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Objective ML is asmall practical extension to ML with ob-
jects and top level classes. Itis fully compatible with ML;
its type system is based on ML polymorphism, record
types with polymorphic access, and a better treatment
of type abbreviations. Objective ML allows for most fea-
tures of object-oriented languages including multiple in-
heritance, methods returning self and binary methods as
well as parametric classes. This demonstrates that ob-
jects can be added to strongly typed languages based
on ML polymorphism.©) 1997 John Wiley & Sons

Introduction

We propose a simple extension to ML with class-based
objects. Objective ML is a fully conservative extension to
ML. A beginner may ignorethe object extension. Moreover,
hewould not noticeany difference, eveninthetypesinferred.
Thisis possible since the type inference algorithm of Objec-
tive ML, as in ML, is based on first-order unification and
let-binding polymorphism. Types are extended with object
typesthat are similar to record typesfor polymorphic access.
Both the status and the treatment of type abbreviations have
been improved in order to keep types readable.

When using object-oriented features, the user is never re-
quired to write interfaces of classes, although he might have
to include a few type annotations when defining paramet-
ric classes or coercing objectsto their counterpartsin super
classes.

Objective ML is a class-based system that provides most
features of object-oriented programming. This includes
methods returning self and binary methods, of course, but
also abstract classesand multipleinheritance. Coercionfrom
objectsto their counterpartsin super classesis also possible.
However, they must be explicit.

Theingredientsused, except automatic abbreviations, are
not new. However, their incorporation into a practical lan-
guage, combining power, simplicity and compatibility with
ML, is new.

© (1998) John Wiley & Sons, Inc.

Objective ML isformally defined, and its dynamic seman-
ticsisproven correct with respect to the static semantics. The
language has not been designed to be a minimal calculus of
objects, but rather the core of areal programming language.
In particular, the semantics of classesis compatiblewith pro-
gramming in imperative style as well as in functional style
and it allowsfor efficient memory management (methodscan
be shared between all the instances of a class).

This paper is organized as follows: the first section is
an overview of Objective ML. Objects and classes are in-
troduced in sections 2 and 3. Coercions are dealt with in
section 4. The semantics of the language is described in
section 5. Type inference is discussed in section 6. The
abbreviation mechanism is explained in sections 7 and 8.
Extensions to the core language are presented in sections 9
and 10. In section 11, we compare our proposal with other
work.

1. An overview of Objective ML

Objective ML is a core langage. An extended language
based on Objective ML has been implemented on top of the
Caml Special Light system [19]. This implementation is
called Objective Caml. In this article, we completely for-
malize the corelanguage, i.e. Objective ML. We also usethe
name Objective Caml to refer to the implementation, espe-
cially when describing minor differences or extension to the
core language that have not been fully formalized. All ex-
amples show below have been process by Objective Caml?.
When useful, we display the output of the typechecker in a
slanted font. Toplevel definitions are implicit 1et .. in ...
For each phrase, thetypechecker outputsthe binding that will
be generalized and added to the global environment before
starting to typecheck the next phrase.

The language Objective ML is class-based. That is, ob-
jects are usually created from classes, even though it is also
possible to create them directly (this is described in the next
section). Hereisastraightforward exampleof aclasspoint.

class point x0 = struct
field x = ref x0
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end;;
class point : int — sig
field x : int ref
method move :
end

S e I

int — int

Class types are automatically inferred. Objects are usually
created as instances of classes. All objects of the same class
have the same type structure, reflecting the structure of the
class. Itisimportant to name object typesto avoid repesting
thewhole nested, often recursive, structure of objectsat each
occurrence of an object type. Thus, the above declaration
also automatically defines the abbreviation:

type point = (move : int — int)

which is the type of objects with a method move of type
int — int. Inpractice, thisis essential in order to report
readabletypesto the user. Thefollowing exampleshowsthat
these object abbreviations are introduced when the operator
nevw isapplied to aclass.

new point;;

— : int — point = (fun)
let p = new point 3;;
value p : point = (obj)

Classes can aso be derived from other classes by adding
fields and methods. The following example shows how an
object sends messages to itself; for instance, if the scale
formulais overridden in a subclass, the move method will
use the new scale. Here, methods of the parent class are
bound by the super-class variable parent and are used in
the redefinition of the move method (the binary operator #
denotes method invocation in Objective ML).

class scaled point s0 = struct
inherit point O as parent
field s = s0
method scale = s

method move d =
parent#move (d * self#scale)
end;;
class scaled_point :
field s : int
field x : int ref
method move : int — int

int — sig

method scale : int
end

Scaled points have a richer interface than points. It is still
possible to consider scaled points as points. This might be
useful if one wants to mix different kinds of points with
incompatible attributes, ignoring anything but the interface
of points:

let points =
[(new scaled_point 2 : scaled point (: point);
new point 1];;
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A few other examplesare given in the paper, and an example
using binary methods can be found in the appendix 3.

Notation

A binding isapair (k,t) of akey k and an element ¢. It
iswritten £ = t whent isatermor k : t when ¢ is atype.
Bindingsmay also betagged. Forinstance, if fooisatag, we
write foo u = a Or foo u : a. Tagsare adwaysredundant in
bindings and are only used to remind what kind of identifier
is bound.

Term sequences may contain several bindingsof the same
key. Wewrite @ for the concatenation of sequences(i.e. their
juxtaposition). Onthecontrary, linear sequences cannot bind
the same key several times. We write + for the overriding
extension of a sequence with another one, and & to enforce
that the two sequences must be compatible (i.e. they must
agree on the intersection of their domains). We write () for
the empty sequence.

A sequence can be used as a function. More precisely,
the domain of a sequence S is the union, written dom (.S),
of the first projection of the elements of the sequence. An
element of the domain k is mapped to the value ¢ so that
x : t is the rightmost element of the sequence whose first
projection is x, ignoring the tags. The sequence S \ foo is
composed of all elements of S but those tagged with foo.
Finally, we write foo (S) for {k : ¢ | foo k : t € S}, that
is, for the subsegquence of the elements of S tagged with foo
but stripped of thetag foo.

We write  for atuple of elements (¢,°!) when indexes
areimplicit from the context.

2. Objects

We assume that a set of variables z € X" and two sets of
namesw € U and m € M are given. Variables are used
to abstract other expressions; « is bound in fun (x) a and
let z = ay in a,. Programs are considered equal modulo
renaming of bound variables. Names v and m are used to
name field and method components of objects, respectively.
Field names and method names are always free and not sub-
ject to a-conversion. The syntax of expressionsis provided
below.

az:=uz|fun(z)alaa|letz =aina
| self |u| {(u=a;...u=2a)} | a#tm
| (fieldu =a;...fieldu = a;
method m = a;...method m = a)

Operations on references could be included as constants k
(thedlipsisin syntax definitions meansthat we are extending

the previousdefinition; “ " marksthe positions of arguments
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ax=...|k and ko=ref _|(L:=2)| (L)
For the sake of simplicity, we omit themin theformalization,
although they are used in the examples. An object is com-
posed of a sequence of field bindings—the hidden internal
state—, and asequence of method bindingsfor accessing and
modifying these fields. Fields are also called instance vari-
ables. Thetypeof anobjectisthusthetype of therecord of its
methods. In an object, a method may return the object itself
or expect to be applied to another object of the same kind.
Types might thus be recursive. We assume given two count-
able collections of type variables and row variables, written
a and p, and a collection of type constructorswritten .

—

)Ipl

alT ..T) k| rec a.t | (T)
(m
v

Q\]xﬂ

Q |

Object types ending with a row variable are named open
object types, while others are named closed object types. In
the examples, closed object types are simply written (m; :
7,'€1} i.e. the ® symbol is omitted. The row variables of
open object types are also left implicit in an ellipsis (m; :
7;4€1; ) (abbreviations explained in section 8 can even be
used to share ellipsis). In the formal presentation, we keep
both ® and row variables explicit. A label can only appear
oncein an object type. Thisiseasily ensured by sorting type
expressions [30]. The distinction between = and 7 can also
be guaranteed by sorts. Thus, we omit the distinction and
simply write 7 below.

Type equality is defined by the following family of left-
commutativity axioms:

(my :m3me : To;7) = (Mo : To;my 2 T3 7T)

plus standard rules for recursive types[4]:
(Rec) (FoLp-UNFOLD)

T =T
L2 rec a.7 = T[rec a.7/q]

rec a.7T, = rec a.my

(CONTRACT)

n =T1[n/a) ATy = T[r2/0] rec a.7 Well-formed

1 = T2

Recursive types rec a.7 are only well-formed if 7 is nei-
ther a variable nor of the form rec o'.7’ (this is not too
restrictive since rec «.(rec o/.7") can always be rewritten
rec a.7'[a/a']). Thisguaranteesthat 7 is contractivein «,
and ensures that rec . effectively defines a regular tree.
Types, sorts, and type equality are a simplification of those
used in [31], which we refer to for details. Typing contexts
are sequences of bindings:

A=0|A+z:0|A+fieldu:7|A+self:T
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rulesfor ML arerecalled in appenohx 1

Typing rules for objects are givenin figure 1.

A simple object is just a set of methods. Methods can
send messages to the object itself, which will be bound to
the special variable se1f. A simple object could be typed as
follows:

P B p |

JEJ
Tj

A+self:(m;:77)YFa;:
.j€J>
j

At (methodm; = a;9€7) : (m; : 7

However, an object can also have instance variables. In-
stance variables may only be used inside methods defined
in the same object. The typechecking of instance variables
(field u; = a;)*¢! of an object produces a typing envi-
ronment (field u; : 7;)'<! in which the methods are typed
(rules OBJECT and FIELD).

Instance variables also provide the ability to clone an ob-
ject possibly overriding some of its instance variables (rule
OVERRIDE). In this rule, types 7, and 7; do not seem
to be connected. They are however, thanks to typing rule
OBJecT which requiresthetype 7, of self andthetypes;
of instance variables to be related to the same object. This
is also ensured by typing the premises in the context A*
equal to A \ {field,self}. As aresult, the expression
(field v = a;method m = (method mn = u)) isill-typed.
Thisisnot areal restriction however, since one can still write
the less ambiguousexpression (field u = a ;method m =
let © = u in (method m = z}).

Therule SEND for method invocationissimilar totherule
for polymorphic accessin records. when sending a message
m to an object a, the type of a must be an object type with
method m of type 7; the object may have other methods that
are captured in the row expression 7/. The type returned
by the invocation of the method is . The type of method
invocation may also be seen below:

let send.m a = a#m;;

value sendm : ( m: «a; .. ) — «a = (fun)

The ellipsis stands for an anonymous row variable p, which
means that any other method than m may also be defined
in the object a. Row variables provide parametric polymor-
phism for method invocation. Instead of using row variables,
many other languages use subtyping polymorphism. Since
subtyping polymorphism must be explicitly declared in Ob-
jective ML (see section 4), row variables are essential here
to keep type inference. Row variables also allow to express
some kind of matching [7] without F-bounded or higher-
order quantification [28, 2, 3]. Hereis an example:

let min x y = if x#leq y then x else y;;
value min :
(( leq :
a — a = (fun)

a — bool; .. ) as a) —

The binder “as’ makes it possible to deal with open object
types occurring several timesin atype (thiswill be detailed
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(FieLn) (OVERRIDE)
fieldu: 7€ A (fieldwu,: 71, € A At a; )€l self : 7, € A
AFu:t AF {(uia; )} 7y,
(OBJECT) . _ v ) (SEND)
A*Foa; i€l A* + self : (m; : 7;7€7) + field u; : 'L Fa; ¢ ;7€ Ara:(m:7;7')
At (field u; = a;'€! ;method m; = a;7€7) : (m; : 7;7€7) AbFaf#tm: T
(Thisrulewill be overridden by the more general rule of same namein figure 3.)

FIG. 1. Typing rulesfor objects

in section 8). An expanded version of thistypeis:

rec a.{leq : @« — bool; p) —
rec a.(leq : @« — bool; p) — rec a.{leq : & — bool; p)

Thefunctionmin can be used for any object of type  with a
method leq : 7 — bool, sincethe row variable p can always
be instantiated to the remaining methods of type .

3. Classes

Thesyntax for classes, introducedin section 1, isformally
given in figure 2. The body of a class is a sequence b of
small definitionsd. We assume as given acollection of class
identifiers z € Z, and a collection of super-class identifiers
written s.

We have also enriched the syntax of objects so that it
reflects the syntax of classes. That is, objects can also be
built using inheritance, and fields need not precede methods.

In practice, classeswill only appear at thetop level. How-
ever, itissimpler to leave more freedom, and | et them appear
anywhere except under abstraction. Technically, it would be
possible to make them first-class, that isto allow abstraction
of classes; however, class types should be provided explic-
itly in abstractions. Thelittle gainin practiceis probably not
worth the complication (aclass can still be parameterized by
other classes using modules).

Thetypeof aclassstructure, sig () ¢ end, iscomposed
of the type 7, of self (i.e. the type an object of this class
would have), and the type ¢ of itsfield bindings and method
bindings. Class types are written . Type schemes are
extended with class types.

vu=sig(T)pend|T — v

pu=0]p;fieldu: 7| p;methodm : 7
| ¢;supers: g

o= ...|Va.y

In the concrete syntax, 7, and ¢ are combined: methods
that appear in 7, but not is ¢ are flagged virtual (asthey are
not defined); other methods appear both in 7, and ¢, with
the same type. When necessary, a type variable can aso be
bound to 7,,. For instance, the concrete syntax

sig (a) virtual copy : « method x : int end
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expandsto

sig (rec a.(copy : ; getx : int; p))
method getx : int
end.

Typing contextsare extended with class variable bindings
and superclass bindings:

Au=...|A+z:0| A+supers: o

We add new typing judgments A F b : pand A - d : ¢
that are used to type class bodies. We aso redefine A* to
be A where all field, method, super, and self bindings
have been removed. Typing rules are given in figure 3. We
redefine A* to be A \ {field, self, super}, so that super-
class bindings are also removed. Generalization of class
types Gen(~v, A) is, as for regular types, V a. v where a are
all variables of ~ that are not freein A.

Class bodies are typed by adding each component (inher-
itance clause, field, or method) one after the other. Fields
are typed in A*, since other fields, self, and super bind-
ings should not be visible in field expressions. On the con-
trary, methods may depend on all fields and super-classes
that were previously defined (rule METHOD). The INHERIT
rule ensures that self is assigned the same typein both the
superclass and the subclass; al bindings of the superclass
are discharged in the subclass, and the superclass variable
is given the type of the superclass. Superclass variables are
only visible while typechecking the body of the classbut are
not exported in the type of the class itself, as shown by rule
THEN. The rule OBJECT is more genera than (and over-
rides) the one of figure 1; it correspondsto the combination
of rule CLass-Bopy and rule NEw.

When a value or method component is redefined, its type
cannot be changed, since previously defined methods might
have assumed the old type?. This is enforced by using in
rule THEN the & operator which requires that the two ar-
gument sequences be compatible on the intersection of their
domains. At first, this looks fairly restrictive. But it till
leaves enough freedom in practice. Indeed, the class type
can also be specialized by instantiating some type variables.
Methods returning objects of the same type as self are thus
correctly typed.

class duplicable () = struct



0|d;b

Lot 8
I

.| (b) | class z = cina | newc| s#m
z | fun (z) ¢ | ca | struct b end

Expressions
Class expressions
Class bodies

inherit cas s | field u = a | method m = a

FIG. 2. Core class syntax

A*+self:Ty kb

At struct bend: sig (1) ¢ end

(FieLp) (METHOD)
A Fa:T Al self: (m:7;7") ArFa:T
Al fieldu=a: (fieldu: ) Al method m = a : (method m : 7)
(INHERIT) (THEN)
A*tc:sig(ry) ¢ end AF self:7, (Basic) AbFd: g A+ (p1 \ method) F b : g
Al inherit cas s: ¢ + (super s : @) AFD:0 Al d;b: (41 super) ® ¢
(CrLass-Boby) (New)

Al c:sig () ¢ end T, = (method (¢))

AFnewc: 7y

(SUPER) (OBJECT) (CLASs-INST)
supers:p € A methodm : 7 € ¢ A*+self:myFb:yp Ty = (method (¢)) z:Va.vy€ A
Al s#m: T AF(b): 7, At z:4[T/a]
(Crass-Fun) (CLass-App) (CLass-LET)
A+az:7hc:y AbFc:T— 7y Abd 71 AFc:vy A+z:Gen(y,A)Fa:T

Abfun(z)c: 17—~ Abcad v

At classz=cina: T

FIG. 3. Typing rulesfor classes

method copy = {( )}

end;;

class duplicable :
method copy : «

end

unit — sig (a)

In this class type, « is bound to the type of self. Thus,
objects of any subclass of this class have types that match
rec a.(copy : «; ..). Class duplicable can then be
inherited, and method copy still have the expected type (that
is, the type of sdif).

class duplicable point x = struct
inherit duplicable () inherit point x

end;;

class duplicable_point :
field x : int ref
method copy : «
method move : int — int

int — sig (a)

end

Note that ancestors are ordered, which disambiguates possi-
ble method redefinitions. the final method body is the one
inherited from the ancestor appearing last.

Rule Crass-LET, Crass-INsT, CrLass-FunN and
Crass-App are similar to the rules LET, INsT, FuN

and App for core ML (described in appendix 1). The two
rulesCrass-LET and CrLass-INST are essential since poly-
morphism of class types enables method specialization dur-
ing inheritance, as explained above.

As an illustration of the typechecking rules we give a
detailed derivation of the typing of the class scaled point
in the appendix 2.

4. Coercion

Polymorphism on row variables enables one to write a
parametric function that sends a message m to any object
that has a method m. Thus, subtyping polymorphism is
not required here. This is important since subtyping is not
inferred in Objective ML.

There is till a notion of explicit subtyping, that allows
explicit coercion of an expression of type 7; to an expression
of type m» whenever 7, is asubtype of 7. Asshown inthe
last example of section 1, this enables one to see all kinds
of points just as simple points, and put them in the same
data-structure.

Thelanguage of expressionsis extended with the follow-
ing construct:

et <i7)
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(COERCE)
<7

At a:0(r)

6 substituti
AF(a:7<:7"):0(1") substiution

The premise 7 < 7/ meansthat 7 is asubtype of 7/. Asfar
as typechecking is concerned, we could have equivaently
introduced coercions as a family of constants (- : 7 <: 1)
of respective principal typesVa.r — 7' where a are free
variablesof 7~ and 7" indexed by al pairsof types(r, 7') such
that 7 < 7/,

The subtyping relation < is standard [4]. We choose
the simpler (and algorithmically more efficient) presentation
of [16]. The constraint 7 < 7' is defined on regular trees as
the smallest transitiverelation that obeysthefollowing rules:

Closurerules

Mo <17 —=T=T7 <11 AT2<T)
(N<{Yy=r<7
(m:mym) < (m:7;715) =1 <1 A1 <7

Consistency rules

7 <7 — 72 = Tisof theshaper] — 7}
T < (19) = 7 isof the shape (7))
T < (m:1;72) = Tisof theshape (m : 11;73)
T<P0=r71=10
T{a—=>T=aqa,

Our subtyping relation does not enhance subtyping assump-
tions on variables, and it is thus weaker than the subtyping
relation used in [12], except on ground types.

For instance, the expression fun (z) « hastypeVa, o' |
a < o.a — o in[12], while we can only type the equiva-
lent expression fun () (z : 7 <: 7') for particular instances
(r,7") of (a, &) such that 7 < 7'.

5. Semantics

We giveasmall step reduction semanticsto our language.
Values are of two kinds: regular expression values are either
functions or object values. Class values are either class
functions or reduced class structures. Object values and
reduced class structures are composed of methods and fields
which are themselves values; fields must precede methods
and neither can be overridden in values. Values, evaluation
contexts, and reduction rules are given in figure 4.

The first reduction rule shows that objects are just a re-
stricted view of classes where instance variables have been
hidden.

We have chosen to reduce inheritance in objects rather
than classes. It would also be possible to reduce inheritance
inside classes, and reorder methods and fields as well. Our
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inherited in objects.

Thereduction of object expressionsto valuesisperformed
in two steps, described by the four rules for objects: in-
heritance and evaluation of value components are reduced
top-down (first rule, we remind that the meta-notation @
stands for the concatenation of sequences); the components
are then re-ordered (last rule) and redundant components
removed bottom-up (two middlerules).

The invocation of a method (w)#m evauates the cor-
responding expression w(m) after replacing self, instance
variables, and overriding by their current values. That is, the
following substitutions are successively applied:

1. [(w)/self] replaces self by (w),

2. [w(w)/u]*S%" () replaces each outer instance variable
u by its actual value. Inner instances of u, i.e. those
appearing inside an object (w'}, are not replaced since
they are related to the inner object. Note that w(u) isa
value and does not contain freefields.

3. [(w @ (field u = a,*V))/{{u = a, ")}V Y re-
places each outer occurrence of an overriding {(uv =
a."€V)} by a new object built from w by overriding
fildsw € V by (field u = ay)“S". Inner occur-
rences, i.e. those appearing inside an object (w’), are not
replaced since they are related to the inner object. Note
that a., isnot necessarily a value, and may contain other
outer overriding of fields, that should be replaced simul-
taneously, or equivalently in a bottom-up fashion (deeper
occurrences being replaced first).

Coercion behaves as the identity function: the coercion
of avalue reducesto the value itself. Subject reduction can
then only be proved by extending the type system with an
implicit subtyping rule:

Abla:r <7 (SuB)
AbFa:7

This means that a well-typed expression that has been re-
duced may not always be typable without rule SuB. Thisis
not surprising since explicit subtyping may disappear during
reduction. Thus, implicit subtyping may be required after
reduction. It is possible however to keep explicit subtyping
information during reduction, and avoid the need for rule
SuB. Thiswould be obtained by replacing the rule

(a:7<:7')—a

by the following rules

(v (m; 7Y <o (my 2 7]IETY)
— (m; = (v#tm; : 7 < 7))¥€7)
(fun (z)a:m - ™ <t 1) — 75)
— fun (z) (a[(z : 7 <:m)/x] 2 <:75)

The counterpart is that types, although not actively partici-
pating, would be kept during reduction. Theformulation we
have chosen has a smpler semantics and makes it clearer
that the reduction is actually untyped.



Vaues

vi=...|fun (z) a| (w)

v, = fun (z) ¢ | struct w end
wu=0|wg;w

wq =methodm =a | fieldu = v

Evaluation contexts

From classes to objects
new (struct w end) — (w)

Reduction of objects

fieldu=v;w —w
methodm =a;w — w

Reduction of method invocation (U = dom (w))

Reduction of coercions
(a:7<:7")—a
Reduction of other expressions
let x =v ina — afv/z]
(fun (z) a) v — afv/x]
Context reduction
Ela] — Eld']ifa — d
Elc] — E[d]ifc — ¢

field components preceed method components, no overridings

E:=][|letz=FEina|Ea|vE|E#m|(F)|newFE |classz=FE;ina
E.:=][|E:.a|v. E|struct F end

F:u=[|Fy;b|wg; F

F; ::= inherit E  as s | fieldu=FE

inherit (struct w end) as s;b — w @ (b[w(m)/s#m)|

method m = a;(fieldu = v;w) — field u = v ; (method m = a; w)

(w)#m — w(m)[(w)/self][w(u)/u]*V[(w @ (field u = a,""))/{(u = a,"V)}]"<Y

méEdom (w))

if u € dom (w)
if m € dom (w)

class z =v ina — afv/z]
(fun () ¢) v — c[v/z]

Eb] — E]ifb — b/

FIG. 4. Semantics of Objective ML

The soundness of the language is stated by the two fol-
lowing theorems.

Theorem 1 (Subject Reduction) Reduction preserves typ-
ings (i.e. forany A, if A*F a: 7anda — a then
A*Fa 7))

Theorem 2 (Nor mal forms) Well-typed irreducible normal
formsare values (i.e. if # - a : 7 and a cannot be reduced,
thena isavalue.)

See appendix 4 for proofs of these theorems.

These results easily extend to cope with constants, as in
core ML, provided é-rules for constants are consistent with
their principal types.

6. Type inference

Types of Objective ML are a restriction of record types.
First-order unificationfor record typesisdecidable, and solv-
able unification problems admit principal solutions, even in
the presence of recursion [31].

The unification algorithm is a smplification of the one
used in ML-ART [31]. It isdescribed in figure 5 as arewrit-
ing process over unification problems. This formalism was
introduced in [15] and has already been used for record types
in [30]. A unification problem aso called a unificand, is a
multi-set of multi-equationspreceded by alist of existentially
quantified variables. Itiswritten 3y, ... ap.e1 AL .. eq. A
multi-equation e is a multi-set of types written 7, =...7,.
The algorithm assumes that recursive types pa. have been
encoded using equations 3 a. a=7.

A substitution is asolution of amulti-equation if it makes
all itstypesequal. A solution of aunificand isthe restriction
of acommon solution to all its multi-equationsoutside of the
existentially quantified variables.

THEORY AND PRACTICE OF OBJECT SYSTEMS—(1998) 7
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(1) In Rule DECOMPOSE, f isany type symbol, including (m : _; _) aswell.
(2) To ensuretermination, rule GENERALIZE must be restricted to the case where 7 is not avariable and « appearsin

FIG. 5. Unification as solving multi-sets of multi-equations

Unificands can be smplified by applying the rewriting
rules given in figure 5. Structural rules have been omitted:
they include associativity and commutativity of both A and
= and the extrusion and renaming of existential variables.
Rules Fusg, DEcoMPOSE and GENERALIZE are standard.
Rule Fuse merges two multi-equations that have a vari-
ablein common. Rule DEcomPoOSsE decomposesterms of a
multi-equationsinto smaller ones. Rule GENERALIZE Splits
terms into smaller terms.  Thus, unificands can always be
rewritten so that terms are of depth at most one. Thispermits
maximal sharing during unification. It also ensures termina-
tion of rewritingin the presence of recursivetypes. Theonly
difference with unification in a free algebra is the mutation
rule MUTE for left-commutativity. It identifies two terms
(my : ;1) and (mq : To;74) with different top symbols
(my : ;) and (my : ;) provided their equality can be
established by the application of an axiom at the root.

The algorithm proceeds by rewriting multi-sets of multi-
equations according to the above rules. Each step preserves
theset of solutions. Moreover, the processalwaysterminates,
reducing any unificand to a canonical form.

A unificandisinasolved formif all of its multi-equations
aremerged and each of themisfully decomposed (i.e. it con-
tains at most one non-variable term). Principal unifiers can
be read directly from solved forms. A canonica unificand
that is not in a solved formed contains a clash (two incom-
patible types that should be identified) and is not solvable.

Theframework and the meta-theory of unificandsare stan-
dard. The equational theory of object typesis a sub-case of
the more general algebra of records types; for details and
proofs, the reader isreferred to [30].

Objective ML does not allow classes as first-class values.
Indeed, in the expression fun (x) a, variable z cannot be
bound to a class (or avalue containing a class). Thus, class
types never need to be guessed. Polymorphismisonly intro-
duced at LET bindingsof classesor values. Thisensuresthat
type inference reduces to first-order unification, as it is the
case in ML. Consequently, Objective ML has the principal
type property. Type inference for classes is straightforward.
The links between first-order unification, type inference and
principal typesaredescribedinamoregeneral settingin[29].

8 THEORY AND PRACTICE OF OBJECT SYSTEMS—(1998)

Theorem 3 (Principal types) For any typing context A and
any program a that istypablein the context A, thereexistsa
typer suchthat A - a : 7 and for any other type 7’ such that
At a : 7' there exists a substitution ¢ whose domain does
not inter sect the free variables of A and suchthat 7' = 6(7).

7. Abbreviation enhancements

Object typestend to be very large. Indeed, the type of an
object lists al its methods with their types, which can them-
selves contain other object types. This quickly becomes
unmanageable [31, 11]. Introducing abbreviations is thus
of crucial importance. This section presents the general ab-
breviation mechanism of Objective ML and the next section
focuses on abbreviating object types. The simple type ab-
breviation mechanism of ML is not sufficiently powerful:
abbreviations are expanded and lost during unification and
they do not interact well with recursive types. Severa im-
provements have thus been made to the abbreviation mech-
anism. First, abbreviations are kept during unification and
propagated as much as possible. Second, a larger class of
abbreviations are accepted: abbreviations can be recursive
and their arguments can be constrained to be instances of
some given types.

In our implementation, types are considered as graphs. In
particular, when two typesare unified, they becomeidentical
rather than two separate, equal types. A construct has been
added to the syntax to express type graphs: the construct
(7 as a) isused to bind « to 7, similarly to the notation
rec a.7. However, amain differenceis that with aliases «
is also bound outside of . As an example, the two types
((m:a)asa) — o and(m: a) — (m: «) aedifferent
graphs, that represent the same regular tree. There are two
reasons for considering types as graphs. First, unification
rolls types. For instance, unifying typest = a and 7’ =
(m : o) resultsintyper = 7' = ((m : a) as «), rather
than instantiating « to (m : ') as ' in both types (in the
later case, 7" would become (m : (m : ') as «’)). Second,
unification propagates abbreviations. Abbreviations can be
considered as names for nodes. Unifying an abbreviated
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instance, unifying the argument of a functional type to an
abbreviated type may propagatethe abbreviationto theresult
type. Thisis demonstrated in the following example.

let bump x = x#move 1; X;;
value bump :
(( move : int — f; ..
(fun)

)y as a) - a =

Nodes are shared between the argument type and the re-

sult type. The dlipsis stands for an anonymous row
variable.  When typing the expression bump p below,

type ((move : int — f; ..) as «) andtypepointare
identified. The type of bump p is thus also abbreviated to
point.

let p = new point 7;;
value p : point = (obj)
bump p;;

— : point = (obj)

Not all the sharing is exposed to the user : sharing re-
veals too much useless information. So, only aliasing of
open object types (thus row variables can be printed as el-
lipses) and aliasing defining recursive types are printed. It
would be possible to remove some aliasing during type gen-
eralization, so that printed types would exactly reflect their
internal representations. However, this would complicate
the implementation needlessly.

Abbreviations can be recursive. That is, in the definition
of the abbreviation type (@) x = 7, the type constructor
x may occur in the body 7, as long as al occurrences have
the same parameters @. This restriction is extended to mu-
tually recursive abbreviations. It ensures that abbreviations
expandtoregular trees. Intheimplementation, any type con-
structor standing for an abbreviation caches the expansions
of abbreviations it appearsin. Thus, when an abbreviation
is expanded several times during the traversal of a type, it
expands each time to the same type.

Typeabbreviationsaregeneralized to allow constraintson
thetype parametersof theabbreviations. Thisisan extension
totheabbreviationsof LCS[5], that werealsousedin[31]. In
an abbreviation definition, parameters are types rather than
type variables: type (7) k = 7o. All free variables of
must be bound in 7. Actual arguments of an abbreviation
must always be instances 6(7) (for some substitution ) of
the parameters 7. Then, the abbreviation can expand to type
(o). For instance, if the type constructor « is defined as
type (axa’) Kk = a — o/, then (int xbool) x will expand
to int — bool. To expand an abbreviation, the arguments
areusually substituted for the parameters. Instead, we choose
to unify the arguments with the corresponding parameters.
The congtraints need only to be enforced when parsing a
type given by the user. Then, expansion is guaranteed to
succeed. Indeed, asubstitution ¢ can always be applied to an
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result of applying the substitution 6 to theexpansion of (7) .
In particular, constraints are preserved by substitution.
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8. Abbreviating object types

We will now describe how the abbreviation mechanism
presented in the previous section is used to generate abbrevi-
ations for objects. This mechanism is used to automatically
abbreviate object constructors: the expression new z will
havetype n — ... —» 7, — (7]) k., where k. is the
abbreviation associated with class .

General type abbreviations, introduced in the previous
section, can be used to simplify object types. Rather than
sorting typesto ensure that object types are well-formed, we
require the stronger condition that any two object types that
share the same row variable must be equal. This eliminates
incorrect types such as (p) — (m : 7;p). Types such as
(m : 11;p) — (m : 79;p), a@ the basis of record extension,
are also rejected. However, no primitive operation on ob-
jects exhibits such a type. These types can thus be ruled
out without seriously restricting the language. Moreover, al
programskeep the same principal types. Thisrestriction was
implemented to avoid explaining sorts to the user. It also
makes the syntax for types somewhat clearer, as row vari-
ables can then always be replaced by ellipsis. Furthermore,
sharing can still be described with aliasing. For instance,
(m :7;p) = (m:7;p)iswritten ((m : 7;..) as a) — a.

A class definition class z = ¢ in ... automatically
generates an abbreviation for the type of its instances. For
specifying it, one actually needs to add type parameters to
the class definitions, corresponding to the one of the abbre-
viation. That is, we should write

class (@) z=cin... (1)

where the parameters & must appear in c.

In fact, abbreviations are generated from class types. It
follows from type inference that the class definition ¢ has a
principal classtype 7, — ... — 7, — sig (7y) ¢ end.
Here, 7, isthe type matched by objects in all subclasses. It
is dways of the form (m; : 7;°<!; 7) where method (i) is
a subsequence of (m; : 7;)'€! and 7 is either () (thisis a
pathological case, where the class cannot be extended with
new methods) or arow variable p. If method (¢) is exactly
(m; : 7;)*¢, thenitis possibleto create objects of that class;
they will have type 7,[0/p]. Otherwise, the classis virtual
and can only be inherited in other class definitions. If all free
typevariablesof T, except p arelisted in &, we automatically
define two abbreviations:

type (5() Ky = (6[, @) #’iz

The former matches all objects of subclasses of ¢. Thelatter
is a special case of the former, and abbreviates any objects
of classc.

Let usconsider anexample. Classpoint hastypeint —
sig ({(move : int — int;p)) ¢ end for some ¢ whose

type (aap) #’iz =Ty

THEORY AND PRACTICE OF OBJECT SYSTEMS—(1998) 9
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virtual. The two following abbreviations are generated for

this class:
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type p #point = (move : int — int;p)
type point = (move : int — int)

One can check that the type point isindeed an abbreviation
for the type of objects of the class point, and that the type
of an object of any subclass of the class point isaninstance
of thetype p #point.

Inthe concrete syntax, therow variable p istreated anony-
moudly (as an €ellipsis) and is omitted. The former abbrevi-
ation #«. is given alower priority than the regular onesin
case of aclash. It aso vanishes as soon as the row variable
is instantiated, so as to reveal the value taken by the row
variable.

In fact, we allow . and #«. to occur in the definition
of b. The previous definitions can be rewritten to handle the
general case correctly.

Constrained abbreviationsare natural for abbreviating ob-
jects, as, for instance, a sorted list of comparable objects
should be parameterized by the type of its elements, which
inturnisnot atypevariable. Moreover this extension makes
it possible to avoid row variables as type parameters (as the
whole object type can appear as a parameter).

Constrained type abbreviationsare also convenient since,
inaclassdefinitionclass (@) z = ¢ in .. ., classtypepara
meters @ may have been instantiated to some types 7, while
inferring the classtype 7, — ... — 7/, — sig (1) ¢ end.
The two abbreviations generated by the class definition are
thus:

type (Ta, p) #r. =7y type (@) k. = (a,0) #~.

Thelatter is unchanged except that the constraints of thefirst
ones are implicit in the second one.

Class types are shown to the user stripped of their type
parameters. The parametersthat constraint the type abbrevi-
ations are described by constraint clauses:

class a circle (p : @) = struct
field point = p
method center = point
method move m =
if m = O then O else
point#move (1 + Random.int m)

end;;
class o circle : a — sig
constraint o = ( move : int — int; .. )

field point : «
method center : «

method move : int — int

end
This class defines the abbreviation

type ((move : int — int;p) as ) circle =

(center : a;move : int — int)

10 THEORY AND PRACTICE OF OBJECT SYSTEMS—(1998)
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may reject some class definitionswhose principal types have
free variables. For instance, the following variant of class
pointisreected, sincethemethod getx ispolymorphicand
therefore the class should be parametric.

class point x0 = struct
field x = x0
method getx = x

end;;

Of course, one could choose an arbitrary ground class type,
for instance:

class point : int — sig
field x : int
method getx : int

end

Any other ground type could be used instead of int. We
decide to reject those programs. This preserves the property
that any typable program has a principal type—and all other
useful propertiesof the type system.

This phenomenon is not new. It already appeared in
several extensions of ML. Imperative constructs limit poly-
morphism. Thus, some variables that are not generaliz-
able may occur in the type of a top level expression. In
such a case, most languages would reject the program. For
instance, the extension to ML with dynamics [20] rejects
fun x — dynamics x, Since the dynamic type of x in
dynamics x isstatically unknown.

All the examples above would have principal types as
long as type inference is concerned. We can argue that
some programs have been rejected for sake of simplicity and
uniformity of the language, but not because of a failure of
type inference: For instance, in Objective ML we could just
omit the corresponding abbreviation whenever some type
parameter is missing, and print a warning message instead
of an error message.

9. Extensions

This section lists other useful features of Objective ML
that have been added to the implementation. Imperativefea-
tureshave beenignoredin theformal presentation sincetheir
addition istheoretically well-understood and independent of
the presence of objects and classes. Other features are less
important in theory, but till very useful in practice: private
instance variables, coercion primitives.

Before we explore these extensions, let us consider an
interesting restriction of the language. If recursivetypesare
only allowed when therecursion traversesan object type, Ob-
jective ML becomes a conservative extension of ML, which
we claimed in the introduction. Of course, all ML programs
can be defined, and behave similarly. Moreover, programs
that are syntactically ML programs are now well-typed ML
programs if and only if they are well-typed in Objective
ML. However, in the implementation Objective Caml, the
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types as well. This is because recursive object types may
be abstracted. Thus, Objective Caml is not strictly speaking
a conservative extension of ML. Still, it is a conservative
extension of ML with recursive types.

9.1. Imperativefeatures

We have intentionally used references in the very first
example. We did not formalizereferencesin the presentation
of Objective ML, sincewe preferred to keep the presentation
simpleand put emphasison objectsand classes. Theaddition
of imperative features to Objective ML is theoretically as
simpleand as useful practically astheir additionto ML. Both
the semantics and the properties of reduction with respect to
typing extend to operationson the store without any problem.
The formalization copies the one for core ML.

In fact, the implementation Objective Caml aso allows
fieldsto bemutablein asimilar way mutablerecord fieldsare
treated in Caml [21]. For instance, we could have written:

class point x0 = struct

field mutable x = x0

method move d = (x «— x + d; x)
end;;

class point : int — sig
field mutable x : int
method move : int — int
end

Objective Caml only allows generalization of values (ac-
tually, a dightly more general class of non expansive ex-
pressions). The creation of an object from a class ¢ is not
considered as a value (as it is the application of function
new c to some arguments). Mutable fields in classes are
typed as any other fields, except that mutability properties
are also checked during typechecking.

9.2. Local bindings

As shown by the evaluation rules for objects, both value
and method components are bound to their rightmost defi-
nitions. All value components must still be evaluated even
though they are to be discarded.

Object-oriented languages often offer more security
through private instance variables. The scope of afield can
be restricted so that the field isno morevisible in subclasses.

This section presents local bindings, that are only visi-
ble in the body of the class they appear in. Thisis weaker
than what one usually expects from privatefields, as a class
cannot, for instance, inherit afield and hide it from its sub-
classes (see section 10.1).

The syntax is extended as follows:

d:=...|localz =ainb
Fy:=...|localz = FE inb
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A*ba:T A-I-a::Tl-b:tp(

LocaL)
AFlocalz=ainb:p

Local bindings are reduced top-down, like inheritance:
local z = v in b;b' — blv/z] + b’

In practice, however, loca bindings would rather be com-
piled as anonymousfields. Thiswould make methodsinde-
pendent of local bindings.

Initialization parameters could also be seen aslocal bind-
ings in the whole class body, and could also be compiled as
anonymous instance variables. For instance, the definition

class point y = struct method x = y end;;

could be automatically transformed into the equivalent pro-
gram:

class point y = struct
local y = y in method x =y
end;;

That way, the method x becomes independent of the initial-
ization parameter y. Then, classes can be reduced to class
values. inheritance is reduced to local bindings, local bind-
ings are flattened, and method overriding is resolved.

9.3. Coercion primitives

Explicit coercionsrequireboth the domain and co-domain
to be specified. This eliminates the need for subtype infer-
ence. Inpractice, however, itisoften sufficient toindicatethe
co-domain of the coercion only, the domain of the coercion
being afunction S of its co-domain.

For convenience, we introduce a collection of coercion
primitives:

(C<im):Va.S(r)— 1

wherea arefreevariablesof S(7) and 7, and S(7) isdefined
asfollows:

e We cal positive the occurrences of a term that can be
reached without traversing an arrow from the left hand
side. (Thisis more restrictive than the usual definition,
where the arrow is treated contravariantly).

e For non recursive terms, we define So () to be 7 where
every closed object type that occurs positively is opened
by adding afresh row variable.

e Termswith aliases are viewed as graphs, or equivalently
aspairs of aterm 7o and alist of constraints av; = 7;.
Let 0 be arenaming of variables «; into fresh variables.
Let 7/ be 7; in which every positive occurrence of each
a; isreplaced by 0(«;).

We return (So(75), {0(c;) = So(7i),i € I} U {a; =
Ti,1 € I}) for S(7).

THEORY AND PRACTICE OF OBJECT SYSTEMS—(1998) 11



S((my : {mgz : int) — (m3 : bool))) =

(mq : {my : int) — (m3 : bool;p3); p1)

S({m:a)asa)={m:d;p)asd

S{{m:a—a)asa)=
(m:((m:a—a)asa) - d;p)as o

The operator S has the two following properties:
(1) S(n) <7 (2) 3 O(S(1))=T7A0(1)="7)

The former gives the correctness of the reduction step (a <:
T) — (a : S(7) <: 7). Thelatter showsthat if a has type
7 then (a <: 7) aso hastype .

There is no principal solution for an operator S satisfy-
ing (1). Consider 7 to be (m : int) — int. There are
only two solutions, (m : int) — int and () — int and
noneisaninstance of the other. Thiscounter-exampleshows
the weakness of the simulation of subtyping with row vari-
ables, especially on negative occurrences. There are other
examples of failure on positive occurrences, but only using
recursive types. For instance, if 7is (z : ) as «, then both
(z : 1;p) and (z : B;p') as [ are solutionsfor S(7), but no
solution is more general than both of these. Our choice of S
(and correspondingly, our choice of coercion primitives) is
somehow arbitrary, but workswell in practice. Thisjustifies
the exclusion of semi-explicit coercions from the core lan-
guage, but leave them as a collection of primitives. In fact,
most coercions are of theform (a : S(7) <: 7). Thus, the
domain of acoercion rarely needsto be given.

10. Future work

This short section describes three possible extensions of
importance to Objective ML. Each extension requires fur-
ther theoretical and design investigation before it can be
integrated within Objective Caml.

10.1. Restriction of classinterfaces

In section 9.2 we have shown that field components can
be declared local to a class. However, this does not enable
class components to be hidden a posteriori. Assume, for
instance, that alibrary providesan implementation of aclass
z with two fields z and =’ and two methods m and m/. A
module may defineaclass 2" that inherits from an imported
class 2’ whoseinterfaceisarestriction of the one of the class
z to thefield  and the method m only. Can class z be used
as an import to the module? This problem correspondsto a
common situation of interface restriction when reusing code.
However, interface restriction is not currently possible.

Privatefieldswould actually not be difficult to hide. How-
ever, hiding methodsin subclasses conflictswith late binding
and aflat method name space. For instance, assume, method
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class 2" defines amethod m', possibly with another type!

Clearly, when a method m is hidden in a class z, self-
invocationsof m inall other methodsof =z should bereplaced
by calls to a function representing the method m. Thisisa
complex operation that is difficult to compile.

Another problem isthat method m' appearsin the type of
self. Hiding themethod thusrequiresto modify aposteriori
the type of self. Thiswould not be correct if, for instance,
thistypeis the type of a method argument.

A partia solution isto give each method a different view
of self insideclasses. Thisisusually the case when classes
are treated as a collection of pre-methods. Another choice,
weaker but still useful, is to split the input and output view
of self. The former lists the methods that are required
whilethelatter enumeratesmethodsthat are provided. How-
ever, in the presence of type inference, such solutions tend
to increase the size of a class to a point that may become
unreadable [31]. The gain in expressiveness is also weak-
ened by alater detection of errors. Clearly, itisan error if a
method hasincompatiblerequired and provided types. How-
ever, thiswould only be detected when the object is created.
In the design of Objective ML, we have deliberately lim-
ited the expressiveness of class typesto keep them readable.
Many variations are theoretically possible, but very few of
them seem to improve expressiveness significantly without
sacrificing simplicity.

Another possibility isto introduce private methods. They
would not appear in the type of self, consequently, they
should be invoked differently. Private methods could have
the same scope as fields. In particular, they could be hidden
a posteriori aswell.

The addition of final classes could also resolve the prob-
lem. These classes could not be inherited. Then, a class
could be soundly matched against afinal class interface that
omits some of its methods.
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10.2. Polymorphic methods

In aclassical programming style, functions and data are
clearly separated. Functions are often polymorphic and thus
can be applied uniformly to different kinds of data. Data
may be structured. It very rarely carries functions, and is
usually monomorphic. In objects, data and methods are
jointly defined and stored or passed as argumentstogether —
at least from atheoretical point of view.

Let-bound top level functions often become methods of
A-bound first-class objects. Unfortunately, polymorphismis
lost during this transformation. For instance, a class imple-
menting sets, would naturally provide a fold method. The
inferred class type would be of the form:

class a set = struct
method fold : (a« —» B8 — B) —» 8 — 3
end
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a set. An attempt to fix the problem would be to parame-
terizethe class set over g aswell, that is, to replace o set
in the definition above by (a, (3) set. However, thisis
not very intuitive, since the object stays parametricin 3 even
when al itsfields have aground type. Moreover, the method
fo1d becomes monomorphic and thus can only be applied to
functions of the same type, whenever the object is A-bound.

The intuition is of course that the method fold should
be polymorphic. That is, the class set should have the
following class type:

class a set = struct ...
method fold : A1l 8. (o« — 8 — B) — 8 —
end

The addition of polymorphic methods could also be used
to reduce the number of explicit coercions. In a class de-
finition methods may have types more polymorphic than
expected. For instance, assume that class point has type:

class point (int) = struct
field x : int method getx : int
end;;

Then, the following subclass of point will not typecheck:

class eg_point x = struct

inherit point x

method eq p = p#getx = self#getx
end;;

The parameter p of the method eq does not need to be a point
but an object with method getx of type int. Thus, itstype
(getx : int; ..) — bool has afree row variable. As
for the case of set, the row variable in the type of p can be
bound in in a constraint type parameter as follows:

class o eq-point x = struct

inherit point x

method eq (p:o) = p#getx = self#getx

end;;

class a eq_point :
constraint a = ( getx :
field x : int
method getx : int
method eq : a« — bool

end

int — sig
int; .. )

Again, thisis not very intuitive and one might prefer to add
a stronger type constraint. One choice is to require p to
be of the same type as self. However, this unnecessarily
makes eq a binary method and so restricts its further use
with arguments of type eq_point only. Constraining p to
be a point in the definition of the method eq is another
possibility:

class eg_point x = struct

inherit point x

method eq (p:point) = pi#getx = selfi#igetx
end;;

et A o
field x : int
method getx : int
method eq : point — bool
end

This solution is more general, although it usually requires
explicit coercion when invoking the method eq:

let p = eq_point 1 in p#eq (p (: point);;

Polymorphic methodswould allow a more natural classtype
for the eq_point (first definition):

class eqg_point :
field x : int
method getx : int
method eq p :
A1l ((getx :
end;;

int — sig

int; ..) as @). @ — bool

Moreover, thanksto the polymorphic (anonymous) row vari-
able, messages could then be sent to the method eq with an
argument of type either point oOr eq_point.

We consider that the lack of polymorphic methods is a
weakness of Objective ML. We believe that polymorphic
methods would make most explicit coercions unnecessary.

Some solutions to extend ML with first class
polymorphism already exist in the literature. Simple but
rudimentary proposals can be found in [31, 24] and better
integration of first-class polymorphism inside Objective ML
has recently been studied in [14].

10.3. Integrating classes and modules

Objects and classes of Objective ML are orthogonal to
the other extensions of ML. In particular, the module sys-
tem of ML extends directly to classes and objects [18]. In-
deed, the implementation of Objective ML, called Objec-
tive Caml [19], offers a rich language of both modules and
classes. Classes and modules share alot of properties: they
offer some form of abstraction; they also help structuring
large applications; and they facilitate reusability of code. In
fact, they are quite different. Modules are a very generd
and powerful abstraction. However, it is difficult to allow
recursion between several modules or to give a meaning to
self inside modules. On the other hand, classes are a much
more specialized paradigm that has proved extremely con-
venient for some applications. Objects find their limitation
with multiple dispatch. Hiding components also remains a
difficult task.

For historical reasons, libraries of Objective Caml are
implemented as modules. |n practice, many of theselibraries
could be rewritten as classes. Choosing one style or another
is not insignificant, since it is a global commitment to the
architecture of the application. The class version and the
module version of the same libraries are very similar, but
their code cannot currently be shared. Thisis, of course,

THEORY AND PRACTICE OF OBJECT SYSTEMS—(1998) 13
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integration of modules and classes.
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11. Comparison to other works

Thework closest to ObjectiveML isML-ART [31]. Here,
object types are also based on record types and have similar
expressiveness. State abstraction is based on explicit exis-
tential typesin ML-ART; in Objective ML, it is obtained by
scope hiding, but it could also be explained with a simple
form of type abstraction. No coercion at al is permitted in
ML-ART between objectswith differentinterfaces. Unfortu-
nately, ML-ART has no type-abbreviation mechanism. This
was a major drawback, which motivated the design of Ob-
jective ML. On the other hand, classes are first class values
in ML-ART. We, however, do not think thisisamajor advan-
tage. The restriction is a deliberate choice in the design of
Objective ML, to keep the language simpler. In theory, most
features of ML-ART could have been kept in Objective ML.
In practice, however, it would have changed the language
significantly.

Another simplification in Objective ML is that in classes
all methodsview self with the sametype. Thisisnot required
by the semantics, and could technically be relaxed by making
method types more detailed in classes (see [31]). We found
that this extra flexibility is not worth the complication of
classtypes.

Our object typesare asimplification of those used in[32].
The simplification is possible since object types are similar
to record types for polymorphic access, and do not require
the counterpart of record extension. Moreover, as discussed
above, our implementation assumes the stronger condition
that two object types sharing the same row variable are
always identical. With this restriction, object types seem
to be equivalent to kinded record types introduced in [25].
Ohori also proposed an efficient compilation of polymor-
phic records (which does not scale up to extensible records)
in[26]. However, hisapproach, based on the correspondence
between types and domains of records cannot be applied to
the compilation of objects with code-free coercions.

Objects have been widely studied in languages with
higher-order types [9, 23, 7, 2, 28, 6]. These proposals sig-
nificantly differ from Objective ML. Types are not inferred
but explicitly given by the user. Type abbreviations are also
the user’sresponsibility. On the contrary, all these proposals
allow for implicit subtyping.

Our calculus differs significantly from Abadi’s and
Cardélli’s primitive calculus of objects mostly as a result
of design choices. We have chosen primitive classes be-
cause inferred types of sets of pre-methods would be too
complex to be readable (see [31] for instance). We have em-
phasized the role of row variables because we have chosen
not to infer subtyping, therefore avoiding the more compli-
cated framework of constraint types. On the other hand we
have included other features such as instance variables, to
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keep with the more simple state-abstraction mechanism by
scope hiding. Technically amajor difference, Objective ML
does not allow method overriding.

Openrecord typesare connected to the notion of matching
introduced by Kim Bruce [7, 8]. Matching seems to be at
least asimportant as subtyping in object-oriented languages.
Row variables in object types express matching in a very
natural way. While explicit matching may require too much
typeinformation, typeinference makes object matching very
practical.

Pal sherg has proposed typeinference[27] for afirst-order
version of Abadi and Cardelli’s calculus of primitive ob-
jects [1]. However, that language is missing important fea-
tures from the higher-order version [2]. Type inference is
based on subtyping constraints and the technique is simi-
lar to the one used in [11]. This latter proposal [11, 12]
is closer to areal programming language, and more suited
for comparison. Here, the authors use a subtyping relation
that is more expressive than ours, as they can prove subtyp-
ing under some assumptions. They can also infer coercions.
However, the types they infer tend to be too large. Indeed,
they do not have an abbreviation mechanism. Their inheri-
tance is weaker than ours since they must explicitly list all
inherited methodsin subclasses. We think the two proposals
are complementary and could benefit from one another. In
particular, it would be interesting to adapt automatic type
abbreviations to constraint types. The problem is still non-
trivial since inferred type-constraints are hard to read even
in the absence of objects.

The remainder of this section is dedicated to the com-
parison with three other proposalsfor adding objectsto ML.
They all useimplicit subtyping, whichis, however, restricted
to atomic structural subtyping [22, 13]. Asaresult, they all
have the same difficulty with parameterized classes, making
it impossibleto relate objects created from classes with a dif-
ferent number of parameters, even when the objects havethe
same interface. For instance, objects of a class string are
of incompatible type with objects of a parameterized class
vector when the parameter type is character. In Objective
ML, such objects could be mixed.

In[6], Bourdoncleand Metz propose alanguage based on
somerestricted form of type constraints[12]. However, they
do not provide typeinference.

Thetwo following proposalsincludetypeinference; how-
ever, fully polymorphic method invocation cannot be typed.
Two different solutions are proposed; they both amount to
providing some explicit type information at method invoca-
tion.

Moreprecisely, in Duggan’s proposal [10], methods must
be predeclared with a particular type scheme. Thus meth-
ods carry type information like data-type constructors in
ML. For instance, move would be assigned type scheme
Vay. oy — int. Type schemes that are assigned to meth-
ods are polymorphic in «,: they are arrow types whose
domain is always a variable o, standing for the type of
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type must accept. For instance, point would be given type
(move). The user must provide more type information that
in Objective ML. The same method name cannot be used
in two different objects with unrelated types. Objects of
parameterized classes are treated especially, using construc-
tor kinds. As mentioned above, objects of a parameter-
ized class revea forever that they are parameterized. For
instance, let us consider a class of vectors parameterized
over the type a. All methods of that class must be given a
type scheme of the form: V a,.7vPe=Tvr¢ V. o o — T,
where variable a,, range over type constructors. That is,
instead of the type 7, of self, only the type constructor
x of the type 7, is hidden. This revesls the dependence
of 7, on its parameters, and the parameters themselves.
As explained above, methods of parameterized classes are
incompatible with methods of non-parameterized classes.
Conversely, Objective ML does not currently allow poly-
morphic methods while Duggan’s proposal does. A poly-
morphic method map could be declared with type scheme:
Va,lve=Tvre VaVa.a ag— (a — ) — a; ag.
Intuitively, map carries implicit universal intros and elims,
like data constructors carry arguments of existentially or
universally quantified typesin [17, 31, 24]. Recursive kinds
actually alow some form of polymorphism that is different
from polymorphic methods discussed in section 10.

In Object ML [34], Reppy and Riecke treat objects as a
generalized form of concrete data-types. Types are also in-
ferred in Object ML, but the authorsdo not claim a principal
typeproperty. Also, method invocation must alwaysmention
the class of the object to which the method belongs. Each
object is actually tagged with a constructor that carries the
class the object originated from. Therefore, objects can be
tested for membership to some arbitrary classin someinher-
itance relationship. Only single inheritanceis allowed. The
subtyping rel ationship between objectsisdeclared and corre-
spondsto the inheritance forest. Classes are generative, that
is, objectsof different classes havedifferent types. Although
these types can be related by subtyping, they are never in an
instance relationship. Some object coercions, but apparently
notall, areimplicit. Onthecontrary in Objective ML, classes
are transparent, that is, objects types are structural and only
describetheinterface of objects: two objectswith exactly the
same interface have equal types. Two objects of classes in
a subclass relationship are not necessarily related, but when
they are, onetypeis smply an instance of the other. Object
ML does not provide any inheritance mechanism, except by
means of encodings[33]. Typing of binary methodsis also
aproblem, which is solved viaruntime class-type tests.
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Objective ML has been designed to be the core of areal
programming language. Indeed, the constructs presented
here have been implemented in Objective Caml. We chose
class-based objects since this approach is now well under-
stoodin atypeframework and it doesnot require higher-order
types.

The original part of the design is automatic abbreviation
of object types. Although thisis not difficult, it is essential
for making the language practical. It has been demonstrated
beforethat fully inferred object typesare unreadable[31, 11].
On the contrary, types of Objective ML are clear and till
require extremely little type information from the user. To
our knowledge, all other existing approaches require more
type declarations.

Objective ML is also interesting theoretically for the use
of row variables [35, 32]. Row variables are very close to
matching and seem more hel pful than subtyping for the most
common operations on objects. Message passing and inher-
itance are entirely based on row variables, which relegates
subtyping to alower level.

Another interesting aspect of our proposal isitssimplicity.
This is certainly due to the fact that Objective ML is very
close to ML. Specifically, most features rely only on ML
polymorphism. This leads to very simple typing rules for
objects and inheritance. Coercions, based on subtyping, can
be explained later. Data abstraction is guaranteed by scope
hiding rather than by type abstraction; thisis aless powerful
but simpler concept.

The main drawback of Objective ML is the need for ex-
plicit coercions. Coercions are necessary. However, we
think they occur in few places. Thus, explicit coercions
should not be aburden. Furthermore, coercionscould in the-
ory be made implicit using constraint-based type inference.

In our implementation of Objective ML, classesand mod-
ules are fully compatible, but orthogonal. That should be
particularly interesting to compare these two styles of large-
scale programming, and help usto better integratethem. This
is an important direction for future work.

Acknowledgments

We thank Rowan Davies who collaborated in the imple-
mentation and the design of a precursor prototype of Objec-
tive ML.

Notes

1. Thesyntax has been slightly modified here in order to keep the concrete
syntax and the abstract syntax closer.

2. One may imagine relaxing this constraint, and allow the type of the
redefined method to be a subtype of the original method. One would,
however, lose a property we believe important: rule INHERIT shows
that the type a class gives to self is acommon instance of the different
types of self initsancestors; asaconsequence, the type of self inaclass
unifies with the type of any object of a subclass of this class.
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1. Typing rules for core ML

(INsT) (Fun)

r:Va.t€ A A+z:7ka: 7

At z:T[T/a) Arfun(z)a:7— 7'
(Aprp)
Ara:7 —> 71 Aka 7

Arad :7
(LET)
Atad 7 A+z:Gen(t",A)Fa:T

AFletxz=da' ina: 7

Generalization Gen(7, A) isV a. 7 where & are al vari-
ablesof T that are not freein A.

2. An example of typing derivation

In this section, we give the typing derivation for class
scaled point. Our focus hereis not to explain type infer-
ence, but simply to illustrate the typing rules.

We assume that the class point has aready been typed,
that is, we type scaled_point in the environment 4, con-
taining the following class-type (we use #point as an ab-
breviation for (move : int — int;..)):

int —
sig (#point)
field z : int ref
method move :
end

int — int

We remind the definition of class scaled point:

fun (so)
struct
inherit point 0 as parent;
field s = sp;

method scale = s;
method move =
fun (d) parent#move(d x selffscale)
end

The remainder of this section is a proof that class
scaled point has the following class type (we use
#scaled point is an abbreviation for (move : int —

i B B A A

int —
sig (#scaled_point)
field z : int;
field s : int;
method move : int — int;
method scale : int
end

Let A; for Ay extendedwith sy : int and A, be A, extended
with self : #scaled point. The body of the inheritance
clause must be typed in A} which is equal to A;. By rule
CLAsSs-INST we have:

Ay - point :
int —
sig (#scaled_point)
field z : int ref
method mowve : int — int
end

Note that we have chosen an instance of the type of class
point where self type is #scaled_point (an instance of
type #point). Thus, by rule CLass-App, we have:

Aj Fpoint 0 :
sig (#scaled_point)
field z : int ref
method mowve : int — int
end

Applying rule INHERITS we get:

A, b inherit point 0 as parent :
(field z : int;
method move : int — int;
super parent :
(field z : int;
method move : int — int)) (1)
The rest of the class body must be typed in environment A;
equal to A, extended with

field x : int; super parent :
(field z : int;method move : int — int)
Since A3 is A;, wehave A% | sy : int, and by rule F1ELD,
Az b field s = 5o : field s : int. (2)

The rest of the class body must be typed in A, equal to A;
extended with field s : int. Since A4 s : int, we have
by rule METHOD

Ay F method scale = s : method scale : int. (3)

UsingrulesSEND and SUPER, weasohave A4 F a : int —
int where

a 2L tun (d) parent#move(d * self#scale)
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A4 F method move = a : method move : int — int.

By rule THEN applied to (3) and the previousjudgment, we
have

Ay F (method scale = s;method move = a) :
(method scale : int;
method move : int — int)

By rule THEN gain, applied to (2) and the previous judge-
ment, we have

As F (field s = so;method scale = s;
method move = a) :
(field s : int;method scale : int;
method move : int — int)

Hence, by rule THEN again applied to (1) and the previous
judgement, we have A, - b : o where

d
b def (inherit point 0 as parent;
field s = sp;method scale = s;
method move = a)

d . . . .
def (field z : int;method move : int — int;

field s : int;method scale : int)

©

Since A, + self
CLass-Boby leadsto:

#scaled point, applying rule

A; b struct b end : sig (#scaled_point) p end

Finally, by rule CLass-Fun, we get:

Ap F fun (sg) struct b end :
int — sig (#scaled_point) ¢ end

3. Binary methods

In Objective ML, it is possible to define binary methods,
that is, methods that receive as a parameter an object of
the same type as self. Furthermore, a class that has binary
methods can be freely extended by inheritance. Of course,
binary methods remains binary in a subclass.

The virtual class comparable is a template for classes
with abinary method 1eq. The component virtual leqis
a type constraint on the type of self. This method must be
applied to an object of the same type as self.

class comparable () = struct virtual (a)

4. Proofs of type soundness theorems

D S

end;;

class comparable : unit — sig virtual (a)
virtual leq : a« — bool

end

o MW L

Class int_comparable inherits from class comparable. It
implements method 1eq and adds a method getx.

class int_comparable (x : int) = struct
inherit comparable ()
field x = ref x
method getx = !x
method leq o = !x < o#getx
end;;

class int_comparable :
field x : int ref
method leq : « — bool
method getx : int

end

int — sig (a)

Method 1eq still expects to be applied to an object of
the same type as self. So, type int_comparable = rec
a.(leq : & — bool;getx : int) is not a subtype of type
comparable = rec a.(leq : a — bool): inheritanceis
not subtyping. Indeed, a method 1leq of an object of the
former type expects to be applied to an object that has a
method getx; this is not ensured by the latter type. How-
ever, int_comparable is an instance of p #comparable,
which is by definition rec «.(leq : @ — bool;p). Binary
methods are correctly handled since the type of sdlf is kept
open while typing classes: adding the method getx to class
comparable simply amounts to instantiating the row vari-
able in the type of self, to (getx : int; ..). Thus, the
type of self in the subclass has a method getx and is still
open.

Asatest, the functionmin will return the minimum of any
two objectswhosetypeisan instance of type#comparable.

let min (x : #comparable) y =
if x#leq y then x else y;;

value min : (#comparable as o) — o — a =
(fun)

This function can thus be applied to objects of type
int_comparable.

let p = min (new int_comparable 7)
(new int_comparable 11)

in (p, p#getx);;

— : int_comparable * int = (obj), 7

Subject reduction is a straightforward combination of redex contraction (lemma 13) and context replacement (lemma 8).
Since we have multiple syntactic categoriesfor expressions, contexts, and types, it is convenient to introduce the following

meta-notations:

az=al|blc|d
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Thefollowing propositions are used several timesin the proof.
Proposition 4 (Stability by substitution) If A - a : 7, then for any substitution 8, (A) + a : 6(7).

Proposition 5 (Extension of environment) If type environments A and B are identical on free variables of expression a and
Al a:7,then B a: 7. If typeenvironment B extends type environment A (thatis B [dom (A) isA)and A F a : 7, then
BlFa:f.

We say that o isaninstance of ¢’ if any instance of ¢ is an instance of ¢/. We say that type environment A is an instance

of type environment A’ if both type environments have the same domain and for any element % of their domain A(h) isan
instance of A'(h).

Proposition 6 (Strengthening of context) If type environment A is an instance of type environment B and A - a : 7, then
BlFa:T.

Thefollowing lemma somewhat simplifies the proofs.

Lemma 7 (Derivation simplification) When proving that for all 7, Ay - ap : 7 implies A - a : 7 (for some Ay, ap, A and
a), one can restrict oneself to the case where a derivation of Ag F ag : 7 does not end with rule Sus. The general case
follows.

Proof. Thisisdone by induction on the size of derivations. Let us assume that a derivation of Ay F a¢ : 7 endsas

Agkag: 7 < (SuB)
AobFag: 7

By induction hypothesis, A - a : 7. Hence

AlFa:7 T’§T(SUB)
Ata:T

|

Wewritea; C ay if for any environment A suchthat A* = A and any typer suchthat A ay : 7, AF a2 : 7. Likewise,

wewriteb; C by (resp. ¢; C ¢g) if for any environments A and any class body type ¢ such that A F b, : ¢ (resp. any class

typey suchthat A c; : v),then A+ by : ¢ (resp. A F ¢ : v). Subject reduction theorem can be restated as follows: if
a; — ag, thena; C as.

Lemma 8 (Context replacement) For any context E, if a; C a» then E[a;] C Elaz].

Proof. The property can be proved independently for each arbitrary one-node context £. Then, the lemmafollowsby a
trivial induction on the size of the context.

Let E be a one-node context. Let A be a type environment and 7 a type such that A - Elfa,] : 7 (1). We show that
AF Elay] : 7. Using lemma 7, one can assume that a derivation of (1) does not end with rule SUB.

All cases are simple and similar. We show one case for example:

CaseEislet ¢ = [ ina: A derivationof (1) endsas:

Atay: 7 A+a::Gen(T’,A)|-a:T(

AFletxz=a;ina: 7

LET)

By induction hypothesis applied to the first premise, A ay : 7. Hence A& let x = as ina: 7

The following lemmas (9 thru 12) are used to simplify the proof of redex contraction.

Lemma 9 (Append) Let A be a typing environment containing no super bindings. If A F by : ¢1, A + (1 \ method) F
by : 2, and ¢ and ¢, are compatible (that is, p; @ ¢- iscorrect), then A+ by Q by : 1 B s.

Proof. We actually prove a more general property. Let po be a sequence of super bindings. If A 4+ pg F by : 1,
A+ (1 \ method) - by : o, and p; and o, are compatible (that is, ¢ @ 2 iscorrect), then A + po by @by : 1 © o,
Thisiseasily proved by inductionon b;. -

Lemma 10 (Term replacement (variables)) Let A be a type environment, a and a’ be term expressions, ¥ and 7' be type
expressions. If A* Fa' : 7/ (2)and A + = : Gen(7',A) F & : 7 (3) and bound variables of a are not free in a’, then
AF ala'/z] : T isprovable (4).
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of (3) does not end with rule Sus.
In each case, we consider aderivation of (3). By using arenaming substitution on (2) if necessary (proposition 4), we can
assumethat freevariablesof 7' that are notin A* do not appear freein thisderivation (5). Wewrite A, for A+« : Gen(7', A*).
We only show the more complicated cases. Other cases are either similar or simple.

Caseaislet x; = a; inay: A derivation of (3) endsas:

(6) Ao Faj:n A +x1 :Gen(m, Ay) Fas: 7 (7) (

Ay Fletxzy =a;inas : 7

LET)

By induction hypothesis applied to (6), we get A - a1 [a’/z] : 71 (8).

If 1 = «, (7) becomes A + z : Gen(7y,A;) F a2 : 7. By strengthening of environment (proposition 6), we have
A+ x:Gen(r,A) F as : T Since A isasubsequence of A,. We conclude by rule LET.

Otherwise, let A; be A+, : Gen(71, A). Re-ordering hypothesesin (7), wehave A+ : Gen(7y, Az )+ : Gen(7', A) F
ay : 7. By strengthening of environment, we can replace A, by A. Since free type variablesof A; arethe same asfree type
variables of A, we can replace A by A, in Gen(7', A). Thus, wehave A; + = : Gen(7', A1) I ay : 7. On the other hand,
sincez; isnot boundina’, and A% extends A*, wededuce A% F o' : 7' from (2) by extension of environment (proposition 5).
Thus, we can apply the induction hypothesiswith A, for A. We get A; F as[a’/z] : 7. Combining with (8) inaLET rule,
wefinaly have A+ (let ©1 = a; inas)[a’/z] : 7.

Caseaisfun (z1) ax: A derivation of (3) endsas:

A, +x i bFas:m (Fun)
Az Ffun (z1) as i1 — 12

Let A; be A+ z; : 7. Re-ordering type environment of the premise, wehave A +x; : 71+ : Gen(7', A) b ay : 75. By (5),
thegeneralizationGen(7', A) isequal toGen (7', A+x; : 1), thatis, Gen(7', A;). So,wehave A; +x : Gen(7', A1) F as : 7.
Sincez; isnotboundina’ and AT extends A* , wededuce A% - o' : 7' from (2). Thus, we can apply theinduction hypothesis
with A, for A. Weget 4,  az[a’/z] : 7o. We conclude with rule Fun

Caseais(b): A derivationof (3) endsas:

A +self:my by T, = (method ()) (

OBJECT)
Ay B (D) : 7y

Let A, be A* + self : 7,. Re-ordering type environment of the premise, we have A* + self : 7, + x : Gen(7', A) F b : ¢.
We can replace Gen(7', A) by Gen(7', A*) by strengthening of environment. By (5), the generalization Gen (7', A*) isequal
toGen(7', A* + self : 7)), that is, Gen(7', A,). Thus, wehave A, + = : Gen(7', A,) - b : ¢. Since A} isjust A*, we have
A% Fa' : 7' (3). Thus, we can apply the induction hypothesiswith A, for A. Weget A, - bla’/z] : ». We conclude with
rule OBJECT.

Lemma 11 (Term replacement (instance variablesand self)) Let A be an environment and a be either an expression a
or aclass expression c. Let w be an object body and ¢ be an object body type. We defines U as the restriction of dom (w) to
fields. Wewrite 7, for (method (¢)). We assume that A* is A, bound variables of @ are not befreein (w) and w(w), and the
following three judgments hold:

A+self:7, Fw:ep, (AF w(u): 7)Y, A+ self : 7, + (¢ \ method) - a : 7(9).
Then, A + al{w)/self][w(u)/u]*Y[(w Q (field u = a,“€V))/{{u = a,*€V )}V Y : 7.
Proof. The proof is by induction on the structure of @. For any expression a, we write o™ for
al(w) /self[w(w) /u]*“Y [(w @ (field u = a,“ "))/ {{u = a, ")}V <Y

Class expression ¢ is defined likewise. We write A, for A + self : 7, + (¢ \ method). Using lemma 7, we can assume
that a derivation of (9) does not end with rule Sus.
We only show the more complicated cases. Other cases are easy.
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a™ isequal to (w). We conclude by rule OBJECT:

A+self:7hw:p 7 = (method (p)) (

OBJECT)
AF{(w): 7

Caseais{(u=a,"V)}: A derivation of (9) endsas:

((10) fieldu:7, € A, (11) Ay Fay 7)€Y (

OVERRIDE)
Ay F{{u:a, YY) 7y,

So, from (10), » @ field u : 7,“€Y = . By induction hypothesis applied to (11), we get A - o] : 7, (12). Hence
AF (fieldu = af )€V : (field u : 7,)“€Y. Then, the append lemma9 applied to the hypothesis A + self : 7, Fw : ¢
and the last judgment yields A + self : 7, - w @ (field u = a})*Y : . Hencethe following derivation :

A+self:7,Fw@ (fieldu=af)*cV : ¢ T, = (method (¢)) (

OBJECT)
Ak (w@(fieldu = af)"V): 7,

Lemma 12 (Term replacement (super)) If A - by : 1, A + super: ¢ F by : 2 and bound variables of b, are not freein
by, then A F bl : o, Where bl is [a/s#tm]metrodm=acbi ‘j e b, where all invocations of methods to super s#m have been
replaced by the body « of the corresponding method m in b;.

Proof. The proof is similar to the one of lemma 10. It isin fact simpler, as super is not substituted across class and
object boundaries, nor across instance variable definitions. -

Lemma 13 (Redex contraction) We write — . for a one-step reduction in an empty context. If a; — . as thena; C as.

Proof. The proof is done independently for each redex. All cases are easy now that we have proven the right lemmas.

Letusassume A - aq : 7 (13) and A equals A* (resp. A F by : p (14) for any A). We show that A - ay : 7 (15) (resp.
At by @ ) by cases on the redex a; (resp. by). Each case is shown independently. Using lemma 7, we can assume that a
derivation of (13) does not end with rule SUB.

Casea; is(fun (z) a) v: A derivation of (13) endseither as:

A4+z:7Fa:1 (Fux)
AFfun(z)a:7 > 19 T'—>TO§T(’)—>T(SUB)

AFfun(z)a:7) > 71 At w7 (App)
Ab (fun (z)a)v:T

or as.

(16) A+z:7'Fa:7 (FUN)
AFfun(z)a:7 > 71 (17)A|-1):7"(

App)
AF (fun (z)a)v:T

The end of the first derivation can be rewritten as:
A+z:7Fa:m To < T SuB)
(16) A+z:7Fa:7 (FuN) AFv:im o <7 (Sus)
A fun(z)a:7 > 7 (17) A wv:7 (App)
Ab (fun (z)a)v: T

In both cases, the term replacement lemma 10 applied to (17) and (16) shows the conclusion.
Casec; is(fun (z) ¢) v:  Similar to previous case.

Casea; islet x = v ina: A derivationof (13) endsas

(18) At w:7 (19) A+a::Gen(T',A)|-a:T(

LET)
AFletx=wvina: 7

The term replacement lemma 10 applied to (18) and (19) shows the conclusion.
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Casea; iSnew (struct w end): A derivation of (13) endsas

* . .
A +self iy Fw: o (CLASS-Boby)
AF struct w end : sig (7,) ¢ end 7, = (method (y)) (NEW)
(20) AF new (struct w end) : 7,

Hence,
A +self iyl w: o Ty = {method (¢)) (

OBJECT)
AF (w) 7y

Casea; is(w)#m: Wemust remember that A* is A. A derivation of (13) ends either as

A+self:ryFw:op 7y = (method (p)) (OBJECT)
AF (w) 7y Ty ST (SuB)
AF(w):7,/ r = (m 77 (SEND)
Al (w)#m : 7
or as
(21) A+self:7 Fw:p  (22) 7, = (method (¢)) (OBJECT)
At (w):T, (23) 7 = (m: 737) (SEND)
A (w)#m : 7y
The end of the first derivation can be rewritten
A+self:rmyFw:p 7, = (method (p)) (OBJECT)
At (w):7y Ty = (m: k3 7) (SEND)
AF (w)#m : 7 T < Ty (SuB)
AF (w)y#m : T

It has been seen at the beginning of the proof that rule Sus at the end of a derivation could be ignored. Thus, only the second
case need to be considered.

Theresult is then proved using the term replacement lemma 11.

We first show that the hypotheses of lemma 11 are satisfied. Asthe fields of an object are typed in the same environment
asthe object, for fieldu : 7y € v, A v, : 7, (24) Where field u = v, € w. From (22) and (23), method m : 7% € .
Then, from (21), an easy induction on w using rules THEN, F1ELD, and METHOD Yields:

A+ self : 1y + p1 Fw(m) : 7, for some p; C (p \ method)
As A containsno field bindings, the environment can be extended to include ¢ \ method:
(25) A+ self : 7, + (¢ \ method) - w(m) : 7
Finally, the term replacement lemma 11 applied to (21), (24), (25) yields
Ab w(m)[(w) /self][w(u) /u]““V [(w @ (field u = a,*Y))/{{u = a, "€V )}V Y o 7y

Caseb; isinherit (struct w end) as s;b: A derivation of (14) endsas

At inherit (struct w end) as s : ¢ (26) A+ (¢ \method) - b: o (

THEN)
Al inherit (struct wend) as s;b: 1 D ¢

where ¢ = p; + (super s : 1), continued by

* . .
(28) A* +self 1y Fw: ¢ (CLass-Boby)

(27) Ak self: T, At struct w end : sig (7y) 1 end (INHERIT)

Al inherit (struct w end) as s : ¢; + (super s : ¢1)
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Applying the term replacement lemma 12 on A + (¢; \ method) F w : ¢; (the environment has been extended) and (26)
yields A + (¢ \ method) b b[a/s#m|rethedm=acw . o, Then, the append lemma applied on (29) and this last judgment
givestheresult:

AFw@ b[a/s#m]methodm:aEw D1 Do

Caseb; isfieldu =wv;b: A derivation of (14) endsas

Ao T (FIELD)
Al fieldu=wv: (fieldu: 1) (30)A+(fie1du:r)|—w:tp(

THEN)
Al fieldu=v;w:p @ (fieldu: 1)

From (30), since w € dom (w) and fields appear before methods in w, an easy induction showsthat A F w : ¢. Indeed,
fieldsare typed in environment A*, and methods are typed in an environmentin which (field u : 7) has been added anyway
after the typing of thefield « appearingin w.

Caseb; ismethod m = a ;b: A derivation of (14) endsas

Al self:(m:7;7) Ata:T (METHOD)
At method m = a: (method m : 7) (31)A|—w:g0(

THEN)
At methodm =a;w: (methodm :7)® ¢

Sincem € dom (w), m € dom (), then p and (method m : 7) & ¢ areequal. Therefore, judgment (31) can be rewritten
Al w: (method m : 7) ® .

Casea; is(v:7 <:7'): A derivation of (13) endsas

Al wv:0(7) TST’(

COERCE)
AbF(v:T<:7):0(1")

Hence,
Al wv:0(1) 6(r) < 6(r') (

The normal-form theorem is proved by structural induction on values, using the following lemma.
Lemma 14 Let v beavalue. Weassume ) - v : 7 (32).

e |If 7 isafunctional type, then v isafunction.
e If 7 isan object type, then v isan object.

Let v. beavalue. We assume® + v, : .

e If yvisafunctiona type, then v isafunction.
e Otherwise, v isan object.

Proof. We provethat if v isafunction, then r isafunctional typeand that if v isan object, then 7 is an object type. Then,
sinceavalueis either afunction or an object and functional types and object types are incompatible, this provesthe lemma.
We can ignore rule SUB at the end of aderivation, as it does not change the shape of atype.

Caseaisfun (z) a;: A derivation of (32) endsas

A+z:mnbFa:m (FuN)
AFfun(z)a) i1 — T

SO, TisT — .

Caseais(w): A derivation of (32) endsas

A +self iy Fw:o Ty = {method (¢)) (

OBJECT)
AF(w):7y

So, 7 is (method (p)).
The proof is similar for class values.

[ ]
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Proof. The proof is by structural induction simultaneously on expressions a and class bodies b. Let us assume
DFa:7(33)(resp. O Fc:v(34),AFb: @ (35)0r Al d: ¢, where A containsonly field and method bindings), and
that a (resp. ¢, b or d) cannot be reduced.

Casea isz: Thisexpression cannot be typed in the empty environment.

Caseaisa; as: ltisnot possible. A derivation of (33) shows that there existsatype; suchthat @ - a; : m — 7. The
induction hypothesis applied to expression a; showsthat it is avalue. Since it has a functional type, it must be a function
fun (z) ao. But then expression « could be reduced.

Caseaislet x = a; inas: Itisnot possible. Theinduction hypothesisapplied to expression a; showsthat it is avalue.
But then expression a could be reduced.

Caseaisa;#mor class z = cina;: Similar to previouscases.

Casea isfun () a;: By definition, expression a isavalue.

Casea iss#m: Itisnot possible: expression s#m is not typable in the empty environment.

Caseaisself or uor {(u=a,*<")}: Sameaspreviouscase.

Caseais(a; : 7 <:7'): Itisnot possible: a can be reduced.

Caseais(b): Theinduction hypothesis shows that object body b isavalue. Then, expression a isalso avalue.

Casea isnew c: Itisnot possible. A derivation of (33) showsthat @ F ¢ : sig (7,) ¢ end. Theinduction hypothesis
applied to ¢ showsthat it isavalue. Accordingto itstype, it is astructure. But then a can be reduced

Casecisz: Thisexpressionis not typablein the empty environment.

Casecisc a: Itisnot possible. A derivation of (34) shows that there existsatype 7 suchthat @ - ¢; : 7 — . The
induction hypothesis applied to expression ¢; showsthat itisaclassvalue. Sinceit hasafunctional type, it must beafunction
fun (x) ¢y. But then expression ¢ could be reduced.

Casecisfun (z) ¢;: By définition, expression c isavalue.
Casecisstruct bend: Theinduction hypothesis showsthat classbody b isavalue. Then, expression c isalso avalue.

Casebisd;b;: Theinduction hypothesis shows that object component d and object body b, arein normal forms. d isthus
afield or method definition, and it is not overridden by b, (otherwise, b could be reduced.)

Casebis®: By definition, object body b isavalue.
Casedisinherit cas s: Itisnot possible. A derivation of (35) endsas:

Al self:7, (36) AF c:sig(ry) 1 end (

INHERIT)
At inherit cas s: ¢ + (super s: p1)

The induction hypothesis applied to ¢ shows that it is a class value. According to its type, it is of the form struct w end.
But then, the inheritance clause could be reduced.

Cased ismethod m = a: By definition, expression d isin normal form.

Casedisfieldu =a: IfAFd:fieldu:7,then®F a: 7, as A containsonly field and method bindings. By
induction hypothesis, expression a isin normal form. Then, so is object component d.
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