations.

Much lower overhead
Tunable sampling rate

Relevant information even for low sampling rates

= Attach much larger meta-data

Full stack traces, values of some variables...
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Architecture

In the runtime system:
only the sampling and tracking mechanisms

An arbitrary OCaml closure is called when:
a block is sampled,
a sampled block is promoted, or

a sampled block is deallocated.

A client library chooses, collects and displays relevant information.
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Sampling engine

Allocated blocks
. X x X X N N]

See allocations as a stream of blocks, seen one after the other
Sizes are taken into account
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Sampling engine

Allocated blocks
. X XX X X N N|

-
Samples

See allocations as a stream of blocks, seen one after the other
Sizes are taken into account

Choose sampled words at random ( “binomial process”) at a
tunable rate

Some blocks not sampled, some sampled several times

Easy to simulate

E(Samples in a block) = Size of the block x Sampling rate
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Interface of the sampler

type allocation = private { n_samples : int;
size : int;
tag : int;
unmarshalled : bool;
callstack : Printexc.raw_backtrace }
val start :
sampling_rate:float —
7callstack_size:int —
?minor_alloc_callback:(allocation — 'minor option) —
major_alloc_callback:(allocation — 'major option) —
?promote_callback:('minor — 'major option) —
?minor_dealloc_callback:('minor — unit) —
major_dealloc_callback:('major — unit) —
unit — unit

val stop : unit — unit
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Sampling algorithm

Major heap: direct simulation of binomial distribution
Large blocks = Amortized cost

Minor heap:
51 52

So — 51 ~ Geom(\)

At each event:

Simulate position of next sample (geometric law)
Change lower limit of the minor allocation arena
= Control goes back to runtime system when sampling

Non-sampled allocations performed as usual
= No performance regression when \ <1
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Lessons learnt from the prototype
ML workshop 2016

Every allocation can be sampled: C stubs, deserialized objects...

Good performances:

Sampling rate A =107° = < 1% runtime overhead
A=10"* = < 10%

Yet, very representative

Requires invasive changes to the runtime and compiler:

Deals with the “Comballoc” optimization
Needs good support for asynchronous callbacks (+cleanup)
Interacts subtly with the allocators
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Challenge #1: The “Comballoc” optimization

Native compiler:
combines successive allocations

example: Some([0; 1; 2], 4, 4) = one allocation of size 16

What happens if a word in a “combined block” is sampled?
frame tables : description of combined allocations

changes needed in ocamlopt

StatMemprof determines which sub-block is sampled, and calls the
callback(s) correspondingly
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Challenge #2: Async callback safety

It is not safe to run arbitrary OCaml code anywhere

12 of 16



Challenge #2: Async callback safety

It is not safe to run arbitrary OCaml code anywhere

Allocations from C code:
Example: allocating arrays, ...
Guarantees: no OCaml callback (in major heap: no GC allowed!)

StatMemprof postpones callbacks for these allocations
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Challenge #2: Async callback safety

It is not safe to run arbitrary OCaml code anywhere

Allocations from C code:
Example: allocating arrays, ...
Guarantees: no OCaml callback (in major heap: no GC allowed!)

StatMemprof postpones callbacks for these allocations

Handling postponed callbacks:

Mechanism shared with signals and finalizers

In C code (incl. bytecode interpreter):
process_pending_actions called regularly at safe points

In native code:

Minor allocation arena closed = handled at next minor allocation
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Challenge #3: Interaction with native allocator
The problem

Generated native (pseudo-)code for allocations (OCaml < 4.10)

redo:

young_ptr -= whsize;

if (young_ptr < young_limit) goto gc;
Hd_hp (young_ptr) = header;

[Rest of the function]

gc:
young_ptr += whsize;
call_runtime_system();
goto redo

The variable young_limit is used:
as the begining of the minor heap
for interrupting native code (e.g., signals)

by StatMemprof, for sampling
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Challenge #3: Interaction with native allocator
The problem

Generated native (pseudo-)code for allocations (OCaml < 4.10)

redo:

young_ptr -= whsize;

if (young_ptr < young_limit) goto gc;
Hd_hp (young_ptr) = header;

[Rest of the function]

gc:
young_ptr += whsize;
call_runtime_system();
goto redo

If signal arrives just after sampling
signal handler will set young_limit := young_alloc_end
signal callback will perform its own allocations before ours

StatMemprof data structures will point to garbage
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Challenge #3: Interaction with native allocator

The solution

Generated native (pseudo-)code for allocations (OCaml trunk)

young_ptr -= whsize;
if (young_ptr < young_limit) goto gc;
gc_done:

Hd_hp (young_ptr) = header;
[Rest of the function]

gc:
call_runtime_system();
goto gc_done

Same hot path, smaller code overall = performances OK

Very close to the bytecode/C code allocator = share more code
Runtime system now needs to know whsize
Read it from frame tables (StatMemprof needs it anyway)
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Future work

Needed for the release (in OCaml 4.11):
Merge in OCaml trunk sampling for native code

Make StatMemprof reentrant
Thread preemption can occur during a callback

Optimizations (in OCaml, some day):
Faster capture of callstack

Faster generation of geometric random variables
Better PRNG, faster log approximation, vectorized computations

Client libraries:
Combine with Spacetime/Ocp-Memprof?
Dedicated library?
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Conclusion

Together with Spacetime and Ocp-Memprof, we will soon have
efficient tools for understanding memory consumption in OCaml.
StatMemprof in 4.11:

Most of the code is merged.

Many improvements compared to initial prototype

Many thanks to Stephen Dolan, Jane Street, the core OCaml team !
Still a few PRs are needed
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