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Abstract
We proposeF., a calculusof openexistential types that is an ex-
tension of SystemF obtained by decomposing the introduction and
elimination of existential types into more atomic constructs. Open
existential types modelmodular type abstraction as done in mod-
ule systems. The static semantics ofF. adapts standard techniques
to deal with linearity of typing contexts, its dynamic semantics is a
small-step reduction semantics that performs extrusion oftype ab-
straction as needed during reduction, and the two are related by sub-
ject reduction and progress lemmas. Applying the Curry-Howard
isomorphism,F.can be also read back as a logic with the same ex-
pressive power as second-order logic but with more modular ways
of assembling partial proofs. We also extend the core calculus to
handle the double vision problem as well as type-level and term-
level recursion. The resulting language turns out to be a newfor-
malization of (a minor variant of) Dreyer’s internal language for
recursive and mixin modules.

Categories and Subject Descriptors D.3.1 [Programming Lan-
guages]: Formal Definitions and Theory—Semantics; D.3.3 [Pro-
gramming Languages]: Language Constructs and Features —
Abstract data types, Modules; F.3.3 [Logics and Meanings of
Programs]: Studies of Program Constructs—Type structure; F.4.1
[Mathematical Logic and Formal Languages]: Mathematical Logic
—Lambda calculus and related systems.

General Terms Design, Languages, Theory

Keywords Lambda-Calculus, Modules, Type systems, Abstract
types, Generativity, Existential Types, Linear type systems, Mod-
ularity.

1. Introduction
Modularity has always been the key to robust, manageable, and
maintainable large software. It is even more so as the size and
complexity of software keeps increasing. Modular programming
requires good discipline from programmers but also good support
from programming languages. Unsurprisingly, module systems and
type systems for modules have been an area of intensive research in
the programming language community for more than two decades.

The module system forML, first proposed by MacQueen (12)
in the mid 80’s and independently improved and simplified in the
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mid 90’s by Harper and Lillibridge (6) and by Leroy (10), is still the
one in use in all dialects ofML, with relatively minor differences.
Abstract types, higher-order functors, and sharinga posteriori, are
key ingredients of its expressiveness and success.

However, while the successful history of theML module system
shows a relative ease of use, at least for the most frequent cases,
its metatheoretical study has probably been one of the most diffi-
cult parts of theML language. Even with today’s state-of-the-art
technology, it is still usually considered involved. The discrepancy
between the intuitive, perhaps misleading intelligibility of modules
and their intricate formal description is inconveniently surprising.

In earlier works, abstract types were usually identified with
existential types. However, it has been realized in the mid 80’s that
existential types do not adequately model type abstractionas used
in modules. Since then, an abstract type has been consideredas a
type whose definition has been forgotten. Consequently, an abstract
type cannot be referred to byhowit is defined; instead, it is referred
to by where it is defined,i.e. as a projectionpath from a value
variable bound to the module where it is defined. Two decades later,
pathsare still at the foundation of theML-based module systems
in use (11; 13; 19), and of more recent designs such as Scala (16).

Unfortunately, this formalization is still the source of a major
difficulty with module systems: because types appear as compo-
nents of module expressions, abstract types, which are designed
by paths, syntactically depend on values, which pulls into the lan-
guage all the complexity of dependent types. In fact, an important
property of a module system called thephase distinction(7), which
states that types should notdynamicallydepend on values and so
ensures static typechecking and permits separate compilation, ap-
pears to be in contradiction with the use of dependent types.

Hence, a large amount of work has been dedicated to showing
that dependencies used in module systems are in fact purely static,
and that types used to formalize them are nottruly dependent on
values1. This restriction is now well understood and has been ele-
gantly formalized using singleton kinds (4; 22) to capture the ab-
sence of dynamic dependencies. Among other benefits, this line of
work treats type abstraction as subtyping, is highly expressive, and
rather close toML. Moreover, its metatheory has been formalized
in Twelf (9), and thus mechanically verified. The robustness of the
approach has also been demonstrated by adapting the framework to
model type abstraction in a distributed setting (17).

However, despite these many positive results, there remainsev-
eral drawbacks with this approach—or with theML module sys-
tem. At the source of all difficulties, the tension between the pres-
ence of type components in values and the phase distinction is
still present: in fact much of the formalism sophisticationis for
ensuring that types do not actually depend on values. One tech-

1 There seems to be no name agreement yet on how to call this verylimited
form of dependent types.



nical difficulty, known as theavoidance problem(8), forces much
more type annotations in source expressions than what wouldother-
wise be necessary. As a consequence, the internal calculus of mod-
ules, which has a clean and standard mathematical formalization is
mostly used as an internal language for a surface language with a
rather sophisticated elaboration mechanism, which therefore does
not inherit the properties of the internal calculus. While quite gen-
eral and expressive, this modeling of modules is perhaps further
from the programmers intuitions than other aspects of the language.
In addition, this approach does not seem to easily accommodate to
recursive or mixin modules.

These arguments are as many invitations to pursue the investi-
gation for finding alternative explanations of modules. Hopefully, it
should be conceptually economical and should more closely reflect
the intuitive simplicity of the underlying mechanisms: ourgoal is
not, at least in a first step, to increase expressiveness.

Interestingly, in the purpose of explaining type abstraction and
generativity for recursive modules and solving thedouble vision
problem, Dreyer introduced an internal language, called RTG, as a
target of the elaboration for a surface language of recursive modules
(2; 3). Remarkably, the elaboration process is rather simple and
compositional, while the internal language provides neither type
components nor dependent types. Hence, although this does not
seem to have been Dreyer’s goal, it appears as a corollary that these
two ingredients do not seem to be necessary to model modules in
an accurate and easy manner. This is a great motivation to pursue
investigation in this direction.

A closer look at RTG shows an expressive but intriguing set
of primitives that allows to create undefined type references and
later assign a definition to them: “new α in M ” introduces a type
reference namedα in the scope ofM that should be set at most
once, with the type reference update “set α := τ in M : τ ′”.
Then,M and onlyM will see the concrete definitionτ for α while
other parts of the program will seeα abstractly. In this way, RTG
can handle two views for a given type variable: an abstract one,
without definition, and a concrete one, equipped with a definition.

RTG is obviously quite expressive, since it can be used to model
recursive modules. However, its static semantics is surprising and
somewhatad hoc: its typechecking rules useassignmentsin a
global store to keep track of type definitions, which makes the sys-
tem non compositional and unnecessarily asymmetrical, anddevi-
ates from the traditional presentation of typing rules. Thedynamic
semantics of RTG is also given through an abstract machine that
carries a globaltype storeto record type assignments in an im-
perative manner, unnecessarily enforces a deterministic evaluation
order, and confuses the uses of assignment for building recursive
values and for modeling type abstraction. Thus, although primitives
of RTG seemto be adequately chosen, the presentation of its static
and dynamic semantics raises questions on the fundamental rea-
sons of its suitability and therefore turns RTG away from the status
and potential applications that it really deserves: a trulyinteresting
calculus that could be used not only as an internal language,but
hopefully also as the core of a surface language in which modules
could directly be programmed.

Our goal in this work is to give an alternate presentation of a
minor variant of RTG, that attempts to improve its foundations and
metatheoretical properties, and that hopefully gives a justification
for its set of primitives. Thus, like RTG, our system focuses on type
abstraction only: the study of other features, such as translucent
signatures or sharing constraints, is deferred to future work.

We first present coreF., acalculusof openexistential types (§2)
without recursion, that is obtained by decomposing the usual intro-
duction and elimination constructs for existential types into more
atomic ones. We observe thatF. already permitsmodulartype ab-
straction, without any recursion mechanism.

We use known techniques to deal with linearity of typing con-
texts (§3) instead of RTG’s static effect calculus, thus keeping a
symmetric and compositional presentation (§3.3). We give F. a
traditional small-step reduction semantics (§3.4) that expresses the
inherent notion of sharing behind generativity through theextru-
sionof some binder. This permits to finely trace abstraction during
reduction. The static and dynamic semantics ofF. are related by
subject reduction and progress lemmas (§3.5).

Thanks to the Curry-Howard isomorphism,F.can be read back
as a logic with the same expressive power as second-order logic but
with more modular ways of assembling partial proofs (§3.6), and
in which the essence ofML modules can already be modeled.

We build a series of conservative extensions (§4) on top of this
core to increase its expressiveness with, namely, more liberal non-
recursive type definitions (§4.1), a solution to the double vision
problem (§4.2), mutually recursive type equations (§4.3), and term-
level recursion (§4.4). A crucial point is that these extensions are
independent from each other.

We end with a discussion of related work (§5) and concluding
remarks.

2. Open existential types
2.1 Abstract types as existential types

Mitchell and Plotkin (14) showed that abstract types could be
understood as existential types. However, it has also been noticed
that existential types do notaccuratelymodel type abstraction in
modules, because they lack some modular properties.

In SystemF, existential types are introduced by thepack con-
struct: provided the termM has some typeτ ′[α← τ ], the expres-
sionpack 〈τ, M〉 as ∃α. τ ′ hides the type informationτ , called the
witnessof the existential, from the type ofM so that the resulting
type is∃α. τ ′.

PACK

Γ ⊢ M : τ ′[α← τ ]

Γ ⊢ pack 〈τ, M〉 as ∃α. τ ′ : ∃α. τ ′

Existential types are eliminated by theunpack construct: pro-
videdM has type∃α. τ , the expressionunpack M as 〈α,x〉 in M ′

binds the type variableα to the witness of the existential and the
value variablex to theunpackedtermM in the body ofM ′. The
resulting type is the one ofM ′, in which α must not appear free.
The reason for this restriction is that otherwiseα, which is bound
in M ′, would escape its scope.

UNPACK

Γ ⊢ M : ∃α. τ Γ, α, x : τ ⊢ M ′ : τ ′ α /∈ ftv(τ ′)

Γ ⊢ unpack M as 〈α, x〉 in M ′ : τ ′

From now on, we assume that SystemF is equipped with
records and with the above primitive constructs, although they
could also be provided as a well-known syntactic sugar (18).

2.2 Atomic constructs for existential types

In this section we split off the constructs for existential types.
Indeed, bothpack andunpack have modularity problems.

The crucial issue withunpack is non-locality: it imposes the
same scope to the type variableα and the value variablex, which
is emphasized by the non-escaping condition onα. As a result, all
uses of the unpacked term must be anticipated. In other words, the
only way to make the variableα available in the whole program
is to put unpack early enough in the program, which is a non
local, hence non modular, program transformation. The reason is
that unpack is doing too many things at the same time: opening
the existential type, binding the opened value to a variable, and
restricting the scope of the fresh type variable.



The problem withpack is mostlyverbosity: it requires to com-
pletely specify the resulting type, thus duplicating type information
in the parts that have not been abstracted away. This can be annoy-
ing when hiding only a small part of a term, whereas this term has a
very long type. This duplication happens, for instance, when hiding
the type of a single field of a large record, or maybe worse, when
hiding some type information deeply inside a record. It is caused
by the lack of separation between the introduction of an existential
quantifier, and the description of which parts of the type must be
abstracted away under that abstract name.

In both cases, the lack ofmodularity is related to the lack of
atomicityof the constructs. Therefore, we propose to split both of
them into more atomic pieces, recovering modularity while pre-
serving expressiveness of existential types. To achieve this decom-
position, we first need to enrich typing environments with new
items.

2.2.1 Richer contexts for typing judgments

The contexts of typing judgments in SystemF are sequences of
items, where an item is either a bindingx : τ from a value variable
to a type, which is introduced while typing functions, or a universal
type variable∀α, which is introduced while typing polymorphic
expressions. We augment typing environments with two new items:
existential type variables∃α to keep track of the scope of (open)
abstract types, and type definitions∀(α = τ ) to concisely mediate
between the abstract and concrete views of types. That is, typing
environments are as follows:

Γ ::= ε | Γ, b (Environments)
b ::= x : τ | ∀α | ∀(α = τ ) | ∃α (Bindings)

Wellformedness of typing environments will ensure that no vari-
able is ever bound twice. We shall see below that existentialvari-
ables have to be treated linearly. It is sensible to considerthem as
Skolem’s constants and to understand type definition bindings as
explicit type substitutions. For the moment, we consider environ-
ments as sequences modulo reordering of independent items.Their
structure will be enriched again in §4.1.

We define the domain of a binding as follows:

dom(x : τ ) , x

dom(∀α) , dom(∀(α = τ )) , dom(∃α) , α

The domain of an environment is, as usual, the union of the do-
mains of the bindings it contains. In addition, we may use thefol-
lowing notations for specific domains:

dom= Γ , {α | ∀(α = τ ) ∈ Γ}
dom∀ Γ , {α | ∀α ∈ Γ} dom∃ Γ , {α | ∃α ∈ Γ}

2.2.2 Splitting unpack

We replaceunpack with two orthogonal constructs,openingand
restriction, that implementscopeless unpackingof existential val-
ues andscope restrictionof abstract types, respectively.

The openingopen 〈α〉 M expectsM to have an existential
type∃α. τ andopensit under the nameα, which is trackedin the
typing environment by the existential item∃α. The rule can also
be read bottom-up, treating the item∃α as alinear resource that is
consumed by the opening.

OPEN
Γ ⊢ M : ∃α. τ

Γ,∃α ⊢ open 〈α〉M : τ

The restrictionνα. M implements the non-escaping condition
of Rule UNPACK. First, it requiresα not to appear free in the
type of M , thus enforcing a limited scope. Second, it provides
an existential resource∃α in the environment, that ought to be

consumed by someopen 〈α〉M ′ expression occurring withinM .

NU
Γ,∃α ⊢ M : τ α /∈ ftv(τ )

Γ ⊢ να. M : τ

As with RTG, one may recoverunpack as syntactic sugar:

unpack M as 〈α, x〉 in M ′
, να. (let x = open 〈α〉M in M ′)

This makes explicit the simultaneous operations performedby un-
pack, which turns out not to be atomic at all: first, it defines a scope
for the nameα of the witness of the existential type ofM ; then, it
opensM under the nameα; finally, it binds the resulting value to
x in the remaining expressionM ′.

The main flaw ofunpack, i.e. the scope restriction for the
abstract name, is essentially captured by therestriction construct.
However, since the scope restriction has been separated from the
unpack, it needs not (always) be used anymore. The abstract typeα
may now be introduced at the outermost level or given by the typing
context and freely made available to the whole program.

2.2.3 Splitting pack

We replacepack with three orthogonal constructs:existential intro-
duction, which creates an existential type,open witness definition,
which introduces a type witness and gives it a name, andcoercion,
which determines which parts of types are to be hidden. We present
this separation in two stages: first, we separate the (closed) defini-
tion of a witness from the information of which parts are abstracted
away; then, we split the definition of a witness again into twopieces
that introduce an existential quantifier and the witness, separately.

Theclosed witness definition∃(α = τ )M introduces an exis-
tential type variableα with witnessτ (more precisely, the definition
∀(α = τ )) in the environment while typingM , and bindsα exis-
tentially in the resulting type.

Γ,∀(α = τ ) ⊢ M : τ ′

Γ ⊢ ∃(α = τ )M : ∃α. τ ′

Thecoercion(M : τ ) replaces the type ofM with somecom-
patible type τ . The compatibility relation under contextΓ, writ-
ten≡, is the smallest congruence that contains all type-definitions
occurring inΓ. A coercion is typically employed to specify where
some abstract types should be used instead of their witnesses in the
typing ofM .

COERCE

Γ ⊢ M : τ ′ Γ ⊢ τ ′ ≡ τ

Γ ⊢ (M : τ ) : τ

The expressiveness ofpack is retained, since it can be provided as
the following syntactic sugar:

pack 〈τ, M〉 as ∃α. τ ′
, ∃(α = τ ) (M : τ ′) if α /∈ ftv(M)

However, the description of what is being hidden can now be
separated from the action of hiding, which avoids repeatingsome
type information. Hence, it makes the creation of existential values,
shorter, thus easier, and more maintainable. Indeed, it allows for
putting the information of hiding parts of a type deeply inside a
term, like in the following record, in which some leaves havebeen
abstracted away.

∃(α = int)
let x = {ℓ1 = (1 : α) ; ℓ2 = 2} in
let y = {ℓ1 = x ; ℓ2 = x} in
{ℓ1 = y ; ℓ2 = y}



The corresponding SystemF term requires to repeat the type of the
whole term.

let z =
let x = {ℓ1 = 1 ; ℓ2 = 2} in
let y = {ℓ1 = x ; ℓ2 = x} in
{ℓ1 = y ; ℓ2 = y} in

pack 〈int, z〉 as
∃α. {ℓ1 : {ℓ1 : {ℓ1 : α ; ℓ2 : int} ; ℓ2 : {ℓ1 : α ; ℓ2 : int}} ;

ℓ2 : {ℓ1 : {ℓ1 : α ; ℓ2 : int} ; ℓ2 : {ℓ1 : α ; ℓ2 : int}}}

Moreover, whereas the information of hiding was located at asingle
place in theF. term, it is duplicated in theF term, as if each leaf of
the record had been abstracted independently.

To complete the separation, we now split∃(α = τ )M further.
The existential introduction∃α. M introduces an existential type
variable in the environment while typingM , and makesα existen-
tially bound in the resulting type. This is the exact counterpart of
theopen construct.

EXISTS
Γ,∃α ⊢ M : τ

Γ ⊢ ∃α. M : ∃α. τ

The open witness definitionΣ 〈β〉 (α = τ )M introduces the
witnessτ for the type variableα: similarly to what is done for
∃(α = τ )M , the equation∀(α = τ ) is added to the context while
typingM . In addition, an external nameβ is provided, in the same
way as for theopen construct. The internal nameα and its equation
are only reachable internally, but the witness is denoted externally
by the abstract type variableβ. The resulting type does not mention
the internal name, since it has been substituted for the external one.
In other words, the witness definition definesa frontier between a
concrete internal world and an abstract external one. To keep the
system sound, we ensure that a unique witness is hidden behind an
external name, hence the use of an existential resource. Thetyping
rule will be refined later to handle the double vision problem.

SIGMA

Γ,∀(α = τ ) ⊢ M : τ ′

Γ,∃β ⊢ Σ 〈β〉 (α = τ )M : τ ′[α← β]

Again, the split construct∃(α = τ )M can be recovered by the
following syntactic sugar:

∃(α = τ )M , ∃β. Σ 〈β〉 (α = τ )M if β /∈ ftv(τ, M)

It is worth noting that theopen witness definitioncorresponds to
type abstraction as it is currently done in module languages: a type
definition is kept hidden for the outer environment and a typename
is generated so that we can refer to it without knowing its concrete
definition. Usual existential types are recovered by closing the open
witness definition,i.e.by hiding the external name for the witness.

As an example, the following piece of program, written in an
ML-like syntax, defines an abstract module of integers:

module X : sig type t val z : t val s : t→ t end =
struct type t = int val z = 0 val s = λ(x : int)x + 1 end

It provides the zero constantz and the successor functions. The
typeX.t is abstract and available in the whole program. Its coun-
terpart inF. is defined hereafter:

Σ 〈β〉 (α = int)
({z = 0 ; s = λ(x : int)x + 1} : {z : α ; s : α→ α})

The two pieces of code look similar, except for the fact that the sig-
nature ascription has been replaced with an open witness definition.
The counterpart of the signature is the type in the coercion.Note
that no type component, hence no name for the module, is needed:
the counterpart ofX.t is the abstract typeβ, which is present in the

Γ,∀(α = τ ′) ⊢ τ [α← τ ′]

Γ,∀(α = τ ′) ⊢ τ

Γ, ∃β ⊢ τ [α← β]

Γ ⊢ ∃β. τ [α← β] Γ ⊢ τ [α← β]

([·] : τ)([·] : τ [α← τ ′])

Σ 〈β〉 (α = τ ′) [·]

open 〈β〉 [·]

∃β. [·]

νβ. [·]
if β /∈ ftv(τ [α← β])

Figure 1. Open existential constructs

typing context. It is available in the whole program and doesnot
refer to a value variable.

Notice that it is also possible to rewrite this program in two
parts, by first creating an existential term and then openingit under
the nameβ.

let x =
∃(α = int)

({z = 0 ; s = λ(x : int) x + 1} : {z : α ; s : α→ α}) in
open 〈β〉 x

It has essentially the same effect: in fact the latter will reduce to the
former. It shows however that the mechanisms for type abstraction
and opening of existentials are the same.

2.2.4 Generative functors

Following Russo (21), generative functors are functions that have
a type of the form∀α. (τ1 → ∃β. τ2). In ML, generativity isim-
plicitly released when the functor is applied. InF., however, the
result of the function must beexplicitly opened, because generativ-
ity and evaluation are two separate notions. To get the same result
with another fresh type, it suffices to open it again under another
name.

2.2.5 A summary of the constructs for open existential types

The different constructs introduced for open existential types are
gathered on the diagram of Fig.1, which describes their impact on
both the typing environment and the resulting type. To increase
readability, terms are not printed on the judgments.

The topmost judgment corresponds to a concrete program (of
type τ [α ← τ ′]) with an equation∀(α = τ ′) in its environment.
With the use of coercions one can mediate to a typeτ where the
equation has been folded and then go back to the concrete version.
Then, using aΣ, we can make the witness abstract by removing the
definition from the typing environment and using the external name
β instead. In this process, the variableβ is marked as existential and
the internal name is replaced with the external one. If the external
name does not occur free in the resulting type, we can remove the
existential item from the environment, without changing the type,
to get the bottom right judgment. If this is not the case, we can close
the type by transferring the existential quantifier to the type (bottom
left judgment). We can then go back by re-opening the existential.

2.2.6 Linearity to control openings and open witness
definitions

As openings and open witness definitions use abstract names given
by the environment, one must be careful to avoid “abstraction



b . b = b if b 6= ∃α ∃α . ∀α = ∃α ∀α . ∃α = ∃α

Figure 2. Zipping of bindings (preliminary definition).

capture”, as in the following (ill-typed) example.

let f = Σ 〈β〉 (α = int) (λ(z : int) z + 1 : α→ α) in
let x = Σ 〈β〉 (α = bool) (true : α) in f x

Here,f andx result from two different openings under the same
name β. Hence,f and x are assigned typesβ → β and β,
respectively, using thesameabstract nameβ. However, each branch
uses a different witness forβ (int and bool respectively). This
yields to the unsound applicationf x, which evaluates to1 + true.

To prevent abstraction capture, it suffices thatevery nameβ
be used in exactly one opening or open witness definition under
nameβ. This may be achieved by treating the existential items of
the typing environment in alinear way. As usual in the literature,
linearity can easily be enforced in typing rules by azippingopera-
tion that describes how typing environments of the premisesmust
be combined to form the one of the conclusion. We give in Fig.2
and in this paragraph a preliminary definition of zipping to convey
the intuition. It will be completed later. Zipping is a binary opera-
tion (· . ·) that proceeds by zipping individual bindings pointwise.
For all items but existential type variables, zipping requires the two
facing items to be identical, as usual. The interesting caseis when
one of the two items is an existential variable∃α: the intuition is
that, in this case, the other item must be the universal variable∀α,
hence thezipper image. This ensures that an existential variable in
the conclusion can only be used up in one of the premises. Zipping
can also be explained in terms of internal and external choice: the
side that makes use of∃α will make an internal choice by giving
the witness. Therefore the other sidemustconsider the choice of
the witness as external, which is why it is given the item∀α.

Note that an equivalent presentation, using two contexts, one of
them being linear, is also feasible. However, the current presenta-
tion makes extensions easier to define.

2.3 The appearance of recursive types

The above idea of zipping is unfortunately too generous: it makes
recursive types appear naturally without any control. Indeed the
decomposition ofunpack into opening and restriction opens up
the way to recursive types, because it allows to use an abstract
type variable before its witness has been given. Recursive types
can appear through type abstraction,i.e. through openings or open
witness definitions, in two ways.

We callinternal recursionthe first way, which is highlighted by
the following example:

let x = ∃(α = β → β) M in open 〈β〉 x

The abstract type variableβ is used in a witness to definex which
is then opened under the nameβ. By reducing this expression we
getopen 〈β〉 ∃(α = β → β) M , which leads us to the recursive
equationβ = β → β.

We call external recursionthe second way, which is hereafter
exemplified:

{ ℓ1 = Σ 〈β1〉 (α1 = β2 → β2) M1 ;
ℓ2 = Σ 〈β2〉 (α2 = β1 → β1) M2 }

The above code is a pair whose components have been abstracted
away and the witnesses are mutually dependent. If we remove the
type abstractions we get the recursive equation systemβ1 = β2 →
β2 andβ2 = β1 → β1.

Notice that recursive types never arise when using SystemF’s
unpack. Consider the following piece of code, whereC1 andC2

τ ::= α | τ → τ | {(ℓi : τi)
i∈1..n} (Types)

| ∀α. τ | ∃α. τ

M ::= x | λ(x : τ )M | M M (Terms)
| let x = M in M | Λα. M | M τ
| {(ℓi = Mi)

i∈1..n} | M.ℓ
| ∃α. M | Σ 〈β〉 (α = τ )M | (M : τ )
| open 〈α〉M | να. M

v ::= u | (u : τ ) (Values)

u ::= x | λ(x : τ )M | Λα. M (Pre-values)
| {(ℓi = vi)

i∈1..n} | ∃β. Σ 〈β〉 (α = τ ) v

w ::= v | Σ 〈β〉 (α = τ )w (Results)

Figure 3. Syntax: types, terms, values, and results.

denote contexts:

να. C2[let x = C1[open 〈α〉M1] in M2]

If we consider this program as anunpack, then the contextsC1 and
C2 are empty. Consequently,α cannot occur free inC1 or C2. By
splittingunpack, however, this restriction has been waived.

3. CoreF
.

We now present the core of our system, which prevents the appear-
ance of recursive types in a simple manner. We present its semantics
and show that its expressive power corresponds exactly to the one
of SystemF. The translation used for this purpose brings interest-
ing insight on the gain of modularity thatF. achieves.

3.1 A more restrictive zipping

The zipping we defined above is too liberal in the sense that the
introduction of abstract types does not follow the scope of term
variables, but this can be enforced again. Hence, we define a special
zipping, written�q , specialized for thelet rule, that requires that, if
Γ1�q Γ2 is defined and if∃α appears inΓ2, then∀α mustnotappear
in Γ1, while, if ∃α appears inΓ1, then∀α should also appears
in Γ2, as before. Zipping for the other rules. is symmetric and
requires that if∃α appears on one side, then∀α must not be present
on the other side. This restriction easily permits to reproduce the
usage of type variables in SystemF, while keeping the flexibility
of our constructs.

3.2 Syntax

The languageF. is based on the explicitly typed version of Sys-
temF with records and is extended with constructs of §2.2. Types
and terms are described in Fig.3.

As open existentials do not introduce new forms of types, types
of F. are type variables, arrow types, record types, universal types,
and existential types. The notation(ℓi : τi)

i∈1..n stands for a
sequence ofn pairs, each composed of a label and a type. Type
wellformedness is defined as usual.

Terms ofF. are variables, functions (whose arguments are ex-
plicitly typed), applications,let-bindings, type generalizations and
applications, introductions and projections of records, and the five
constructs for open existentials described above: existential intro-
ductions, open witness definitions, coercions, openings, and restric-
tions. Record fields are pairsℓ = M of a label nameℓ and a term
M . The label name is used to access the field externally, as usual
with records.

For conciseness, we also use the following syntactic sugar in
technical developments forclosed witness definitions:

∃(α = τ )M , ∃β. Σ 〈β〉 (α = τ )M if β /∈ ftv(τ, M)



We writeftv(τ ) (respectivelyftv(M)) to denote the set of free type
variables of a typeτ (respectively a termM ).

3.3 Typing rules

Typing rules for open existentials have already been presented
in §2.2. The remaining typing rules (Fig.7) are as in SystemF
with two small differences: first, as mentioned above, typing rules
with several typing judgments as premises use zipping instead of
equality to relate their typing environments. This is the case of
Rules APP, LET, and RECORD. Second, typing rules must also
ensure that values can be substituted without breaking linearity,
which is the case when the typing environment does not contain
existential items.

Definition 1. Whendom∃ Γ is empty, we say thatΓ is pure and
write Γ pure. �

This condition appears as an additional premise of typing rules
of expressions that are also values (namely, RulesVAR, LAM , GEN,
and EMPTY). Purity will be used and explained in more details
in §3.4.

Because RuleOPEN makes the environment decrease (if it is
read bottom-up), the property of weakening isnot provable in its
whole generality: one can only weaken a judgment by a non-linear
item that does not depend on linear items. This is sufficient for the
proof of soundness. A primitive weakening rule will be addedwhen
considering extensions of coreF..

3.4 Reduction semantics

The languageF. is equipped with a small-step call-by-value re-
duction semantics. We begin with important remarks about substi-
tutability, then define and explain values, and finally describe the
reduction steps.

Substitution and purity Some termscannotbe safely substituted,
since substitution may violate the linear treatment of openings and
open witness definitions. It turns out thatpure terms, i.e. terms
that are typable in a pure environment, behave well with respect
to substitution:

Lemma 1 (Substitution lemma). Assume thatΓ ⊢ M : τ and
Γ′, x : τ, Γ′′ ⊢ M ′ : τ ′ hold, whereΓ is pure andΓ �q Γ′ is well
defined. Then(Γ �q Γ′), Γ′′ ⊢ M ′[x←M ] : τ ′ also holds.

Therefore, values are substitutable if we restrict them to pure
terms. But conversely, every irreducible term isnot necessarilya
pure term.

Results and values Results are well-behaved irreducible terms.
Results include values. In SystemF (as in many other languages)
results actually coincide with values. However, this need not be the
case. InF., results also include terms such asΣ 〈β〉 (α = τ )λ(x :
α) x, which are well-behaved and cannot be further reduced, but
are not values, as they are not pure and thus not substitutable.

More precisely, values are defined in Fig.3. They are either
pre-values or coerced pre-values, where pre-values are variables,
functions, generalizations, records of values or existential values.
Note that nested coercions are not values—they must be further
reduced. Note also that no evaluation takes place underλs orΛs.
Finally, results are values preceded by a (possibly empty) sequence
of Σs.

The purity premises in some of the typing rules ensure that
values are pure, hence, by Lemma1, substitutable.

Lemma 2 (Purity of values). If Γ ⊢ v : τ holds, thenΓ is pure.

Extrusions Values are substitutable, but some results are not val-
ues, namely a sequence ofΣs prefixing a value. How can we handle
these results, when they ought to be substituted, without breaking

let x = Σ 〈β〉 (α = int)(1 : α) in {ℓ1 = x ; ℓ2 = (λ(y : β)y) x}
 Σ 〈β〉 (α = int)

let x = (1 : α) in {ℓ1 = x ; ℓ2 = (λ(y : α) y) x}
 Σ 〈β〉 (α = int) {ℓ1 = (1 : α) ; ℓ2 = (λ(y : α) y) (1 : α)}
 Σ 〈β〉 (α = int) {ℓ1 = (1 : α) ; ℓ2 = (1 : α)}

Figure 4. Example of extrusion.

linearity? Our solution is to extrude theΣs just enoughto expose
and perform the next reduction step.

For example, consider the reduction steps on Fig.4. The initial
expression is a let-binding of the formlet x = w in M wherew is
the result formΣ 〈β〉 (α = int) (1 : α). Hence, the next expected
reduction step is the substitution ofw for x in M . However, since
x occurs twice inM , this would duplicate the opening appearing in
w, thus breaking the linear use ofβ. The solution is to firstextrude
the Σ binding outside of the let-binding, so that the expression
bound tox becomes the substitutable value form(1 : α). However,
by enlarging the scope ofΣ, we have putM in its scope, in
which the external nameβ occurs. Therefore, we replace it with
the internal one in the enlarged scope. Then, we may perform let-
reduction safely and further reduce the redex that has been created.

More generally, the reduction semantics will be set so thatΣs
can always be extruded out of redex forms. Note that the separation
of witness definitions from coercions (i.e. splitting pack) plays
here an essential role: if the two constructs were bound together,
coercions should be necessarily extruded too, which would be hard
to achieve in a local manner. Here, only the witness definitions are
extruded, while the coercions simply stay where they are.

Openings also introduce linear items into the environment and
thus preclude substitution. Note however that they are neither part
of values nor of results, because they can be eliminated: by reduc-
tion, an openingopen 〈β〉 M will eventually lead to an “open-
exists” patternopen 〈β〉 ∃α. M ′. This combination just performs
a transfer of an existential resource from the inner nameα to the
outer oneβ, as demonstrated by the following derivation:

OPEN

EXISTS
Γ,∃α ⊢ M : τ

Γ ⊢ ∃α. M : ∃α. τ

Γ, ∃β ⊢ open 〈β〉 ∃α. M : τ [α← β]

Therefore, the patternopen 〈β〉 ∃α. M can simply be eliminated
into a renaming from the internal to the external nameM [α← β].
This way, reduction makes the bottom-left cycle of Fig.1 vanish.

Reduction The semantics ofF. is given by a call-by-value re-
duction strategy, described by a small-step reduction relation, that
does not rely on types (it is compatible with type erasure). We fix
a left-to-right evaluation order so that the semantics is determinis-
tic, although we could have left the order unspecified. By contrast,
having a call-by-value strategy and a weak-reduction is essential.

Evaluation contexts are described in Fig.5. Note that, as op-
posed to Dreyer (2), evaluation also takes place under existential
bindings. We define theexposed type variablesof a contextE,
written etv(E), that are either binding type variables or type vari-
ables that are carried by an opening or an open witness definition.
A one-step reduction is the application of a reduction rule in some
evaluation context. The reduction relation is the transitive closure
of the one-step reduction relation. Reduction steps are sorted into
four groups.

Rules of the main group describe the contraction of redexes.
The let-reduction, theβ-reduction, the reduction of type appli-
cations, and the record projection are as usual. The last rule of
this group is the reduction of the “open-exists” pattern explained
above. Notice that type substitution is a partial function on terms,
because syntax is not stable under type substitution: for instance,



let x = v in M  M [x← v] REDEX-LET
(λ(x : τ )M) v  let x = v in M REDEX-APP

(Λα. M) τ  M [α← τ ] REDEX-INST

{(ℓi = vi)
i∈1..n}.ℓk  vk if 1 ≤ k ≤ n REDEX-PROJ

open 〈β〉 ∃α. w  w[α← β] REDEX-OPEN

E [Σ 〈β〉 (α = τ )w]  Σ 〈β〉 (α = τ )E [w] [β ← α] if α /∈ ftv(E) and
({α, β} ∪ ftv(τ )) ∩ etv(E) = ∅ EXTRUDE

Σ 〈β1〉 (α1 = τ1)Σ 〈β2〉 (α2 = τ2) w  Σ 〈β1〉 (α1 = τ1)Σ 〈β2〉 (α2 = τ2[α1 ← τ1]) w if α1 ∈ ftv(τ2) SIGMA -SIGMA

((λ(x : τ0)M) : τ1 → τ2) v  ((λ(x : τ0) M) (v : τ0) : τ2) COERCE-APP

(u : ∀α. τ ′) τ  (u τ : τ ′[α← τ ]) COERCE-INST

(u : {(ℓi : τi)
i∈1..n}).ℓk  (u.ℓk : τk) if 1 ≤ k ≤ n COERCE-PROJ

open 〈α〉 (u : ∃α. τ )  (open 〈α〉 u : τ ) COERCE-OPEN

((u : τ ) : τ ′)  (u : τ ′) COERCE-COERCE

νβ. Σ 〈β〉 (α = τ )w  νβ. Σ 〈β〉 (α = τ )w[β ← α] if β ∈ ftv(w) ERASE-NU-SIGMA 1
νβ. Σ 〈β〉 (α = τ )w  νβ. Σ 〈β〉 (α = τ )w[α← τ ] if α ∈ ftv(w) andβ /∈ ftv(w) ERASE-NU-SIGMA 2
νβ. Σ 〈β〉 (α = τ )w  w if α, β /∈ ftv(w) ERASE-NU-SIGMA 3

E ::= [·] | E M | v E | let x = E in M | E τ
| {(ℓi = vi)

i∈1..k ; ℓk+1 = E ; (ℓi = Mi)
i∈k+2..n} | E.ℓ

| ∃α. E | Σ 〈β〉 (α = τ )E | (E : τ ) | open 〈α〉 E | να. E

CONTEXT

M  M ′

E[M ]  E[M ′]

etv([·]) = ∅ etv(Σ 〈β〉 (α = τ )E) = {α, β} ∪ etv(E)

etv(∃α. E)
etv(να. E)

etv(open 〈α〉 E)

9

=

;

= {α} ∪ etv(E)
etv(E M) etv(M E) etv(let x = E in M)
etv(E τ ) etv(E.ℓ) etv((E : τ ))

etv({(ℓi = Mi)
i∈1..k ; ℓk+1 = E ; (ℓi = Mi)

i∈k+2..n})

9

=

;

= etv(E)

Figure 5. Reduction rules

(open 〈β〉M)[β ← τ ] is undefined. The type system ensures that
type substitution is only performed when it is well-defined.

The second group of rules implements the extrusion ofΣs
through every other construct: RuleEXTRUDE permits extrusion
through evaluation contexts, provided this is valid with respect to
scopes of (exposed) type variables. To make the exchange of two
Σs possible, RuleSIGMA -SIGMA substitutes the definition of the
outer one to delete dependencies.

The third group of reduction rules keeps track of coercions
during reduction, as exemplified by RuleCOERCE-APP. Notice
that nested coercions are merged, the outer one taking priority
(RuleCOERCE-COERCE), which makes the top-most cycle of Fig.1
vanish.

Finally, the fourth group of rules is responsible for the erasure
of restricted open witness definitions. RuleERASE-NU-SIGMA 1
replaces the external name with the internal one. The role ofRule
ERASE-NU-SIGMA 2 is to replace the type variable of a witness
with the witness itself: the same substitution occurs in System F
while unpack-ing apack-ed term. Finally, the restricted definition
is erased by RuleERASE-NU-SIGMA 3.

Remark that onlyΣs are extruded: every local introduction of
resources by aν stays local and is eventually eliminated. Similarly,
coercions are not extruded either.

3.5 Type soundness

Type soundness results from the combination of the subject re-
duction and progress properties. The subject reduction proof is, as
usual, mainly built on the substitution lemma (Lemma1) and the
instantiation lemma, which comes in two forms:

Lemma 3 (Instantiation by equation). Assume thatΓ ⊢ τ wf and
Γ,∀α, Γ′ ⊢ M : τ ′ hold and that no free type variable ofτ is
existentially bound inΓ. ThenΓ,∀(α = τ ), Γ′ ⊢ M : τ ′ holds.

Lemma 4 (Instantiation by substitution). Assume thatΓ,∀(α =
τ ),Γ′ ⊢ M : τ ′ holds. ThenM [α ← τ ] is well-defined and
Γ, Γ′[α← τ ] ⊢ M [α← τ ] : τ ′[α← τ ] holds.

The proof of subject reduction itself is not really informative,
but it is particularly interesting that the proof is absolutely standard
and almost straightforward. It proceeds by induction on thereduc-
tion relation.

Proposition 1 (Subject reduction). If Γ ⊢ M : τ andM  M ′,
thenΓ ⊢ M ′ : τ .

Progress is proved by induction on the typing derivation.

Proposition 2 (Progress). If Γ ⊢ M : τ andΓ does not contain
value variable bindings, then either M is a result, or it is reducible.

The side condition thatΓ does not contain any value variable is
as usual. However, we cannot require the more restrictive hypothe-
sis thatΓ be empty, since evaluation takes place under the binders
ν and∃. Moreover, this allows to consider the reduction ofopen
programs,i.e.programs with free type variables. This is the case of
programs with abstract types, which come from unrestrictedopen-
ings or open witness definitions. This closely corresponds to ML
programs composed of modules with abstract types.

3.6 Translation to SystemF

From F to F
. As mentioned in §2.2, the encoding ofpack and

unpack is unsurprisingly straightforward. It preserves typing and
abstraction as well as semantics: the encoding keeps the underlying
untyped skeleton unchanged.

From F
.to F Conversely, it is also possible to globally reorganize

every closed term ofF. so that it uses (the encodings of)pack
andunpack. We sketch out this transformation that consists in five
rewriting stages, which we review now:



Qα ::= open 〈α〉M | Σ 〈α〉 (β = τ )M | Qα M | M Qα | Qα τ | pack 〈τ, Qα〉 as ∃β. τ ′

| νβ. Qα | Qα.ℓ | open 〈β〉Qα | Σ 〈β〉 (γ = τ )Qα

| {(ℓi = Mi)
i∈I ; ℓ = Qα ; (ℓj = Mj)

j∈J} | let x = M in Qα | let x = Qα in M
whereβ, γ 6= α

να. let x = Qα M in M ′ _ να. let y = Qα in let x = y M in M ′

να. let x = M Qα in M ′ _ να. let y = Qα in let x = M y in M ′

να. (Qα M) _ (να. Qα) M
να. (M Qα) _ M (να. Qα)

να. (let x = M in Qα) _ let x = M in να. Qα

Figure 6. Translation to SystemF (excerpts): extrusion ofopens andΣs, intrusion ofνs.

1. From the typing derivation, insert coercions aroundΣs and∃s
in order to getΣ 〈β〉 (α = τ ′) (M : τ ) and∃α. (M : τ ).

2. Replace existential quantifiers by uses ofpack, according to the
rule:∃α. (M : τ ) _ να. let x = M in pack 〈α, x〉 as ∃α. τ

3. Extrudeopens andΣs usinglet-bindings (as described by a
representative set of rules on left-hand side of Fig.6) and intrude
νs so that they get closer to each other (right-hand side of Fig.6).

4. Recover SystemF constructs:

να. let x = open 〈α〉M in M ′ _ unpack M as 〈α,x〉 in M ′

να. let x = Σ 〈α〉 (α = τ0) (M : τ ) in M ′

_ unpack (pack 〈τ0,M [α← τ0]〉 as ∃α. τ ) as 〈α,x〉 in M ′

5. Finally, remove all coercions.

All stages but (3) are compositional.

Proposition 3. The translation is type-preserving, abstraction-
preserving and semantics-preserving.

The property holds for each stage of the translation and each
rewriting rule. Abstraction is unchanged since the scopes of Σs are
not altered by the transformation. Semantics is preserved in the fol-
lowing way: the untyped skeleton of the image of the translation
let-reduces to the skeleton of the source. Thus, while the evalu-
ation order is kept unchanged, reducing the image requires more
β-reduction steps than reducing the source.

The latter point highlights the increase of modularity brought
by F. over SystemF: it allows for organizing the code more freely.

The logical facet By erasing the terms from the typing rules, we
can consider the logic underlying coreF.: not only the expressible
formulas are exactly those of second-order arithmetic, butalso we
can deduce from the translations above that thevalid formulas are
identical. In particular,F. ’s logic is consistent. Moreover, since
the reduction steps are increased by the translation and since the
untyped skeletons of SystemF terms are terminating, the untyped
skeleton of every closed program ofF. is also terminating. In
addition, the fact that the untyped skeleton of the imagelet-reduces
to the untyped skeleton of the source essentially tells us that the
two pieces of program computethe same thingsand in the same
way: the translation to SystemF just performs a reorganization of
the type derivation. Hence, the correspondence with SystemF is
twofold: it holds on the static as well as on the dynamic viewpoint,
which connectsF. with SystemF in a very tight manner.

The gain of modularity brought by coreF. in terms of program-
ming can be read back in terms of proofs: it allows new assembling
of partial proofs (i.e. with abstract types), where environments are
zippedwhen combining proof-terms.

One can wonder what is the logical status of the typing rules
we presented: RuleCOERCE has the form of a subtyping rule
with the semantics of the identity (coercions are erased by the
translation); RuleEXISTS is the right introduction rule for the
existential quantifier; RuleOPEN is the right elimination rule; Rule
SIGMA is a left introduction rule; RuleNU is a left elimination rule.

4. Extensions ofF.

In this section we consider several extensions forF., for which
soundness properties (lemmas1 and2) of F. extend.

4.1 More flexible non-recursive type equations

Core F. imposed a simple but strong restriction to enforce type
equations to be acyclic. In this section we present a more general
technique to control recursive types, by enriching the structure of
typing environments in a natural way: we no longer consider them
as sequences,i.e. totallyordered sets, but aspartially ordered sets,
where the order relation expresses dependencies between bindings
and is required to beacyclic, which means that no binding can
(transitively) depend on itself. This disallows the zipping of two
environments when this condition could not be satisfied.

More specifically, a typing environmentΓ is a dag represented
as a pair(E ,≺) of a finite set of bindingsE and an acyclic partial
order≺ on domE , i.e. there exists no bindingb such thatdomb ≺
domb. We sometimes writeb ≺ b′ instead ofdomb ≺ domb′.
If b ≺ b′, we say thatb depends onb′. We use the following
notation for composing and decomposing typing environments so
that typing rules look familiar:

Notation 1. We write Γ1, (b � D), Γ2 when no binding inΓ1

depends onb, andb does not depend on bindings ofΓ2, andD
is the set of bindingsb depends on. In particular, whenΓ2 is empty,
b is minimal for the dependency relation.

Definition 2 (Zipping). Let Γ1 andΓ2 be two typing environments
of the form(E1,≺1) and(E2,≺2). Let≺ be the transitive closure
(≺1 ∪ ≺2)

+. If ≺ is acyclic, the zipping ofΓ1 andΓ2, written
Γ1 . Γ2, is (E1 . E2,≺), whereE1 . E2 is:

• {b1 . b2 | b1 ∈ E1 ∧ b2 ∈ E2 ∧ domb1 = domb2}, if E1 and
E2 have the same domain.
• E ′1 . E ′2 where E ′1 is E1 ∪ {(∀α) | (∃α) ∈ E2 ∧ α /∈

domE1} and symmetrically forE ′2, whenE ′1 andE ′2 have the
same domain.
• undefined otherwise.

The zipping ofΓ1 and Γ2 is undefined if≺ is not acyclic or if
E1 . E2 is undefined. �

The second item in the definition of zipping extends the environ-
ments before considering their zipping. This performs an implicit
weakening on each side that refines the detection of cycles, as will
be exemplified below.

RulesSIGMA, OPEN and LET introduce new dependencies to
keep track of cycles. We review them now.

SIGMA

Γ, (∀(α = τ ′) �D′) ⊢ M : τ D′ ⊆ D

Γ, (∃β �D) ⊢ Σ 〈β〉 (α = τ ′)M : τ [β ← α]

Unsurprisingly, RuleSIGMA specifies that the external name has
at least all dependencies of the internal name, among which lay
the (dependencies of the) free type variables of the witness. This
prevents the example of external recursion seen in §2.3, which we



VAR
Γ pure Γ ⊢ ok

Γ ⊢ x : Γ(x)

LAM
Γ pure

Γ, (x : τ1 �D) ⊢ M : τ2

Γ ⊢ λ(x : τ1) M : τ1 → τ2

APP
Γ1 ⊢ M1 : τ2 → τ

Γ2 ⊢ M2 : τ2

Γ1 . Γ2 ⊢ M1 M2 : τ

LET

dom∀ Γ1 ∩ dom∃ Γ2 ⊆ D
Γ1 ⊢ M1 : τ1 Γ2, (x : τ1 �D) ⊢ M2 : τ2

Γ1 . Γ2 ⊢ let x = M1 in M2 : τ2

GEN
Γ pure

Γ, (∀α �D) ⊢ M : τ

Γ ⊢ Λα. M : ∀α. τ

INST
Γ ⊢ τ wf

Γ ⊢ M : ∀α. τ ′

Γ ⊢ M τ : τ ′[α← τ ]

EMPTY
Γ pure
Γ ⊢ ok

Γ ⊢ {} : {}

RECORD

(Γi ⊢ Mi : τi)
i∈1..n injective (i 7→ ℓi)

i∈1..n

Γ1 . · · · . Γn ⊢ {(ℓi = Mi)
i∈1..n} : {(ℓi : τi)

i∈1..n}

PROJ
1 ≤ k ≤ n

Γ ⊢ M : {(ℓi : τi)
i∈1..n}

Γ ⊢ M.ℓk : τk

EXISTS
Γ, (∃α �D) ⊢ M : τ

Γ ⊢ ∃α. M : ∃α. τ

COERCE

Γ ⊢ τ ′ ≡ τ
Γ ⊢ M : τ ′

Γ ⊢ (M : τ ) : τ

SIGMA

D′ \ ({β} ∪ domΓ′) ⊆ D, if ≃ is =
Γ, (∀β �D), Γ′, (∀(α ⊳ β ≃ τ ′) �D′) ⊢ M : τ

Γ, (∃β �D), Γ′ ⊢ Σ 〈β〉 (α ≃ τ ′) M : τ [α← β]

OPEN
Γ ⊢ M : ∃α. τ

Γ, (∃α � domΓ\ dom≃ Γ) ⊢ open 〈α〉M : τ

NU
α /∈ ftv(τ )

Γ, (∃α �D) ⊢ M : τ

Γ ⊢ να. M : τ

WEAKEN

Γ′
 Γ

Γ ⊢ M : τ

Γ′ ⊢ M : τ

SIM

Γ ⊢ τ ⊳ τ ′

Γ ⊢ M : τ ′

Γ ⊢ M : τ

FIX
Γ, (x : τ �D) ⊢ s : τ

Γ ⊢ µ(x : τ ) s : τ

Figure 7. Typing rules of the extended system

recall below, to be well-typed:

{ ℓ1 = Σ 〈β1〉 (α1 = β2 → β2) M1 ;
ℓ2 = Σ 〈β2〉 (α2 = β1 → β1) M2 }

The dependencyβ1 ≺ β2 is required to type the first component,
since the witness depends onβ2. Symmetrically,β2 ≺ β1 is also
required to type the second component. Consequently, the zipping
is forbidden because of the obvious cycle.

As opposed to the case of RuleSIGMA , the witness is unknown
in the open construct. Hence, the condition placed on RuleOPEN
is stronger: the abstract type variable (possibly) dependson every
type variable present in the context, except on type definitions since
these are only indirections: it is unnecessary to track dependen-
cies on internal names since they are always included in the depen-
dencies of the external names, as described by RuleSIGMA. Con-
versely, taking dependencies on internal names into account would
be too coarse and impede subject reduction, since a consequence of
extrusions is the expansion of the scope of internal names.

OPEN
Γ ⊢ M : ∃α. τ

Γ, (∃α � domΓ \ dom= Γ) ⊢ open 〈α〉M : τ

As a result, the above example would again be rejected if the
Σs were replaced with “open-exists” patterns. By contrast, the
following example is well-typed, since the witness of the first
branch does not depend onβ2.

{ ℓ1 = Σ 〈β1〉 (α1 = int)M1 ;
ℓ2 = Σ 〈β2〉 (α2 = β1 → β1) M2 }

Rewriting this piece of code with “open-exists” patterns isagain
well-typed, in spite of the stronger condition on RuleOPEN, thanks
to the implicit weakening in zipping: we can type the first branch
without using∀β2 in the environment (providedM1 does not
mentionβ2). Therefore, the requirementβ1 ≺ β2 is not required in
the first branch and no cycle is detected.

Finally, RuleLET (see Fig.7) highlights variables that are used,
hence possibly hidden in an existential value, in the first branch
of the let and used in an opening in the second branch. Therefore,
the value variable that is bound in thelet must depend on these
variables. These are indeed responsible for the cycle in theexample

of internal recursion seen in §2.3and reminded below:

let x = ∃(α = β → β)M in open 〈β〉 x

The binding∀β is required in the typing environment of the bound
expression, whereas the binding∃β appears in the typing environ-
ment for the body. Thus, the constraintx ≺ β is required in the
typing environment of the body, which prevents typingopen 〈β〉x,
as RuleOPEN requests that∃β must be minimal in the dependency
relation.

4.2 Addressing the double vision problem

Defining an expression that manipulates an abstract type before
its witness has been given is sometimes desirable, as it brings
more freedom in the code structure. It may also become necessary
when building recursive values. Currently, the following term is
considered as ill-typed:

∃β. let f = λ(x : β) x in Σ 〈β〉 (α = int) (1 : α)

This is because RuleSIGMA (see §2.2.3) does not let the external
nameβ visible in its premise. It is easy to correct this by leaving
a ∀β in the premise instead of∃β (see below). However, the
following piece of code would still be rejected:

∃β. let f = λ(x : β) x in Σ 〈β〉 (α = int) f (1 : α)

After the existential resourceβ is introduced, it definesf as the
identity onβ and then usesf in the context of the open witness
definitionΣ 〈β〉 (α = int) . However, we do not know thatα andβ
denote thesamewitness: the applicationf (1 : α) is ill-typed.

This is called thedouble vision problem: it characterizes the in-
ability to maintain a link between the internal and externalview
of a given type. This problem is well-known in the study of recur-
sive modules, but as we can see it already happens in the absence
of recursion. To solve this problem, is suffices to carry the missing
information in the context (for clarity, dependencies are omitted):

SIGMA

Γ,∀β, Γ′,∀(α ⊳ β = τ ′) ⊢ M : τ

Γ,∃β, Γ′ ⊢ Σ 〈β〉 (α = τ ′)M : τ [α← β]

The typing environment is enriched with a new kind of equation
∀(α⊳β=τ ′), which says that the witnessτ ′ is denoted by the
internal nameα, and, in addition, that the external nameβ can



be viewed internally asα. This is realized through the use of the
similarity relation defined under a contextΓ and written⊳ that
satisfies all the equalities between internal and external names that
are present in the contextΓ. It is used through RuleSIM (Fig. 7).

The reader may wonder why the authors decided to use both an
external and an internal name, while they denote the same object,
instead of using only one name as done in RTG where a single type
reference is used along with two scopes, only one of which contains
a type definition.

We give two reasons for handling two names and an equation
relating them: first, it corresponds to practice in recursive modules,
where a single type component is reached through two different
paths, which leads to the double vision problem. Second, theuse of
two names makes programs more maintainable in the sense thatit is
more respectful to the notion ofinterface: whatever is the internal
name, the external name will always be the same. Thus, one can
apply an internal renaming without changing the external type.

4.3 ExtendingF
. with type-level recursion

Extended non-recursive type definitions lead to a finer type check-
ing but do not require a change in the semantics. By contrast,per-
mitting recursive type definitions has the reverse effect: typing is
unchanged, but semantics must be adapted. We extend the typeal-
gebra with a fixpoint and specify with the use of the symbol≈ in-
stead of= when a type equation is allowed to contribute to a cycle.
Wellformedness ensures that recursive types are contractive.

≃ ::= = | ≈
τ ::= . . . | µα. τ

M ::= . . . | Σ 〈β〉 (α ≈ τ )M
w ::= . . . | Σ 〈β〉 (α ≈ τ )w

We also extend the type compatibility relation with the usual un-
folding rule for recursive types (see Fig.12) and consider that type
compatibility is co-inductively defined. We add the following rules
to the reduction relation:

Σ 〈β〉 (α ≈ τ )Σ 〈β′〉 (α′ ≃ τ ′)w
 Σ 〈β′〉 (α′ ≃ τ ′[α← β]) Σ 〈β〉 (α ≈ τ )w

∇β′. Σ 〈β′〉 (α′ ≈ τ ′) (Σ 〈βi〉 (αi ≃ τi) )i∈I v

 ∇β′. Σ 〈β′〉 (α′ = close(α′ ⊳ β′ ≈ τ ′, (αi ⊳ βi ≃ τi)
i∈I))

(Σ 〈βi〉 (αi ≃ τi) )i∈I v where∇ stands forν or ∃

When twoΣs have to be exchanged, it is no longer possible to
substitute the first witness into the second one for wellformedness
reasons. Instead, we replace the first internal name with theexter-
nal one during swapping, as described by the first reduction rule. It
should be applied when needed, to put aΣ closer to its correspond-
ing ν or ∃, when there is one, so that the second rule can apply.

The second rule specifies that a closed or restricted, potentially
recursive type definition can be resolved into a non-recursive one,
that involves a recursive witness. To do this, theclose operator,
that is defined in Fig.8, gathers the other witnesses and ties the
recursive knot. Thanks to co-induction, the provable equalities are
unchanged. The reduction below exemplifies the closure operation:

νβ1. Σ 〈β1〉 (α1 ≈ α1 × β2) Σ 〈β2〉 (α2 ≈ α1 × α2) v
 νβ1. Σ 〈β1〉 (α1 = τ )Σ 〈β2〉 (α2 ≈ α1 × α2) v
 Σ 〈β2〉 (α2 ≈ τ × α2) νβ1. Σ 〈β1〉 (α1 = τ ) v
 Σ 〈β2〉 (α2 ≈ τ × α2) v[α1 ← τ ]
whereτ = close(α1 ⊳ β1 ≈ α1 × β2, α2 ⊳ β2 ≈ α1 × α2)

= µα1. (α1 × µα2. (α1 × α2))

The term we consider contains two mutually recursive type defini-
tions, and the external nameβ1 of the first one is restricted. The
closeoperator computes the closed witnessτ , which becomes the
new, recursive witness ofβ1, defined by a non-recursive equation.
Then, the innermostΣ can be extruded, and the restricted equation
is eventually eliminated.

By definition, this semantics ensures that only equations that are
marked as potentially recursive may actually create recursive types
during reduction. Type soundness ensures that this is sufficient
to reduce well-typed programs,i.e. that recursive types are never
needed in other configurations. Hence, although abstract types can
be used in a flexible manner, the risk of inadvertently using recur-
sive types via type abstraction can be tracked by the type system
and tightly tuned by the user.

It is also interesting that mutually recursive equations are ex-
plicitly resolved during reduction, and moreover in a standard way.

4.4 ExtendingF
. with term-level recursion

In this section, we extendF.with recursive valuesµ(x :τ ) v, which
are necessary to define recursive modules.

Although it is possible to use the well-known backpatching se-
mantics for fixpoints, we prefer a storeless, unrolling-based seman-
tics, so as to avoid the need for references. Our unrolling semantics
lies between the backpatching semantics, which computes recur-
sive values at their creation and fails if they are ill-founded, and the
lazy semantics, which unfolds recursive values only at their use.
As the former we evaluate recursive definitions at their creation,
by letting evaluation proceed under fixpoints, butwithoutunrolling
them. Instead, fixpoints are unrolledon demandwhen they need
to be destructed, as with the lazy semantics. (Ill-founded recursion
may thus loop at its use instead of its creation, as with the lazy
semantics.) The two aspects of our semantics are captured bythe
form of evaluation contexts and the following reduction rule, re-
spectively:

E ::= . . . | µ(x : τ )E
R[µ(x : τ ) v]  R[let x = µ(x : τ ) v in v]

whereR is a redex-form, that is, an application[·] v, an instantia-
tion [·] τ , a projection[·].ℓ, or an openingopen 〈α〉 [·].

In order to enable unrolling, one must ensure that reducing un-
der fixpoints and extrudingΣs always give rise to a value, because
impure results cannot be substituted. For this purpose, we restrict
the body of fixpoints to beextended results, denoted bys, which are
either results or themselves records,let-bindings, or projections of
extended results.

M ::= . . . | µ(x : τ ) s
u ::= . . . | µ(x : τ ) v | x.ℓ1 · · · .ℓn

s ::= w | let x = s in s | {(ℓi = si)
i} | s.ℓ

Pre-values are extended with both fixpoints of values and (possibly
empty) sequences of projections of variables.

Soundness properties are straightforwardly preserved by this
extension.

In conclusion, adding term-level recursion toF. is not an issue.
Indeed, this is a direct consequence of the modularity ofF. ’s
constructs. Moreover, our approach permits to keep a standard
style of presentation: it uses evaluation contexts, and avoids using
references to model recursion.

5. Related work
Russo (21) justifies the meaninglessness of dependent types for
modules, by interpreting modules and signatures into semantic
objects with SystemF types. He also uses existential quantifiers to
track type generativity. It seems however that his existential types
are implicitly opened and automatically extruded. Unfortunately,
the dynamic semantics of semantic objects is not described.

In the context of run-time type inspection, Rossberg (20) intro-
ducesλN, a version of SystemF with a construct to define abstract
types and a mechanism of directed coercions. His abstract types
can be automatically extruded to allow sharper type analysis, and
are thus close to ourΣ binder. His coercions resemble ours, though



close(α ⊳ β = τ ) , τ

close(α ⊳ β ≈ τ ) , µα. τ [β ← α]

close((αi ⊳ βi ≃i τi)
i∈I , α′ ⊳ β′ = τ ′) , close((αi ⊳ βi ≃i τi[β

′ ← τ ′])
i∈I

)

close((αi ⊳ βi ≃i τi)
i∈I , α′ ⊳ β′ ≈ τ ′) , close((αi ⊳ βi ≃i τi[β

′ ← µα′. τ ′[β′ ← α′]])
i∈I

)

Figure 8. Closing mutually recursive type equations

ours are symmetric, because they never cross the abstraction bar-
rier. Although both systems seem kindred in spirit, they aresubtly
different, because they have been designed for quite different pur-
poses: in particular,λN is only partially related to traditional exis-
tential types, since parametricity is purposely violated.

In spite of strong similarities, somedeeptechnical differences
remain between RTG andF.. The treatment of the linear resources
differs significantly: RTG’s semantics employs a type store to
model static but imperative type reference updates, whereas we
just use extrusions ofΣ binders. These two approaches might be
related by seeing our extrusion as a local treatment of his type store,
as has already been proposed for value references (23). Dreyer uses
assignment in a global store to guarantee the uniqueness of writ-
ing: this exposes the evaluation order in the typing rules ofRTG
and makes them asymmetrical, moving away from a logical spec-
ification, whereas wezip contexts to enforce sound openings and
maintain a close correspondence with logic.Intuitively,we think of
existential values as generating a fresh type when opened, while he
considers them as functions in “destination passing style”(DPS).
Despite these strong technical differences, the two systems have
similar constructs: the “new” primitive is similar to ourν binder;
the “set α := τ in M ” is related to theΣ 〈α〉 (α = τ )M con-
struct. Note the use of a single type name here (as mentioned in
§4.2). The two systems differ a little more in other constructs. In

RTG, the creation of animpure function of typeτ1

α↓
−−→τ2, whose

body defines a witness for a type variableα, is always prefixed by
the DPS construct, namely the generalization by a writable type
variableΛα↑K.M . The former is useful to write typical examples
of recursive modules and allows for their separate compilation.
However, this construct taken alone would have to be treatedlin-
early, which would require the introduction of linearity intypes,
and would raise type wellformedness issues with respect to type
substitution. Hence, the two constructs are combined into asingle
form. It is said that a term with type∃α↓K.τ can be understood as

a DPSfunction of type∀α↑K.()
α↓
−−→τ . In other words, an existen-

tial value is a term where the assignment for the witness is frozen.
This implies, however, that the body of a DPS function, hence the
body of an existential term, isnotevaluated. One could argue that it
would suffice to predefine the body with alet-binding, so that it is
evaluated, but this is not always feasible since the body candepend
itself on the type variableα. By contrast,F. disallows the defi-
nition of impure functions, but the existential introduction ∃α. M
corresponds to RTG’s type variable generalizationΛα↑K.M taken
alone. However, evaluationdoestake place under existential quan-
tifiers in F.. To make it possible, ourlocal management of exis-
tential resources and their elimination is of primordial importance.
The approach followed in RTG treats type abstraction as a side ef-
fect and therefore correlates type abstraction with evaluation. To
our point of view, the two must be separated, andF. demonstrates
that this is achievable. Moreover, it leads to a finer semantics.

Flatt and Felleisen (5) introduced constraints within signatures
to track dependencies, whereas we used constraints only in envi-
ronments, thus enabling a natural generalization of their structure.

Concluding remarks
We defined coreF., a variant of explicitly-typed SystemF with
primitive open existential typesthat generalize the usual notion of
(closed) existential types by splitting their creation andelimination

into more atomic constructs. The subject reduction and progress
theorems hold forF. and have routine proofs.

We showed how openings of existential values and open witness
definitions tightly correspond to type abstraction and generativity
in modules. More importantly, we highlighted that type abstraction
and generativityshould and canbe separated from evaluation, and
neednot be explained as a side effect. Instead, the mechanism of
extrusionplays a central role.

We exhibited a tight correspondence between coreF. and Sys-
temF: it has exactly the same expressive power, but allows to write
programs more modularly. This gives strong theoretical founda-
tions toF. and, by extension, to RTG.

The languageF. handles liberal non-recursive type definitions,
gives a solution to the double vision problem, and allows mutually
recursive equations as well as recursive values.

We believe thatF. is promising as the core of a programming
language with first-class modules. Thebare simplicityof the no-
tionsF. is based on is its best asset. It would be interesting to di-
rectly integrate our approach in existing works on mixin modules.

We limited F. to the definition ofpure functions to keep the
system simple enough: impure functions would indeed need to
be treated linearly and would certainly introduce dependencies
constraints into types. Yet, this extension is worth considering:
it would make the system more canonical and would correlate
functions with contexts as it is usually the case. For instance we
could recoverlet-binding as a derived construct. In addition, it
would permit to re-explore the duality between existentials and
universals that is already visible in the typing rules.

Among future work remains the study of representation inde-
pendence properties, as well as the integration of programming fea-
tures such as higher-order types or value references. Higher-order
types are motivated by Russo’s work on applicative functors.

This work only realizes the first half of our project of defin-
ing a core calculus for a module language with simple and log-
ical foundations. Indeed,F. still misses a significant, orthogonal
ingredient to scale up: apath systemmust complete it, that would
permit to write compact programs and overcome the diamond im-
port problem. This second half, already briefly introduced in an
earlier work (15), will be developed independently in another pa-
per. Of course, some form of type inference will eventually be
needed in a surface language based onF.. An easy solution is to
stratify the type system, just for the purpose of type inference. We
could infer ML-like types for the base level and require explicit
type information for the module level, as forML. Another more
ambitious direction is to use a form of partial type inference with
first-class polymorphism.
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ENTAIL -REFL
Γ ⊢ ok

Γ  Γ

ENTAIL -TRANS
Γ1Γ2 Γ2  Γ3

Γ1  Γ3

ENTAIL -BINDING
b 6= ∃α

Γ, (b �D) ⊢ ok

Γ, (b �D)  Γ

Figure 9. Entailment of environments

OK-VAR
ftv(τ ) ⊆ D ⊆ domΓ

Γ ⊢ τ wf x /∈ domΓ

Γ, (x : τ �D) ⊢ ok

OK-EXISTS
D ⊆ domΓ

Γ ⊢ ok α /∈ domΓ

Γ, (∃α �D) ⊢ ok

OK-EQ

ftv(τ ) ⊆ D ⊆ domΓ
Γ ⊢ τ wf α /∈ domΓ β /∈ ftv(τ )

Γ, (∀(α ⊳ β = τ ) �D ⊎ {β}) ⊢ ok

OK-FORALL
D ⊆ domΓ

Γ ⊢ ok α /∈ domΓ

Γ, (∀α �D) ⊢ ok

OK-EQREC

ftv(µα. τ ) ⊆ D ⊆ domΓ
Γ ⊢ µα. τ wf β /∈ ftv(τ )

Γ, (∀(α ⊳ β ≈ τ ) �D ⊎ {α, β}) ⊢ ok

OK-EMPTY

ε ⊢ ok

Figure 10. Wellformed environments

WF-VAR
Γ ⊢ ok α ∈ domΓ

Γ ⊢ α wf

WF-ARROW
Γ ⊢ τ1 wf Γ ⊢ τ2 wf

Γ ⊢ τ1 → τ2 wf

WF-RECORD

injective (i 7→ ℓi)
i∈1..n

(Γ ⊢ τi wf)i∈1..n

Γ ⊢ {(ℓi : τi)
i∈1..n}wf

WF-EMPTY
Γ ⊢ ok

Γ ⊢ {}wf

WF-FORALL
Γ, (∀α �D) ⊢ τ wf

Γ ⊢ ∀α. τ wf

WF-EXISTS
Γ, (∃α �D) ⊢ τ wf

Γ ⊢ ∃α. τ wf

WF-MU
µα. τ contractive

Γ, (∀α �D) ⊢ τ wf

Γ ⊢ µα. τ wf

Figure 11. Wellformed types

EQ-REFL

Γ ⊢ τ wf

Γ ⊢ τ ≡ τ

EQ-EQ-LEFT

Γ ⊢ τ [α← τ ′′] ≡ τ ′

∀(α ⊳ β ≃ τ ′′) ∈ Γ

Γ ⊢ τ ≡ τ ′

EQ-EQ-RIGHT

Γ ⊢ τ ≡ τ ′[α← τ ′′]
∀(α ⊳ β ≃ τ ′′) ∈ Γ

Γ ⊢ τ ≡ τ ′

EQ-FIX -LEFT

Γ ⊢ τ [α← µα. τ ] ≡ τ ′

Γ ⊢ µα. τ ≡ τ ′

EQ-FIX -RIGHT

Γ ⊢ τ ′ ≡ τ [α← µα. τ ]

Γ ⊢ τ ′ ≡ µα. τ

(Rules for congruence are omitted.)

Figure 12. Compatible types (co-inductive definition)

SIM -REFL
Γ ⊢ ok

α ∈ domΓ

Γ ⊢ α ⊳ α

SIM -EQ

Γ ⊢ ok
∀(α ⊳ β ≃ τ ) ∈ Γ

Γ ⊢ α ⊳ β

SIM -EMPTY
Γ ⊢ ok

Γ ⊢ {} ⊳ {}

(Rules for transitivity and congruence are omitted.)

Figure 13. Similar types
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