
IS
S

N
02

49
-6

39
9

IS
R

N
IN

R
IA

/R
R

--
81

14
--

FR
+E

N
G

RESEARCH
REPORT
N° 8114
October 2012

Project-Team Gallium

GADT meet subtyping
Gabriel Scherer, Didier Rémy

RESEARCH CENTRE
PARIS – ROCQUENCOURT

Domaine de Voluceau, - Rocquencourt
B.P. 105 - 78153 Le Chesnay Cedex

GADT meet subtyping

Gabriel Scherer, Didier Rémy

Project-Team Gallium

Research Report n° 8114 — October 2012 — 33 pages

Abstract: While generalized abstract datatypes (GADT) are now considered well-understood,
adding them to a language with a notion of subtyping comes with a few surprises. What does
it mean for a GADT parameter to be covariant? The answer turns out to be quite subtle. It
involves fine-grained properties of the subtyping relation that raise interesting design questions.
We allow variance annotations in GADT definitions, study their soundness, and present a sound
and complete algorithm to check them. Our work may be applied to real-world ML-like languages
with explicit subtyping such as OCaml, or to languages with general subtyping constraints.

Key-words: subtyping, datatypes, variance

Part of this work has been done at IRILL

GADT avec sous-typage

Résumé : Les types algébriques généralisés (Generalized Algebraic Datatypes,
GADT) sont maintenant bien compris, mais leur ajout à un langage équipé de sous-
typage nous réservait quelques surprises. Qu’est-ce qu’être covariant pour un pa-
ramètre de GADT ? La réponse s’avère difficile. Elle met en jeu des propriétés fines
de la relation de sous-typage qui soulèvent d’intéressantes problématiques de concep-
tion de langage. Nous permettons des annotations de variance dans les définitions
de GADT, étudions leur correction, et présentons un algorithme correct et complet
pour les vérifier. Notre travail peut s’appliquer à un langage complet inspiré de
ML et avec sous-typage explicite, tel que OCaml, ou même à des langages avec des
contraintes générales de sous-typage.

Mots-clés : sous-typage, types de données, variance

GADT meet subtyping 3

1 Motivation

In languages that have a notion of subtyping, the interface of parametrized types
usually specifies a variance. It defines the subtyping relation between two instances
of a parametrized type from the subtyping relations that hold between their param-
eters. For example, the type α list of immutable lists is expected to be covariant :
we wish σ list ≤ σ′ list as soon as σ ≤ σ′.

Variance is essential in languages whose programming idioms rely on subtyping,
in particular object-oriented languages. Another reason to care about variance is its
use in the relaxed value restriction [Gar04]: while a possibly-effectful expression, also
called an expansive expression, cannot be soundly generalized in ML—unless some
sophisticated enhancement of the type system keeps track of effectful expressions—it
is always sound to generalize type variables that only appear in covariant positions,
which may not classify mutable values. This relaxation uses an intuitive subtyping
argument: all occurrences of such type variables can be specialized to ⊥, and any-
time later, all covariant occurrences of the same variable (which are now ⊥) can be
simultaneously replaced by the same arbitrary type τ , which is always a supertype
of ⊥. This relaxation of the value-restriction is implemented in OCaml, where it is
surprisingly useful. Therefore, it is important for extensions of type definitions,
such as GADT, to support it as well through a clear and expressive definition of
parameter covariance.

For example, consider the following GADT of well-typed expressions:

type +α expr =

| Val : α→ α expr

| Int : int→ int expr

| Thunk : ∀β. β expr ∗ (β → α)→ α expr

| Prod : ∀βγ. β expr ∗ γ expr→ (β ∗ γ) expr

Is it safe to say that expr is covariant in its type parameter? It turns out that,
using the subtyping relation of the OCaml type system, the answer is “yes”. But,
surprisingly to us, in a type system with a top type >, the answer would be “no”.

The aim of this article is to present a sound and complete criterion to check
soundness of parameter variance annotations, for use in a type-checker. We also
discuss the apparent fragility of this criterion with respect to changes to the sub-
typing relation (e.g. the presence or absence of a top type, private types, etc.), and
a different, more robust way to combine GADT and subtyping.

Examples

Let us first explain why it is reasonable to say that α expr is covariant. Informally,
if we are able to coerce a value of type α into one of type α′ (we write (v :> α′) to
explicitly cast a value v of type α to a value of type α′), then we are also able to
transform a value of type α expr into one of type α′ expr. Here is some pseudo-
code1 for the coercion function:

let coerce : α expr→ α′ expr = function

| Val (v : α) -> Val (v :> α′)
| Int n -> Int n

| Thunk β (b : β expr) (f : β → α) ->

Thunk β b (fun x -> (f x :> α′))
| Prod β γ ((b, c) : β expr ∗ γ expr) ->

(* if β ∗ γ ≤ α′, then α′ is of the form

β′ ∗ γ′ with β ≤ β′ and γ ≤ γ′ *)
1The variables β′ and γ′ of the Prod case are never really defined, only justified at the meta-level,

making this code only an informal sketch.

RT n° 8114

GADT meet subtyping 4

Prod β′ γ′ ((b :> β′ expr), (c :> γ′ expr))

In the Prod case, we make an informal use of something we know about the OCaml
type system: the supertypes of a tuple are all tuples. By entering the branch, we
gain the knowledge that α must be equal to some type of the form β ∗ γ. So from
α ≤ α′ we know that β ∗ γ ≤ α′. Therefore, α′ must itself be a pair of the form
β′ ∗ γ′. By covariance of the product, we deduce that β ≤ β′ and γ ≤ γ′. This
allows to conclude by casting at types β′ expr and γ′ expr, recursively.

Similarly, in the Int case, we know that α must be an int and therefore an
int expr is returned. This is because we know that, in OCaml, no type is above
int: if int ≤ τ , then τ must be int.

What we use in both cases is reasoning of the form2: “if T [β] ≤ α′, then I know

that α′ is of the form T [β
′
] for some β

′
”. We call this an upward closure property:

when we “go up” from a T [β], we only find types that also have the structure
of T . Similarly, for contravariant parameters, we would need a downward closure

property: T is downward-closed if T [β] ≥ α′ entails that α′ is of the form T [β
′
].

Before studying a more troubling example, we define the classic equality type
(α, β) eq, and the corresponding casting function cast : ∀αβ.(α, β) eq→ α→ β:

type (α, β) eq =

| Refl : ∀γ. (γ, γ) eq

let cast (eqab : (α, β) eq) : α→ β =

match eqab with

| Refl -> (fun x -> x)

Notice that it would be unsound3 to define eq as covariant, even in only one param-
eter. For example, if we had type (+α,=β) eq, from any σ ≤ τ we could subtype
(σ, σ) eq into (τ, σ) eq, allowing to cast any value of type τ back into one of type
σ, which is unsound in general.

As a counter-example, the following declaration is incorrect: the type α t cannot
be declared covariant.

type +α t =

| K : < m : int > → < m : int > t

let v = (K (object method m = 1 end) :> < > t)

This declaration uses the OCaml object type < m : int >, which qualifies objects
having a method m returning an integer. It is a subtype of object types with fewer
methods, in this case the empty object type < >, so the alleged covariance of t, if
accepted by the compiler, would allow us to cast a value of type < m : int > t

into one of type < > t. However, from such a value, we could wrongly deduce
an equality witness (< >, <m : int>) eq that allows to cast any empty object of
type < > into an object of type < m : int >, but this is unsound, of course!

let get_eq : α t→ (α, < m : int >) eq = function

| K _ -> Refl (* locally α = < m : int > *)

let wrong : < > -> < m : int > =

let eq : (< >, < m : int >) eq = get_eq v in

cast eq

It is possible to reproduce this example using a different feature of the OCaml
type system named private type abbreviation4: a module using a type type t = τ
internally may describe its interface as type t = private τ . This is a compromise

2We write T [β] for a type expression T that may contain free occurrences of variables β and
T [σ] for the simultaneous substitution of σ for β in T .

3This counterexample is due to Jeremy Yallop.
4This counterexample is due to Jacques Garrigue.

RT n° 8114

GADT meet subtyping 5

between a type abbreviation and an abstract type: it is possible to cast a value
of type t into one of type τ , but not, conversely, to construct a value of type t

from one of type τ . In other words, t is a strict subtype of τ : we have t ≤ τ
but not t ≥ τ . Take for example type file_descr = private int: this semi-
abstraction is useful to enforce invariants by restricting the construction of values
of type file_descr, while allowing users to conveniently and efficiently destruct
them for inspection at type int.

Unsound GADT covariance declarations would defeat the purpose of such pri-
vate types: as soon as the user gets one element of the private type, she could forge
values of this type, as illustrated by the code below.

module M = struct

type file_descr = int

let stdin = 0

let open = ...

end : sig

type file_descr = private int

val stdin : file_descr

val open : string -> (file_descr, error) sum

end

type +α t =

| K : priv -> M.file_descr t

let get_eq : α t -> (α, M.file_descr) eq = function

| K _ -> Refl

let forge : int -> M.file_descr =

fun (x : int) -> cast (get_eq p) M.stdin

The difference between the former, correct Prod case and those two latter sit-
uations with unsound variance is the notion of upward closure. The types α ∗ β
and int used in the correct example were upward-closed. On the contrary, the
private type M.file_descr has a distinct supertype int, and similarly the object
type < m:int > has a supertype < > with a different structure (no method m).

In this article, we formally show that these notions of upward and downward-
closure are the key to a sound variance check for GADT. We start from the formal
development of Simonet and Pottier [SP07], which provides a general soundness
proof for a language with subtyping and a very general notion of GADT express-
ing arbitrary constraints—rather than only type equalities. By specializing their
correctness criterion, we can express it in terms of syntactic checks for closure and
variance, that are simple to implement in a type-checker.

The problem of non-monotonicity

There is a problem with those upward or downward closure assumptions: while they
hold in core ML, with strong inversion theorems, they are non-monotonic properties:
they are not necessarily preserved by extensions of the subtyping lattice. For exam-
ple, OCaml has a concept of private types: a type specified by type t = private τ
is a new semi-abstract type smaller than τ (t ≤ τ but t � τ), that can be defined
a posteriori for any type. Hence, no type is downward-closed forever. That is, for
any type τ , a new, strictly smaller type may always be defined in the future.

This means that closure properties of the OCaml type system are relatively
weak: no type is downward-closed5 (so instantiated GADT parameters cannot be

5Except types that are only defined privately in a module and not exported: they exist in

RT n° 8114

GADT meet subtyping 6

contravariant), and arrow types are not upward-closed as their domain should be
downward-closed. Only purely positive algebraic datatypes are upward-closed. The
subset of GADT declarations that can be declared covariant today is small, yet, we
think, large enough to capture a lot of useful examples, such as α expr above.

Giving back the freedom of subtyping

It is disturbing that the type system should rely on non-monotonic properties: if
we adopt the correctness criterion above, we must be careful in the future not to
enrich the subtyping relation too much.

Consider private types for example: one could imagine a symmetric concept
of a type that would be strictly above a given type τ ; we will name those types
invisible types (they can be constructed, but not observed). Invisible types and
GADT covariance seem to be working against each other: if the designer adds one,
adding the other later will be difficult.

A solution to this tension is to allow the user to locally guarantee negative
properties about subtyping (what is not a subtype), at the cost of selectively aban-
doning the corresponding flexibility. Just as object-oriented languages have final

classes that cannot be extended any more, we would like to be able to define some
types as public (respectively visible), that cannot later be made private (resp.
invisible). Such declarations would be rejected if the defining type already has
subtypes (e.g. an object type), and would forbid further declarations of types below
(resp. above) the defined type, effectively guaranteeing downward (resp. upward)
closure. Finally, upward or downward closure is a semantic aspect of a type that
we must have the freedom to publish through an interface: abstract types could
optionally be declared public or visible.

Another approach: subtyping constraints

Getting fine variance properties out of GADT is difficult because they correspond
to type equalities which, to a first approximation, use their two operands both
positively and negatively. One way to get an easy variance check is to encourage
users to change their definitions into different ones that are easier to check. For
example, consider the following redefinition of α expr (in a speculative extension
of OCaml with subtyping constraints):

type +α expr =

| Val : ∀α.α→ α expr

| Int : ∀α[α≥int].int→ α expr

| Thunk : ∀β. β expr ∗ (β → α)→ α expr

| Prod : ∀αβγ[α≥β ∗ γ]. (β expr ∗ γ expr)→ α expr

It is now quite easy to check that this definition is covariant, since all type equalities
α = Ti[β] have been replaced by inequalities α ≥ Ti[β] which are preserved when
replacing α by a subtype α′ ≥ α—we explain this more formally in §4.3. This vari-
ation on GADT, using subtyping instead of equality constraints, has been studied
by Emir et al [EKRY06] in the context of the C] programming language.

But isn’t such a type definition less useful than the previous one, which had a
stronger constraint? We will discuss this choice in more detail in §4.3.

a “closed world” and we can check, for example, that they are never used in a private type
definition.

RT n° 8114

GADT meet subtyping 7

On the importance of variance annotations

Being able to specify the variance of a parametrized datatype is important at ab-
straction boundaries: one may wish to define a program component relying on an
abstract type, but still make certain subtyping assumptions on this type. Variance
assignments provide a framework to specify such a semantic interface with respect
to subtyping. When this abstract type dependency is provided by an encapsulated
implementation, the system must check that the provided implementation indeed
matches the claimed variance properties.

Assume the user specifies an abstract type

module type S = sig

type (+α) collection

val empty : unit -> α collection

val app : α collection -> α collection -> α collection

end

and then implements it with linked lists

module C : S = struct

type +α collection =

| Nil of unit

| Cons of α ∗ α collection

let empty () = Nil ()

end

The type-checker will accept this implementation, as it has the specified variance.
On the contrary,

type +α collection = (α list) ref
let empty () = ref []

would be rejected, as ref is invariant. In the following definition:

let nil = C.empty ()

the right hand-side is not a value, and is therefore not generalized in presence of the
value restriction; we get a monomorphic type, ?α t, where ?α is a yet-undetermined
type variable. The relaxed value restriction [Gar04] indicates that it is sound to
generalize ?α, as it only appears in covariant positions. Informally, one may unify
?α with ⊥, add an innocuous quantification over α, and then generalize ∀α.⊥ t

into ∀α.α t by covariance—assuming a lifting of subtyping to polymorphic type
schemes.

The definition of nil will therefore get generalized in presence of the relaxed
value restriction, which would not be the case if the interface S had specified an
invariant type.

Related work

When we encountered the question of checking variance annotations on GADT, we
expected to find it already discussed in the literature. The work of Simonet and
Pottier [SP07] is the closest we could find. It was done in the context of finding
good specification for type inference of code using GADT, and in this context it is
natural to embed some form of constraint solving in the type inference problem.
From there, Simonet and Pottier generalized to a rich notion of GADT defined over
arbitrary constraints, in presence of a subtyping relation, justified in their setting
by potential applications to information flow checking.

They do not describe a particular type system, but a parametrized framework
HMG(X), in the spirit of the inference framework HM(X). In this setting, they prove

RT n° 8114

GADT meet subtyping 8

a general soundness result, applicable to all type systems which satisfy their model
requirements. We directly reuse this soundness result, by checking that we respect
these requirements and proving that their condition for soundness is met. This
allows us to concentrate purely on the static semantics, without having to define
our own dynamic semantics to formulate subject reduction and progress results.

Their soundness requirement is formulated in terms of a general constraint en-
tailment problem involving arbitrary constraints. Specializing this to our setting is
simple, but expressing it in a form that is amenable to mechanical verification is sur-
prisingly harder—this is the main result of this paper. Furthermore, at their level of
generality, the design issues related to subtyping of GADT, in particular the notion
of upward and downward-closed type constructors, were not apparent. Our article
is therefore not only a specialized, more practical instance of their framework, but
also raises new design issues.

The other major related work, by Emir, Kennedy, Russo and Yu [EKRY06],
studies the soundness of having subtyping constraints on classes and methods of
an object-oriented type system with generics (parametric polymorphism). Previous
work [KR05] had already established the relation between the GADT style of having
type equality constraints on data constructors and the desirable object-oriented
feature of having type equality constraints on object methods. This work extends
it to general subtyping constraints and develops a syntactic soundness proof in the
context of a core type system for an object-oriented languages with generics.

The general duality between the “sums of data” prominent in functional pro-
gramming and “record of operations” omnipresent in object-oriented programming
is now well-understood. Yet, it is surprisingly difficult to reason on the correspon-
dence between GADT and generalized method constraints; an application that is
usually considered to require GADT in a functional style (for example a strongly-
typed eval α expr datatype and its associated eval function) is simply expressed
in idiomatic object-oriented style without specific constraints6, while the simple
flatten : ∀α, α list list → α list requires an equality or subtyping constraint
when expressed in object-oriented style.

These important differences of style and applications make it difficult to compare
our present work with this one. Our understanding of this system is that a subtyping
constraint of the form X ≤ Y is considered to be a negative occurrence of X,
and a positive occurrence of Y ; this means that equality constraints (which are
conjunctions of a (≤) constraint and a (≥) constraints) always impose invariance
on their arguments. Checking correctness of constraints with this notion of variance
is simpler than with our upward and downward-closure criterion, but also not as
expressive. It corresponds, in our work, to the idea of GADT with subtyping
constraint mentioned in the introduction and that we detail in §4.3.

The design trade-off in this related work is different from our setting; the reason
why we do not focus on this solution is that it requires explicit annotations at the
GADT definition site, and more user annotations in pattern matching in our system
where subtyping is explicitly annotated, while convertibility is implicitly inferred
by unification. On the contrary, in an OOP system with explicit constraints and
implicit subtyping, this solution has the advantage of user convenience.

We can therefore see our present work as a different choice in the design space: we
want to allow a richer notion of variance assignment for type equalities, at the cost a
higher complexity for those checks. Note that the two directions are complementary
and are both expressed in our formal framework.

6There is a relation between this way of writing a strongly typed eval function and the “finally
tagless” approach [Kis] that is known to require only simple ML types.

RT n° 8114

GADT meet subtyping 9

σ ≤ σ
σ1 ≤ σ2 σ2 ≤ σ3

σ1 ≤ σ3

b 6 c

b ≤ c

σ ≥ σ′ τ ≤ τ ′

σ → τ ≤ σ′ → τ ′

σ ≤ σ′ τ ≤ τ ′

σ ∗ τ ≤ σ′ ∗ τ ′
type vα t ∀i, σi ≺vi σ′i

σ t ≤ σ′ t

Figure 1: Subtyping relation

2 A formal setting

We define a core language for Algebraic Datatypes (ADT) and, later, Generalized
Algebraic Datatypes (GADT), that is an instance of the parametrized HMG(X)
system of Simonet and Pottier [SP07]. We refine their framework by using variances
to define subtyping, but rely on their formal description for most of the system,
in particular the static and dynamic semantics. We ultimately rely on their type
soundness proof, by rigorously showing (in the next section) that their requirements
on datatype definitions for this proof to hold are met in our extension with variances.

2.1 Atomic subtyping

Our type system defines a subtyping relation between ground types, parametrized
by a reflexive transitive relation between base constant types (int, bool, etc.).
Ground types consist of a set of base types b, function types τ1 → τ2, product types
τ1 ∗ τ2, and a set of algebraic datatypes σ t. (We write σ for a sequence of types
(σi)i∈I .) We use prefix notation for datatype parameters, as is the usage in ML.
Datatypes may be user-defined by toplevel declarations of the form:

type vα t =

| K1 of τ1[α]
| ...

| Kn of τn[α]

This is a disjoint sum: the constructors Kc represent all possible cases and each
type τ c[α] is the domain of the constructor Kc. Applying it to an argument e of a
corresponding ground type τ [σ] constructs a term of type σ t. Values of this type
are deconstructed using pattern matching clauses of the form Kc x→ e, one for each
constructor.

The sequence vα is a binding list of type variables αi along with their variance
annotation vi, which is a marker among the set {+,−,=,on}. We may associate a
relation a relation (≺v) between types to each variance v:

• ≺+ is the covariant relation (≤);

• ≺− is the contravariant relation (≥), the symmetric of (≤);

• ≺= is the invariant relation (=), defined as the intersection of (≤) and (≥);

• ≺on, is the irrelevant relation (on), the full relation such that σ on τ holds for
all types σ and τ .

Given a reflexive transitive relation (6) on base types, the subtyping relation on
ground types (≤) is defined by the inference rules of Figure 1, which, in particular,
give their meaning to the variance annotations vα. The judgment type vα t simply
means that the type constructor t has been previously defined with the variance
annotation vα. Notice that the rules for arrow and product types can be subsumed
by the rule for datatypes, if one consider them as special datatypes (with a specific

RT n° 8114

GADT meet subtyping 10

dynamic semantics) of variance (−,+) and (+,+), respectively. For this reason, the
following definitions will not explicitly detail the cases for arrows and products.

Finally, it is routine to show that the rules for reflexivity and transitivity are
admissible, by pushing them up in the derivation until the base cases b 6 c, where
they can be removed as (6) is assumed to be reflexive and transitive. Removing
reflexivity and transitivity provides us with an equivalent syntax-directed judgment
having powerful inversion principles: if σ t ≤ σ′ t and type vα t, then one can
deduce that for each i, σi ≺vi σ′i.

We insist that our equality relation (=) is here a derived concept, defined from
the subtyping relation (≤) as the “equiconvertibility” relation (≤ ∩ ≥); in partic-
ular, it is not defined as the usual syntactic equality. If we have both b1 6 b2 and
b1 6 b2 in our relation on base types, for two distinct base types b1 and b2, we have
b1 = b2 as types, even though they are syntactically distinct. This choice is inspired
by the previous work of Simonet and Pottier.

On the restriction of atomic subtyping The subtyping system demonstrated
above is called “atomic”. If two head constructors are in the subtyping relation,
they are either identical or constant (no parameters). Structure-changing subtyping
occurs only at the leaves of the subtyping derivations.

While this simplifies the meta-theoretic study of the subtyping relation, this is
too simplifying for real-world type systems that use non-atomic subtyping relations.
In our examples using the OCaml type system, private type were a source of non-
atomic subtyping: if you define type α t2 = private α t1, the head constructors
t1 and t2 are distinct yet in a subtyping relation. If we want to apply our formal
results to the design of such languages, we must be careful to isolate any assumption
on this atomic nature of our core formal calculus.

The aspect of non-atomic subtype relations we are interested in is the notion of
v-closed constructor. We have used this notion informally in the first section (in
OCaml, product types are +-closed); we now defined it formally.

Definition 1 (Constructor closure) A type constructor α t is v-closed if, for
any type sequence σ and type τ such that σ t ≺v τ hold, then τ is necessarily equal
to σ′ t for some σ′.

In our core calculus, all type constructors are v-closed for any v 6= on, but we will
still mark this hypothesis explicitly when it appears in typing judgments; this let
the formal results be adapted more easily to a non-atomic type system.

It would have been even more convincing to start from a non-atomic subtyping
relation. However, the formal system of Simonet and Pottier, whose soundness
proof we ultimately reuse, restricts subtyping relations between (G)ADT type to
atomic subtyping. We are confident their proof (and then our formal setting) can
be extended to cover the non-atomic case, but we have left this extension to future
work.

2.2 The algebra of variances

If we know that σ t ≤ σ′ t, that is σ t ≺+ σ′ t, and the constructor t has variable
vα, an inversion principle tells us that for each i, σi ≺vi σ′i. But what if we only
know σ t ≺u σ′ t for some variance u different from (+)? If u is (−), we get the
reverse relation σi �vi σ′i. If u is (on), we get σi on σ′i, that is, nothing. This outlines
a composition operation on variances u.vi, such that if σ t ≺u σ′ t then σi ≺u.vi σ′i

RT n° 8114

GADT meet subtyping 11

holds. It is defined by the following table:

v.w = + − on w

= = = = on
+ = + − on
− = − + on
on on on on on
v

This operation is associative and commutative. Such an operator, and the algebraic
properties of variances explained below, have already been used by other authors,
for example [Abe06].

There is a natural order relation between variances, which is the coarser-than
order between the corresponding relations: v ≤ w if and only if (≺v) ⊇ (≺w); i.e.
if and only if, for all σ and τ , σ ≺w τ implies σ ≺v τ .7 This reflexive, partial order
is described by the following lattice diagram:

=

+ −

on

That is, all variances are smaller than = and bigger than on.
From the order lattice on variances we can define join ∨ and meet ∧ of variances:

v ∨ w is the biggest variance such that v ∨ w ≤ v and v ∨ w ≤ v; conversely, v ∧ w
is the lowest variance such that v ≤ v ∧w and w ≤ v ∧w. Finally, the composition
operation is monotonous: if v ≤ v′ then w.v ≤ w.v′ (and v.w ≤ v′.w).

We will frequently manipulate vectors vα, of variable associated with variances,
which correpond to the “context” Γ of a type declaration. We extend our operation
pairwise on those contexts: Γ ∨ Γ′ and Γ ∧ Γ′, and the ordering between contexts
Γ ≤ Γ′. We also extend the variance-dependent subtyping relation (≺v), which
becomes an order (≺Γ) between vectors of type of the same length: σ ≺vα σ′ holds
when for all i we have σi ≺vi σ′i.

2.3 Variance assignment in ADTs

A counter-example To have a sound type system, some datatype declarations
must be rejected. Assume (only for this example) that we have two base types
int and bool such that bool 6 int and int 66 bool. Consider the following type
declaration:

type (+α,+β) t =

| Fun of α→ β

If it were accepted, we could build type the following program that deduces from
the (+α) variance that (bool, bool) t ≤ (int, bool) t; that is, we could turn the
identity function of type bool→ bool into one of type int→ bool and then turns
an integer into a boolean:

let three_as_bool : bool =

match (Fun (fun x -> x) : (bool, bool) t :> (int, bool) t) with

| Fun (danger : int→ bool) -> danger 3

7The reason for this order reversal is that the relations occur as hypotheses, in negative position,
in definition of subtyping: if we have v ≤ w and type vα t, it is safe to assume type wα t: σ ≺w σ′

implies σ ≺v σ′, which implies σ t ≤ σ′ t. One may also see it, as Abel notes, as an “information
order”: knowing that σ ≺+ τ “gives you more information” than knowing that σ ≺on τ , therefore
on ≤ +.

RT n° 8114

GADT meet subtyping 12

vc-Var
wα ∈ Γ w ≥ v

Γ ` α : v

vc-Constr
Γ ` type wα t ∀i, Γ ` σi : v.wi

Γ ` σ t : v

Figure 2: Variance assignment

A requirement for type soundness We say that the type type vα t defined
by the constructors (Kc of τ

c[α])c∈C is well-signed if

∀c ∈ C,∀σ,∀σ′, σ t ≤ σ′ t =⇒ τ c[σ] ≤ τ c[σ′]

The definition of (+α,+β) t is not well-signed because we have (⊥,⊥) t ≤ (int,⊥) t
according to the variance declaration, but we do not have the corresponding con-
clusion (int→ ⊥) ≤ (⊥ → ⊥).

This is a simplified version, specialized to simple algebraic datatypes, of the
soundness criterion of Simonet and Pottier. They proved that this condition is
sufficient8 for soundness: if all datatype definitions accepted by the type-checker
are well-signed, then both subject reduction and progress hold—for their static and
dynamic semantics, using the subtyping relation (≤) we have defined.

A judgment for variance assignment When reformulating the well-signedness
requirement of Simonet and Pottier for simple ADT, in our specific case where the
subtyping relation is defined by variance, it becomes a simple check on the variance
of type definitions. Our example above is unsound as its claims α covariant while
it in fact appears in negative position in the definition.

In the context of higher-order subtyping [Abe06], where type abstractions are
first-class and annotated with a variance (λvα.τ), it is natural to present this check
as a kind checking of the form Γ ` τ : κ, where Γ is a context vα of type variables
associated with variances. For example, if +α ` τ : ? is provable, it is sound
to consider α covariant in τ . In the context of a simple first-order monomorphic
type calculus, this amounts to a monotonicity check on the type τ as defined by
[EKRY06]. Both approaches use judgments of a peculiar form where the context
changes when going under a type constructor: to check Γ ` σ → τ , one checks
Γ ` τ but (Γ/−) ` σ, where Γ/− reverses all the variances in the context Γ (turns
(−) into (+) and conversely). Abel gives an elegant presentation of this inversion
/ as an algebraic operation on variances, a quasi-inverse such that u/v ≤ w if and
only if u ≤ w.v. This context change is also reminiscent of the context resurrection
operation of the literature on proof irrelevance (in the style of [Pfe01] for example).

We chose an equivalent but more conventional style where the context of sub-
derivation does not change: instead of a judgment Γ ` τ that becomes (Γ/u) ` σ
when moving to a subterm of variance u, we define a judgment of the form Γ ` τ : v,
that evolves into Γ ` σ : (v.u). The two styles are equally expressive: our judgment
Γ ` τ : v holds if and only if (Γ/v) ` τ holds in Abel’s system—but we found
that this one extends more naturally to checking decomposability, as will later be
necessary. The inference rules for the judgment Γ ` τ : v are defined on Figure 2.

A semantics for variance assignment This syntactic judgment Γ ` τ : v
corresponds to a semantics property about the types and context involved, which
formalizes our intuition of “when the variables vary along Γ, the expression τ varies
along v”. We also give a few formal results about this judgment.

8It turns out that this condition is not necessary and can be slightly weakened: we will discuss
that later (3).

RT n° 8114

GADT meet subtyping 13

Definition 2 (Interpretation of the variance checking judgment)
We write JΓ ` τ : vK for the property: ∀σ, σ′, σ ≺Γ σ

′ =⇒ τ [σ] ≺v τ [σ′].

Lemma 1 (Correctness of variance checking) Γ ` τ : v is provable if and only
if JΓ ` τ : vK holds.

Proof:

Soundness: Γ ` τ : v implies JΓ ` τ : vK By induction on the derivation. In
the variable case this is direct. In the σ t case, for ρ, ρ′ such that ρ ≺Γ ρ

′, we get
∀i, σi[ρ] ≺v.wi σi[ρ

′] by inductive hypothesis, which allows to conclude, by definition
of variance composition, that (σ t)[ρ] ≺v (σ t)[ρ′].

Completeness: JΓ ` τ : vK implies Γ ` τ : v By induction on τ ; in the variable case
this is again direct. In the σ t case, given ρ ≺Γ ρ′ such that (σ t)[ρ] ≺v (σ t)[ρ′]
we can deduce by inversion that for each variable αi of variance wi in τ [α] we
have σi[ρ] ≺v.wi σi[ρ

′], which allows us to inductively build the subderivations
Γ ` σi : v.wi.

Lemma 2 (Monotonicity) If Γ ` τ : v is provable and Γ ≤ Γ′ then Γ′ ` τ : v is
provable.

Lemma 3 If Γ ` τ : v and Γ′ ` τ : v both hold, then (Γ ∨ Γ′) ` τ : v also holds.

Corollary 1 (Principality) For any type τ and any variance v, there exists a
minimal context ∆ such that ∆ ` τ : v holds. That is, for any other context Γ such
that Γ ` τ : v, we have ∆ ≤ Γ.

Inversion of subtyping We have mentioned in 2.1 the inversion properties of
our subtyping relation. From σ t ≤ σ′ t we can deduce subtyping relations on the
type parameters σi, σ

′
i. This can be generalized to any type expression τ [α]:

Theorem 1 (Inversion) For any type τ [α], variance v, and type sequences σ and
σ′, the subtyping relation τ [σ] ≺v τ [σ′] holds if and only if the judgment Γ ` τ : v
holds for some context Γ such that σ ≺Γ σ

′.

Proof: The reverse implication, is a direct application of the soundness of the
variance judgment.

The direct implication is proved by induction on τ [α]. The variable case is direct: if
α[σ] ≺v α[σ′] holds then for Γ equal to (vα) we indeed have vα ` α : v and σ ≺Γ σ

′.

In the τ t case, we have that (τ t)[σ] ≺v (τ t)[σ′]. Suppose the variance of
α t is wα: by inversion on the head type constructor t we deduce that for each
i, τi[σ] ≺v.wi τi[σ

′]. Our induction hypothesis then gives us a family of contexts
(Γi)i∈I such that for each i we have Γi ` τi : v.wi. Furthermore, σ ≺Γi

σ′ holds for
all Γi, which means that σ ≺∧i∈I Γi

bs′. Let’s define Γ as ∧i∈I Γi. By construction
we have Γ ≥ Γi, so by monotonicity (Lemma 2) we have Γ ` τi : v.wi for each i.
This allows us to conclude Γ ` τ t : v as desired.

Note that this would work even for type constructors that are not v-closed:
we are not comparing a τ [σ] to any type τ ′, but to a type τ [σ′] sharing the same
structure—the head constructors are always the same.

For any given pair σ, σ′ such that τ [σ] ≺v τ [σ′] we can produce a context Γ such
that σ ≺Γ σ

′. But is there a common context that would work for any pair? Indeed,
that is the lowest possible context, the principal context Γ such that Γ ` τ : v.

RT n° 8114

GADT meet subtyping 14

Corollary 2 (Principal inversion) If ∆ is principal for ∆ ` τ : v, then for any
type sequences σ and σ′, the subtyping relation τ [σ] ≺v τ [σ′] implies σ ≺∆ σ′.

Proof: Let ∆ be the principal context such that ∆ ` τ : v holds. For any σ, σ′ such
that τ [σ] ≺v τ [σ′], by inversion (Theorem 1) we have some Γ such that Γ ` τ : v
and σ ≺Γ σ′. By definition of ∆, ∆ ≤ Γ so σ ≺∆ σ′ also holds. That is, σ ≺∆ σ′

holds for any σ, σ′ such that τ [σ] ≺v τ [σ′].

Checking variance of type definitions We have all the machinery in place to
explain the checking of ADT variance declarations. The well-signedness criterion of
Simonet and Pottier gives us a general semantic characterization of which definitions
are correct: a definition type vα t = (Kc of (τ c[α])c∈C is correct if, for each
constructor c, we have:

∀σ,∀σ′, σ t ≤ σ′ t =⇒ τ [σ] ≤ τ [σ′]

By inversion of subtyping, σ t ≤ σ′ t implies σi ≺vi σ′i for all i. Therefore, it
suffices to check that:

∀σ,∀σ′, (∀i, σi ≺vi σ′i) =⇒ τ [σ] ≤ τ [σ′]

This is exactly the semantic property corresponding to the judgment vα ` τ : (+)!
That is, we have reduced soundness verification of an algebraic type definition to a
mechanical syntactic check on the constructor argument type.

This syntactic criterion is very close to the one implemented in actual type
checkers, which do not need to decide general subtyping judgments—or worse solve
general subtyping constraints—to check variance of datatype parameters. Our aim
is now to find a similar syntactic criterion for the soundness of variance annotations
on guarded algebraic datatypes, rather than simple algebraic datatypes.

2.4 Variance annotations in GADT

A general description of GADT When used to build terms of type α t, a
constructor K of τ behaves like a function of type ∀α.(τ → α t). Remark that the
codomain is exactly α t, the type t instantiated with parametric variables. GADT
arise by relaxing this restriction, allowing to specify constructors with richer types
of the form ∀α.(τ → σ t). See for example the declaration of constructor Prod in
the introduction:

| Prod : ∀βγ. β expr ∗ γ expr→ (β ∗ γ) expr

Instead of being just α expr, the codomain is now (β∗γ) expr. We moved from sim-
ple algebraic datatypes to so-called generalized algebraic datatypes. This approach
is natural and convenient for the users, so it is exactly the syntax chosen in lan-
guages with explicit GADT support, such as Haskell and OCaml, and is reminiscent
of the inductive datatype definitions of dependently typed languages.

However, for formal study of GADT, a different formulation based on equality
constraints is preferred. The idea is that we will force again the codomain to be
exactly α expr, but allow additional type equations such as α = β ∗ γ in this
example:

| Prod : ∀α. ∀βγ[α = β ∗ γ]. β expr ∗ γ expr→ α expr

This restricted form justifies the name of guarded algebraic datatype. The ∀βγ[D].τ
notation, coming from Simonet and Pottier, is a constrained type scheme: β, γ may
only be instantiated with type parameters respecting the constraint D. Note that,
as β and γ do not appear in the codomain anymore, we may equivalently change
the outer universal into an existential on the left-hand side of the arrow:

RT n° 8114

GADT meet subtyping 15

| Prod : ∀α. (∃βγ[α = β ∗ γ]. β expr ∗ γ expr)→ α expr

In the general case, a GADT definition for α t is composed of a set of constructor
declarations, each of the form:

| K : ∀α. (∃β[α = σ[β]]. τ [α, β])→ α t

or, reusing the classic notation,

| K of ∃β[α = σ[β]]. τ [α, β]

Without loss of generality, we can conveniently assume that the variables α do
not appear in the parameter type τ anymore: if some αi appears in τ , one may
always pick a fresh existential variable β, add the constraint α = β to D, and
consider τ [β/α]. Let us re-express the introductory example in this form, that is,
K of ∃β[α = σ[β]]. τ [β]:

type α expr =

| Val of ∃β[α = β]. β
| Int of [α = int]. int
| Thunk of ∃βγ[α = γ]. β expr ∗ (β → γ)
| Prod of ∃βγ[α = β ∗ γ]. β expr ∗ γ expr

If all constraints between brackets are of the simple form αi = βi (for distinct
variables αi and βi), as for the constructor Thunk, then we have a constructor with
existential types as described by Laüfer and Odersky [OL92]. If furthermore there
are no other existential variables than those equated with a type parameter, as in
the Val case, we have an usual algebraic type constructor; of course the whole type
is “simply algebraic” only if each of its constructors is algebraic.

In the rest of the paper, we extend our former core language with such guarded
algebraic datatypes. This impacts the typing rules (which are precisely defined
in Simonet and Pottier), but not the notion of subtyping, which is defined on
(GADT) type constructors with variance type vα t just as it previously was on
simple datatypes. What needs to be changed, however, is the soundness criterion
for checking the variance of type definitions.

The correctness criterion Simonet and Pottier [SP07] define a general frame-
work HMG(X) to study type systems with GADT where the type equalities in
bounded quantification are generalized to an arbitrary constraint language. They
make few assumptions on the type system used, mostly that it has function types
σ → τ , user-definable (guarded) algebraic datatypes α t, and a subtyping relation
σ ≤ τ (which may be just equality, in languages without subtyping).

They use this general type system to give static semantics (typing rules) to a
fixed untyped lambda-calculus equipped with datatype construction and pattern
matching operations. They are able to prove a type soundness result under just
some general assumptions on the particular subtyping relation (≤). Here are the
three requirements to get their soundness result:

1. Incomparability of distinct types: for all types τ1, τ2, σ, σ
′ and distinct datatypes

α t, α′ t′, the types (τ1 → τ2), τ1∗τ2, σ t and σ′ t′ must be pairwise incompa-
rable (both � and �) — this is where our restriction to an atomic subtyping
relation, discussed in §2.1, comes from.

2. Decomposability of function and product types: if τ1 → τ2 ≤ σ1 → σ2 (re-
spectively τ1 ∗ τ2 ≤ σ1 ∗ σ2), we must have τ1 ≥ σ1 (resp. τ1 ≤ σ1) and
τ2 ≤ σ2.

RT n° 8114

GADT meet subtyping 16

3. Decomposability of datatypes9: for each datatype α t and all type vectors σ
and σ′ such that σ t ≤ σ′ t, we must have (∃β[D[σ]]τ) ≤ (∃β[D[σ′]]τ) for
each constructor K of ∃β[D[β, α]]. τ [β].

Those three criteria are necessary for the soundness proof. We will now explain
how variance of type parameters impact those requirements, that is, how to match
a GADT implementation against a variance specification. With our definition of
subtyping based on variance, and the assumption that the datatype vα t we are
defining indeed has variance vα, is the GADT decomposability requirement (item
3 above) satisfied by all its constructors? If so, then the datatype definition is
sound and can be accepted. Otherwise, the datatype definition does not match the
specified variance, and should be rejected by the type checker.

3 Checking variances of GADT

For every type definition, we need to check that the decomposability requirement of
Simonet and Pottier holds. Remark that it is expressed for each GADT construc-
tor independently of the other constructors for the same type: we can check one
constructor at a time.

Assume we check a fixed constructor K of argument type ∃β[D[α, β]]. τ [β]. Si-
monet and Pottier prove that their requirement is equivalent to the following for-
mula, which is more convenient to manipulate:

∀σ, σ′, ρ,
(
σ t ≤ σ′ t ∧D[σ, ρ] =⇒ ∃ρ′, D[σ′, ρ′] ∧ τ [ρ] ≤ τ [ρ′]

)
(req-SP)

The purpose of this section is to extract a practical criterion equivalent to this
requirement. It should not be expressed as a general constraint satisfaction problem,
but rather as a syntax-directed and decidable algorithm that can be used in a type-
checker—without having to implement a full-blown constraint solver.

A remark on the non-completeness Note that while the criterion req-SP is
sound, it is not complete—even in the simple ADT case.

For a constructor K of τ of σ t, the justification for the fact that, under the
hypothesis σ t ≤ σ′ t, we should have τ [σ] ≤ τ [σ′] is the following: given a value
v of type τ [σ], we can build the value K v at type σ t, and coerce it to σ′ t. We
can then deconstruct this value by matching the constructor K, whose argument is
of type τ [σ′]. But this whole computation, (match (K v :> σ′ t) with K x → x),
reduces to v, so for value reduction to hold we need to also have v : τ [σ′].

For this whole argument to work we need a value at type τ [σ]. In fact, if the
type τ [σ] is not inhabited, it can fail to satisfy req-SP and still be sound: this
criterion is not complete. See the following example in a consistent system with an
uninhabited type ⊥:

type +α t =

| T of int

| Empty of ⊥ ∗ (α→ bool)

Despite α occurring in a contravariant position in the dead Empty branch (which
violates the soundness criterion of Simonet and Pottier), under the assumption that
the ⊥ type really is uninhabited we know that this Empty constructor will never
be used in closed code, and the contravariant occurrence will therefore never make
a program “go wrong”. The definition is correct, yet rejected by req-SP, which is
therefore incomplete.

9This is an extended version of the soundness requirement for algebraic datatypes: it is now
formulated in terms guarded existential types ∃β[D]τ rather than simple argument types τ .

RT n° 8114

GADT meet subtyping 17

Deciding type inhabitation in the general case is a very complex question, which
is mostly orthogonal to the presence and design of GADT in the type system.
There is, however, one clear interaction between the type inhabitation question and
GADT. If a GADT α t is instantiated with type variables σ that satisfy none of
the constraints D[α] of its constructors K of ∃β[D].τ , then we know that σ t is not
inhabited. This is related to the idea of “domain information” that we discuss in
the Future Work section (§5).

3.1 Expressing decomposability

If we specialize req-SP to the Prod constructor of the α expr example datatype,
i.e. Prod of ∃βγ[α = β ∗ γ]β expr ∗ γ expr, we get:

∀σ, σ′, ρ1, ρ2,(
σ expr ≤ σ′ expr ∧ σ = ρ1 ∗ ρ2 =⇒ ∃ρ′1, ρ′2, (σ′ = ρ′1 ∗ ρ′2 ∧ ρ1 ∗ ρ2 ≤ ρ′1 ∗ ρ′2)

)
We can substitute equalities and use the (assumed) covariance to simplify the
subtyping constraint σ expr ≤ σ′ expr into σ ≤ σ′:

∀σ′, ρ1, ρ2,
(
ρ1 ∗ ρ2 ≤ σ′ =⇒ ∃ρ′1, ρ′2, (σ′ = ρ′1 ∗ ρ′2 ∧ ρ1 ≤ ρ′1 ∧ ρ2 ≤ ρ′2)

)
(1)

This is the upward closure property mentioned in the introduction. This transfor-
mation is safe only if any supertype σ′ of a product ρ1 ∗ ρ2 is itself a product, i.e.
is of the form ρ′1 ∗ ρ′2 for some ρ′1 and ρ′2.

More generally, for a type Γ ` σ and a variance v, we are interested in a closure
property of the form

∀(ρ : Γ), σ′, σ[ρ] ≺v σ′ =⇒ ∃(ρ′ : Γ), σ′ = σ[ρ′]

Here, the context Γ represents the set of existential variables of the constructor (β
and γ in our example). We can easily express the condition ρ1 ≤ ρ′1 and ρ2 ≤ ρ′2 on
the right-hand side of the implication by considering a context Γ annotated with
variances (+β,+γ), and using the context ordering (≺Γ). Then, (1) is equivalent
to:

∀(ρ : Γ), σ′, σ[ρ] ≺v σ′ =⇒ ∃(ρ′ : Γ), ρ ≺Γ ρ
′ ∧ σ′ = σ[ρ′]

Our aim is now to find a set of inference rules to check decomposability; we will
later reconnect it to req-SP. In fact, we study a slightly more general relation,
where the equality σ[ρ′] = σ′ on the right-hand side is relaxed to an arbitrary
relation σ[ρ′] ≺v′ σ′:

Definition 3 (Decomposability) Given a context Γ, a type expression σ[β] and
two variances v and v′, we say that σ is decomposable under Γ from variance v to
variance v′, which we write Γ σ : v v′, if the property

∀(ρ : Γ), σ′, σ[ρ] ≺v σ′ =⇒ ∃(ρ′ : Γ), ρ ≺Γ ρ
′ ∧ σ[ρ′] ≺v′ σ′

holds.

We use the symbol rather than ` to highlight the fact that this is just a logic
formula, not the semantics criterion corresponding to an inductive judgment, nor a
syntactic judgment—we will introduce one later in section 3.4.

Remark that, due to the positive occurrence of the relation ≺Γ in the proposition
Γ τ : v v′ and the anti-monotonicity of ≺Γ, this formula is “anti-monotonous”
with respect to the context ordering Γ ≤ Γ′. This corresponds to saying that we
can still decompose, but with less information on the existential witness ρ′.

RT n° 8114

GADT meet subtyping 18

Lemma 4 (Anti-monotonicity) If Γ τ : v v′ holds and Γ′ ≤ Γ, then
Γ′ τ : v v′ also holds.

Our final decomposability criterion, given below in Figure 3, requires both correct
variances and a decomposability property, so it will be neither monotonous nor
anti-monotonous with respect to the context argument.
In the following subsections, we study the subtleties of decomposability.

3.2 Variable occurrences

In the Prod case, the type whose decomposability was considered is β ∗ γ (in the
context β, γ). In this very simple case, decomposability depends only on the type
constructor for the product. In the present type system, with very strong invertibil-
ity principles on the subtyping relation, both upward and downward closures hold
for products—and any other head type constructor. In the general case, we require
that this specific type constructor be upward-closed.

In the general case, the closure of the head type constructor alone is not enough
to ensure decomposability of the whole type. For example, in a complex type
expression with subterms, we should consider the closure of the type constructors
appearing in the subterms as well. Besides, there are subtleties when a variable
occurs several times.

For example, while β∗γ is decomposable from (+) to (=), β∗β is not: ⊥∗⊥ is an
instantiation of β∗β, and a subtype of, e.g., int∗bool, but it is not equal to (β∗β)[γ′]
for any γ′. The same variable occurring twice in covariant position (or having one
covariant and one invariant or contravariant occurence) breaks decomposability.

On the other hand, two invariant occurrences are possible: β ref ∗ β ref is
upward-closed (assuming the type constructor ref is invariant and upward-closed):
if (σ ref ∗ σ ref) ≤ σ′, then by upward closure of the product, σ′ is of the form
σ′1 ∗ σ′2, and by its covariance σ ref ≤ σ′1 and σ ref ≤ σ′2. Now by invariance of
ref we have σ′1 = σ ref = σ′2, and therefore σ′ is equal to σ ref ∗ σ ref, which is
an instance10 of β ref ∗ β ref.

Finally, a variable may appear in irrelevant positions without affecting closure
properties; β ∗ (β irr) (where irr is an upward-closed irrelevant type, defined for
example as type α irr = int) is upward closed: if σ∗(σ irr) ≤ σ′, then σ′ is of the
form σ′1 ∗ (σ′2 irr) with σ ≤ σ′1 and σ on σ′2, which is equiconvertible to σ′1 ∗ (σ′1 irr)
by irrelevance, an instance of β ∗ (β irr).

3.3 Context zipping

The intuition to think about these different cases is to consider that, for any σ′,
we are looking for a way to construct a “witness” σ′ such that τ [σ′] = σ′ from the
hypothesis τ [σ] ≺v σ′. When a type variable appears only once, its witness can be
determined by inspecting the corresponding position in the type σ′. For example
in α ∗ β ≤ bool ∗ int, the mapping α 7→ bool, β 7→ int gives the witness pair
bool, int.

However, when a variable appears twice, the two witnesses corresponding to the
two occurrences may not coincide. (Consider for example β ∗ β ≤ bool ∗ int.) If a
variable βi appears in several invariant occurrences, the witness of each occurrence
is forced to be equal to the corresponding subterm of τ [σ], that is σi, and therefore
the various witnesses are themselves equal, hence compatible. On the contrary,
for two covariant occurrences (as in the β ∗ β case), it is possible to pick a σ′

such that the two witnesses are incompatible—and similarly for one covariant and

10We use the term instance to denote the replacement of all the free variables of a type expression
under context by closed types—not the specialization of an ML type scheme.

RT n° 8114

GADT meet subtyping 19

one invariant occurrence. Finally, an irrelevant occurrence will never break closure
properties, as all witnesses (forced by another occurrence) are compatible.

To express these merging properties, we define a “zip”11 operation v1 & v2,
that formally expresses which combinations of variances are possible for several
occurrences of the same variable; it is a partial operation (for example, it is not
defined in the covariant-covariant case, which breaks the closure properties) with
the following table:

v & w = + − on w

= = =
+ +
− −
on = + − on
v

The following lemma uses zipping to merge together the results of the decom-
position of several subterms (σi)i into a “simultaneous decomposition”.

Definition 4 (Simultaneous decomposition) Given a context Γ, and families
of type expressions (σi)i∈I and variances (vi)i∈I and (v′i)i∈I , we define the following
“simultaneous closure property” Γ (Ti : vi v′i)i∈I defined as :

∀(ρ : Γ), σ′, (∀i ∈ I, σi[ρ] ≺vi σ′i) =⇒ ∃(ρ′ : Γ), ρ ≺Γ ρ
′ ∧ (∀i ∈ I, σi[ρ′] ≺v′i σ

′
i)

Lemma 5 (Soundness of zipping) Suppose we have families of type expressions
(Ti[β])i∈I , contexts (Γi)i∈I and variances (vi)i∈I and (v′i)i∈I such that &i∈I Γi exists
and for all i we have both Γi ` Ti : vi and Γi Ti : vi v′i. Then, we have
(&i∈I Γi) (σi : vi v′i)i∈I .

Proof: Without loss of generality, we can consider that there are only two type
expressions T1[β] and T2[β], and that the free variables β is reduced to a single
variable β. Let w1, w2 be the respective variances of β in Γ1,Γ2. We know that
(w1 & w2) exists and is equal to the variance w of the variable β in Γ1 & Γ2.

Our further assumptions are Γi ` Ti : vi (1) and Γi Ti : vi v′i (2) for i in {1, 2}.
The expansion of (2) is:

∀i ∈ I, ∀ρ, σ′i, Ti[ρ] ≺vi σ′i =⇒ ∃ρ′, ρ ≺Γi
ρ′ ∧ Ti[ρ

′] ≺v′i σ
′
i (3)

Our goal is to prove Γ1 & Γ2 (σi : vi v′i)i∈I , which is equivalent to:

∀ρ, σ′, (∀i ∈ I, (Ti[ρ] ≺vi σ′i)) =⇒ ∃ρ′, ρ ≺Γ ρ
′ ∧ ∀i ∈ I, Ti[ρ′] ≺v′i σ

′
i (4)

Assume given ρ and (σ′1, σ
′
2) such that T1[ρ] ≺v1

σ′1 (5) and T2[ρ] ≺v2
σ′2 (6).

Applying (3) with i equal to 1 and (5) ensures the existence of a ρ′1 such that
ρ ≺w1

ρ′1 (7) and T1[ρ′1] ≺v1
σ′1 (8). Similarly, there exists ρ′2 such that ρ ≺w2

ρ′2 (9)
and T2[ρ′2] ≺v2 σ

′
2 (10). To establish (4), it remains to build a single ρ′ that satisfies

ρ ≺w ρ′ (11), T1[ρ′] ≺v1 σ
′
1 (12) and T2[ρ′] ≺v2 σ

′
2 (13), simultaneously. We reason

by case analysis on w1 and w2 (restricted to the cases where the zip exists).

If both w1 and w2 are (on), we take either ρ′1 or ρ′2 for: since w is on, we (11) trivially
holds; Furthermore, T [ρ′] = T [ρ′1] = T [ρ′2] by irrelevance of vi and (1); therefore
(12) and (13) follow from (8) and (10).

If only one of the wi is (on), we’ll suppose that it is w1. We then take ρ2 for ρ′. Since
on1 & w2 is w2, (11) follows from (9); Furthermore, T [ρ′] = T [ρ′1] by irrelevance of

11The idea of context merging and the term “zipping” are inspired by Montagu and Remy [MR09]

RT n° 8114

GADT meet subtyping 20

sc-Triv
v ≥ v′ Γ ` τ : v

Γ ` τ : v ⇒ v′

sc-Var
wα ∈ Γ w = v

Γ ` α : v ⇒ v′

sc-Constr
Γ ` type wα t : v-closed Γ = &i Γi ∀i, Γi ` σi : v.wi ⇒ v′.wi

Γ ` σ t : v ⇒ v′

Figure 3: Syntactic decomposablity

v1 and (1) while T2[ρ′] = T2[ρ′2] holds by construction; Hence, as in the previous
case, (12) and (13) follow from (8) and (10).

Finally, if both w1 and w2 are (=), then (7) and (9) implies ρ′1 = ρ = ρ′2. We take
ρ for ρ′ and all three conditions are obviously satisfied.

This lemma admits a kind of converse lemma stating completeness of zipping, that
says that if Γ (Ti : vi v′i)i holds, then Γ is indeed related to a zip of contexts
(Γi)i that pairwise decompose each of the (Ti)i. However, the proof of completeness
is more delicate and we prove it separately in §3.5.

3.4 Syntactic decomposability

Equipped with the zipping operation, we introduce a judgment Γ ` τ : v ⇒ v′ to
express decomposability, syntactically, defined by the inference rules on Figure 3.

We rely on the zip soundness (Lemma 5) to merge sub-derivations into larger
ones, so in addition to decomposability, the judgments simultaneously ensures that
v is a correct variance for τ under Γ. Actually, in order to understand the details
of this judgment, it is quite instructive to compare it with the variance-checking
judgment Γ ` τ : v defined on Figure 2.

Rule sc-Var is very similar to vc-Var, except that the condition w ≥ v is
replaced by a stronger equality w = v. The reason why the variance-checking judg-
ment has an inequality w ≥ v is to make it monotonous in the environment—as
requested by its corresponding semantics criterion (Definition 2). Therefore, the
condition w ≥ v is necessary for completeness—and admissible. On the contrary,
the present judgment ensures, according the semantic criterion (Definition 5), that
both the variance is correct (monotonous in the environment) and the type is de-
composable, a property which is anti-monotonic in the environment (Lemma 4).
Therefore, the semantics criterion JΓ ` τ : v ⇒ v′K is invariant in Γ and, corre-
spondingly, the variable rule must use a strict equality.

The most interesting rule is sc-Constr. It checks first that the head type con-
structor is v-closed (according to Definition 1); then, it checks each subtype for
decomposability from v to v′ with compatible witnesses, that is, in an environment
family Γi that can be zipped into a unique environment Γ.

In order to connect the syntactic and semantics versions of decomposability, we
define the interpretation JΓ ` τ : v ⇒ v′K of syntactic decomposability.

Definition 5 (Interpretation of syntactic decomposability)
We write JΓ ` τ : v ⇒ v′K for the conjunction of properties JΓ ` τ : vK and
Γ τ : v v′.

Note that our interpretation Γ ` τ : v ⇒ v′ does not coincide with our previous
decomposability formula Γ τ : v v′, because of the additional variance-checking
hypothesis that makes it composable. The distinction between those two notions of
decomposition is not useful to have a sound criterion, but is crucial to be complete

RT n° 8114

GADT meet subtyping 21

with respect to the criterion of Simonet and Pottier, which imposes no variance
checking condition.

Lemma 6 (Soundness of syntactic decomposability)
If the judgment Γ ` τ : v ⇒ v′ holds, then JΓ ` τ : v ⇒ v′K is holds.

Proof: The proof is by induction on the derivation Γ ` τ : v ⇒ v′ (1). Expanding
JΓ ` τ : v ⇒ v′K, we must show both JΓ ` τ : vK, or equivalently Γ ` τ : v (2) and
Γ τ : v v′ (3), which itself expands to:

∀(ρ : Γ), σ′, σ[ρ] ≺v σ′ =⇒ ∃(ρ′ : Γ), ρ ≺Γ ρ
′ ∧ σ[ρ′] ≺v′ σ′

Let ρ, τ ′ be such that τ [ρ] ≺v τ ′. We must exhibit a sequence ρ′ such that ρ ≺Γ

ρ′ (4) and τ [ρ′] ≺v′ τ ′ (5). Cases where the derivation of (1) ends with sc-Triv and
sc-Var cases are direct: take ρ and (. . . , σ′, . . .) for ρ′, respectively.

In the remaining cases, the derivation ends with Rule sc-Constr and τ is of the
form σ t.

• The v-closure assumption of the left premise ensures that τ ′ is itself of the
form σ′ t for some sequence of closed types σ′. By inversion on the variance
wα of the head constructor t, we deduce σi[ρ] ≺v.wi

σ′i for all i (6).

• The middle premise is the zipping assumption on the contexts Γ = &i∈I Γi (7).

• The right premises gives us subderivations Γi ` σi : v.wi ⇒ v′.wi. This implies
Γi ` σi : v.wi, for all i, which implies Γ ` σ t : v, i.e. (2). By induction
hypothesis, this also implies Γi ` σi : v.wi (8) and Γi σi : v.wi ⇒ v′.wi for
all i (9).

We may now apply zip soundness (Lemma 5) with hypotheses (7), (8) and (9), which
gives us the simultaneous decomposition Γ (σ′i : v.wi v′.wi)i∈I . Expanding
this property (Definition 4), we may apply to (6) to get to get a witness ρ′ such
that both ρ′ ≺Γ ρ, i.e. our first goal (4), and (∀i ∈ I, σi[ρ′] ≺v′.wi σ

′
i), which implies

(σ t)[ρ′] ≺v′ σ′ t, i.e. our second goal (5).

Completeness is the general case is however much more difficult and we only
prove it when the right-hand side variance v′ is (=). In other words, we take back
the generality that we have introduced in §3.1 when defining decomposability. The
proof requires several auxiliary lemmas; it is the subject of the next subsection.

3.5 Completeness of syntactic decomposability

We first show a few auxiliary results that will serve in the proof of zip completeness,
and later, to reconnect our closure-checking criterion (Definition 5) with the full
criterion of Simonet and Pottier (req-SP).

Lemma 7 (Intermediate value) Let τ [α] be a type expression and ρ1, ρ2, ρ3

three type families such that τ [ρ1] ≤ τ [ρ2] ≤ τ [ρ3] and ρ1 ≺Γ ρ3 holds for some Γ.
Then, there exists a type family ρ′2 such that both ρ1 ≺Γ ρ

′
2 ≺Γ ρ3 and τ [ρ′2] = τ [ρ2]

hold.

Proof: We reuse the notations of the definition and assume τ [ρ1] ≤ τ [ρ2] ≤ τ [ρ3] (1)
and ρ1 ≺Γ ρ3 (2). We just have to exhibit ρ′2 such that both ρ1 ≺Γ ρ′2 ≺Γ ρ3(3)
and τ [ρ′2] = τ [ρ2] (4) hold. Let ∆ be the most general variance of τ , i.e. the lowest
context such that ∆ ` τ : + (5) holds. By principal inversion (Corollary 2) applied
to (1) twice thanks to (5), we have ρ1 ≺∆ ρ2 ≺∆ ρ3 (6).

RT n° 8114

GADT meet subtyping 22

If ∆ ≥ Γ, the result is immediate, as ρ1 ≺Γ ρ2 ≺Γ ρ3 follows from (6) by anti-
monotonicity and both (3) and (4) hold when we take ρ2 for ρ′2. Otherwise, we
reason on each variable of the context Γ independently. We may assume, w.l.o.g.,
that τ is defined over a single free variable α, and Γ and ∆ are single variances
v∆, vΓ with v∆ � vΓ. We reason by case analysis on the possible variances for
(v∆, vΓ), which are {(,=), (+,−), (−,+), (on,)}.
If vΓ is (=), the hypotheses (2) and (1) become ρ1 = ρ3 and τ [ρ1] ≤ τ [ρ2] ≤ τ [ρ1],
which implies τ [ρ1] = τ [ρ2]. Thus, taking ρ1 for ρ′2 satisfies (3) and (4).

If v∆ is (on), then by irrelevant of on and (5), we have τ [ρ1] = τ [ρ2]. Thus, taking
ρ1 for ρ′2 satisfies (3) and (4), as above.

Finally, the cases (+,−) and (−,+) are symmetric and we will only work out the
first one, i.e. v∆ is (+) and vΓ is (−). From τ [ρ1] ≤ τ [ρ3] (which follows from (1)
by transitivity) and (5), we have ρ1 ≺v∆

ρ3, i.e. ρ1 ≤ ρ3. Since the hypothesis (2)
becomes ρ1 ≥ ρ3, we have ρ1 = ρ3 . Then, taking ρ1 for ρ′2, (3) trivially holds while
(4) follows from (1).

The next lemma connects the monotonicity of the variance-checking judgment
(checking variance at a lower context provides more information, and is therefore
harder) and the anti-monotonicity of the decomposability formula (decomposing to
a higher context provides more information, and is therefore harder): for a fixed
type expression, the contexts at which you can check variance are higher than the
contexts at which you can decompose. This property, however, only holds for non-
trivial decomposability results (otherwise any context can decompose): we must
decompose from a v to a v′ that do not verify v ≥ v′, and no variable of the typing
context must be irrelevant.

Lemma 8 Let τ [α] be a type and v and v′ be variances such that v � v′. If
Γ τ : v v′ and ∆ is the most general context such that ∆ ` τ : v, then, for each
non-irrelevant variable α of ∆, we have Γ(α) ≤ ∆(α).

Proof: We show that the Γ is lower than the lowest possible ∆, i.e. it is the most
general context such that ∆ ` τ : v holds. Without loss of generality, we consider
the case where τ has a single, non-irrelevant variable α, and Γ and ∆ are singleton
contexts over a single variance, respectively wΓ and w∆, with w∆ 6= (on).

Therefore, we assume (wΓα) τ : v v′ (1) and (w∆α) ` τ : v (2). We prove that
wΓ ≤ w∆. We actually show that for any ρ1, ρ2 such that ρ1 ≺∆ ρ2 we also have
ρ1 ≺Γ ρ2 (3).

From ρ1 ≺Γ ρ2, we can deduce τ [ρ1] ≺v τ [ρ2] (4). Applying (1), we get a ρ′ such
that ρ1 ≺Γ ρ

′ (5) and τ [ρ′] ≺v′ τ [ρ2] (6). We then reason by case analysis on v � v′,
considering the different cases {(on,), (+,−), (−,+), (,=)}.
If v is (on), the most general w∆ is on, a case we explicitly ruled out: there is nothing
to prove.

If v′ is (=), then (6) implies τ [ρ′] = τ [ρ2], and in particular ρ′ = ρ2; our goal (3)
follows from (5).

If (v, v′) is (+,−) (we won’t repeat the symmetric case (−,+)), then (4) and (6)
becomes τ [ρ1] ≤ τ [ρ2] and τ [ρ2] ≤ τ [ρ′]. Given (5), the intermediate value lemma
(Lemma 7) ensures the existence of a ρ′′ such that ρ ≺Γ ρ

′′ ≺Γ ρ
′ and τ [ρ′′] = τ [ρ2].

From there, we deduce ρ′′ = ρ2, our goal (3) follows from (5), as in the previous
case.

Finally, the following auxiliary lemmas will be useful in the proof of complete-
ness.

RT n° 8114

GADT meet subtyping 23

Lemma 9 If the principal variance w such that (wα) ` τ [α] : v holds is not the
irrelevant variance on, then τ [ρ1] = τ [ρ2] implies ρ1 = ρ2.

Proof: Whatever v is, τ [ρ1] = τ [ρ2] implies both τ [ρ1] ≺v τ [ρ2] and its converse
τ [ρ2] ≺v τ [ρ1]. This holds in particular for the principal variance w such that
(wα) ` τ [α] : v. Moreover, by principal inversion (Corrolary 2) applied twice, we
have both ρ1 ≺w ρ2 and ρ2 ≺w ρ1. If w is distinct from on this implies ρ1 = ρ2.

Lemma 10 If Γ τ : v (=) holds for some Γ, and ∆ is the most general context
such that ∆ ` τ : v holds, then ∆ τ : v (=) also hold.

Proof: Assume Γ τ : v (=), i.e.

∀ρσ′, τ [ρ] ≺v σ′ =⇒ ∃ρ′, ρ ≺Γ ρ
′ ∧ τ [ρ′] = σ′ (1)

Assume that ∆ is principal for ∆ ` τ : v (2). We show ∆ τ : v (=), i.e.

∀ρσ′, τ [ρ] ≺v σ′ =⇒ ∃ρ′, ρ ≺∆ ρ′ ∧ τ [ρ′] = σ′ (3)

Let ρ, σ′ be such that have τ [ρ] ≺v σ′ (4). By (1), there exists ρ′ such that
τ [ρ′] = σ′ (5). To prove (3), it only remains to prove that ρ ≺∆ ρ′ (6). Given (5),
the inequality (4) becomes τ [ρ] ≺v τ [ρ′] (7). Then (6) follows by principal inversion
(Corrolary 2) applied to (7), given (2).

Lemma 11 Let ∆ be the most general context such that ∆ ` τ : v holds. If v is
(=), then only variances (=) or (on) may appear in ∆. If v is on, then only (on) may
appear in ∆.

Proof: If v is (on), the context Γ with all variances set to on satifies Γ ` τ : v (as
JΓ ` τ : vK holds). By principality we have ∆ ≤ Γ, so ∆ also has only irrelevant
variances as (on) is the minimal variance.

If v is (=), we handle each variable of the context independently, that is we can
assume, w.l.o.g., that τ has only one variable α. So ∆ is of the form (wα) and we
know that for any ρ, ρ′ such that ρ ≺w ρ′ we have τ [ρ] = τ [ρ′] (1). If w is not (on),
by lemma 9 applied to (1), we have ρ = ρ′ for any ρ ≺w ρ′, which means that w is
(=). Summing up, we have shown that w is either (on) or (=). Reasoning similarly
in the general case, any variance w of ∆ is either (on) or (=).

We can now prove the converse of the zip soundness (Lemma 5) that is the core of
the future proof of completeness of the decomposability judgment Γ ` τ : v ⇒ (=).

Theorem 2 (Zip completeness) Given any context Γ, a family of type expres-
sions (Ti[σ])i∈I and a family of variances (vi)i∈I , if the simultaneous decomposition
Γ (Ti : vi (=))i∈I holds, then there exists a family of contexts (Γi)i∈I such that
Γ ≤ &i∈I Γi and both Γi ` Ti : vi and Γi Ti : vi (=) hold for all i.

If furthermore Γ ` Ti : vi holds for all i, then &i∈I Γi is precisely Γ.

Proof: Let us assume the simultaneous decomposition Γ (Ti : vi (=))i∈I , which
expands to:

∀σ′, ρ, (∀i, Ti[ρ] ≺vi σ′i) =⇒ ∃ρ′, ρ ≺Γ ρ
′ ∧ (∀i, Ti[ρ′] = σ′i) (1)

RT n° 8114

GADT meet subtyping 24

We construct a family of contexts (Γi)i∈I such that the following holds:

Γ ≤ &
i

Γi∈I (2) ∀i, Γi ` Ti : vi (3) ∀i,Γi Ti : vi (=) (4)

where (4) is equivalent to

∀i, ∀σ′i, ρ,
(
Ti[ρ] ≺vi σ′i =⇒ ∃ρ′, ρ ≺Γi ρ

′ ∧ Ti[ρ′] = σ′i
)

(5)

The first step is to move from the entailment (1) of the form ∀ρ, (∀i ∈ I, . . .) =⇒
(∃ρ′, (∀i ∈ I, . . .)) to the weaker form (∀i ∈ I, ∀ρ, . . . =⇒ ∃ρ′, . . .), but closer to
(5). More precisely, we show that

∀i, ∀σ′i, ρ,
(
Ti[ρ] ≺vi σ′i =⇒ ∃ρ′, ρ ≺Γ ρ

′ ∧ Ti[ρ′] = σ′i
)

(6)

that is, ∀i,Γ Ti : vi (=) (7). Let i, σ′i, and ρ be such that Ti[ρ] ≺vi σ′i (8). We
show that there exists a ρ′ such that Ti[ρ] = σ′i (9) and ρ ≺Γ ρ

′ (10). Let us extend
our type σ′i to a family σ′, defined by taking σ′j equal to Tj [ρ] for j in I \ {i}. By
construction, we have (∀j ∈ I, Tj [ρ] ≺vj σ′j). Therefore, we may apply (1) to get a
ρ′ such that ρ ≺Γ ρ

′, i.e. our first goal (10), and (∀j, Tj [ρ′] = σ′i), which implies our
second goal (9) when j is i. This proves (6).

We now prove that we can refine this to have ρ ≺Γi
ρ′ for (Γi)i∈I such that Γ ≤ &i Γi.

Let ∆1 and ∆2 be the most general contexts such both that ∆1 ` T1 : v1 and
∆2 ` T2 : v2 hold (11). Let (2)’, (3)’, and (4)’ be obtained by replacing Γi’s by ∆i’s
in our three goals (2), (3), and (4). In fact (3)’ is just (11). By Lemma 10 applied
to (7) twice, given (11), we have both ∆1 T1 : v1 (=) and ∆2 T2 : v2 (=),
that is, (4).

Hence ∆1 and ∆2 are correct choices for Γ1 and Γ2 if they also satisfy the goal (2)’,
i.e. ∆1 & ∆2 ≥ Γ. We now study when remaining goal (2)’ holds and, when it does
not, propose a different choice for Γ1 and Γ2 that respect all three goals.

W.l.o.g., we assume that I is reduced to {1, 2} and that there is only one free
variable β in T1, T2. Since we focus on a single variable of the context we name
w1 and w2 the variances of β in ∆1 and ∆2, respectively. We now reason by case
analysis on the variances w1 and w2.

If both of them are on, we have ∆1 & ∆2 = (onβ), so we do not necessarily have
Γ ≤ ∆1 & ∆2. Instead, we make a different choice for G2. Namely, we pick Γ
for Γ2 and keep ∆1 for Γ1. As ∆2 is on we have ∆2 ≤ Γ2, so by monotonicity of
the variance checking judgment we have Γ2 ` T2 : v2 from (11), and we still have
Γ2 T2 : v2 (=) from (7). Hence (3) and (4) are reestablished. Finally, we have
Γ1 & Γ2 = Γ, so in particular Γ ≤ Γ1 & Γ2, i.e. (2).

If only one of the wi is on, we may assume, w.l.o.g., that it is w1. Then ∆1 & ∆2 is ∆2

and we only need to show that Γ ≤ ∆2 (12). From (7), we have Γ T2 : v2 ⇒ (=).
We then make a case analysis on v2: if v2 is not (=), then by since ∆2 is most
general and w2 6= on, we may apply Lemma 8 to get (12); Otherwise, v2 is (=);
Lemma 11 applied to (11) implies that ∆2 is itself (=β), and (12) trivially holds.

Finally, if none of the wi is on, we first prove that they are both (=). In fact, we only
prove that w1 is (=) (13), as the other case follows by symmetry. To prove (13),
we assume that ρ′′ be such that ρ ≺w1

ρ′′ and we show that ρ = ρ′′ (14) holds.
By (11), we have T1[ρ] ≺v1 T1[ρ′′]. By reflexivity, we have T2[ρ] ≺v2 T2[ρ]. We can
use those two inequalities to invoke our simultaneous decomposability hypothesis (1)
with T1[ρ′′] for σ′1 and T2[ρ] for σ′2 to get a ρ′ such that both T1[ρ′] = T1[ρ′′] and
T2[ρ′] = T2[ρ] hold. By Lemma 9 applied with (11), this implies both ρ′ = ρ′′ and
ρ′ = ρ, and therefore (14).

RT n° 8114

GADT meet subtyping 25

Therefore, the only remaining case is when w1 and w2 are both (=). Then ∆1 & ∆2

is (=β), which is the highest single-variable context. So our goal (2)’ trivially holds.

Of these several cases, one (on,on) has Γ1 & Γ2 = Γ directly, and in the others
Γ1 and Γ2 were defined as the most general contexts such that Γ1 ` T1 : v1 and
Γ2 ` T2 : v2. If we add the further hypothesis that for each i, Γ ` Ti : vi holds, then
by principality of the Γi, we have that Γi ≤ Γ for each i. This implies that we have
(&i∈I Γi) ≤ Γ (when it is defined, & coincides with the lowest upper bound ∧). By
combination with (2), we get (&i∈I Γi) = Γ.

Lemma 12 (Completeness of syntactic decomposability)
If JΓ ` τ : v ⇒ v′K holds for v′ ∈ {=,on}, then Γ ` τ : v ⇒ v′ is provable.

Proof: Assume JΓ ` τ : v ⇒ v′K holds for v′ ∈ {=,on}, i.e. Γ ` τ : v (1) and
Γ τ : v v′ (2), which expands to

∀(ρ : Γ), τ ′, τ [ρ] ≺v τ ′ =⇒ ∃(ρ′ : Γ), ρ ≺Γ ρ
′ ∧ τ [ρ′] ≺v′ τ ′ (3)

We show Γ ` τ : v ⇒ v′ (4) by structural induction on τ

If v ≥ v′ holds, then (4) directly follows from Rule sc-Triv. This applies in partic-
ular when v′ = on. Hence, we only need to consider the remaining cases where v′ is
(=) and v 6≥ v′

We now reason by cases on τ .

Case τ is a variable α. (3) becomes

∀ρ, τ ′, ρ ≺v τ ′ =⇒ ∃ρ′, ρ ≺Γ ρ
′ ∧ ρ′ = τ ′

This means that if ρ ≺v τ ′ holds then ρ ≺Γ τ ′ also holds: the variance wα ∈ Γ
satisfies v ≥ w. Since, the hypothesis (1) implies v ≤ w, we have v = w. Therefore,
(4) follows by Rule sc-Var.

Case τ is of the form σ t. By inversion, the derivation of (1) must end with rule
vc-Constr, hence we have Γ ` σi : v.wi (5) for each i ∈ I with Γ ` type wα t (6).

Let us show that Γ (σi : v.wi =.wi)i∈I (7), i.e.

∀ρ, σ′, (∀i ∈ I, σi[ρ] ≺vi σ′i) =⇒ ∃ρ′, ρ ≺Γ ρ
′ ∧ (∀i ∈ I, σi[ρ′] ≺v′i σ

′
i)

Let ρ and σ′ be such that σi[ρ] ≺vi σ′i holds for all i in I. From this and (5), we
have (σ t)[ρ] ≺v σ′ t. By applitcation of (2), there exists ρ′ such that ρ ≺Γ ρ

′ and
(σ t)[ρ′] ≺= σ′ t. By inversion of subtyping , this implies σi[ρ

′] ≺=.wi
σ′i, for all i

in I. This proves (7). We also note that the constructor t is v-closed (8).

To prove our goal (4), we construct a family (Γi)i∈I of contexts that satisfies
&i∈I Γi = Γ (9) and subderivations Γi ` σi : v.wi ⇒ =.wi (10), since then the
conclusion (4) follows by an application of rule sc-Constr with (6), (9), and (10).

We will handle separately the arguments σj that are irrelevant, i.e. when wj is on,
from the rest. Let Ion be the set of indices with irrelevant variances and I6on the
others.

For any i ∈ Ion, v.wi and =.wi are both on so the condition (10), which becomes
Γi ` σi : on ⇒ on, is void of content (σi[ρ] ≺on σ′i =⇒ ∃ρ′, σi[ρ′] ≺on σ′i is
always true). More precisely, let Γi be the irrelevant context having only irrelevant
variances. Then (10) follows by Rule sc-Triv.

Since the decomposability constraints for i ∈ Ion such that wi = on are trivial, (7)
is equivalent to Γ (σi : v.wi =.wi)i∈I 6on (11).

RT n° 8114

GADT meet subtyping 26

For each i ∈ I 6on, (=.wi) equals (=), so (11) becomes Γ (σi : v.wi (=))i∈I 6on . By
zip completeness (Theorem 2), there is a family (Γi)i∈I 6on such that Γ ≤ &i∈I 6on Γi
and both Γi ` σi : v.wi and Γi σi : v.wi (=), i.e. JΓi ` σi : v.wi ⇒ (=)K (12)
hold for any i ∈ I6on, Furthermore, since we also have (5), we can strengthen our
result into &i∈I 6on Γi = Γ. By induction hypothesis applied to (12), we have (10) for
i ∈ I6on.

We have two families of contexts over domains Ion and I6on that partition I; we can
union them in a family (Γi)i∈I that has subderivations ∀i ∈ I,Γi ` σi : v.wi ⇒ v′.wi.
As the contexts in Ion are all irrelevant, they are neutral for the zipping operation:
&i∈I Γi is equal to &i∈I 6on Γi, that is Γ. This proves (9) while (10) has already been
proved separately for i ∈ Ion and i ∈ I6on.

Remark 1 (Note (8)) The head constructor t is closed in our system with atomic
subtyping, but the situation is in fact a bit stronger than that: the statement of v-
closure of α t can be formulated in term of decomposability Γ α t : v (=).
It is very close from our decomposability hypothesis Γ σ t : v (=), but uses
variables α instead of full type expressions σ. We conjecture that the decomposability
hypothesis (with = on the right) implies v-closure in a much larger set of subtyping
systems that just atomic subtyping: it suffices that the subtyping relation is defined
only in term of head constructors.

3.6 Back to the correctness criterion

Remember the correctness criterion req-SP of Simonet and Pottier:

∀σ, σ′, ρ, (σ t ≤ σ′ t ∧D[σ, ρ] =⇒ ∃ρ′, D[σ′, ρ′] ∧ τ [ρ] ≤ τ [ρ′]) (1)

We now show how the closure judgment Γ ` τ : v ⇒ v′ can be used to verify that
this criterion holds: we will express this criterion in an equivalent form that uses
the interpretation of our judgments.

The first step is to rewrite the property σ t ≤ σ′ t using the variance annotation
vα of t. Again, we are taking the variance annotation for the datatype t as granted
(this is why we can use it in this reasoning step), and checking that the definitions
of the constructors of t are sound with respect to this annotation.

∀σ, σ′, ρ, ((∀i, σi ≺vi σ′i) ∧D[σ, ρ] =⇒ ∃ρ′, D[σ′, ρ′] ∧ τ [ρ] ≤ τ [ρ′]) (2)

Since, the constraint D[α, β] is a set of equalities of the form αi = Ti[β] (where Ti
is a type), (2) is actually:

∀σ, σ′, ρ, (∀i, σi ≺vi σ′i) ∧ (∀i, σi = Ti[ρ]) =⇒ ∃ρ′, (∀i, Ti[ρ′] = σ′i) ∧ τ [ρ] ≤ τ [ρ′]

Substituting the equalities and, in particular, removing the quantification on the σ,
which are fully determined by the equality constraints σ = T [ρ], we get:

∀σ′, ρ, (∀i, Ti[ρ] ≺vi σ′i) =⇒ ∃ρ′, (∀i, Ti[ρ′] = σ′i) ∧ τ [ρ] ≤ τ [ρ′] (3)

By inversion (Theorem 1), we may replace the goal τ [ρ] ≤ τ [ρ′] by the formula
∃Γ, (Γ ` τ : +) ∧ (ρ ≺Γ ρ′). Moreover, since Γ ` τ : + always for for some Γ, we
may move this quantification in front. Hence, (3) is equivalent to:

∃Γ,
∧{

Γ ` τ : +

∀σ′, ρ, (∀i, Ti[ρ] ≺vi σ′i) =⇒ ∃ρ′, (∀i, Ti[ρ′] = σ′i) ∧ ρ ≺Γ ρ
′ (4)

We may recognize in second clause the simultaneous decomposability judgment
(Definition 3) Γ ` (Ti : vi =)i∈I . Hence, (4) is in fact:

∃Γ, Γ ` τ : + ∧ Γ ` (Ti : vi =)i∈I (5)

RT n° 8114

GADT meet subtyping 27

Then, comes the delicate step of this series of equivalent rewriting:

∃Γ, (Γi)i∈I ,
∧{

Γ ` τ : +

Γ = &i∈I Γi ∧ ∀i,
(
Γi ` Ti : vi ∧ Γi ` Ti : vi =

) (6)

The reverse imiplication from (6) to (5) is is the zip soundness (Lemma 5).
The direct implication, from (5) to (6) is more involved: let Γ0 be such that

Γ0 ` τ : +. By zip completeness (Theorem 2), with the hypotheses of (4), there
exists a family (Γi)i∈I satisfying the typing, zipping and decomposability of second
line of (6) with Γ0 ≤ &i∈I Γi. We take &i∈I Γi for Γ. Then, from Γ0 ≤ Γ we get
Γ ` τ : + by monotonicity (Lemma 2).

As a last step, the last conjuncts of (6) are equivalent to ∀i, Γi ` Ti : vi ⇒ (=)
by interpretation of syntactic decomposability (Definition 5) and soundness and
completeness of zipping (lemmas 6 and 12). Therefore, (6) is equivalent to:

∃Γ, (Γi)i∈I , Γ ` τ : (+) ∧ Γ = &
i∈I

Γi ∧ ∀i ∈ I, Γi ` Ti : vi ⇒ (=) (7)

which is our final criterion.

Pragmatic evaluation of this criterion This presentation of the correctness
criterion only relies on syntactic judgments. It is pragmatic in the sense that it
suggests a simple and direct implementation, as a generalization of the check cur-
rently implemented in type system engines — which are only concerned with the
Γ ` τ : + part.

To compute the contexts Γ and (Γi)i∈I existentially quantified in this formula,
one can use a variant of our syntactic judgments where the environment Γ is not an
input, but an output of the judgment; in fact, one should return for each variable
α the set of possible variances for this judgment to hold. For example, the query
(? ` α ∗ β ref : +) should return (α 7→ {+,=};β 7→ {=}). Defining those algorith-
mic variants of the judgments is routine, and we have not done it here. The sets of
variances corresponding to the decomposability of the (Ti)i∈I (? ` Ti : vi ⇒ (=))
should be zipped together and intersected with the possibles variances for τ , re-
turned by (? ` τ : +). The algorithmic criterion is satisfied if and only if the
intersection is not empty; this can be decided in a simple and efficient way.

4 Closed-world vs. open-world subtyping

4.1 Upward and downward closure in a ML type system

In the type system we have used so far, all types are both upward and downward-
closed. Indeed, thanks to the simplicity of our subtyping relation, we have a very
strong inversion principle: two ground types in a subtyping relation necessarily
have exactly the same structure. We have therefore completely determined a sound
variance check for a simple type system with GADT.

This simple resolution, however, does not hold in general: richer subtyping
relations will have weaker invertibility properties. As soon as a bottom type ⊥ is
introduced, for example, such that that for all type σ we have ⊥ ≤ σ, downward-
closure fails for most types. For example, products are no longer downward-closed:
Γ ` σ ∗τ ≥ ⊥ does not imply that ⊥ is equal to some σ′ ∗τ ′. Conversely, if one adds
a top type >, bigger than all other types, then most type are not upward-closed
anymore.

RT n° 8114

GADT meet subtyping 28

In OCaml, there is no ⊥ or > type12. However, object types and polymorphic
variant have subtyping, so they are, in general, neither upward nor downward-closed.
Finally, subtyping is also used in private type definitions, that were demonstrated
in the example.

Our closure-checking relation therefore degenerates into the following, quite un-
satisfying, picture:

• no type is downward-closed because of the existence of private types;

• no object type but the empty object type is upward-closed;

• no arrow type is upward-closed because its left-hand-side would need to be
downward-closed;

• datatypes are upward-closed if their components types are.

From a pragmatic point of view, the situation is not so bad; as our main prac-
tical motivation for finer variance checks is the relaxed value restriction, we care
about upward-closure (covariance) more than downward-closure (contravariance).
This criterion tells us that covariant parameters can be instantiated with covariant
datatypes defined from sum and product types (but no arrow), which would satisfy
a reasonably large set of use cases.

4.2 A better control on upward and downward-closure

As explained in the introduction, the problem with the upward and downward
closure properties is that they are not monotonic: enriching the subtyping lattice of
our type system does not preserve them. While the core language has a nice variance
check for GADT, adding private types in particular destroys the downward-closure
property of the whole type system.

Our proposed solution to this tension is to give the user the choice to locally
strengthen negative knowledge about the subtyping relation by abandoning some
flexibility. Just as object-oriented languages have a concept of final classes that
cannot be extended, we would like to allow to define downward-closed datatypes,
whose private counterparts cannot be declared, and upward-closed datatypes that
cannot be made invisible: defining type t = private τ would be rejected by the
type-checker if τ was itself declared downward-closed.

Such “closure specifications” are part of the semantic properties of a type and
would, as such, sometimes need to be exposed through module boundaries. It is
important that the specification language for abstract types allow to say that a type
is upward-closed (respectively downward-closed). These new ways to classify types
raise some software engineering questions. When is it desirable to define types as
upward-closed? The user must balance its ability to define semi-abstract version
of the type against its use in a GADT—and potentially other type-system features
that would make use of negative reasoning on the subtyping relation. We do not
yet know how to answer this question and believe that more practice is necessary
to get a clearer picture of the trade-off involved.

4.3 Subtyping constraints and variance assignment

We will now revisit our previous example, using the guarded existential notation:

12A bottom type would be admissible, but a top type would be unsound in OCaml, as different
types may have different runtime representations. Existential types, that may mix values of
different types, are constructed explicitly through a boxing step.

RT n° 8114

GADT meet subtyping 29

type α expr =

| Val of ∃β[α = β]. β
| Int of [α = int]. int
| Thunk of ∃βγ[α = γ]. β expr ∗ (β → γ)
| Prod of ∃βγ[α = β ∗ γ]. β expr ∗ γ expr

A simple way to get such a type to be covariant would be, instead of proving delicate,
non-monotonic upward-closure properties on the tuple type involved in the equation
α = β ∗γ, to change this definition so that the resulting type is obviously covariant:

type +α expr =

| Val of ∃β[α ≥ β]. β
| Int of [α ≥ int]. int
| Thunk of ∃βγ[α ≥ γ]. β expr ∗ (β → γ)
| Prod of ∃βγ[α ≥ β ∗ γ]. β expr ∗ γ expr

We have turned each equality constraint α = T [β] into a subtyping constraint
α ≥ T [β]. For a type α′ such that α ≤ α′, we get by transitivity that α′ ≥ T [β].
This means that α expr trivially satisfies the correctness criterion from Simonet
and Pottier. Formally, instead of checking Γ ` Ti : vi ⇒ (=), we are now checking
Γ ` Ti : vi ⇒ (+), which is significantly easier to satisfy13: when vi is itself + we
can directly apply the sc-Triv rule.

While we now have a different datatype, which gives us a weaker subtyping
assumption when pattern-matching, we are still able to write the classic function
eval : α expr→ α, because the constraints α ≥ τ are in the right direction to get
an α as a result.

let rec eval : α expr→ α = function

| Val β (v : β) -> (v :> α)
| Int (n : int) -> (n :> α)
| Thunk βγ ((v : β expr), (f : β → γ)) ->

(f (eval v) :> α)
| Prod β γ ((b : β expr), (c : γ expr)) ->

((eval b, eval c) :> α)

We conjecture that moving from an equality constraint on the GADT type pa-
rameters to a subtyping constraint (bigger than, or smaller than, according to the
desired variance for the parameter) is often unproblematic in practice. In the exam-
ples we have studied, such a change did not stop functions from type-checking—we
only needed to add some explicit coercions.

However, allowing subtyping constraints in GADT has some disadvantages. If
the language requires subtyping casts to be explicit, this would make pattern match-
ing of GADT syntactically heavier than with current GADT where equalities con-
straints are used implicitly. This is related to practical implementation questions,
as languages based on inference by unification tend to favor equality over subtyping,
bidirectional coercions over unidirectional ones. Subtyping constraints need also be
explicit in the type declaration, forcing the user out of the convenient “generalized
codomain type” syntax.

From a theoretical standpoint, we think there is value in exploring both direc-
tions: experimenting with GADT using subtyping constraints, and with fine-grained
closure properties for equality constraints. Both designs allow to reason in an open
world setting, by being resilient to extensions of the subtyping relation. Whether
it is possible to expose those features to the expert language user (e.g. library

13 Note that the formal proofs of the precedent section were, in some cases, specialized to the
equality constraint. More precisely, our decomposability criterion is still sound when extended to
arbitrary subtyping constraints, but its completeness is unknown and left to future work.

RT n° 8114

GADT meet subtyping 30

designers) without forcing all users to pay the complexity burden remains to be
seen.

5 Future Work

Extension of the formal exposition to non-atomic subtyping As remarked
in §2.1 during the definition of our formal subtyping relation, the soundness proof
of Simonet and Pottier is restricted to atomic subtyping. We conjecture that their
work can be extended to non-atomic subtyping, and furthermore that our results
would extend seamlessly in this setting, thanks to our explicit use of the v-closure
hypothesis.

On the relaxed value restriction Regarding the relaxed value restriction,
which is our initial practical motivation to investigate variance in presence of GADT,
there is also future work to be done to verify that it is indeed compatible with this
refined notion of variance. While the syntactic proof of soundness of the relaxation
doesn’t involve subtyping directly, the “informal justification” for value restriction
uses the admissibility of a global bottom type ⊥ to generalize a covariant unification
variable; in presence of downward-closed type, there is no such general ⊥ type (only
one for non-downward-closed types). We conjecture that the relaxed value restric-
tion is still sound in this case, because the covariance criterion is really used to rule
out mutable state rather than subtype from a ⊥ type; but it will be necessary to
study the relaxation justification in more details to formally establish this result.

Experiments with v-closure of type constructors as a new semantic prop-
erty In a language with non-atomic subtyping such as OCaml, we need to distin-
guish v-closed and non-v-closed type constructors. This is a new semantic property
that, in particular, must be reflected through abstraction boundaries: we should be
able to say about an abstract type that it is v-closed, or not say anything.

How inconvenient in practice is the need to expose those properties to have
good variance for GADT? Will the users be able to determine whether they want
to enforce v-closure for a particular type they are defining?

Experiments with subtyping constraints in GADT In §4.3, we have pre-
sented a different way to define GADT with weaker constraints (simple subtyping
instead of equality) and stronger variance properties. It is interesting to note that,
for the few GADT examples we have considered, using subtyping constraints rather
than equality constraints was sufficient for the desired applications of the GADT.

However, there are cases were the strong equality relying on fine-grained closure
properties is required. We need to consider more examples of both cases to evalu-
ate the expressiveness trade-off in, for example, deciding to add only one of these
solutions to an existing type system.

On the implementation side, we suspect that adding subtyping constraints to a
type system that already supports GADT and private types should not require large
engineering efforts (in particular, it does not implies supporting the most general
forms of bounded polymorphism). Matching on a GADT α t already introduces
local type equalities of the form α = T [β] in pattern matching clauses. Jacques
Garrigue suggested that adding an equality of the form α = private T [β] should
correspond to GADT equations of the form α ≤ T [β], and lower bounds could be
represented using the dual notion of invisible types. Regardless of implementa-
tion difficulties, in a system with only explicit subtyping coercion, such subtyping
constraints would still require more user annotations.

RT n° 8114

GADT meet subtyping 31

Mathematical structures for variance studies There has been work on more
structured presentation of GADT as part of a categorical framework ([GJ08] and
[HF11]). This is orthogonal to the question of variance and subtyping, but it may
be interesting to re-frame the current result in this framework.

Parametrized types with variance can also be seen as a sub-field of order theory
with very partial orders and functions with strong monotonicity properties. Finally,
we have been surprised to find that geometric intuitions were often useful to direct
our formal developments. It is possible that existing work in these fields would
allow us to streamline the proofs, which currently are rather low-level and tedious.

Completeness of variance annotations with domain information For sim-
ple algebraic datatypes, variance annotations are “enough” to say anything we want
to say about the variance of datatypes. Essentially, all admissible variance relations
between datatypes can be described by considering the pairwise variance of their
parameters, separately.

This does not work anymore with GADT. For example, the equality type (α, β) eq
cannot be accurately described by considering variation of each of its parameters
independently. We would like to say that (α, β) eq ≤ (α′, β′) eq holds as soon as
α = β and α′ = β′. With the simple notion of variance we currently have, all we can
soundly say about eq is that it must be invariant in both its parameters—which is
considerably weaker. In particular, the well-known trick of “factoring out” GADT
by using the eq type in place of equality constraint does not preserve variances:
equality constraints allow fine-grained variance considerations based on upward or
downward-closure, while the equality type instantly makes its parameters invari-
ant.

We think it would possible to regain some “completeness”, and in particular
re-enable factoring by eq, by considering domain information, that is information
on constraints that must hold for the type to be inhabited. If we restricted the
subtyping rule with conclusion σ t ≤ σ′ t to only cases where σ t and σ′ t are
inhabited—with a separate rule to conclude subtyping in the non-inhabited case—
we could have a finer variance check, as we would only need to show that the criterion
of Simonet and Pottier holds between two instances of the inhabited domain, and
not any instance. If we stated that the domain of the type (α, β) eq is restricted by
the constraint α = β, we could soundly declare the variance (onα,onβ) eq on this
domain—which no longer prevents from factoring out GADT by equality types.

Conclusion

Checking the variance of GADT is surprisingly more difficult (and interesting) than
we initially thought. We have studied a novel criterion of upward and downward
closure of type expressions and proposed a corresponding syntactic judgment that
is easily implementable. We presented a core formal framework to prove both
its correctness and its completeness with respect to the more general criterion of
Simonet and Pottier.

This closure criterion exposes important tensions in the design of a subtyping
relation, for which we previously knew of no convincing example in the context
of ML-derived programming languages. We have suggested new language features
to help alleviate these tensions, whose convenience and practicality is yet to be
assessed by real-world usage.

Considering extension of GADT in a rich type system is useful in practice; it is
also an interesting and demanding test of one’s type system design.

RT n° 8114

GADT meet subtyping 32

References

[Abe06] Andreas Abel. Polarized subtyping for sized types. Mathematical Struc-
tures in Computer Science, 2006. Special issue on subtyping, edited by
Healfdene Goguen and Adriana Compagnoni.

[EKRY06] Burak Emir, Andrew Kennedy, Claudio Russo, and Dachuan Yu. Vari-
ance and generalized constraints for C# generics. In Proceedings of the
20th European conference on Object-Oriented Programming, ECOOP’06,
2006.

[Gar04] Jacques Garrigue. Relaxing the value restriction. In In International
Symposium on Functional and Logic Programming, Nara, LNCS 2998,
2004.

[GJ08] Neil Ghani and Patricia Johann. Foundations for structured program-
ming with gadts. In Proceedings of Principles and Programming Lan-
guages (POPL), 2008, pages 297–308, 2008.

[HF11] Makoto Hamana and Marcelo Fiore. A foundation for gadts and induc-
tive families: dependent polynomial functor approach. In Proceedings of
the seventh ACM SIGPLAN workshop on Generic programming, 2011.
URL: http://www.cs.gunma-u.ac.jp/~hamana/Papers/dep.pdf.

[Kis] Oleg Kiselyov. Typed tagless interpretations and typed compilation.
URL: http://okmij.org/ftp/tagless-final/index.html.

[KR05] Andrew Kennedy and Claudio V. Russo. Generalized algebraic data
types and object-oriented programming. In Proceedings of the 20th
annual ACM SIGPLAN conference on Object-oriented programming,
systems, languages, and applications, 2005. URL: http://research.
microsoft.com/pubs/64040/gadtoop.pdf.

[MR09] Benôıt Montagu and Didier Rémy. Modeling abstract types
in modules with open existential types. In ACM Symposium
on Principles of Programming Languages (POPL), pages 63–74,
January 2009. URL: http://gallium.inria.fr/~remy/modules/

Montagu-Remy@popl09:fzip.pdf.

[OL92] Martin Odersky and Konstantin Läufer. An extension of ML with
first-class abstract types. In ACM Workshop on ML and its Applica-
tions, pages 78–91, June 1992. URL: http://www.cs.luc.edu/laufer/
papers/ml92.pdf.

[Pfe01] Frank Pfenning. Intensionality, extensionality, and proof irrelevance in
modal type theory. In 16th IEEE Symposium on Logic in Computer
Science (LICS 2001), 16-19 June 2001, Boston University, USA, Pro-
ceedings, 2001.

[SP07] Vincent Simonet and François Pottier. A constraint-based approach
to guarded algebraic data types. ACM Transactions on Programming
Languages and Systems, 29(1), January 2007.

RT n° 8114

http://www.cs.gunma-u.ac.jp/~hamana/Papers/dep.pdf
http://okmij.org/ftp/tagless-final/index.html
http://research.microsoft.com/pubs/64040/gadtoop.pdf
http://research.microsoft.com/pubs/64040/gadtoop.pdf
http://gallium.inria.fr/~remy/modules/Montagu-Remy@popl09:fzip.pdf
http://gallium.inria.fr/~remy/modules/Montagu-Remy@popl09:fzip.pdf
http://www.cs.luc.edu/laufer/papers/ml92.pdf
http://www.cs.luc.edu/laufer/papers/ml92.pdf

GADT meet subtyping 33

Contents

1 Motivation 3

2 A formal setting 9
2.1 Atomic subtyping . 9
2.2 The algebra of variances . 10
2.3 Variance assignment in ADTs . 11
2.4 Variance annotations in GADT . 14

3 Checking variances of GADT 16
3.1 Expressing decomposability . 17
3.2 Variable occurrences . 18
3.3 Context zipping . 18
3.4 Syntactic decomposability . 20
3.5 Completeness of syntactic decomposability 21
3.6 Back to the correctness criterion . 26

4 Closed-world vs. open-world subtyping 27
4.1 Upward and downward closure in a ML type system 27
4.2 A better control on upward and downward-closure 28
4.3 Subtyping constraints and variance assignment 28

5 Future Work 30

RT n° 8114

RESEARCH CENTRE
PARIS – ROCQUENCOURT

Domaine de Voluceau, - Rocquencourt
B.P. 105 - 78153 Le Chesnay Cedex

Publisher
Inria
Domaine de Voluceau - Rocquencourt
BP 105 - 78153 Le Chesnay Cedex
inria.fr

ISSN 0249-0803

	Motivation
	A formal setting
	Atomic subtyping
	The algebra of variances
	Variance assignment in ADTs
	Variance annotations in GADT

	Checking variances of GADT
	Expressing decomposability
	Variable occurrences
	Context zipping
	Syntactic decomposability
	Completeness of syntactic decomposability
	Back to the correctness criterion

	Closed-world vs. open-world subtyping
	Upward and downward closure in a ML type system
	A better control on upward and downward-closure
	Subtyping constraints and variance assignment

	Future Work

