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Abstract

MLF is a type system that seamlessly merges ML-style implicit but second-class
polymorphism with System-F explicit first-class polymorphism. We present
xMLF, a Church-style version of MLF with full type information that can eas-
ily be maintained during reduction. All parameters of functions are explicitly
typed and both type abstraction and type instantiation are explicit. However,
type instantiation in xMLF is more general than type application in System F.
We equip xMLF with a small-step reduction semantics that allows reduction
in any context, and show that this relation is confluent and type preserving.
We also show that both subject reduction and progress hold for weak-reduction
strategies, including call-by-value with the value-restriction. We exhibit a type
preserving encoding of MLF into xMLF, which shows that xMLF can be used
as the internal language for MLF after type inference, and also ensures type
soundness for the most expressive variant of MLF.

Keywords: MLF, System F, Types, Type Generalization, Type Instantiation,
Retyping functions, Coercions, Type Soundness, Binders

Introduction

MLF (Le Botlan and Rémy, 2003, 2009; Rémy and Yakobowski, 2008) is a
type system that seamlessly merges ML-style implicit but second-class poly-
morphism with System-F explicit first-class polymorphism. This is done by
enriching System-F types. Indeed, System F is not well-suited for partial type
inference, as illustrated by the following example. Assume that a function,
say choice, of type ∀ (α) α → α → α, and the identity function id, of type
∀ (β) β → β, have been defined. How can the application choice to id be typed
in System F? Should choice be applied to the type ∀ (β) β → β of the iden-
tity, that is itself kept polymorphic? Or should it be applied to the monomor-
phic type γ → γ, with the identity being applied to γ (where γ is bound in
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a type abstraction in front of the application)? Unfortunately, these alterna-
tives have incompatible types, respectively (∀ (α) α → α) → (∀ (α) α → α)
and ∀ (γ) (γ → γ) → (γ → γ): none is an instance of the other. Hence, in
System F, one is forced to irreversibly choose between one of the two explicitly
typed terms.

However, a type inference system cannot choose between the two, as this
would sacrifice completeness and be somehow arbitrary. This is why MLF en-
riches types with instance-bounded polymorphism, which allows to write more
expressive types that factor out in a single type all typechecking alternatives in
such cases as the example of choice. Now, the type ∀ (α> ∀ (β) β → β) α→ α,
which should be read “α → α where α is any instance of ∀ (β) β → β”, can
be assigned to choice id, and the two previous alternatives can be recovered a
posteriori by choosing different instances for α.

Currently, the language MLF comes with a Curry-style version, iMLF, where
no type information is needed and a type-inference version, eMLF, that requires
partial type information (Le Botlan and Rémy, 2009). However, eMLF is not
quite in Church style: a large amount of type information is still implicit, and
partial type information cannot be easily maintained during reduction. Hence,
while eMLF is a good surface language, it is not a good candidate for use as an
internal language during the compilation process, where some program trans-
formations, and perhaps some reduction steps, are being performed. This has
been a problem for the adoption of MLF in the Haskell community (Peyton
Jones, 2003), as the Haskell compilation chain uses an explicitly-typed internal
language, especially, but not only, for evidence translation due to the use of
qualified types (Jones, 1994).

This is also an obstacle to proving subject reduction, which does not hold
in eMLF. In a way, this is unavoidable in a language with non-trivial partial
type inference. Indeed, type annotations cannot be completely dropped, but
must at least be transformed and reorganized during reduction. Still, one could
expect that eMLF is equipped with reduction rules for type annotations. This
has actually been considered in the original presentation of MLF, but only with
limited success. The reduction kept track of annotation sites during reduction;
this showed, in particular, that no new annotation site needs to be introduced
during reduction. Unfortunately, the exact form of annotations could not be
maintained during reduction, by lack of an appropriate language to describe
their computation. As a result, it has only been shown that some type deriva-
tion can be rebuilt after the reduction of a well-typed program, but without
exhibiting an algorithm to compute it during reduction.

Independently, Rémy and Yakobowski (2008) have introduced graphic con-
straints, both to simplify the presentation of MLF and to improve its type infer-
ence algorithm. This also resulted in a simpler and more expressive definition of
MLF. Hence, by eMLF, we refer to the graphical presentation of MLF rather then
the original version. Consistently, iMLF refers to the graphic Curry’s style ver-
sion of eMLF. We still use the generic name MLF when the style of presentation
does not matter.
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In this article, we present xMLF, a Church-style version of MLF that contains
full type information. In fact, type checking becomes a simple and local ver-
ification process—by contrast with type inference in eMLF, which is based on
unification. In xMLF, type abstraction, type instantiation, and all parameters
of functions are explicit, as in System F. However, type instantiation is more
general and more atomic than type application in System F: we use explicit type
instantiation expressions that are proof evidences for the type instance relations.

In addition to the usual β-reduction, we give a series of reduction rules for
simplifying type instantiations. These rules are confluent when allowed in any
context. Moreover, reduction preserves typings, and is sufficient to reduce all
typable expressions to a value when used in either a call-by-value or call-by-name
setting. This establishes the soundness of MLF for a call-by-name semantics for
the first time. Furthermore, we show that xMLF is a conservative extension of
System F.

The natural definition of xMLF is actually more expressive than that of MLF.
Still, we can restrict type-checking in xMLF so that well-typed terms are in closer
correspondence with MLF terms. This defines a well-behaved subset xMLF♭ of
xMLF. Then, all three versions iMLF, eMLF and xMLF♭ have the same expressive-
ness, and only differ by the amount of type information: terms of iMLF contain
none, terms of eMLFcontain some type annotations and no description of type
instantiations, while xMLF contains all type annotations and a full description
of all type instantiations.

A term of xMLF can easily be converted into an eMLF one by retaining type
annotations, but dropping all other type information. The result may in turn
be converted into a term of iMLF by further dropping all type annotations.
Conversely, terms of iMLF cannot be automatically translated into terms of
eMLF, since type inference in iMLF is undecidable—some type annotations are
required. Hence, source terms are terms of eMLF: type inference can rebuild the
type annotations that may be left implicit, or fail if mandatory type annotations
have been omitted (or are incorrect). Terms of eMLF—for which type inference
succeeds—can then be elaborated into terms of xMLF.

Outline. Perhaps surprisingly, the difficulty in defining an internal language for
MLF is not reflected in the internal language itself, which remains simple and easy
to understand. Rather, the difficulties lie in the translation from eMLF to xMLF,
which is made somewhat complicated by many administrative details. Hence,
we present xMLF first, and study its meta-theoretical properties independently
of eMLF. We then describe the elaboration of eMLF terms.

More precisely, the paper is organized as follows. We present xMLF, its syn-
tax and its static and dynamic semantics in §1. We study its main properties,
including type soundness for different evaluations strategies in §2. The elabora-
tion of eMLF programs into xMLF is described §3. We discuss the expressiveness
of xMLF in §4 and related and future works in §5.
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α, β, γ, δ : Type variable

τ ::= Type
| α Type variable
| τ → τ Arrow type
| ∀ (α> τ) τ Quantification
| ⊥ Bottom type

φ ::= Instantiation
| @τ Bottom
| !α Abstract
| ∀ (>φ) Inside
| ∀ (α>) φ Under
| N ∀-elimination
| O ∀-introduction
| φ;φ Composition
| 1 Identity

Figure 1: Grammar of types and instantiations

Proofs and implementation. The soundness proof of xMLFhas been mechanized
in the Coq proof assistant1 and is briefly discussed in Appendix A. Other inter-
esting proofs of §1 and §2 can be found in Appendix B, except for two results,
which have already been proved by Manzonetto and Tranquilli (2010). Detailed
proofs of §3 can all be found in the dissertation of Yakobowski (2008, Chap-
ters 14 & 15), although for a slightly different—but equivalent—presentation.
We do not reproduce them here, as they depend too much on the metatheoretical
properties of eMLF. The elaboration of eMLF into xMLF has been implemented
in a prototype2.

1. The calculus

1.1. Types, instantiations, terms, and typing environments

All the syntactic definitions of xMLF can be found in Figures 1 and 2. We
assume given a countable collection of type variables written with letters α, β,
γ, and δ. As usual, types include type variables and arrow types. Other type
constructors will be added later—straightforwardly, as the arrow constructor
receives no special treatment. Types also include a bottom type ⊥ that cor-
responds to the System-F type ∀α.α. Finally, a type may also be a form of
bounded quantification ∀ (α> τ) τ ′, called flexible quantification, that general-
izes the ∀α.τ form of System F and, intuitively, restricts the variable α to range

1The Coq development is available at http://www.yakobowski.org/publis/2010/

xmlf-coq/. Properties that have been mechanically verified in Coq are marked with the
Coq symbol.

2Available at http://gallium.inria.fr/~remy/mlf/proto/.
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a ::= Term
| x Variable
| λ(x : τ) a Function
| a a Application
| Λ(α> τ) a Type function
| a φ Instantiation
| let x = a in a Let-binding

Γ ::= Environment
| ∅ Empty
| Γ, α> τ Type variable
| Γ, x : τ Term variable

Figure 2: Grammar of terms and typing contexts

only over instances of τ . The variable α is bound in τ ′ but not in τ . We may
just write ∀ (α) τ ′ when the bound τ is ⊥.

In Church-style System F, type instantiation inside terms is simply type ap-
plication a τ . By contrast, in xMLF, we use type instantiation a φ to detail every
intermediate instantiation step, so that it can be checked locally. Intuitively,
the instantiation φ transforms a type τ into another type τ ′ that is an instance
of τ . In a way, φ is a witness for the instance relation that holds between τ
and τ ′. It is therefore easier to understand instantiations altogether with their
static semantics, which will be explained in the next section.

Terms of xMLF are those of the λ-calculus enriched with let bindings, with
two small differences: type instantiation a φ generalizes System-F type appli-
cation as just described; and type abstractions are extended with an instance
bound τ and written Λ(α>τ) a where the type variable α is bound in a, but not
in τ . We abbreviate Λ(α>⊥) a as Λ(α) a, which simulates the type abstraction
Λα. a of System F.

We write ftv(τ) and ftv(a) for the sets of type variables that appear free in
τ and a, respectively. We identify types, instantiations, and terms up to the
renaming of bound variables. The capture-avoiding substitution of an expression
s0 for a variable v inside an expression s is written s{v ← s0}.

As usual, type environments assign types to program variables. However,
instead of just listing type variables, as is the case in System F, they also assign
them a type bound, using the form α > τ . We write dom(Γ) for the set of
all term variables and type variables that are bound by Γ. We also assume
that typing environments are well-formed, i.e. they do not bind twice the same
variable and free type variables appearing in a type of the environment Γ are
bound earlier in Γ. Well-formedness rules are given in Figure 3: the empty
environment is well-formed; given a well-formed environment Γ, the relations
x /∈ dom(Γ), α /∈ dom(Γ), and ftv(τ) ⊆ dom(Γ) must hold to form environments
Γ, x : τ and Γ, α> τ .
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wf (∅)

α /∈ dom(Γ)
wf (Γ) ftv(τ) ⊆ dom(Γ)

wf (Γ, α> τ)

x /∈ dom(Γ)
wf (Γ) ftv(τ) ⊆ dom(Γ)

wf (Γ, x : τ)

Figure 3: Well-formed environments

Inst-Bot

Γ ⊢ @τ : ⊥ ≤ τ

Inst-Under
Γ, α> τ ⊢ φ : τ1 ≤ τ2

Γ ⊢ ∀ (α>) φ : ∀ (α> τ) τ1 ≤ ∀ (α> τ) τ2

Inst-Abstr
α> τ ∈ Γ

Γ ⊢ !α : τ ≤ α

Inst-Inside
Γ ⊢ φ : τ1 ≤ τ2

Γ ⊢ ∀ (>φ) : ∀ (α> τ1) τ ≤ ∀ (α> τ2) τ

Inst-Intro
α /∈ ftv(τ)

Γ ⊢ O : τ ≤ ∀ (α>⊥) τ

Inst-Comp
Γ ⊢ φ1 : τ1 ≤ τ2
Γ ⊢ φ2 : τ2 ≤ τ3

Γ ⊢ φ1;φ2 : τ1 ≤ τ3

Inst-Elim

Γ ⊢ N : ∀ (α> τ) τ ′ ≤ τ ′{α← τ}

Inst-Id

Γ ⊢ 1 : τ ≤ τ

Figure 4: Type instance

1.2. Instantiations

Instantiations φ are defined in Figure 1. Their typing, described in Fig-
ure C.19, are type instance judgments of the form Γ ⊢ φ : τ ≤ τ ′, stating that
in environment Γ, the instantiation φ transforms the type τ into the type τ ′.
(For conciseness, the syntax of instantiations uses mathematical symbols !, N,
O, etc. which have no connection at all with linear logic.)

The bottom instantiation @τ expresses that (any) type τ is an instance of
the bottom type. The abstract instantiation !α, which assumes that the hy-
pothesis α > τ is in the environment, abstracts the bound τ of α as the type
variable α. The inside instantiation ∀ (>φ) applies φ to the bound τ ′ of a flex-
ible quantification ∀ (α′ > τ ′) τ . Conversely, the under instantiation ∀ (α>) φ
applies φ to the type τ under the quantification; the type variable α is bound
in φ and the environment in the premise of the rule Inst-Under is increased
accordingly. The quantifier introduction O introduces a fresh trivial quantifica-
tion ∀ (α > ⊥). Conversely, the quantifier elimination N eliminates the bound
of a type of the form ∀ (α > τ) τ ′ by substituting τ for α in τ ′. This amounts
to definitely choosing the present bound τ for α, while the bound before the
application could be further instantiated by some inside instantiation. The
composition φ;φ′ witnesses the transitivity of type instance, while the identity
instantiation 1 witnesses reflexivity.
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τ (!α) = α
⊥ (@τ) = τ
τ 1 = τ
τ (φ1;φ2) = (τ φ1) φ2

τ O = ∀ (α>⊥) τ α /∈ ftv(τ)
(∀ (α > τ) τ ′) N = τ ′{α← τ}
(∀ (α > τ) τ ′) (∀ (>φ)) = ∀ (α> τ φ) τ ′

(∀ (α > τ) τ ′) (∀ (α>) φ) = ∀ (α> τ) (τ ′ φ)

Figure 5: Type instantiation (on types)

Example. Let τmin, τcmp, and τand be the types of the parametric minimum and
comparison functions, and of the boolean conjunction:

τmin , ∀ (α>⊥) α→ α→ α

τcmp , ∀ (α>⊥) α→ α→ bool

τand , bool→ bool→ bool

Let φ be the instantiation ∀ (>@bool);N. Then, both ⊢ φ : τmin ≤ τand and
⊢ φ : τcmp ≤ τand hold.

Let τK be the type ∀ (α > ⊥) ∀ (β > ⊥) α → β → α (e.g. of the λ-term
λ(x) λ(y) x) and φ′ be the instantiation ∀ (α>) (∀ (>@α);N) (the occurrence
of α in the inside instantiation is bound by the under instantiation). Then, the
relations ⊢ φ′ : τK ≤ τmin holds.

Type application. As above, we often instantiate a quantification over ⊥ and
immediately substitute the result. Moreover, this pattern corresponds to the
System-F unique instantiation form. Therefore, we define 〈τ〉 as syntactic sugar
for (∀ (>@τ);N). The previous instantiations φ and φ′ can then be abbreviated
as 〈bool〉 and ∀ (α>) 〈α〉.

Properties of instantiations. Since instantiations make all steps in the instance
relation explicit, their typing is deterministic.

Lemma 1. If Γ ⊢ φ : τ ≤ τ1 and Γ′ ⊢ φ : τ ≤ τ2, then τ1 = τ2. Coq

The use of Γ′ instead of Γ may be surprising. However, Γ does not contribute to
the instance relation, except in the side condition of rule Inst-Abstr. Hence,
the type instance relation defines a partial function, called type instantiation3

that, given an instantiation φ and a type τ , returns (if it exists) the unique type
τ φ such that Γ ⊢ φ : τ ≤ τ φ holds for some Γ. An inductive definition of this
function is given in Figure 5. Type instantiation is complete for type instance:

Lemma 2. If Γ ⊢ φ : τ ≤ τ ′, then τ φ = τ ′. Coq

3There should never be any ambiguity between type instantiation τ φ and instantiation of
expressions a φ; moreover, both operations have strong similarities and are closely related.
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Var
x : τ ∈ Γ

Γ ⊢ x : τ

Let
Γ ⊢ a : τ Γ, x : τ ⊢ a′ : τ ′

Γ ⊢ let x = a in a′ : τ ′

App
Γ ⊢ a1 : τ2 → τ1 Γ ⊢ a2 : τ2

Γ ⊢ a1 a2 : τ1

Abs
Γ, x : τ ⊢ a : τ ′

Γ ⊢ λ(x : τ) a : τ → τ ′

TAbs
Γ, α> τ ′ ⊢ a : τ α /∈ dom(Γ)

Γ ⊢ Λ(α> τ ′) a : ∀ (α > τ ′) τ

TApp
Γ ⊢ a : τ

Γ ⊢ φ : τ ≤ τ ′

Γ ⊢ a φ : τ ′

Figure 6: Typing rules for xMLF

However, the fact that τ φ may be defined and equal to τ ′ does not imply that
Γ ⊢ φ : τ ≤ τ ′ holds for some Γ. Indeed, type instantiation does not check the
premise of rule Inst-Abstr. This is intentional, as it avoids parametrizing type
instantiation over the type environment. This means that type instantiation is
not sound in general. This is never a problem, however, since we only use type
instantiation originating from well-typed terms for which there always exists
some context Γ such that Γ ⊢ φ : τ ≤ τ ′.

We say that types τ and τ ′ are equivalent in Γ if there exist φ and φ′ such
that Γ ⊢ φ : τ ≤ τ ′ and Γ ⊢ φ′ : τ ′ ≤ τ . Although types of xMLFare syntactically
the same as the types of iMLF—the Curry-style version of MLF (Le Botlan and
Rémy, 2009)—they are richer, because type equivalence in xMLF is finer than
type equivalence in iMLF, as explained in §4.

1.3. Typing rules for xMLF

Typing rules are defined in Figure 6. Compared with System F, the novelties
are type abstraction and type instantiation, unsurprisingly. The typing of a type
abstraction Λ(α > τ) a extends the typing environment with the type variable
α bound by τ . The typing of a type instantiation a φ resembles the typing of a
coercion, as it just requires the instantiation φ to transform the type of a into
the type of the result. Of course, it has the full power of the type application
rule of System F. For example, the type instantiation a 〈τ〉 has type τ ′{α← τ}
provided the term a has type ∀ (α) τ ′. As in System F, a well-typed closed term
has a unique type and, in fact, a unique typing derivation.

Lemma 3. If Γ ⊢ a : τ1 and Γ ⊢ a : τ2, then τ1 = τ2. Coq

A let-binding let x = a1 in a2 cannot entirely be treated as an abstraction for
an immediate application (λ(x : τ1) a2) a1 because the former does not require
a type annotation on x whereas the latter does. This is nothing new, and the
same as in System F extended with let-bindings. Notice however that τ1, which
is the type of a1, is fully determined by a1 and can be easily synthesized by a
typechecker.
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Example. Let id stand for the identity Λ(α > ⊥) λ(x : α) x and τid be the
type ∀ (α > ⊥) α → α. We have ⊢ id : τid—much as in System F, except that
unconstrained universal variables are given the bound ⊥. The function choice

mentioned in the introduction may be defined as Λ(β>⊥) λ(x : β) λ(y : β) x. It
has type ∀ (β >⊥) β → β → β. This is again similar to its typing in System F.
We abbreviate this type as τchoice.

The application of choice to id, which we refer to below as choice id, may be
defined as Λ(β > τid) choice 〈β〉 (id !β) and has type ∀ (β > τid) β → β. Indeed,
its typing derivation ends with:

TApp

Γβ ⊢ choice : τchoice
Γβ ⊢ 〈β〉 : τchoice ≤ β → β → β

Γβ ⊢ choice 〈β〉 : β → β → β

Γβ ⊢ id : τid
Γβ ⊢ !β : τid ≤ β (1)

Γβ ⊢ id !β : β
TApp

Γβ ⊢ choice 〈β〉 (id !β) : β → β

Γ ⊢ Λ(β > τid) choice 〈β〉 (id !β) : ∀ (β > τid) β → β
Abs

App

where Γβ is Γ, β > τid and the key judgment (1), which follows by Rule Inst-

Abstr, says that type τid can be seen as type β whenever β is declared to be
an instance of τid.

The term choice id may also be given weaker types by type instantiation.
For example, choice id N has type (∀ (α>⊥) α→ α)→ (∀ (α>⊥) α→ α) as in
System F, while choice id (O; ∀ (γ>) (∀ (> 〈γ〉);N)) has the ML type ∀ (γ > ⊥)
(γ → γ)→ γ → γ. The former expression can be understood directly, by fixing
β to its bound τid. The latter can be understood informally as the introduction
of a free type variable γ and then the instantiation of the bound τid of β to the
type γ → γ, say τγ . Formally, the derivation is a little tedious. Let Γ be the
typing environment γ >⊥. First, we have

Γ ⊢ @γ : ⊥ ≤ γ (2)
Γ ⊢ ∀ (>@γ) : ∀ (α>⊥) α→ α ≤ ∀ (α> γ) α→ α (3)
Γ ⊢ N : ∀ (α> γ) α→ α ≤ γ → γ (4)
Γ ⊢ ∀ (>@γ);N : ∀ (α>⊥) α→ α ≤ γ → γ (5)

(2) is by rule Inst-Bot; (3) is by Inst-Inside and (2); (4) is by Inst-Elim;
(5) is by Inst-Comp, (3), and (4). Then,

Γ ⊢ 〈γ〉 : τid ≤ γ → γ (6)
Γ ⊢ ∀ (> 〈γ〉) : ∀ (β > τid) β → β ≤ ∀ (β > γ → γ) β → β (7)
Γ ⊢ N : ∀ (β > γ → γ) β → β ≤ (γ → γ)→ γ → γ (8)
Γ ⊢ ∀ (> 〈γ〉);N : ∀ (β > τid) β → β ≤ (γ → γ)→ γ → γ (9)

(6) is an abbreviation of (5); (7) is by Inst-Inside; (8) is by Inst-Elim; (9) is
by Inst-Comp, (7) and (8). By rule Inst-Under and (9), we have

⊢ ∀ (γ>) (∀ (> 〈γ〉);N) :
∀ (γ >⊥) ∀ (β > τid) β → β ≤ ∀ (γ > ⊥) (γ → γ)→ γ → γ (10)
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(λ(x : τ) a1) a2 −→ a1{x← a2} (β)
let x = a2 in a1 −→ a1{x← a2} (βlet)

a 1 −→ a (ι-Id)
a (φ;φ′) −→ a φ (φ′) (ι-Seq)
a O −→ Λ(α>⊥) a α /∈ ftv(a) (ι-Intro)

(Λ(α> τ) a) N −→ a{!α← 1}{α← τ} (ι-Elim)
(Λ(α> τ) a) (∀ (α>) φ) −→ Λ(α> τ) (a φ) (ι-Under)
(Λ(α> τ) a) (∀ (>φ)) −→ Λ(α> τ φ) a{!α← φ; !α} (ι-Inside)

E[a] −→ E[a′] if a −→ a′ (Context)

Figure 7: Reduction rules

Finally, by rule Inst-Intro, (10), and Inst-Comp, we have:

⊢ O; ∀ (γ>) (∀ (> 〈γ〉);N) :
∀ (β > τid) β → β ≤ ∀ (γ >⊥) (γ → γ)→ γ → γ

As illustrated on this rather simpler example, computing all intermediate steps
of a type instantiation is very tedious for a human and usually harder than just
checking type instantiation. However, xMLF is only meant to be used as an
internal language by a machine.

1.4. Reduction

The semantics of the calculus is given by a small-step reduction semantics.
We let reduction occur in any context, including under abstractions. That is,
the evaluation contexts are single-hole contexts, given by the grammar:

E ::= [ · ] | E φ | λ(x : τ) E | Λ(α> τ) E
| E a | a E | let x = E in a | let x = a in E

The reduction rules are described in Figure 7. As usual, basic reduction steps
contain β-reduction, with the two variants (β) and (βlet). Other basic reduction
rules, related to the reduction of type instantiations and called ι-steps, are
described below. The one-step reduction is closed under the context rule. We
write −→β and −→ι for the two subrelations of −→ that contain only Context

and β-steps or ι-step, respectively. Finally, the reduction is the reflexive and
transitive closure −→⋆ of the one-step reduction relation.

Reduction of type instantiation. By definition, type instantiation redexes are all
of the form a φ. The first three rules do not constrain the form of a. The identity
type instantiation is just dropped (Rule ι-Id). A type instantiation composition
is replaced by the successive corresponding type instantiations (Rule ι-Seq).
Rule ι-Intro introduces a new type abstraction in front of a; we assume that
the bound variable α is fresh for a.

The other three rules require the type instantiation to be applied to a type
abstraction Λ(α> τ) a. Rule ι-Under propagates the type instantiation under
the bound, on the body a.
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Types

τ θ = τ

Terms

x θ = x
(a1 a1) θ = (a1 θ) (a1 θ)
(a φ) θ = (a θ) (φ θ)

(λ(x : τ) a) θ = λ(x : τ θ) (a θ)
(Λ(α> τ) a) θ = Λ(α : τ θ) (a θ)

Type instantiations

!α θ = !α if α 6= α0

!α0 θ = φ0

(@τ) θ = @(τ θ)
(∀ (>φ)) θ = ∀ (>φ θ)

(∀ (α>) φ) θ = ∀ (α>) (φ θ)
(φ;φ′) θ = (φ θ); (φ′ θ)

N θ = N
O θ = O1 θ = 1

Figure 8: Definition of a θ, where θ is {!α0 ← φ0}

By contrast, Rule ι-Inside propagates the type instantiation φ inside the
bound, replacing τ by τ φ. However, as the bound of α has changed, the do-
main of the type instantiation !α is no more τ , but τ φ. Hence, in order to
maintain well-typedness, all the occurrences of the instantiation !α in a must
be simultaneously replaced by the instantiation (φ; !α). Here, the instantiation
!α is seen as an atomic construct, i.e. all occurrences of !α are substituted,
while other occurrences of α (i.e. that are not part of !α) are left unchanged.
Formally, a{!α0 ← φ0} is defined recursively, as described in Figure 8 (abbre-
viating {!α0 ← φ0} by θ). The interesting lines are the two first ones of the
second column, as other lines are just lifting the substitution from the leaves to
types, type instantiations, and terms in the usual way.

As an example of ι-Inside, if a is the term

Λ(α> τ) λ(x : α→ α) λ(y : ⊥) y (@(α→ α)) (z !α)

then, the type instantiation a (∀ (>φ)) reduces to:

Λ(α> τ φ) λ(x : α→ α) λ(y : ⊥) y (@(α→ α)) (z (φ; !α))

Rule ι-Elim eliminates the type abstraction, replacing all the occurrences of
α inside a by the bound τ . All the occurrences of !α inside τ (used to instantiate
τ into α) become vacuous and must be replaced by the identity instantiation.
For example, reusing the term a above, a N reduces to

λ(x : τ → τ) λ(y : ⊥) y (@(τ → τ)) (z 1)
Finally, notice that type instantiations a @τ and a !α are irreducible.

Examples of reduction. Let us reuse the term choice id defined in §1.3 as
Λ(β > τid) choice 〈β〉 (id !β). Remember that 〈τ〉 stands for the System-F
type application τ and expands to (∀ (>@τ);N). Therefore, the type instanti-
ation choice 〈β〉 reduces to the term λ(x : β) λ(y : β) x by ι-Seq, ι-Inside and
ι-Elim. Hence, the term choice id reduces by these rules, Context, and (β) to
the expression Λ(β > τid) λ(y : β) id !β.
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Below are three specialized versions of choice id (with ∀ (α) τ and Λ(α) a
being abbreviations for ∀ (α>⊥) τ and Λ(α>⊥) a). Here, all type instantiations
are eliminated by reduction, but this is of course not always the case in general.

choice id (∀ (> 〈int〉);N) : (int→ int)→ (int→ int)
−→⋆ λ(y : int→ int) λ(x : int) x

choice id N : (∀ (α) α→ α)→ (∀ (α) α→ α)
−→⋆ λ(y : ∀ (α) α→ α) (Λ(α) λ(x : α) x)

choice id (O; ∀ (γ>) (∀ (> 〈γ〉);N)) : ∀ (γ) (γ → γ)→ (γ → γ)
−→⋆ Λ(γ) λ(y : γ → γ) λ(x : γ) x

1.5. System F as a subsystem of xMLF

System F can be seen as a subset of xMLF, using the following syntactic
restrictions: all quantifications are of the form ∀ (α) τ and ⊥ is not a valid type
anymore (however, as in System F, ∀ (α) α is); all type abstractions are of the
form Λ(α) a; and all type instantiations are of the form a 〈τ〉. The derived
typing rules for Λ(α) a and a 〈τ〉 are exactly the System-F typing rules for type
abstraction and type application. Hence, typechecking in this restriction of
xMLF corresponds to typechecking in System F. Moreover, the one-step System-
F β-reduction (Λ(α) a) 〈τ〉 −→ a{α ← τ} can be performed in xMLF in three
steps:

(Λ(α) a) 〈τ〉 = (Λ(α>⊥) a) (∀ (>@τ);N) (1)

−→ (Λ(α>⊥) a) (∀ (>@τ)) N (2)

−→ (Λ(α>⊥ (@τ)) a{!α← @τ ; !α}) N (3)

= (Λ(α> τ) a) N (4)

−→ a{!α← 1}{α← τ} (5)

= a{α← τ} (6)

Equality (1) is by definition; step (2) is by ι-Seq; step (3) is by ι-Inside; step
(5) is by ι-Elim; equalities (4) and (6) are by type instantiation and by the
assumption that a is a term of System F thus in which !α cannot appear.

Conversely, if a term a is in System F, then its reduction steps in xMLFare all
of these forms but possibly interleaved. Formally, the Church-Rosser property
and the strong normalization lemma stated in §2.2 ensure that any reduction
of a in xMLF will eventually terminate with the same normal form, hence with
its normal form in System F.

2. Properties of reduction

2.1. Subject reduction

Reduction in xMLF, which can occur in any context, preserves typings. This
relies on weakening and substitution lemmas for both instance and typing judg-
ments.
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Lemma 4 (Weakening). Let Γ,Γ′,Γ′′ be a well-formed environment.
If Γ,Γ′′ ⊢ φ : τ1 ≤ τ2, then Γ,Γ′,Γ′′ ⊢ φ : τ1 ≤ τ2.
If Γ,Γ′′ ⊢ a : τ ′, then Γ,Γ′,Γ′′ ⊢ a : τ ′. Coq

Lemma 5 (Term substitution).
If Γ, x : τ ′,Γ′ ⊢ φ : τ1 ≤ τ2 then Γ,Γ′ ⊢ φ : τ1 ≤ τ2.
Suppose Γ ⊢ a′ : τ ′; if Γ, x : τ ′,Γ′ ⊢ a : τ then Γ,Γ′ ⊢ a{x← a′} : τ . Coq

The next lemma, which expresses that we can substitute an instance bound
inside judgments, ensures the correctness of Rule ι-Elim.

Lemma 6 (Bound substitution).
Let ϑ and θ be respectively the substitutions {α← τ} and {!α← 1}{α← τ}.
If Γ, α> τ,Γ′ ⊢ φ : τ1 ≤ τ2 then Γ,Γ′ϑ ⊢ φθ : τ1ϑ ≤ τ2ϑ.
If Γ, α> τ,Γ′ ⊢ a : τ ′ then Γ,Γ′ϑ ⊢ aθ : τ ′ϑ. Coq

The result below ensures in turn the correctness of rule ι-Inside.

Lemma 7 (Narrowing). Assume Γ ⊢ φ : τ ≤ τ ′. Let θ be {!α← φ; !α}.
If Γ, α> τ ,Γ′ ⊢ φ′ : τ1 ≤ τ2 then Γ, α> τ ′,Γ′ ⊢ φ′θ : τ1 ≤ τ2.
If Γ, α> τ,Γ′ ⊢ a : τ ′′ then Γ, α> τ ′,Γ′ ⊢ aθ : τ ′′. Coq

Subject reduction is an easy consequence of all these results.

Theorem 8 (Subject reduction).
If Γ ⊢ a : τ and a −→ a′ then, Γ ⊢ a′ : τ . Coq

2.2. Confluence

Theorem 9. The relation −→β is confluent. The relations −→ι and −→ are
confluent on the terms well-typed in some context.

This result is proved using the standard technique of parallel reductions (Baren-
dregt, 1984). The proof is uninteresting and omitted here; it can be found in
(Yakobowski, 2008).

Confluence means that β-reduction and ι-reduction are independent. For
instance, ι-reductions can be performed under λ-abstractions as far as possible
while keeping a weak evaluation strategy for β-reduction.

The restriction to well-typed terms for the confluence of ι-reduction is due to
two things. First, the rule ι-Inside is not applicable to ill-typed terms in which
τ φ cannot be computed, (for example (Λ(α > int) a) (∀ (>N))). Second, τ φ
can sometimes be computed, even though Γ ⊢ φ : τ ≤ τ ′ never holds, typically
if φ is !α and τ is not the bound of α in Γ. Hence, type errors may be either
revealed or silently reduced and perhaps eliminated, depending on the reduction
path. As an example, let a be the term

(

Λ(α> ∀ (γ) γ)
(

(Λ(β > int) x) (∀ (> !α))
))

(∀ (>N))

It is ill-typed in any context, because !α coerces a term of type ∀ (γ) γ into one
of type α, but !α is here indirectly applied to a term of type int. If we reduce
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the outermost type instantiation first, we are stuck with Λ(α > ⊥)
(

(Λ(β >

int) x) (∀ (>N; !α))
)

, which is irreducible since the type instantiation int (N; !α)
is undefined.

Conversely, if we reduce the innermost type instantiation first, the faulty
type instantiation disappears and we obtain the term

(

Λ(α > ∀ (γ) γ) Λ(β >

α) x
)

(∀ (>N)), which further reduces to the normal form Λ(α>⊥) Λ(β>α) x.
The fact that ill-typed terms may not be confluent is not new: for instance,

this is already the case with η-reduction in System F. We believe this is not a
serious issue. In practice, this means that typechecking should be performed
before any program simplification, which is usually the case anyway.

2.3. Termination of reduction

The termination of reduction has been proved by Manzonetto and Tranquilli
(2010).

Theorem 10. (Manzonetto-Tranquilli) The reduction −→ is terminating.

As a corollary of this result and of Theorem 9, we have immediately

Corollary 11. The relation −→ is strongly normalizing.

The proof of Theorem 10 is by translation of xMLF into System F, where
reductions are known to terminate, and by showing a simulation between re-
duction in xMLF and reduction of the elaborated term in System F. (This is also
discussed in §5.1.) As a corollary, −→ι alone is also terminating. The termina-
tion of −→ is useful but not critical, as xMLF is meant to be used in a language
with general recursion. However, the termination of −→ι is essential for xMLF

to have a type-erasure semantics.

2.4. Type-erasure semantics

The reduction has been defined so that the type erasure of a reduction se-
quence in xMLF is a reduction sequence in the untyped λ-calculus. Formally, the
type erasure of a term a of xMLF is the untyped λ-term ⌈a⌉ defined inductively
by

⌈x⌉ = x
⌈a φ⌉ = ⌈a⌉
⌈a1 a2⌉ = ⌈a1⌉ ⌈a2⌉

⌈let x = a1 in a2⌉ = let x = ⌈a1⌉ in ⌈a2⌉
⌈λ(x : τ) a⌉ = λ(x) ⌈a⌉
⌈Λ(α> τ) a⌉ = ⌈a⌉

It is immediate to verify that two terms related by ι-reduction have the same
type erasure. Moreover, if a term a β-reduces to a′, then the type erasure of a
β-reduces to the type erasure of a′ in one step in the untyped λ-calculus.

Lemma 12. If a −→ι a
′ then ⌈a⌉ = ⌈a′⌉. If a −→β a′, then ⌈a⌉ −→β ⌈a

′⌉.

The converse direction is also true:

Lemma 13. (Manzonetto-Tranquilli) If ⌈a⌉ −→β M , then there exist a′ and
a′′ such that a −→∗

ι a′ −→β a′′ and ⌈a′′⌉ = M .
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A proof has been given by Manzonetto and Tranquilli (2010, Appendix B4).
Combining these two results ensures that xMLF has a type-erasure semantics.

2.5. Accommodating weak reduction strategies and constants

In order to show that the calculus may also be used as the core of a program-
ming language, we now introduce constants and we restrict the semantics to a
weak evaluation strategy. We then show that subject reduction and progress
hold for the main two forms of weak-reduction strategies, namely call-by-value
and call-by-name.

We let the letter c range over constants. Each constant comes with its
arity |c|. The dynamic semantics of constants must be provided by primitive
reduction rules, called δ-rules. However, these are usually of a certain form.
To characterize δ-rules (and values), we partition constants into constructors
and primitives, ranged over by letters C and f , respectively. The difference
between the two lies in their semantics: primitives (such as +) are reduced when
fully applied, while constructors (such as cons) are irreducible and typically
eliminated when passed as argument to primitives.

In order to classify constructed values, we assume given a collection of type
constructors κ, together with their arities |κ|. We extend types with constructed
types κ (τ1, . . . τ|κ|). We write α for a sequence of variables α1, . . . αk and ∀ (α) τ
for the type ∀ (α1) . . .∀ (αk) τ . The static semantics of constants is given by
an initial typing environment Γ0 that assigns to every constant c a type τ of
the form ∀ (α) τ1 → . . . τ|c| → τ0, where τ0 is a constructed type (hence neither
bottom, a variable or an arrow type) whenever the constant c is a constructor.

We distinguish a subset of terms, called values and written v, that are term
abstractions, type abstractions, full or partial applications of constructors, or
partial applications of primitives. We use an auxiliary letter w to character-
ize the arguments of functions, which differ for call-by-value and call-by-name
strategies. In values, an application of a constant c can involve a series of type
instantiations, but only evaluated ones and placed before all other arguments.
Moreover, the application may only be partial whenever c is a primitive. Eval-
uated instantiations θ may be quantifier eliminations or either inside or under
(general) instantiations. In particular, a (@τ) and a (!α) are never values. The
grammar for values and evaluated instantiations is as follows:

v ::= λ(x : τ) a
| Λ(α : τ) a
| C θ1 . . . θk w1 . . . wn n ≤ |C|
| f θ1 . . . θk w1 . . . wn n < |f |

θ ::= ∀ (>φ) | ∀ (α>) φ | N

Importantly, values cannot have type ⊥:

4The indirect proof given in §4 is not correct, since it relies on the subject reduction
property for their intermediate System Fc, which unfortunately does not hold.
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Lemma 14. If v is a value and if ⊢ v : τ , then τ is not ⊥.
(Proof p. 46)

Finally, we assume that δ-rules are of the form f θ1 . . . θk w1 . . . w|f | −→f a
(that is, δ-rules may only reduce fully applied primitives).

In addition to this general setting, we make further assumptions to relate
the static and dynamic semantics of constants.

Subject reduction: δ-reduction preserves typings, i.e., for any typing con-
text Γ such that Γ ⊢ a : τ and a −→f a′, the judgment Γ ⊢ a′ : τ holds.

Progress: Well-typed, full applications of primitives can be reduced, i.e., for
any term a of the form f θ1 . . . θk w1 . . . w|f | verifying Γ0 ⊢ a : τ , there
exists a term a′ such that a −→f a′.

Call-by-value reduction

We now specialize the previous setting to a call-by-value semantics. In this
case, arguments of applications in values are themselves restricted to values, i.e.
w is taken equal to v. Reduction rules of Figure 7 are modified as follows. Rules
(β) and (βlet) are limited to the substitution of values, that is, to reductions of
the form (λ(x : τ) a) v −→ a{x ← v} and let x = v in a −→ a{x ← v}. Rules
ι-Id, ι-Seq and ι-Intro are also restricted so that they only apply to values
(e.g. a is textually replaced by v in each of these rules). Finally, we restrict rule
Context to call-by-value contexts, which are of the form

Ev ::= [ · ] | Ev a | v Ev | Ev φ | let x = Ev in a

We write −→⋆
v the resulting reduction relation. It follows from the above restric-

tions that the reduction is deterministic. Moreover, since δ-reduction preserves
typings, by assumption, the relation −→⋆

v also preserves typings by Theorem 8.
Hence, in combination with progress, stated next, the evaluation of well-typed
terms “cannot go wrong”.

Theorem 15 (Progress for call-by-value).
If Γ0 ⊢ a : τ , then either a is a value or a −→⋆

v a′ for some a′.
(Proof p. 46)

Call-by-value reduction and the value restriction

The value-restriction is the standard way of adding side effects in a call-by-
value language. We verify that it can be transposed to xMLF.

Typically, the value restriction amounts to restricting type generalization
to non-expansive expressions, that cannot have direct or indirect side effects.
Those contain at least value-forms, i.e. values and term variables, as well as
their type-instantiations. In the case of xMLF, which is a target language and
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not a source one, we obtain a restricted grammar of (potentially) expansive
expressions a, and a subset which is constituted of non-expansive expressions u.

a ::= u | a a | let x = u in a
u ::= x | λ(x : τ) a | Λ(α : τ) u | u φ | let x = u in u

| C θ1 . . . θk u1 . . . un n ≤ |C|
| f θ1 . . . θk u1 . . . un n < |f |

As usual, we restrict let-bound expressions to be non-expansive, since they im-
plicitly contain a type generalization. Hence, a let-bound expression is expan-
sive when its body is expansive—but it remains non-expansive when its body
is non-expansive. Notice that, although type instantiations are restricted to
non-expansive expressions, this is not a limitation: b φ can always be written
as (λ(x : τ) x φ) b, where τ is the type of b, and similarly for applications of
constants to expansive expressions.

Lemma 16, stated below, ensures two things: our restricted grammar has
a meaning as a standalone language (as it is stable by reduction); and non-
expansive expressions are closed by reduction and are thus harmless in presence
of side-effects.

Lemma 16. Expansive and non-expansive expressions are closed by call-by-
value reduction.

As an immediate consequence:

Corollary 17. Subject reduction holds with the value restriction.

It is then routine work to extend the semantics with a global store to model
side effects and verify type soundness for this extension.

Call-by-name reduction

In call-by-name reduction semantics, values may contain applications of con-
stants to arbitrary expressions—and not just to values. That is, we take a for
w. The ι-reduction is restricted as for call-by-value, while −→β is unchanged.
However, evaluation contexts are now En ::= [ · ] | En a | En φ.

We write −→⋆
n the resulting reduction relation. As for call-by-value, it

is deterministic by construction and preserves typings. Moreover, it may al-
ways progress. Hence, call-by-name evaluation of well-typed terms “cannot go
wrong”.

Theorem 18 (Progress for call-by-name).
If Γ0 ⊢ a : τ , then either a is a value or a −→⋆

n a′ for some a′.
(Proof p. 47)

17



3. Elaboration of graphical eMLF into xMLF

To verify that, as expected, xMLF can be used as an internal language for
eMLF, we now exhibit a type-preserving type-erasure-preserving translation from
eMLF to xMLF. We use the graphic constraint presentation of eMLF (Rémy and
Yakobowski, 2008; Yakobowski, 2008) which is more general than the syntactic
presentation (Le Botlan and Rémy, 2003, 2009) and also better suited for type
inference.

The elaboration of eMLF into xMLF proceeds in two phases. The first phrase
is just type inference in eMLF, described by Rémy and Yakobowski (2008) and
Yakobowski (2008). A source program of eMLF is translated into a typing con-
straint, which can be seen as a decoration of the source program with (1) place-
holders for missing types, and (2) type instantiation constraints that relate types
(either known or unknown). The constraint is then solved, filling in all unknown
types so that all type instantiation constraints become valid. The result of type
inference is called a presolution.

The second phase translates a presolution into a term of xMLF. The main
difficulty is to infer for each instantiation constraint a precise description of the
type instantiation steps. Interestingly, this is done by replaying type inference
with an instrumented algorithm. More precisely, the instantiation steps are
extracted from the proof that the presolution found by type inference is indeed
in solved form. It then remains to translate the instrumented presolution, which
is represented graphically, into a syntactic form, i.e. a term of xMLF. This
second phase is a form of compilation, which is technically not very deep, but
meticulous.

Since the elaboration is based on—and starts with—type inference, it con-
tains many details that require some minimal understanding of eMLF. Hence
we present an overview of eMLF. Sill, other reading might help (Rémy and
Yakobowski, 2007, 2008; Yakobowski, 2008). As no other part depends on §3,
most details (or even the whole section) can also be skipped in a first reading
of the paper.

Outline. We first review the graphic constraints type inference framework
(§3.1); we then present the main steps of the translation (§3.2); finally, we de-
scribe the key steps in details (§3.3-3.5). The elaboration has been implemented
in a prototype by Scherer (2010a).

3.1. An overview of graphical eMLF

A full presentation of graphical eMLF is out of the scope of this paper. In
this section, we only remind the key points about graphic types and associated
type instance, which is the basis of the elaboration algorithm. We put more
emphasis on the aspects of graphic types that either depart significantly from
more traditional syntactic presentation of types, or that play a key role in un-
derstanding the elaboration process. Detailed presentations can be found in
(Rémy and Yakobowski, 2007, 2008; Yakobowski, 2008).
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Figure 9: Dags and graphic types

3.1.1. Graphic types

Types of graphical eMLF are graphs, designated with letter σ, composed of
the superposition of a term-dag, representing the structure of the type, and of
a binding tree encoding polymorphism.

Term-dags are just dag representations of usual tree-like types where all oc-
currences of the same variable are shared, and inner nodes representing identical
subtypes may also be shared. We write σ(n) for the constructor at node n. Vari-
ables are anonymous and represented by the pseudo-constructor ⊥. Term-dag
edges are written n i◦−→ m, where i is an integer that ranges between 1 and
the arity of σ(n); we also use the notation 〈ni〉 to designate m, the root node
being simply noted 〈〉. On pictures, edges are drawn with plain lines, oriented
downwards; we leave i implicit, as outgoing edges are always drawn from left to
right.

Example 1. The dag t on Figure 9 represents the first-order type (α → β) →
(α → β). The nodes 〈11〉 and 〈22〉 are variables (the names α and β are
here to help reading the figure, but formally they are not part of the graphic
type). Compared with the tree notation, leaves representing the same variable
are merged together; the names of leaves are left anonymous. That is, paths 11
and 21 lead to the same node, which can therefore be designated by 〈11〉 or 〈21〉,
indifferently. Similarly, paths 12 and 22 lead to the same node.

The dag structure also allows sharing internal nodes whose subtrees are iden-
tical as described by the dag t′ where nodes 〈1〉 and 〈2〉 coincide. The dag t′ could
be syntactically written as (let γ = α → β in γ → γ). In fact, sharing of inter-
nal nodes is a key to the efficient implementation of unification algorithms on
first-order types. Those typically see t′ as an instance of t, but not the converse;
thus sharing can only be increased, and never lost. However, this refinement of
the instance relation needs not be revealed externally, and dag t′ can be displayed
as dag t by splitting (or just reading back) shared internal nodes into separate
ones.

The second component of graphic types, the binding tree, is an upside-down
tree with an edge n ⋄≻−→ m leaving from each node n different from the root,
and going to some node m upper in the term-dag at which n is bound. Binding
edges may be either flexible or rigid, which is represented by labeling the edge
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Figure 10: Examples of instance on graphic types

with > or =, respectively. On drawings, these flags are represented by dotted
or dashed lines, respectively. We use the flag metavariable ⋄ to range over >
and =.

Example 2. Consider the graphic type σ0 of Figure 9. It is the superposition

of the first-order term-dag t0 and the binding tree b0. The edge 〈22〉 >≻−→ 〈2〉
is a flexible binding edge (the rightmost lowermost one), while 〈1〉 =≻−→ 〈〉 is a

rigid binding edge (the leftmost uppermost one) and 〈1〉 2◦−→ 〈12〉 is a structure
edge.

Binding edges express polymorphism. They are oriented, and the target of
the edge indicates the place where the binding occurs. The node at the source
of the edge represents the variable being introduced, while the subtree at that
node is the bound of that variable. Binding edges are of two kinds: a rigid
edge means that polymorphism is required; typically, it is used for the type of
an argument that is used polymorphically. By contrast, a flexible edge means
that polymorphism is available (as with flexible quantification in xMLF) but not
required.

Example 3 (cont.). The type σ0 of Figures 9 and 10 describes a function f
whose argument must be at least as polymorphic as ∀ (α) α → α, and whose
result has type ∀ (β) β → β, or any instance of it. In other words, the result
of an application of f can be used in place of the successor function of type
int → int, but f cannot be passed the successor function as argument, which is
not as polymorphic as required.

The type σ′
0 of Figure 10 describes a polymorphic function that, given a type

γ, expects an argument of type ∀ (α) α→ α and returns a value of type γ → γ.
In particular, σ′

0 is strictly less polymorphic than σ0, as in System-F, since
γ → γ is a strict instance of ∀ (β) β → β.

Rigid bounds arise from type annotations: the principal type of a term that
contains no type annotations (in an environment that contains no types with
rigid bounds), uses only flexible bounds. That is, required polymorphism may
be offered by type inference, but never requested automatically.
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Figure 11: Atomic graphic instance operations

Classifying nodes. For the purpose of defining type instance, we distinguish
four kinds of nodes according to their position in the binding tree. The kind
of each node is used below to determine how they can be transformed during
type instantiations. Hence, this classification plays an important role in the
translation.

Nodes on which no variable is transitively flexibly bound are called inert, as
they neither hold nor control polymorphism. They will be discussed in detail
further on. All other nodes hold or control some polymorphism and are classi-
fied as follows. Nodes whose binding path is flexible up to the root are called
instantiable: they can be freely instantiated as described in the next section; in
xMLF these nodes correspond to parts of types that can be transformed by a
suitable instantiation expression. Nodes whose binding edge is rigid are called
restricted, because they cannot be grafted; in xMLF they roughly correspond
to polymorphic types occurring under some arrow type. Nodes whose binding
edge is flexible but whose binding path up to the root contains a rigid edge are
called locked ; they cannot be transformed in any way. In xMLF, these nodes
roughly correspond to polymorphic types occurring in the bound of quantifiers
themselves under some arrow type—they offer polymorphism that is requested
and cannot be diminished.

Example 4 (cont.). In the type σ′
0 of Figure 10, the node 〈2〉 is inert, 〈21〉 is

instantiable, 〈1〉 is restricted and 〈11〉 is locked.

Type instance. The instance relation on graphic types, written ⊑, can be de-
scribed as the composition of four atomic operations: grafting, merging, raising,
and weakening. All four operations are detailed below, and depicted schemati-
cally in Figure 11. In the figure, we use the following conventions to constrain
the position of nodes in the binding tree: the green (or light gray) node with dot-
ted border is instantiable; blue (or darker gray) nodes with double-line borders
are anything but locked; small white nodes are unconstrained.
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• Graft(σ, n), called grafting, replaces an instantiable bottom node n by a
closed graph σ. Grafting corresponds to the Inst-Bot rule of xMLF. That is,
Γ ⊢ @τ : ⊥ ≤ τ where τ is the type describing the graph σ.

• Merge(n1, n2), called merging, fuses two nodes n1 and n2 that are not
locked and have identical subgraphs. After merging, the subgraphs will thus be
shared and can only be instantiated synchronously. In xMLF terms, it replaces
two identical quantifications by an unique one, as in

Γ ⊢ φ : ∀ (α> τ) ∀ (β > τ) τ ′ ≤ ∀ (α > τ) τ ′{β ← α}

with, for instance, φ equal to ∀ (α>) (∀ (> !α);N).

• Raise(n), called raising, makes the binding of a node n that is not locked
slide other the binding edge above it. Raising corresponds to a scope extrusion
in xMLF, as in

Γ ⊢ φ : ∀ (α> ∀ (β > τ) τ ′) τ ′′ ≤ ∀ (β > τ) ∀ (α> τ ′) τ ′′

with, for instance, φ equal to O; ∀ (>@τ); ∀ (β>) (∀ (> ∀ (> !β);N)).

• Weaken(n), called weakening, changes the binding of a flexible node n
that is not locked into a rigid one. This freezes the subgraph under the node,
preventing further instance operations on non-inert nodes, and all graftings.
When this operation occurs on an instantiable node, it corresponds to the xMLF

Inst-Elim instantiation:

Γ ⊢ N : ∀ (α> τ) τ ′ ≤ τ ′{α← τ}

Notice that grafting and merging do not change the bindings of existing
nodes, while conversely, raising and weakening only change the bindings of ex-
isting nodes.

Example 5 (cont.). The type σ′
0 of Figure 10 is an instance of σ0 obtained

by raising 〈21〉. The type σ4 is an instance of σ1, obtained by grafting then
weakening 〈21〉 (resulting in σ2), raising the node 〈11〉 (which gives σ3), and
finally merging 〈11〉 and 〈21〉. Letting σ be the graph corresponding to ∀ (α)
α→ α, we may formally write:

σ1

Graft(σ, 〈21〉)
−−−−−−−−−−→

Weaken(〈21〉)
−−−−−−−−−−→ σ2

Raise(〈11〉)
−−−−−−−−→ σ3

Merge(〈11〉, 〈21〉)
−−−−−−−−−−−−−→ σ4

Hence, the instance g1 ⊑ g2 is witnessed by the transformation

Graft(σ, 〈21〉);Weaken(〈21〉);Raise(〈11〉);Merge(〈11〉, 〈21〉)

where “;” is the composition with arguments given in reverse order.

On the importance of inert nodes. While inert nodes carry no polymorphism,
it is important to treat them especially—so as to allow slightly more instance
operations. Intuitively, since these nodes carry no polymorphism, they need not
be shared, nor do they need a binding edge. However, it is technically more
regular to let every node but the root node be bound to some other node, which
we do. Furthermore, we only allow raising, merging or weakening those nodes,
not the converse operations; §3.3 will justify why this is technically possible.
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Figure 12: Constraints and expansion

3.1.2. Type constraints

Type constraints are used to formalizeMLF typing problems. They generalize
graphic types by adding new forms of edges, called constraint edges. These can
be either unification edges or instantiation edges . They also generalize
let-constraints that have been proposed for type inference in ML by Pottier and
Rémy (2005). Instantiation edges are oriented. They relate special nodes, used
to represent type schemes and called G-nodes, to regular nodes. An example
of a constraint χe is shown on Figure 12. The instance on type constraints is
exactly as on graphic types—constraint edges are just preserved.

A unification edge is solved when it relates a node to itself (thus, a unification
edge forces the nodes it relates to be merged). An instantiation edge e of the
form g n of a constraint χ is solved when, informally, n is an instance of
the type scheme represented by g, or formally, when the expansion of e in χ
(defined below) is an instance of χ.

A type constraint is solved when all of its constraint edges are solved. A
presolution of a constraint is one of its solved instances. It still contains all the
nodes of the original constraint, many of which may have become irrelevant for
describing the resulting type. A solution of a constraint is, roughly, a presolution
in which such nodes have been removed. We need not define solutions formally
since the translation uses presolutions directly.

Expansion. In a constraint χ, consider an instantiation edge e defined as
g n. We define an expansion operation that enforces the constraint repre-
sented by e. The expansion of e in χ, written χe, is the constraint χ extended
with both a copy of the type scheme represented by g and a unification edge
between n and the root r of the copy. The copy is bound at the same node as n.
Technically, we define the interior of g, written I(g) as all the nodes transitively
bound to g. The expansion operation copies all the nodes structurally strictly
under g and in the interior of g. Intuitively, those nodes are generic at the level
of g. Conversely, the nodes under g that are not in the interior of g are not
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Figure 13: Example of solved instantiation edge

generic at the level of g and are not copied by the expansion5 (but are instead
shared with the original).

Example 6. Let us consider the expansion χe of Figure 12. The original con-
straint χ can be obtained from χe by removing the rightmost highlighted nodes,
as well as the resulting dangling edges. The interior of g is composed of the
leftmost highlighted nodes. Hence, the copied nodes are 〈g1〉 and 〈g11〉, but not
〈g12〉, which is not in I(g). The root of the expansion r is the copy of 〈g1〉. It
is bound to the bound of n and connected to n by an unification edge.

By definition, we say that an instantiation edge e is solved when χ is an
instance of χe. This indeed means that the subtype constrained by the instan-
tiation edge is less general than the type scheme at the origin of the edge—as a
copy of this scheme can be instantiated into the subtype. We call instantiation
witness an instance derivation of χe ⊑ χ for a solved instantiation edge e.

5Readers familiar with MLF (Rémy and Yakobowski, 2008) may notice a slight change in
terminology, as in this work we use the term “expansion” instead of “propagation”, and we
solve frontier unification edges on the fly, for conciseness.
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Example 7 (cont.). In Figure 12, χ is an instance of χe—hence, the edge e
is solved. This is witnessed by the sequence of transformations given below and
depicted in Figure 13.

All nodes below g are invariant during the transformations and are elided
(represented as the subtree) in all other constraints, for conciseness. Nodes
or edges about to change are highlighted in green or in light gray, while those
that have just changed are highlighted in red or in dark gray.

Grafting ∀ (α) ∀ (β) α→ β under 〈r1〉 in χe leads to χ1; raising 〈r11〉 twice
gives χ2; mergings nodes 〈r11〉 and 〈n11〉 gives χ3; weakening node 〈r1〉, then
node 〈r〉 leads to χ4; finally, by merging n and r, which is possible as the two
subgraphs under them are equal, we end up with exactly χ.

Formally, this is the transformation Ω:

Graft(∀ (α) ∀ (β) α→ β, 〈r1〉) ; Raise(〈r11〉) ; Raise(〈r11〉) ;
Merge(〈r11〉, 〈n11〉) ; Weaken(〈r1〉) ; Weaken(r) ; Merge(r, n)

3.1.3. From λ-terms to typing constraints

Terms of eMLFare the partially annotated λ-terms generated by the following
grammar:

b ::= x | λ(x) b | λ(x : σ) b | b b | let x = b in b | (b : σ)

Type inference is performed by translating a source term into a type constraint,
solving the constraint into a (principal) presolution, from which a (principal)
solution can easily be read.

Type constraints are generated in a compositional manner. Every occurrence
of a subexpression b is associated to a distinct G-node in the constraint, which
we label with b for readability; however, it should be understood that different
occurrences of equal subexpressions are mapped to different nodes. (Formally,
occurrences may be identified by their path to the root of the type constraint.)
We let y and z stand for λ-bound and let-bound variables, respectively. We
assume that the source term has been renamed so that every bound variable is
distinct from all others.

Constraint generation is described on the top of Figure 14: each case refers
to the expression on the left-hand side of the corresponding equality6 at the
bottom of the Figure. The unification edge uy in (1) links the node that encodes
an occurrence of a λ-bound variable y to the node y generated in (4) by the
translation of the abstraction binding y. The instantiation edge ez ending in (2)
is coming from the G-node labeled b1 generated in (3) by the translation of the
let expression binding z. The type of an abstraction λ(y) b is an arrow type
whose domain is the type of y and codomain is an instance of the type of
b, as witnessed by the edge e (4). The type for an application b1 b2 is the
codomain of an instance of the type of b1, which must itself be an arrow type

6The right-hand side is the elaboration of the left-hand side, which will be explained in the
next section.
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Figure 14: Constraint generation and translation of presolutions

whose domain is an instance of the type of b2 (5). The type of a let-expression
let x = b1 in b2 is just an instance of the type of b2: as explained above,
the constraints b2 will contain, for every occurrence of x in b2, one instance
edge coming from the type of b1 and ending at that occurrence. The typing
constraint for let-expressions could be optimized to avoid taking an additional
instance of b2, as done in (Rémy and Yakobowski, 2008; Yakobowski, 2008).
The advantage of this unoptimized version, which still preserves the complexity
of type inference, is that every subexpression introduces exactly one G-node;
this establishes a one-to-one mapping between subexpressions and G-nodes that
is preserved during constraint resolution (G-nodes are never merged) and helps
define the elaboration after constraint resolution.

Example 8. The typing constraint χ for the term λ(x) λ(y) x is described on
the left-hand side of Figure 15. One of its presolutions χp is drawn on the mid-
dle. (We have dropped the mapping of expressions to G-nodes for conciseness,
and labeled some binding edges that will appear in the xMLF translation.) This
is not the most general presolution, as some arrow nodes bound at G-nodes have
been made rigid, but an equivalent rigid presolution, as explained in §3.3, that
is ready for translation into xMLF.

While type inference is out of the scope of this work, we may however easily
check that χp is a presolution, i.e. that both instantiation edges are solved.
Consider for example the edge e. We must verify that χp is an instance of the
expansion χe

p drawn on the right-hand side, that is, exhibit a sequence of atomic
instance operations that transforms χe

p into χp. Here, the obvious solution is
just to merge the two nodes related by the unification edge, i.e. Merge(n, r).
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Figure 15: Typing constraints for λ(x) λ(y) x.

Annotated expressions. The constructions λ(x : σ) b and (b : σ) are actually
syntactic sugar for λ(x) let x = κσ x in b and κσ b, respectively7, where κσ

is a coercion function that has type ∀ (α > σ) σ → α in xMLF; those coercion
functions are discussed in more detail in §3.6.

Both constructs are desugared before the translation into constraints. The
effect of rebinding x to κσ x is to request the parameter x to be of type σ and
simultaneously let all occurrences of x in b be typed with possibly different in-
stances of σ. By contrast, λ(x) b, without an annotation, forces the parameter x
and all occurrences of x in b to have exactly the same type.

3.2. An overview of the translation to xMLF

The elaboration of an eMLF term b to xMLF is based on a presolution χ
of the typing constraint for b. The translation is based on presolutions rather
than solutions, since presolutions still contain the original subconstraints (unlike
solutions, which only retain the final type). While typing constraints have
principal presolutions, any presolution—not merely the principal one that is
returned by type inference—can be translated. However, presolutions must be
slightly transformed into rigid presolutions before translating them, as explained
in §3.3—but we may ignore this minor detail for the moment.

Given an original program b and a (rigid) presolution of the graphic con-
straint for b, the translation is inductively defined on the structure of b, reading
auxiliary information on the corresponding nodes in the presolution; we build
this way the type of function parameters, type abstractions, and type instan-
tiations. Since presolutions are instances of the original constraint, and type
instance preserves both G-nodes and instantiation edges, we can refer to the

7The expression λ(x) let x = κσ x in b is equal to λ(y) let x = κσ y in b whenever y does
not appear free in b; using the same variable x for y avoids the side condition and so makes
the syntactic sugar a purely local transformation.
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original nodes and edges in the top of Figure 14 when defining the translation
(hence both top and bottom parts of Figure 14 should now be read in parallel
to understand the translation). There are two key ingredients:

• For each instantiation edge e of the form g n, an instantiation Φ(e)
is inserted to transform the type of the translation of the expression b
corresponding to g into the type of n. It can be computed from the proof
that e is solved in χ, i.e. from the instantiation witness for e. Details are
given in §3.4 and §3.5.

• For each flexible binding edge to a G-node n ≻−→ g, a type abstraction
Λ(αn > τn) is inserted in front of the translation of the expression b
corresponding to g, τn being the type of the node n. Indeed, such an
edge corresponds to some polymorphism in n that must be introduced at
the level of g. We use the notation /)(g) to refer to the sequence of all
such quantifications at the level of g, which is a binding prefix of the form
Λ(α1 > τ1) . . .Λ(αq > τq) that will be precisely defined in §3.4.

(Conversely, rigid bindings, which are only useful to make type inference
decidable, are inlined during the translation and thus do not give rise to
type quantifications.)

The translation is given in Figure 14. We let /)(g) and Φ(e) abstract for the
moment. They will be defined in sections 3.4 and 3.5, respectively.

The translation of a λ-bound variable y (1) is itself. Indeed, the G-node y
is always monomorphic and there is no polymorphism to introduce; moreover,
as the type of y in the presolution is its only instance, there is no need to add
a type instantiation. For all other cases, the translation is of the form /)(g) b′,
g being the G-node for b. Indeed, generalization is needed in MLF for let-bound
expressions (as in ML) and also for applications and abstractions (unlike in ML).

An occurrence of a variable z (2) bound by some let z = b1 in b2 expression
is instantiated by Φ(ez) so as to transform the type of [[b1]] into the type of
this occurrence of z, according to the edge ez; each occurrence of z in [[b2]] will
potentially pick a different instance. Thus, in the translation of let z = b1 in b2
(3), the translation of b1 is bound to z uninstantiated (as it suffices to instantiate
the occurrences of z), while the translation of b2 is instantiated according to the
edge e2. In the translation of an abstraction λ(y) b (4), we annotate y by its
type in the presolution (written T(y) and defined in §3.4) and coerce [[b]] to its
type inside the abstraction according to the edge e. Finally, the translation
of an application (5) is the application of the translations, each of which is
instantiated according to its constraint edge.

Example 9. The presolution χp in Figure 15 can be translated into the term

Λ(α) Λ(β > ∀ (δ) δ → α) λ(x : α) (Λ(γ) λ(y : γ) (x 1)) (!β)
which has type ∀ (α) ∀ (β > ∀ (δ) δ → α) α → β. Notice the three type quantifi-
cations for α, β, and γ that correspond to the flexible edges of the same name.
The instantiation !β is the translation of e.
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Type-erasure. As we will see later, /)(g) is only composed of type quantifi-
cations, and Φ(e) of instantiations. Thus, the translation is type-erasure pre-
serving by construction, which ensures that the semantics of the original and
translated terms are the same.

Theorem 19. Given a (desugared) term b, we have ⌈J b K⌉ = ⌈b⌉.

3.3. Rigidifying presolutions

All presolutions are not suitable for elaboration into xMLF, because rigid
and flexible bindings are not treated symmetrically during the translation. In-
deed, xMLF has flexible quantification, but does not have the rigid form. Rigid
quantification is not necessary in xMLFbecause types are fully explicit and rigid
nodes can always be explicitly unshared. Unsurprisingly, flexible bindings will
be translated to flexible quantification—while rigid bindings will be inlined.

This causes a problem with inert nodes that are flexible but bound under
a rigid edge: while they are instantiable in eMLF in any context, they would
appear in a non instantiable context in xMLF if we translated them as flexible
bounds, and there would be no way to instantiate them afterward. One solution
is to inline them during the translation, exactly as rigid bounds. However, an
even simpler solution is to rigidify them prior to the translation. This is a sound
operation in eMLF, since inert nodes can always be weakened, and it avoids a
special case during the translation.

Example 10. For example, the flexible binding edge in the type →

→

int

int

drawn on the right, which is leaving from the inert node 〈11〉, may
be weakened in eMLF. The two types with or without rigidification
are equivalent in eMLF. However, they are translated into (∀ (α >
int) α → α) → int and (int → int)→ int, which are not equivalent
in xMLF (in this case, they are actually incomparable): since type
applications are explicit in xMLF, a term of the former type must instantiate
its argument before applying it, while a term of the latter type can apply its
argument directly. This is quite similar to the difference between the two types
(∀ (α) int→ int)→ int and (int→ int)→ int in System F.

For now, let us call rigidification the weakening of an inert node. A weaken-
ing is in general a strict instance operation in eMLF. However, on inert nodes it is
a lossless one as it right-commutes with all instance operations: a rigidification
followed by an instantiation can always be rewritten as an instantiation followed
by a rigidification. This means that rigidification will never make typechecking
fail when it would not fail without rigidification. Intuitively, when an inert node
n that has been rigidified is unified with another inert node m, then m itself can
always be rigidified so that unification succeeds, because it is already or can be
made inert.8

8 This reasoning can actually be generalized to lowering and splitting of inert nodes, which
explains why we only need direct instance operations on such nodes.
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Although inert nodes in non-instantiable contexts are the only nodes that
must be rigidified, all inert nodes may be rigidified. This is easier to implement,
but more importantly, it results in simpler and more uniform elaborated terms.

For the same reason, we also rigidify flexible existential nodes, even though
these are not inert. An existential node is bound to a G-node but not reachable
by structure edges. If it is rigid, it will be inlined by the translation. But no
occurrence will be found, so it will be skipped. However, if it is flexible, its
translation introduces a (useless) type abstraction over a variable that does not
appear in the body of the abstraction but that would still have to be eliminated
by some irrelevant type application. Rigidifying flexible existential nodes is
always correct and still lossless. Moreover, it avoids useless abstraction and
applications in the translated term, as in Example 10.

Since presolutions are instances of the original type constrains (no node and
no edge have been lost), we can describe rigidification on the typing constrains
of Figure 14. Namely, the following nodes of the presolution are rigidified:

• the node 〈g1〉 in the translation of abstractions (4);

• the node n in the translation of an application (5);

• the node 〈g1〉 whenever it is bound on g;

• any node bound on a G-node but not reachable from a G-node by following
only structure edges (i.e. an existential node).

In the first two cases, rigidification could have been performed during constraint
generation since nodes that are rigidified are already inert in the constraint.
Conversely, in the two last cases, it is important that the nodes are left flex-
ible during type inference when some of the constraints might not have yet
been solved, and rigidified only after type inference, i.e. in presolutions so
that rigidification remains a lossless transformation, as argued earlier. Notice
that although nodes 〈g1〉 are always bound on 〈g〉 in the original constraint,
they might be bound above in the presolution, in which case they must not
be rigidified—unless they have been merged with other nodes that must be
rigidified according to the criteria above.

We call rigid a presolution that respects the four conditions above and in
which all inert nodes are rigid. We call rigidification the transformation of
a presolution into a most general, rigid one. The following lemma states the
existence of lossless rigid presolutions.

Lemma 20. Given a presolution χp of a constraint χ, there exists a rigid pres-
olution χ′

p of χ, derived from χp only by rigidifying some nodes, such that the
solutions of χp and χ′

p are equivalent up to the weakening of inert nodes.

This result suggests that we could have restricted ourselves to rigid preso-
lutions in the first place, since principal presolutions can be turned into rigid
ones in a principal manner. However, rigid presolutions are only useful for the
translation of eMLF into xMLF and useless, if not harmful, for type inference
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Rχ(n) , ∀ (Qχ(n)) χ(n) (Tχ(〈n 1〉), . . . Tχ(〈n p〉))
where p is the arity of χ(n)

Tχ(n) ,

{

Rχ(n) if n is rigidly bound in χ
αn if n is flexibly bound in χ

Qχ(n) , (α〈n1〉 >Rχ(n1) . . . α〈nk〉 >Rχ(nk))
where n1, . . .nk are all non G-nodes
flexibly bound to n in χ, ordered by ≺.

Gχ(g) , ∀ (Qχ(g)) Tχ(〈g 1〉)

Figure 16: Mapping nodes of eMLF to types of xMLF.

purposes: binding edges can only be rigidified—without losing solutions—after
all the constraint edges under them have been solved. This imposes some syn-
chronization during the constraint resolution. Therefore, we prefer to stay with
the more flexible (and simpler) definition of presolutions for eMLF and perform
rigidification as a first step of the translation into xMLF. This way, rigidification
needs not be exposed to the user.

In the remainder of this section, we abstract over a rigid presolution χ and
an instantiation edge e of the form g d.

3.4. Translating types

Ordering binders. In eMLF, two binding edges reaching the same node are un-
ordered. It is actually a useful property for type inference not to distinguish
between two types that just differ by the order of their quantifiers. However,
adjacent quantifiers do not commute in xMLF. While they could be explicitly
reordered by type instantiation, it is much better to get them in the right or-
der by construction as far as possible, even if reordering of quantifiers remains
necessary in some cases, as described below (§3.4, page 33).

The simplest way to order quantifiers is to assume a total ordering ≺ of all
the nodes of a constraint χ. Of course, ≺ cannot be arbitrary, as it should also
ensure the well-scopedness of syntactic types: if n ◦−→ n′ or n′ ≻−→ n, then
n′ ≺ n must hold.

We choose the leftmost-lowermost ordering of nodes for ≺. That is, if

→

⊥ ⊥

n1, . . . , nk are bound to n, we first translate the ni that is structurally lowest
in the type, or leftmost if the ni are not ordered by ◦−→. This
means that the type drawn on the right is always translated as
∀ (α1) ∀ (α2) α1 → α2, not as ∀ (α2) ∀ (α1) α1 → α2.

From graphic types to xMLF types. Every node of χ can be translated to an
xMLF type. Moreover, the translation is uniquely determined by the ordering
of binders.

We assume that every node n in χ is in bijection with a type variable αn.
Each non G-node n of χ is mapped to a type Tχ(n) of xMLF as described in
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Figure 16. A flexibly bound node is translated by Tχ as αn; this translation
is always used in a context where αn is bound. Otherwise, n is rigidly bound
and its type is inlined as Rχ(n) whose definition uses a helper function Qχ(n)
to build a sequence of type quantifications (one for each node flexibly bound to
n); then Rχ(n) is also used recursively to build the bounds of the type variables
in Q(n). When χ is clear from context, we omit it for brevity.

Example 11. Consider again Figure 12, disregarding the expanded part on the
right for now. Let us consider the translation of the node 〈n1〉 (the arrow node
under n). There is only one node bound on it, the node 〈n12〉, whose bound
is ⊥. Hence, T(〈n1〉) is ∀ (α〈n12〉 >⊥) α〈n11〉 → α〈n12〉.

The function G is used to translate a G-node g. This is done by introduc-
ing the sequence of type quantifications Q(n) (representing the type variables
generalized at the level of the type scheme that g stands for), followed by the
translation of 〈g 1〉. Notice that some other type quantifications can be intro-
duced when translating 〈g 1〉; this stands for polymorphism purely local to g.
That is, this polymorphism was already present in g, has not been instantiated,
and needs not be re-introduced. Notice also that, by definition of rigid preso-
lutions, 〈g 1〉 cannot be flexibly bound on g. Hence, the translation is never of
the form ∀ (...) ∀ (α> τ) α.

Finally, we write G(χ) for the translation G(〈〉) of the root G-node of the
whole constraint.

Example 12 (cont.). Let us focus on the root of the constraint in Figure 12.
The non-G nodes that are flexibly bound on 〈〉 before expansion are 〈11〉 and
〈n11〉. As n is also 〈12〉, we have 〈11〉 ≺ 〈n11〉. Thus, the translation G(〈〉)
of 〈〉 is

∀ (α〈11〉 >⊥) ∀ (α〈n11〉 >⊥) α〈11〉 → (T(〈n1〉)→ α〈11〉)

Given all these definitions, we are now able to formally define the notation
/)(g) used in Figure 14. It is simply Λ(Q(g)) .

Translating the type of an expansion. Let χ be a constraint containing an in-
stantiation edge e equal to g d. Let χ′ be an instance of the expansion
χe of e in χ, such that χe ⊑ χ′ ⊑ χ. Let r be the root of the expanded (i.e.
copied) part in χ′. In §3.5, we will need to refer to the type under r, as we will
transform this type so that it matches the type under d. It would be mean-
ingless to translate r as α〈r〉, because after any transformation under r, the
translation would still be α〈r〉. Instead, the correct type is the following: if r
has been created by the expansion, we inline it regardless of its binding flag,
and translate it as Rχ′ (r). Conversely, if r is in fact d, it is translated as Tχ′(d)
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as usual.9 Formally, the translation Eχ′(r) of r is defined as

Eχ′(r) ,

{

Tχ′(r) if r is d
Rχ′(r) otherwise

Example 13 (cont.). In Figure 12, the translation of r is the type ∀ (α〈r1〉>⊥)
α〈r1〉 → α〈11〉, as r is not part of the initial constraint.

Type of a G node vs. type of an expansion. In some cases, the g G

→

⊥ ⊥

translation of the expansion does not correspond to the translation
of g, regardless of our use of ≺. This can easily be seen in the
example drawn on the right. Here G(g) is ∀ (β) ∀ (α) α → β, as
we start by translating the flexible nodes bound on g, here 〈g12〉,
before translating 〈g1〉. However, the expansion of g has type ∀ (α)
∀ (β) α→ β: the quantifiers appear in the opposite order.

We believe that this difficulty is actually inherent to elaborating terms for
languages with second-order polymorphism, in which second-order polymor-
phism can be kept local (as here for 〈g11〉), or be introduced by generalization
(as for 〈g12〉). Thankfully, the two translations may differ only by a reordering
of quantifiers. In xMLF, we can explicitly reorder them using the instantiation

O; ∀ (>@τα); O; ∀ (>@τβ); ∀ (β>) ∀ (α>)
(

〈!α〉; 〈!β〉
)

whose effect is just to commute α and β in the type ∀ (α> τα) ∀ (β > τβ) τ .
In the general case, we write Σ(g) for the instantiation that transforms G(g)

into the translation of its expansion.

3.5. From instantiation edges to type instantiations

The main part of the translation is the computation of the type instantiation
Φ(e) corresponding to an instantiation edge e. By assumption, the edge is
solved; thus χ is an instance of the expansion χe of e in χ. This instantiation
can be witnessed by a sequence Ω of atomic instance operations. We first build
a graphical instantiation Ω that will then be translated into a type instantiation
in xMLF.

Building Ω. Because Ω leaves χ unchanged (as otherwise χe ⊑ χ would not hold,
⊑ being antisymmetric), the operations can be rearranged into the following
forms (we let r be the root node of the expansion in χe):

(1) Graft(σ, n) or Weaken(n) with n in I(r);

(2) Merge(n,m) with n and m in I(r), and m ≺ n;

(3) Raise(n) with n +≻−→≻−→ r;

9The case r equal to d happens either when χ′ has been instantiated back into χ or when
g is degenerate in χ and does not hold polymorphism; see, e.g., the lowermost G-node in
Figure 15 in which case both r and d are equal to 〈g 1〉 in χe.
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(4) a sequence (Raise(n))k ; Merge(n,m), with n ∈ I(r) and m /∈ I(r). We
write this sequence RaiseMerge(n,m) and see it as an atomic operation.

An operation RaiseMerge(n,m) lets n leaves the interior of r and be merged
with some node m of χ bound above r. Conversely, the other operations occur
inside the interior of r. The grouping of operations in RaiseMerge(n,m) helps
translating the subparts of instantiation witnesses that operate outside of I(r).

Furthermore, since χ is a rigid presolution, we may also assume that an op-
eration Weaken(n) appears after all the other operations on a node below n (5).
This ensures that Ω does not perform any operation under a rigidly bound node,
which would not be expressible as an xMLF instantiation, as explained in §3.3.

We call normalized an instantiation witness that verifies the conditions (1)–
(4), and (5) above. Normalized witnesses always exist. A constructive proof of
this fact is given by Yakobowski (2008) and it is actually quite easy to estab-
lish: performing all instance operations bottom-up, while delaying weakening
operations as much as possible, is always possible and results in a normalized
witness.

Example 14. The constraint edge e of χ in Figure 13 is solved. We recall the
witness of χe ⊑ χ that we gave in Example 7:

Graft(∀ (α) ∀ (β) α→ β, 〈r1〉)
Raise(〈r11〉) ; Raise(〈r11〉) ; Merge(〈r11〉, 〈n11〉) ;
Weaken(〈r1〉) ; Weaken(r) ; Merge(r, n)

This transformation is not normalized because node 〈r11〉 is raised twice above
the root r, then merged with 〈n11〉. We must join those three operations into
RaiseMerge(〈r11〉, 〈n11〉). Similarly, the last operation merges n and r and
should be replaced by RaiseMerge(r, n). This results in the following normal-
ized derivation:

Graft(∀ (α) ∀ (β) α→ β, 〈r1〉) ;
RaiseMerge(〈r11〉, 〈n11〉) ;
Weaken(〈r1〉) ; Weaken(r) ; RaiseMerge(r, n)

Similarly, in Figure 15, we have χe
p ⊑ χp —as witnessed by RaiseMerge(r, n),

which is normalized, hence equal to Ω(e).

Instantiation contexts. In order to relate graphic nodes and xMLF bounds, we
introduce one-hole instantiation contexts defined by the following grammar:

C ::= {·} | ∀ (> C) | ∀ (α>) C

We write C{φ} for the replacement of the hole by the instantiation φ.
Consider a node n, and a flexible node m that is transitively bound to n.

Given our use of ≺ to order nodes, there exists a unique instantiation context
Cnm that can be used to descend in front of the quantification corresponding to
m in R(n). For presolutions, in order to avoid α-conversion-related issues, we
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build instantiation contexts using variables whose names are based on the nodes
they traverse.

Any operation on a node that is transitively bound to the root of an expan-
sion can be expressed using an instantiation context (and a “local” instantia-
tion). Conversely, the operations on rigidly bound or inert-locked nodes cannot.
This is unimportant in our case, as normalized witnesses of rigid presolutions
only transform nodes transitively flexibly bound to the root of the expansion.

Example 15. For example, consider the constraint χp in Figure 15. The trans-
lation Q(〈〉) of the root G-node is

∀ (α〈11〉 >⊥) ∀ (α〈12〉 > ∀ (α〈121〉 >⊥) α〈121〉 → α〈11〉) α〈11〉 → α〈12〉

With the convention above, C
〈〉
〈11〉 = {·}, C

〈〉
〈12〉 = ∀ (α〈11〉 >) {·}, and C

〈〉
〈121〉 =

∀ (α〈11〉 >) ∀ (> {·}).

Translating normalized derivations into instantiations. Let us resume the con-
struction of Φ(e) by translating a normalized witness Ω of χe ⊑ χ into a type
instantiation in xMLF. In fact, we generalize the problem by translating a
normalized witness Ω of ξ ⊑ χ where ξ is an instance of χe, i.e. such that
χe ⊑ ξ ⊑ χ. Inside χe and ξ, we let r be the root of the expansion (inside
χ, r is merged with d). We remind that Eχ(r) is the translation of r in the
constraint ξ. By definition, the translation of Ω, written Φξ(Ω), must witness
the instantiation Eξ(r) ≤ Eχ(r), i.e.

Γd ⊢ Φξ(Ω) : Eξ(r) ≤ Eχ(r)

where Γd is the typing context for the node d.10 The translation of Ω is defined
by induction on Ω as described in Figure 17. The function Φξ is overloaded to
act on both an instance derivation and a single operation.

The translation of an instance derivation is defined recursively: the trans-
lation of an empty derivation is the identity instantiation 1; otherwise, Ω is of
the form (ω; Ω′) and we return the composition of the translation of the oper-
ation ω followed by the translation of the instance derivation Ω′ applied to the
constraint ω(ξ).

The translation of an operation on a rigid node is the identity instantiation 1,
as rigid bounds are inlined. Inert nodes have been weakened into rigid ones and
locked nodes cannot be transformed at all. Hence, the remaining and interesting
part of the translation is a (single) operation applied to an instantiable node.

The translation of an instance operation on r (when r is flexible) is handled
especially, as follows.

• The grafting of a type σ is translated to the instantiation (@τ), where τ
is the translation of σ into xMLF. (Grafting grafts only closed types, so
the constraint in which we translate σ is unimportant.)

10We do not define the typing contexts Γd formally, since they are not needed for the
translation, but only to state its properties.
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Sequences of operations

Φξ() = 1
Φξ(ω; Ω

′) = Φξ(ω); Φω(ξ)(Ω
′)

Operation ω on a rigid node n

Φξ(ω) = 1
Operation on the (flexible) root r of the expansion

Φξ(Graft(σ, r)) = @(R(σ))

Φξ(RaiseMerge(r,m)) = !αm

Φξ(Weaken(r)) = 1
Operation on a flexible node different from the root

Φξ(Graft(σ, n)) = Crn{∀ (>@(R(σ)))}

Φξ(RaiseMerge(n,m)) = Crn{∀ (> !αm);N}

Φξ(Merge(n,m)) = Crn{∀ (> !αm);N}

Φξ(Weaken(n)) = Crn{N}

Φξ(Raise(n)) = Crm{O; ∀ (>@(Rξ(n)));

∀ (βn >) Cmn {∀ (> !βn);N}}

where m = min≺{m | n ≻−→≻−→←−≺ m ∧ n ≺ m}

Figure 17: Translating normalized instance operations

• A raise-merge of r with m is translated to !αm: it must be the last op-
eration of the derivation Ω, and αm is necessarily bound in the typing
environment Γd; hence we may abstract the type of r under αm.

• The weakening of r is translated to 1: it must be the next-to-the-last
operation in the derivation Ω, before the merging of r with a rigidly bound
node, and there is actually nothing to reflect in xMLF, as the type of r
itself is unchanged.

In the remaining cases, the operation is applied to an instantiable node n. Since
the derivation is normalized and n is not rigid, nmust be flexible and transitively
bound to r. Therefore, there exists an instantiation context Crn, which we call
C , to reach the bound of αn in Rξ(r).

• The grafting of a type σ at n is translated to C{∀ (>@(R(σ)))} which
transforms the bound ⊥ of αn into R(σ).

• The merging of n with a node m is translated to C{〈!αm〉}, which first
abstracts the bound of αn under the name αm and immediately eliminates
the quantification. (We have assumed m ≺ n, hence αm is in scope in the
bound of n.)
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• The translation is the same for a raise-merge, but αm is bound in the
typing environment instead of in Rξ(r).

• The weakening of n is translated to C{N}, which eliminates the bound of
n.

• Finally, the translation of the raising of n is more involved, and of the
form Crm{O; ∀ (>@(Rξ(n)));φ}.

We first insert a fresh quantification, which will be the one of n after the
raising, inside Rξ(r). The bound is the current bound of n, i.e. Rξ(n).
The difficulty consists in finding the node m in front of which to insert
this quantification, so as to respect the ordering between bounds. Notice
that the set {m | n ≻−→≻−→←−≺ m ∧ n ≺ m} contains at least the binder
of n, hence its minimum m is well-defined. Then, the instantiation φ equal
to ∀ (βn >) Cmn {∀ (> !βn);N} aliases the bound of n to the quantification
just introduced and eliminates the resulting quantification.

The net result of the whole type instantiation is that the type of n is
introduced one level higher than it previously was.

Finally, in order to have a correct instantiation, it remains to reorder quan-
tifiers as described earlier (page 33). Thus we take

Φ(e) = Σ(g); Φχe(Ω)

Example 16 (cont.). The translation of each step of the normalized witness
of Example 14 is:

Normalized graphic operation xMLF translation

Graft(∀ (α) ∀ (β) α→ β, 〈r1〉) ∀ (>@(R(∀ (α) ∀ (β) α→ β)))

RaiseMerge(〈r11〉, 〈n11〉) ∀ (> ∀ (> !α〈n11〉))

Weaken(〈r1〉) N

Weaken(〈r〉) 1
RaiseMerge(〈r〉, 〈n〉) !αn

Since for the edge e of χ we have Σ(g) = 1, the entire translation of e is

Φ(e) = 1; ∀ (>@(R(∀ (α) ∀ (β) α→ β))); ∀ (> ∀ (> !α〈n11〉));N;1; !αn

3.6. Translating annotated terms

As mentioned in §3.1.3, expressions such as (b : σ) and λ(y : σ) b are actually
syntactic sugar, for κσ b and λ(y) let y = κσ y in b, respectively. The translation
R(κσ) of the type of the coercion function κσ in xMLF is ∀ (α>R(σ)) R(σ)→ α.
Interestingly, coercion functions need not be primitive in xMLF—unlike in eMLF.
Let idκ be the expression Λ(α) Λ(β > α) λ(x : α) (x (!β)). Then, define
κσ as idκ〈R(σ)〉. Notice that κσ behaves as the identity function. Moreover,
coercion functions can always be eliminated by strong reduction (as implied by
Lemma 13) in the elaboration of the presolution, so that they have no runtime
cost.
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3.7. Soundness of the translation

Theorem 21. Let b be an eMLF term, χ a rigid presolution for b. The transla-
tion J b K of χ is well-typed in xMLF, of type G(χ).

Our translation preserves the type-erasure of programs (Theorem 19). Hence,
the soundness of xMLF also implies the soundness of eMLF—which had previ-
ously only been proved for the syntactic versions of MLF, but not for the most
general, graphical version.

3.8. Optimizations

The elaboration is a compilation process, and we have defined it in its sim-
plest form. In practice, some optimizations could be performed during the
elaboration process. For instance, raising k times a node n (to a position n′),
is currently done step by step by invoking the atomic Raise(n) operation k
times. This could (and should) be translated in a simple step, avoiding inter-
mediate abstractions and applications in xMLF. Similarly, contexts could be
factored, replacing Crn(φ); C

r
n(φ

′) by Crn(φ;φ
′). Those optimizations are actually

straightforward and significantly simplify elaborated terms—they have been im-
plemented in our prototype (Scherer, 2010b), indeed. Optimizations can also be
performed a posteriori, by transforming xMLF terms into equivalent ones (with
the same type and the same type erasure), as discussed in §5.2.

4. Expressiveness of xMLF

The translation of eMLF into xMLF shows that xMLF is at least as expressive
as eMLF. However, the converse is not true. (This is not entirely surprising: as
mentioned in §3.6, coercion functions are primitive in eMLF, but not in xMLF.)
That is, there exist programs of xMLF that cannot be typed in eMLF. While
this is mostly irrelevant when using xMLF as an internal language, the question
is still interesting from a theoretical point of view, and may help understanding
MLF independently of any restriction imposed for the purpose of type inference
and perhaps suggest other useful extensions.

For the sake of simplicity, we explain the difference between xMLF and iMLF,
the Curry-style version of MLF (which has the same expressiveness as eMLF, but
does not require explicit type annotations in source terms).

4.1. A term typable in xMLF but not in iMLF

Although syntactically identical, the types of xMLF and of syntactic iMLF

differ in their interpretation of quantifications of the form ∀ (β>α) τ . Consider,
for example, the two types τ0 and τid defined as ∀ (α> τ) ∀ (β > α) β → α and
∀ (α > τ) α → α respectively. In iMLF, β is just an alias for α and these two
types are equivalent. Intuitively, the set of their instances (stripped of toplevel
quantifiers) is {τ ′ → τ ′ | τ ≤ τ ′}. In xMLF, the set of instances of τ0 is larger
and at least a superset of {τ ′′ → τ ′ | τ ≤ τ ′ ≤ τ ′′}, which can be obtained from
τid by all type instantiations of the form ∀ (>φ);N; ∀ (>φ′);N with ⊢ φ : τ ≤ τ ′

38



and ⊢ φ′ : τ ′ ≤ τ ′′. That is, an instance of τ0 can pick for β an instance of
the type chosen for α. This level of generality, possible in xMLF, cannot be
expressed in iMLF.

From this observation, we may easily exhibit an expression a that is typable
in xMLF but not in iMLF. For readability of the example, we assume primitive
products. Let a0 be the expression

Λ(α) Λ(β > α) λ(x : α) λ(y : β) (x, choice 〈β〉 (x (!β)) y)

of type τ0 , ∀ (α) ∀ (β > α) α→ β → (α× β). Let a1 and a2 be defined as

a1 , Λ(α) λ(x : α) x : ∀ (α) α→ α , τ1
a2 , Λ(α) λ(x : α) λ(y : α) x : ∀ (α) α→ α→ α , τ2

Let i be 1 or 2 and a′i be λ(x : τi) x 〈τi〉 x. We have ⊢ a′i : τ
′
i , where τ

′
i is defined

as τi 〈τi〉. If f has type τ0, then f (〈σ〉; ∀ (>φ);N) has type σ → σ′ → (σ× σ′),
for any instantiation φ such that φ ⊢ σ ≤ σ′. Let φi be 〈τi〉; ∀ (> 〈τi〉);N
and τ ′′i be τi → τ ′i → (τi × τ ′i) and observe that φi ⊢ τ0 ≤ τ ′′i . Let a′′i be
let (xi, x

′
i) = f φi ai a′i in x′

i xi and take (λ(f : τ0) (a′′1 , a
′′
2)) a0 for a. The

expression a is well-typed in xMLF (and has type τ1 × (τ2 → τ2)).
However, the type erasure of a is ill-typed in iMLF, as there is no annotation

τ0 for the type of the parameter f that is simultaneously a correct type for ⌈a0⌉
and that can be independently instantiated to τ ′′1 and τ ′′2 —or some other types
that allow to simultaneously type both expressions a′′1 and a′′2 . The problem is
that, in iMLF, ⌈a0⌉ can only be given a type of the form τ → τ ′ → (τ × τ ′′) or
τ ′ → τ → (τ ′ × τ ′′) with τ ≤ τ ′ ≤ τ ′′, or of the form ∀ (α) α→ α→ (α×α) (in
which both arguments must have identical types), but not simultaneously two
such types.

4.2. Restricting xMLF to match eMLF

The current treatment of variable bounds in xMLF is quite natural in a
Church-style presentation. Surprisingly, it is also simpler than treating them as
in eMLF. A restriction xMLF♭ of xMLF without variable bounds that is closed
under reduction and in close correspondence with iMLF can still be defined a
posteriori, by constraining the formation of terms. But the definition is con-
trived and unnatural, and may not be so appealing in practice (see Appendix C
for details). Still, all terms of xMLF♭ can be translated to eMLF.

The translation is actually very similar to that for Church-style System F

(Le Botlan and Rémy, 2009) and proceeds by dropping all type abstractions and
type applications and translating type annotations of argument of functions.
As a result, some type variable may become free in translated types and must
be existentially quantified, leading to annotations of the form ∃(∆) τ . Free
variables are kept with their bound in the source. Hence, ∆ is a list of αi > ρi
where ρ are non-variable types (see Appendix C). This is a minor difference with
System F where all bounds are trivial—and thus need not be tracked. Here, the
translation uses an environment to pass this information downward as described
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[[λ(x : τ) a]]∆ = λ(x : ∃(∆) τ) [[a]]∆
, λ(x) let x = (∃(∆) τ) x in [[a]]∆

[[x]]∆ = x
[[a1 a2]]∆ = [[a1]]∆ [[a2]]∆

[[Λ(α > ρ) a]]∆ = [[a]]∆,α>ρ

[[a φ]]∆ = [[a]]∆

Figure 18: Translating xMLF into eMLF

in Figure 18. The annotation ∃(∆) τ stands in eMLF for the coercion function
of type ∀ (∆) ∀ (α = τ) ∀ (α′ = τ) α → α′, which can easily be translated into
some graphic type, as described in (Yakobowski, 2008, Chapter 8).

The restriction to xMLF♭ prevents the use of variable bounds and therefore of
type instantiation between types whose translation into eMLF would not be in
some instance relationship. This should ensure that the translation of well-typed
terms is well-typed, although we have not checked it formally.

Notice that the translation described above annotates all parameters of func-
tions, which is not necessary in eMLF. Only parameters of functions that are
used polymorphically need to be annotated. A simple optimization is to omit
monomorphic type annotations, i.e. type annotations of the form ∃(∆) τ where
neither ∆ nor τ contain quantifiers. Still all parameters of functions that have
a polymorphic type, whether or not used polymorphically, will be annotated.
The image of the translation is then in HML (Leijen, 2008), a strict subset of
eMLF. Indeed, parameters of functions that are polymorphic may still not be
used polymorphically and need not be annotated in MLF. However, we do not
know whether this can be easily checked during the translation. (In fact, this
would amount to detecting and removing useless type-annotations in eMLF.)

4.3. Enriching eMLF to match xMLF?

Instead of restricting xMLF to match the expressiveness of iMLF, a question
worth further investigation is whether the treatment of variable bounds could be
enhanced in iMLF and eMLF to match their interpretation in xMLF but without
compromising type inference. A solution might exist, but it would likely depart
from eMLF: graphic types have been introduced to simplify the metatheory of
the syntactic presentation of MLF and one of the simplifications was precisely to
disallow variable bounds, which could be written in the syntactic presentation
but lead to many complications.

4.4. Comparing xMLF and Fη

Type instantiation in xMLF, which changes the type of an expression without
changing its meaning, can be applied deeply inside a type while it is only su-
perficial in System F. This has some resemblance with retyping functions in Fη,
the closure of System F by η-conversion (Mitchell, 1988), which also allows deep
type instantiations. However, type instantiations rely on quite different mech-
anisms in both languages. While it is explicitly expressed in flexible bounds in
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xMLF, it is left implicit and driven by the underlying structure of types in Fη,
propagating type instantiation covariantly on the right-hand side of arrow types
and contravariantly on their left-hand side.

Both Fη and xMLF have a little more than System F in common, as our
running example choice id has both types ∀ (α) (α → α) → α → α and (∀ (α)
α → α)→ (∀ (α) α → α), since the latter can be recovered from the former by
type containment, distributing the ∀ over the arrow type constructor.

However, Fη fails on the application, choice (choice id): which is a small
variant of choice id: this program has type ∀ (γ > ∀ (β > ∀ (α) α → α) β → β)
γ → γ in MLF, which admits the three following particular System-F types as
as instances:

((∀ (α) α→ α)→ ∀ (α) α→ α)→ (∀ (α) α→ α)→ ∀ (α) α→ α
(∀ (α) (α→ α)→ α→ α)→ ∀ (α) (α→ α)→ α→ α
∀ (α) ((α→ α)→ α→ α)→ (α→ α)→ α→ α

However, choice (choice id) does not have any type in Fη of which all these three
types are instances.

Conversely, a function of type ∀ (β) (τ1{α ← τ2} → β) → β can be seen as
one of type ∀ (β) (∀ (α) τ1 → β)→ β in Fη by contra-variant type instantiation,
which cannot (in general) be expressed xMLF.

In fact xMLF and Fη are two rather orthogonal extensions of System F,
which could be combined together, as shown in recent work by Cretin and
Rémy (2012).

5. Discussion

5.1. Related works

A strong difference between eMLFand xMLF is the use of explicit coercions to
trace the derivation of type instantiation judgments. Beside the several papers
that describe variants of MLF and are only indirectly related to this work, most
related works are about the use of coercion functions in different ways.

Elaboration of MLF into System F. In a way, the closest work to ours is the
elaboration of MLF into System F, first proposed by Leijen and Löh (2005) to
extend MLF with qualified types and later simplified by Leijen (2007) in the
absence of qualified types. Since System F is less expressive than MLF, an MLF

term a with a polymorphic type of the form ∀ (α > τ ′) τ is elaborated as a
function of type ∀ (α) (τ ′⋆ → α) → τ⋆, where τ⋆ is a runtime representation
of τ . The first argument is a runtime coercion, which bears strong similarities
with our instantiations. However, an important difference is that their coercions
are at the level of terms, while our instantiations are at the level of types. In
particular, although coercion functions should not change the semantics, this
critical result has not been proved, and it is not obvious for a call-by-value
language with side effects. In our setting the type-erasure semantics comes for
free by construction.
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Interestingly, while their translation and ours work on very different inputs—
syntactic typing derivations in their case, graphic presolutions in ours—there
are strong similarities between the two. The resemblance is even closer with
the improved translation proposed by Leijen (2007), in which rigid bindings are
inlined during the translation. Both elaborations use some canonical ordering
of quantifiers inside types, with slight differences: while we strive to reduce the
number of quantifier reorderings, thus order all the quantifiers, Leijen uses only
weaker canonical forms that are sufficient to obtain well-typed terms, but may
result in additional reorderings.

Explicit coercions. A similar approach has already been used in a language with
subtyping and intersection types, proposed as a target for the compilation of
bounded polymorphism by Crary (2000). In both cases, coercions are used to
make typechecking a trivial process. In our case, they are also exploited to make
subject reduction easy—by introducing the language to describe how type in-
stance derivations must be transformed during reduction. We believe that, more
generally, the use of explicit coercions is a powerful tool for simplifying subject-
reduction proofs. In both approaches, reduction is split into a standard notion
of β-reduction and a new form of reduction (which we call ι-reduction) that
only deals with coercions, preserves type-erasures, and is strongly normalizing.
There are also important differences. While both coercion languages have com-
mon forms, our coercions intendedly keep the instance-bounded polymorphism
form ∀ (α > τ) τ ′. On the opposite, Crary uses the coercions to eliminate the
subtype-bounded polymorphism form ∀ (α ≤ τ) τ ′, using intersection types and
contravariant arrow coercions instead, which we do not need. Perhaps union
types, which Crary (2000) proposes as an extension, could be used to encode
away our instance-bounded polymorphism form.

Harnessing MLF. In a recent paper, Manzonetto and Tranquilli (2010) have
shown that xMLF is strongly normalizing by translation into System F, reusing
the idea of Leijen and Löh (2005) and their translation of types, recalled above,
but starting with xMLF instead of MLF. It is unsurprising that the elabora-
tion of MLF into System F can be decomposed into our elaboration of MLF

into xMLF followed by a translation of xMLF into System F. However, the idea
of Manzonetto and Tranquilli (2010) is to use the elaboration into System F to
prove termination of the reduction in xMLF in some indirect but simple way,
while a direct proof of termination seemed trickier. They show that the elab-
oration preserves well-typedness and the dynamic semantics via a simulation
between the reduction of source terms and target terms. In this process, they
also exhibit an intermediate calculus Fc of term-level retyping functions that
mimic our type instantiations. Unfortunately, subject reduction does not hold
in Fc (hence, we can only reuse their direct proof of bisimulation given in Ap-
pendix B). Moreover, their intermediate calculus Fc is tuned to be the target
of xMLF, and cannot express much more. It is actually subsumed by a calculus
of erasable coercions Fι recently proposed by Cretin and Rémy (2012), which
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contrary to Fc, enjoys subject reduction. Theorem 10 and Lemma 13 have also
been verified by a translation of xMLF into Fι (Cretin and Rémy, 2012).

System with type equalities. An extension of System F with type equality coer-
cions, called FC or FC2 for its revised version (Sulzmann et al., 2007; Weirich
et al., 2011) has been proposed to be used as an internal language for Haskell.
Type equalities are made explicit through witnesses that have some similarities
with our instantiations. System FC has also been designed to be a compiler inter-
mediate language, one of the objectives we have pursued with xMLF. However,
there are also significant differences: type coercions in FC2 are type equality co-
ercions while they are type instantiations in MLF. In fact FC2 is more related to
the system Fι mentioned above, of which xMLF is only a particular case. Tech-
nically, FC2 and xMLF seems to be orthogonal extensions of System F which,
perhaps, could be combined together. Unfortunately, MLF-style polymorphism
has been removed from the recent versions of GHC to better accommodate for
type inference with GADT. We hope that this is temporary and that both could
be eventually recombined.

5.2. Future works

The demand for an internal language for MLFwas first made in the context of
using the eMLF type system for the Haskell language. We expect xMLF to better
accommodate qualified types than eMLF, since no evidence function should be
needed for flexible polymorphism, but it remains to be verified.

While graphical type inference has been designed to keep maximal sharing of
types during inference so as to have good practical complexity, our elaboration
implementation reads back dags as trees and undoes all the sharing carefully
maintained during inference. Even with today’s fast machines, this might be a
problem when writing large, automatically generated programs. Hence, it would
be worth maintaining the sharing during the translation, perhaps by adding type
definitions to xMLF.

It was somewhat of a surprise to realize that xMLF types are actually more ex-
pressive than iMLF ones, because of a different interpretation of variable bounds.
While the interpretation of xMLF seems quite natural in an explicitly typed con-
text, and is in fact similar to the interpretation of subtype bounds in F<:, the
eMLF interpretation also seemed the obvious choice in the context of type in-
ference. We have left for future work the question of whether the additional
power brought by the xMLF could be returned back to eMLF while retaining
type inference. In fact, the problem of choosing the right interpretation for
variable bounds reappeared in a recent work by Scherer (2010a) on extending
MLF to cope with higher-order polymorphism. Indeed, this requires making co-
exist both implicit and explicit quantifiers, and using the xMLF interpretation
for explicit quantifiers while retaining the MLF more restrictive interpretation
for implicit quantifiers.

As noticed in §4.4, type instantiation changes the type of an expression
without changing its meaning. It can be performed deeply inside terms, as
retyping functions in System Fη. In System Fη, retyping functions can be seen
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either at the level of terms, as expressions of System F that βη-reduce to the
identity, or at the level of types as a type conversion. In xMLF, retyping functions
are at the level of types. However, the translation of type instantiations back
into coercion functions as done by Manzonetto and Tranquilli (2010) allows one
to also see them at the level of terms, bringing xMLF and F

η even closer. While
the two languages differ in their coercions, they can be combined together as
shown in recent work by Cretin and Rémy (2012), allowing a form of abstraction
(as in xMLF) over retyping functions (as in Fη).

Regarding type soundness, it is worth noticing that the proof of subject re-
duction in xMLF does not subsume, but complements, the one in the original
presentation of MLF. The latter does not explain how to transform type an-
notations, but shows that annotation sites need not be introduced (but only
transformed) during reduction. Because xMLF has full type information, it can-
not say anything about type information that could be left implicit and inferred.
Given a term in xMLF, can we rebuild a term in iMLFwith minimal type annota-
tions? While this should be easy if we require that corresponding subterms have
identical types in xMLF and iMLF, the answer is unclear if we allow subterms to
have different types.

The semantics of xMLF allows reduction (and elimination) of type instantia-
tions a φ through ι-reduction but does not allow reduction (and simplification)
of instantiations φ alone. It would be possible to define a notion of reduction
on instantiations φ −→ φ′ (such that ∀ (>φ1;φ2) −→ ∀ (>φ1); ∀ (>φ2), or con-
versely?) and extend the reduction of terms with a context rule a φ −→ a φ′

whenever φ −→ φ′. This might be interesting for more economical represen-
tations of type instantiations. However, it is unclear whether there exists an
interesting form of reduction that is both Church-Rosser and large enough for
optimization purposes. Perhaps, one should rather consider instantiation trans-
formations that preserve observational equivalence; this would leave more free-
dom in the way one instantiation could be replaced by another.

Less ambitious is to directly generate smaller type instantiations when trans-
lating eMLF presolutions into xMLF, by carefully selecting the instantiation wit-
ness to translate—as there usually exist more than one witness for a given
instantiation edge. This amounts to using type derivations equivalence in eMLF

instead of observational equivalence in xMLF.
Extending MLFwith higher-order polymorphism is another ongoing research

direction (Herms, 2009; Scherer, 2010a).

Conclusion

The Church-style version of xMLF that was still missing for type-aware com-
pilation and from a theoretical point of view, completes the MLF trilogy. The
original type-inference version eMLF, which requires partial type annotations
but does not tell how to track them during reduction, now lies between the
Curry-style presentation iMLF that ignores all type information and xMLF that
maintains full type information during reduction.
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We have shown that xMLF is well-behaved: reduction preserves well-
typedness, and the calculus is sound for both call-by-value and call-by-name
semantics.

Hence, xMLF can be used as an internal language for MLF, with either se-
mantics, and also for the many restrictions of MLF that have been proposed,
including HML. Hopefully, this will help the adoption of MLF and maintain a
powerful form of type inference in modern programming languages that must
feature some form of first-class polymorphism.

Appendix A. Coq formalization

The Coq development is available electronically11.

We have proved most of the meta-theoretical results of §2 and §3 using
the Coq proof assistant (Coq development team, 2009). In order to deal with
alpha-conversion issues—which often represent the most burdensome part of the
formalization—we have used the locally nameless approach of Aydemir et al.
(2008). In this setting, free variables are represented by names, while bound
variables are De Bruijn indices. When going through a binder, a term must
be opened by replacing the bound variable by a free variable. Of course, this
variable must be fresh; this is ensured by a cofinite quantification, that allows
all names but a given finite set, typically chosen to contain all the free variables
of the local typing context.

Given the strong syntactical similarities between xMLF and F<:, notably the
instance-bounded quantification, we have been able to reuse most of the defi-
nitions and results previously established for the examples of (Aydemir et al.,
2008). Extending the formalism to add type instantiations was quite natural
with a lot of cut-and-paste. We have however found it important to update the
tactics12 contained in the development so that they seamlessly handle the con-
structs we have added. This way, we have been able to reuse the very high level
of automation they provide, which is quite striking in the initial development.

Up-to the use of the locally nameless formalism, our formalization is very
faithful to the metatheory of §2. One small difference is that we did not define
the operation τ φ as a function, but as a relation. (See below for a justification.)
Also, as it is painful to define reduction relations using evaluation contexts, we
have inlined ruleContext for each context. Finally, characterizing subrelations
is also technically heavy, so we have not attempted to formally prove results
about call-by-value and call-by-name, but only for −→.

Unfortunately, we have also encountered some difficulties. In particular,
defining the operation a{!α ← φ; !α} proved very complicated. To understand

11At the url http://www.yakobowski.org/publis/2010/xmlf-coq/.
12Coq proofs are done using a set of commands, called tactics, which describe in a very

high-level way how to build proof terms. The locally nameless examples define some very
specialized tactics, that handle e.g. the computation of the set of variables against which a
variable must be fresh.
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why, let us recall rule ι-Inside:

(Λ(α> τ) a) (∀ (>φ)) −→ Λ(α> τ φ) a{!α← φ; !α}

The problem lies in the fact that the instantiation (φ; !α) is not closed in the
locally nameless sense when it is substituted instead of !α. That is, the variable α
is not free, but bound in front of a{!α ← φ; !α}. Since bound variables are De
Bruijn indices, it is impossible to define the entire operation as a simple recursive
operation on a. Instead, we need e.g. to shift (φ; !α) when crossing a binder.
However, this is unsatisfactory, as it requires a considerable amount of new
metatheory related to shifting (which the locally nameless approach had been
introduced to avoid!). We instead chose to temporarily close φ when doing the
substitution, by replacing the bound variable α by a fresh free one. Still (and
unsurprisingly), this was not sufficient, as inside the proofs the variable was not
“fresh enough”. We thus had to prove that using any fresh free variable, not
just the first available one, was equivalent. Those renaming lemmas were quite
tedious to prove.

Notice that the exact same problem theoretically occurs when defining the
operation τ φ, for the rule (∀ (α > τ) τ ′)(∀ (>α)φ) = ∀ (α > τ) (τ ′ φ). In this
case, we did not introduce tedious renaming lemmas, but simply defined τ φ as
a relation, instead of as a function.

We tried using the the same solution for a{!α ← φ; !α}, which solved some
problems related to bound v.s. free variables. However, such a solution is
only partial. Indeed, when proving progress, we need to give the result term
to which a source term reduces to. For rule ι-Inside, we have to show that
both τ φ and the term a{!α← φ; !α} exist. For τ φ, this is easily deduced from
the typability of the original term, which requires Γ ⊢ φ : τ ≤ τ ′ to hold for
some Γ. For a{!α← φ; !α}, this is unfortunately essentially as hard as defining
the constructive version of the operation.

Appendix B. Proofs of §2.5.

Proof of Lemma 14

Let v be a value. If it is an abstraction or a type abstraction, the result is
immediate. If v is a partially applied constant, and it is applied to less than its
arity, it has either a type of the form ∀ (α > τ) τ ′, or τ → τ ′. If it is a fully
applied constructor, it cannot have type ⊥ by hypothesis.

Proof of Theorem 15

The proof is quite standard and proceed by cases on a. Only the first case is
original, but still proceeds without difficulties:

• if a is a′ φ, by inversion of typing a′ is typable in the empty environment.
If a′ is not a value, it can be further reduced by Context, and so can a.
Otherwise, we proceed by cases on φ:

46



– if φ is 1, O or φ1;φ2, a can be reduced by rules ι-Id, ι-Intro or
ι-Seq

– the case φ = !α is impossible in the empty environment;

– the case φ = @τ is also impossible, as a′ is a value which cannot have
type ⊥ by Lemma 14.

– in the three last cases, a′ must have type ∀ (α > τ) τ ′ for some τ
and τ ′. Since it is a value, by inversion of typing it is either a type
abstraction of the form Λ(α > τ) a′′ (and a can be reduced by ι-
Inside, Under or ι-Elim), or it is a partially applied constants, and
a is a value.

• if a is a1 a2: by inversion of typing, a1 and a2 are typable in the empty
environment, and a1 has type τ → τ ′ for some τ and τ ′. If a1 or a2 are
not values, they can be further reduced, and a can be further reduced by
Context. Otherwise, since a1 is a value, of type τ → τ ′, we proceed by
inversion of typing:

– it a1 is of the form λ(x : τ) a′1, a can be reduced by (β).

– if a1 is a partially applied primitive, either a is a fully applied primi-
tive and it can be reduced by the appropriate δ rule, or a is a value.

– if a1 is a partially applied constructor: by hypothesis on the typing
of constructors, a1 is of the form C θ1 . . . θk v1 . . . vn with n < |C| (as
a full application would not have an arrow type). Then a is a value.

• if a is let x = a2 in a1, by inversion of typing a2 is typable in the empty
environment. If it is not a value, by induction hypothesis it can be reduced.
Hence, a can be reduced by rule Context. Otherwise, a can be reduced
by rule (βlet).

• variables are not typable in the empty environment;

• constants, abstractions and type abstractions are values;

Proof of Theorem 18

By cases on a. The cases for variables, constants, abstractions, type abstrac-
tions and type applications are the same as for call-by-value.

• If a is a1 a2: by inversion of typing, a1 and a2 are typable in the empty
environment, and a1 has type τ → τ ′ for some τ and τ ′. If a1 is not a value,
by induction hypothesis it can be reduced, and so can a by rule Context.
Otherwise, by inversion of typing and since a1 is a value, it is either of the
form λ(x : τ) a′1 (in which case a can be β-reduced), or a partially applied
constant, and the reasoning is the same as for call-by-value.

• If a is let x = a2 in a1, it can be reduced by rule (βlet).
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Appendix C. A restriction of xMLF without variable bounds

A restriction of xMLFwithout variable bounds that is closed under reduction
and in close correspondence with eMLF can still be defined a posteriori, by
constraining the formation of terms.

The first idea to avoid variable bounds is to restrict the syntax of types and
expressions as follows:

ρ ::= τ → τ | ∀ (α > ρ) ρ | ⊥ Constructed Types

τ ::= α | ρ | ∀ (α > ρ) τ Types

a ::= . . . | Λ(α> ρ) a Terms

Γ ::= ∅ | Γ, α> ρ | Γ, x : τ Environments

The typing rule for type abstraction can be restricted accordingly, replacing τ
by ρ in bounds:

TAbs
Γ, α> ρ ⊢ a : τ α /∈ ftv(Γ)

Γ ⊢ Λ(α> ρ) a : ∀ (α> ρ) τ

There is a slight difficulty however, because new variable bounds could be cre-
ated during reduction by rule ι-Inside, turning a bound ρ into ρ φ, which might
be a variable. Indeed, assume α> ρ ⊢ φ : ρ′ ≤ α (φ could be @α if ρ′ is ⊥ or of
the form φ′; !α with α> ρ ⊢ φ′ : ρ′ ≤ ρ) and consider the reduction sequence:

Λ(α> ρ) (Λ(β > ρ′) a) (∀ (>φ);N) (1)
−→ Λ(α> ρ) (Λ(β > α) a{!β ← φ; !β}) N (2)
−→ Λ(α> ρ) a{!β ← φ;1}{β ← α} (3)

The term (1) is well-formed. However, after one reduction step the bound of β
becomes a variable α and (2) is ill-formed. To prevent this from happening, we
may restrict uses of φ inside bounds, replacing Rule ι-Inside by the following
variant:

Inst-Inside
Γ ⊢ φ : ρ1 ≤ ρ2

Γ ⊢ ∀ (>φ) : ∀ (α> ρ1) τ ≤ ∀ (α> ρ2) τ

As expected, this rejects the source term (1) as ill-typed. Unfortunately, this is
too restrictive. For instance, it would also reject the application of a polymor-
phic function. When ρ and ρ′ are ⊥ and φ is @α, (1) is a term of System F,
which we must keep!

Notice that the ill-formed term (2) can be further reduced to the term (3),
which is well-formed. This suggests another solution to recover type applica-
tion: making ∀ (>φ);N a primitive instance operation, say $φ, and the above
reduction sequence atomic, so that one does not see the intermediate ill-formed
step.

48



Inst-App
Γ ⊢ φ : ρ ≤ τ

Γ ⊢ $φ : ∀ (α> ρ) τ0 ≤ τ0{α← τ}

Inst-Bot

Γ ⊢ @ρ : ⊥ ≤ ρ

Inst-Under
Γ, α> ρ ⊢ φ : τ1 ≤ τ2

Γ ⊢ ∀ (α>) φ : ∀ (α> ρ) τ1 ≤ ∀ (α> ρ) τ2

Inst-Abstr
α> ρ ∈ Γ

Γ ⊢ !α : ρ ≤ α

Inst-Inside
Γ ⊢ φ : ρ1 ≤ ρ2

Γ ⊢ ∀ (>φ) : ∀ (α> ρ1) τ ≤ ∀ (α> ρ2) τ

Inst-Elim

Γ ⊢ N : ∀ (α> ρ) τ ′ ≤ τ ′{α← ρ}

Figure C.19: Type instance for xMLF♭

In summary, xMLF♭ is defined as follows: first we extend type instantiations
with primitive type applications:

φ ::= . . . | $φ

Accordingly, we add the reduction rule

(Λ(α> ρ) a) ($φ) −→ a{!α← φ;1}{α← ρ φ} (ι-Type)

and the following case in the recursive definition of type instance:

(∀ (α> ρ) τ) ($φ) = τ{α← ρ φ}

so that $φ behaves as its expanded form (∀ (>φ);N). We then restrict the
syntax of types and terms as described above, and type instantiation rules as
described on Figure C.19 (Rules Inst-Intro, Inst-Comp, and Inst-Id are
omitted as they are left unchanged).

Notice that the intermediate language after the extensions and before the
restrictions, say xMLF♯, is equivalent to xMLF: both typing and reduction rules

of $φ are derived; subject reduction hence holds in xMLF♯.

We show that reduction of xMLF♯ is closed in the xMLF♭ subset by revisiting

the proof of subject reduction for xMLF, and checking in each case that the
typing derivation rebuilt after reduction is well-formed in xMLF♭, having ρ terms
instead of general τ terms wherever required by the syntax and the typing rules
of xMLF♭.

Finally, the target of the translation of eMLF into xMLF, described in §3, lies
in xMLF♭. In particular, bounds of variables are ρ-types R(·). Moreover, the
translation of instantiation witnesses described in Figure 17 only applies @(·)
to ρ-types R(·). Uses of !α appear either in expressions ∀ (> !α);N, which can
be replaced by $(!α), or not under ∀ (> ·).
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Normale Supérieure d’Ulm, URL http://gallium.inria.fr/~remy/mlf/

scherer@master2010:mlfomega.pdf, 2010a.

F. Pottier, D. Rémy, The Essence of ML Type Inference, in: B. C. Pierce (Ed.),
Advanced Topics in Types and Programming Languages, chap. 10, MIT Press,
389–489, URL http://cristal.inria.fr/attapl/, 2005.

50

http://doi.acm.org/10.1145/944705.944709
http://doi.acm.org/10.1145/944705.944709
http://dx.doi.org/10.1016/j.ic.2008.12.006
http://dx.doi.org/10.1016/j.ic.2008.12.006
http://doi.acm.org/10.1145/1411203.1411216
http://dx.doi.org/10.1016/0167-6423(94)00005-0
http://dx.doi.org/10.1016/0167-6423(94)00005-0
http://perso.ens-lyon.fr/paolo.tranquilli/content/docs/snmlf.pdf
http://perso.ens-lyon.fr/paolo.tranquilli/content/docs/snmlf.pdf
http://www.yakobowski.org/phd-dissertation.html
http://www.yakobowski.org/phd-dissertation.html
http://doi.acm.org/10.1145/1190315.1190321
http://doi.acm.org/10.1145/1190315.1190321
http://gallium.inria.fr/~remy/mlf/scherer@master2010:mlfomega.pdf
http://gallium.inria.fr/~remy/mlf/scherer@master2010:mlfomega.pdf
http://cristal.inria.fr/attapl/


G. Scherer, Prototype implementation of MLF, URL http://gallium.inria.

fr/~remy/mlf/mlf-omega/, 2010b.

D. Leijen, Flexible types: robust type inference for first-class polymor-
phism, Tech. Rep. MSR-TR-2008-55, Microsoft Research, URL ftp://ftp.

research.microsoft.com/pub/tr/TR-2008-55.pdf, 2008.

J. C. Mitchell, Polymorphic type inference and containment, Information and
Computation 2/3 (76) (1988) 211–249.
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