
Objective ML:

A simple object-oriented extension of ML

Didier R�emy and J�erôme Vouillon

�

Abstract

Objective ML is a small practical extension of ML with

objects and toplevel classes. It is fully compatible with

ML; its type system is based on ML polymorphism,

record types with polymorphic access, and a better

treatment of type abbreviations. Objective ML allows

for most features of object-oriented languages including

multiple inheritance, methods returning self and binary

methods as well as parametric classes. This demon-

strates that objects can be added to strongly typed lan-

guages based on ML polymorphism.

Introduction

We propose a simple extension of ML with class-based

objects. Objective ML is a fully conservative extension

of ML. A beginner may ignore the object extension.

Moreover, he would not notice any di�erence, even in

the types inferred. This is possible since the type infer-

ence algorithm of Objective ML, as in ML, is based on

�rst-order uni�cation. Types are extended with object

types that are similar to record types for polymorphic

access. It is also essential to improve both the status

and the treatment of type abbreviations in order to keep

types readable.

When using object-oriented features, the user is

never required to write interfaces of classes, although

he might have to include a few type annotations when

de�ning parametric classes or coercing objects to their

counterparts in super classes.

Objective ML is a class-based system. Objects are

records of methods. Our language copes with most fea-

�

Authors' address: INRIA-Rocquencourt, B.P. 105, F-78153 Le

Chesnay Cedex, France.

Email: Didier.Remy,Jerome.Vouillon@inria.fr

To appear in the proceedings of the 24th Annual

SIGPLAN-SIGACT Symposium on Principles of Pro-

gramming Languages, Paris, France, January 15{17,

1997.

tures of object-oriented programming, including meth-

ods returning self, binary methods, virtual classes and

multiple inheritance. Coercion from objects to their

counterparts in super classes is also possible but must

be written explicitly. Classes expose the states of ob-

jects to their subclasses, but the states are hidden in the

objects themselves. Both the status and the treatment

of type abbreviations have been improved so that types

are easier to read.

The ingredients used, except automatic abbrevia-

tions, are not new. However, their incorporation into

a practical language, combining power, simplicity and

compatibility with ML, is new.

Objective ML is formally de�ned, and its dynamic

semantics is proven correct with respect to the static

semantics. The language has not been designed to be

a minimal calculus of objects, but rather the core of

a real programming language. In particular, the se-

mantics of classes is compatible with programming in

imperative as well as functional style and it allows for

e�cient memory management (methods can be shared

between all the instances of a class).

The rest of this paper is organized as follows: the

�rst section is an overview of Objective ML. Objects

and classes are introduced in sections 2 and 3, respec-

tively. Coercions are dealt with in section 4. The se-

mantics of the language is described in section 5. Type

inference is discussed in section 6. The abbreviation

mechanism is explained in section 7. In section 9, we

compare our proposal with other works.

1 An overview of Objective ML

Objective ML has been implemented on top of the Caml

Special Light system [Ler96]. We have used this imple-

mentation, now called Objective Caml

1

, to process all

examples shown below. When useful, we display the

output of the typechecker in a slanted font. Toplevel

1

The syntax has been slightly modi�ed here in order to keep the

concrete syntax and the abstract syntax closer.



de�nitions are implicit let : : : in : : :. For each phrase,

the typechecker outputs the binding that will be gen-

eralized and added to the global environment before

typechecking the next phrase.

The language Objective ML is class-based. That is,

objects are usually created from classes, even though it

is also possible to create them directly (this is described

in the next section). Here is a straightforward example

of a class point.

let point = class (x0)

val x = ref x0

meth move d = (x := !x + d; !x)

end;;

value point : class (int)

val x : int ref

meth move : int ! int

end

Class types are automatically inferred. Objects are usu-

ally created as instances of classes. All objects of the

same class have the same type structure, reecting the

structure of the class. It is important to name object

types to avoid repeating the whole nested, often recur-

sive, structure of objects at each occurrence of an object

type. Thus, the above declaration also automatically

de�nes the abbreviation:

type point = hmove : int ! inti

which is the type of objects with a method move of

type int ! int. In practice, this is essential in order

to report readable types to the user.

let p = new point 3;;

value p : point = hobji

Classes can also be derived from other classes by adding

instance variables and methods. The following example

also shows how an object sends messages to itself; for in-

stance, if the scale formula is overridden in a subclass,

the move method will use the new scale. Here, methods

of the parent class are bound in the super class vari-

able parent and used in the rede�nition of the move

method.

let scaled point = class (s0)

inherit point 0 as parent

val s = s0

meth scale = s

meth move d =

parent#move (d * self#scale)

end;;

value scaled point : class (int)

val s : int

val x : int ref

meth move : int ! int

meth scale : int

end

Scaled points have a richer interface than points. It is

still possible to consider scaled points as points. This

might be useful if one wants to mix di�erent kinds of

points with incompatible attributes, ignoring anything

but the interface of points (we assume that a class of

colored points has been de�ned in an obvious way):

let points =

[(new scaled point 2 : scaled point :> point);

(new colored point "blue"

: colored point :> point)];;

value points : point list = [hobji; hobji]

Notation

A binding is a pair (k; t) of a key k and an element t.

It is written k = t when t is a term or k : t when t is

a type. Bindings may also be tagged. For instance, if

foo is a tag, we write foo u = a or foo u : a. Tags are

always redundant in bindings and only used to remind

which kind of identi�er is bound.

Term sequences may contain several bindings of the

same key; we write @ the concatenation of sequences

(i.e. their juxtaposition). On the contrary, linear se-

quences cannot bind the same key several times. We

write + the overriding extension of a sequence with an-

other one, and � to enforce that the two sequences must

be compatible (i.e. they must agree on the intersection

of their domains). We write ; for the empty sequence.

A sequence can be used as a function. More pre-

cisely, the domain of a sequence S is the union, written

dom (S), of the �rst projection of the elements of the

sequence. An element of the domain k is mapped to

the value t so that x : t is the rightmost element of the

sequence whose �rst projection is x, ignoring the tags.

The sequence S n foo is composed of all elements of S

but those tagged with foo. Finally, we write foo (S) for

fk : t j foo k : � 2 Sg, the subsequence of the elements

of S tagged with foo but stripped of the tag foo.

We write

�

t for a tuple of elements (t

i

i2I

) when in-

dexes are implicit from the context.

2 Objects

We assume that a set of variables x 2 X and two sets of

names u 2 U and m 2M are given. Variable x is used

to abstract other expressions; x is bound in fun (x) a

and let x = a

1

in a

2

. Programs are considered equal

modulo renaming of bound variables. Conversely names

are always free and not subject to �-conversion: u and

m are used to name value and method �elds of objects,

2



respectively. The syntax of expressions is provided be-

low.

a ::= x j fun (x) a j a a j let x = a in a

j self j u j fhu = a; : : : u = aig j a#m

j hval u = a ; : : :val u = a;

meth m = a ; : : : methm = ai

Operations on references could be included as constants

k (the ellipsis in syntax de�nitions means that we are

extending the previous de�nition):

a ::= : : : j k and k ::= ref j ( := ) j (! )

For sake of simplicity, we omit them in the formaliza-

tion, although we use them in the examples. An object

is composed of a hidden internal state which in turn

is composed of a sequence of value bindings also called

instance variables , and a sequence of method bindings

for accessing and modifying these values. The type of

an object is thus the type of the record of its meth-

ods. In an object, a method may return the object

itself or expect to be applied to another object of the

same kind. Types might thus be recursive. We assume

given two countable collections of type variables and

row variables, written � and �, and a collection of type

constructors written �.

� ::= � j � ! � j (�; : : : �) � j rec �:� j h�

0

i

�

0

::= (m : � ; �

0

) j � j ;

� ::= 8 ��: �

Object types ending with a row variable are named open

object types , while others are named closed object types .

In the examples, closed object types are simply written

hm

i

: �

i

i2I

i, i.e. the ; symbol is omitted, and the row

variables of open object types are also left implicit in an

ellipsis hm

i

: �

i

i2I

; ::i (abbreviations explained in sec-

tion 7 can even be used to share ellipsis). In the formal

presentation, we keep both ; and row variables explicit.

A label can only appear once in an object type, which is

easily guaranteed by sorting type expressions [R�em93].

Type equality is de�ned by the following family of

left-commutativity axioms:

(m

1

: �

1

;m

2

: �

2

; �

0

) = (m

2

: �

2

;m

1

: �

1

; �

0

)

plus standard rules for recursive types [AC93]. Types,

sorts, and type equality are a simpli�cation of those

used in [R�em94a], which we refer to for details.

Typing contexts are sequences of bindings:

A ::= ; j A+ x : � j A+ val u : �

Typing judgments are of the form A ` a : � . The typing

rules for ML are recalled in appendix A.

Typing rules for objects are given in �gure 1. A

simple object is just a set of methods. Methods can

send messages to the object itself, which will be bound

to the special variable self. A simple object could be

typed as follows:

A+ self : hm

j

: �

j

j2J

i ` a

j

: �

j

j2J

A ` hmeth m

j

= a

j

j2J

i : hm

j

: �

j

j2J

i

However, an object can also have instance variables.

Instance variables may only be used inside methods de-

�ned in the same object. The typechecking of instance

variables val u

i

: a

i

i2I

of an object produces a small

typing environment val u

i

: �

i

i2I

in which the methods

are typed (rules Object and Val).

Instance variables also provide the ability to clone an

object possibly overriding some of its instance variables

(rule Override). In this rule, types �

y

and �

i

do not

seem to be connected, but in fact they are, thanks to

typing rule Object which requires the type �

y

of self

and the types �

i

of instance variables to be related to the

same objet. This is also insured by typing the premise

in the context A

?

equal to A n fval; selfg. This makes

the expression hval u = a ; meth m = hmeth m = uii

ill-typed; but is not a real restriction, since one can still

write the less ambiguous expression hval u = a ; meth

m = let x = u in hmeth m = xii.

The rule Send for message invocation is similar to

the rule for polymorphic access in records: when send-

ing message m to an object a, the type of a must be

an object type with method m of type � ; the object

may have other methods that are captured in the row

expression �

0

. The type returned by the invocation of

the message is � . The type of message invocation may

also be seen on a trivial program:

let send m a = a#m;;

value send m : h m : 'a; .. i ! 'a = hfuni

The ellipsis stands for an anonymous row variable �,

which means that any other method than m may also

be de�ned in the object a. Row variables provide para-

metric polymorphism for method invocation. Instead,

many other languages use subtyping polymorphism.

Since our subtyping polymorphism must be explicitly

declared (see section 4), row variables are essential here

to keep type inference. Row variables also allow to ex-

press some kind of matching [Bru95] without F-bounded

or higher-order quanti�cation [PT94, AC95]. Here is an

example:

let min x y = if x#leq y then x else y;;

value min :

(h leq : 'a ! bool; .. i as 'a) ! 'a ! 'a =

3



(Val)

val u : � 2 A

A ` u : �

(Override)

val u

i

: �

i

2 A self : �

y

2 A A ` a

i

: �

i

A ` fhu

i

: a

i

i2I

ig : �

y

(Object)

A

?

` a

i

: �

i

i2I

A

?

+ self : hm

j

: �

j

j2J

i+ val u

i

: �

i

i2I

` a

j

: �

j

j2J

A ` hval u

i

= a

i

i2I

; methm

j

= a

j

j2J

i : hm

j

: �

j

j2J

i

(Send)

A ` a : hm : � ; �

0

i

A ` a#m : �

Figure 1: Typing rules for objects

hfuni

The binder asmakes it possible to deal with open object

types occurring several times in a type (this will be

detailed in section 7). An expanded version of this type

is:

rec �:hleq : �! bool; �i !

rec �:hleq : �! bool; �i ! rec �:hleq : �! bool; �i

The function min can be used for any object of type �

with a method leq : � ! bool, since the row variable �

can always be instantiated to the remaining methods of

type � .

3 Classes

The syntax for classes, introduced in section 1, is for-

mally given in �gure 2. The body of a class is a sequence

b of small de�nitions d. We assume given a collection

of class identi�ers z 2 Z , and a class of super class

identi�ers written s.

We have also enriched the syntax of objects so that

it reects the syntax of classes. That is, objects can

also be built using inheritance, and val-�elds need not

precede meth-�elds.

In practice, classes will only appear at toplevel.

However, it is simpler to leave more freedom. For in-

stance, they may appear under abstraction. Classes are

not �rst order though, since they can be bound but not

abstracted. Technically, classes could be �rst order, and

abstracted over with explicit polymorphism. However,

their compilation would become more di�cult, or less

e�cient, and the gain is probably not worth the com-

plication.

The type of a class, class (�) : �

y

h'i, is composed

of the type � of its initialization argument, the type

�

y

of self (i.e. the type an object of this class would

have), and the type ' of its �eld bindings and method

bindings. Class types are written . Type schemes are

extended with class types.

 ::= class (�) : � h'i

' ::= ; j ' ; val u : � j ' ; meth m : � j ' ; super s : '

� ::= : : : j 8 ��: 

Typing contexts are extended with class variables bind-

ings and super-class bindings: :

A ::= : : : j A+ z : � j A+ super s : '

We add new typing judgments A ` b : ' and A ` d : '

that are used to type class bodies. We also rede�ne A

?

to be A where all val, meth, super and self bindings

have been removed. Typing rules are given in �gure 3.

Generalization Gen(;A) is, as in ML, 8 ��:  where ��

are all variables of  that are not free in A.

Classes are typed by adding items (inheritance

clauses, value or method �elds) one after the other.

Value �elds are typed in A

?

, so that they cannot de-

pend on other value �elds (rule Value). On the oppo-

site, methods may depend on all previously de�ned in-

stance variables and super classes (ruleMethod). The

Inherit rule ensures that self is assigned the same

type in both the superclass and the subclass; all bind-

ings of the superclass are discharged in the subclass,

and the super variable is bound to the types of the �elds

of the superclass. Super variables are only visible while

typechecking the body of the class but are not exported

in the type of the class itself, as shown by rule Then.

The rule Object is more general than (and overrides)

the one of �gure 1; it corresponds to the combination

of rule Class and rule New.

When a value or method �eld is rede�ned, its type

cannot be changed, since previously de�ned methods

might have assumed the old type. This is enforced by

using in rule Then the � operator which requires that

the two argument sequences be compatible on the in-

tersection of their domains. At �rst, this looks fairly

restrictive. But it still leaves enough freedom in prac-

tice. Indeed, the class type can also be specialized by

instantiating some type variables.

4



a ::= : : : j hbi j let z = c in a j new c j s#m Expressions

c ::= z j class (x) b Class expressions

b ::= ; j d ; b Class bodies

d ::= inherit c a as x as s j val u = a j meth m = a

Figure 2: Core class syntax

(Value)

A

?

` a : �

A ` val u = a : (val u : �)

(Method)

A ` self : hm : � ; �

0

i A ` a : �

A ` meth m = a : (meth m : �)

(Inherit)

A

?

` a : � A ` self : �

y

A ` c : class (�) : �

y

h'i

A ` inherit c a as s : '+ (super s : ')

(Basic)

A ` ; : ;

(Then)

A ` d : '

1

A+ ('

1

n meth) ` b : '

2

A ` d ; b : ('

1

n super)� '

2

(Class)

A

?

+ x : � + self : �

y

` b : '

A ` class (x) b : class (�) : �

y

h'i

(New)

A ` c : class (�) : �

y

h'i �

y

= hmeth (')i

A ` new c : � ! �

y

(Super)

super s : ' 2 A meth m : � 2 '

A ` s#m : �

(Object)

A

?

+ self : �

y

` b : ' �

y

= hmeth (')i

A ` hbi : �

y

(Class-Let)

A ` c :  A+ z : Gen(;A) ` a : �

A ` let z = c in a : �

(Class-Inst)

z : 8 ��:  2 A

A ` z : [��=��]

Figure 3: Typing rules for classes

One may imagine to relax this constraint, and accept

the type of the rede�ned method to be a subtype of the

original method. One would, however, lose a property

we believe important: rule Inherits shows that the

type a class gives to self is an instance of the types given

to self by its ancestors; as a consequence, the type of self

in a class uni�es with the type of any object instance of

a subclass of this class.

Methods returning objects of same type as self are

thus correctly typed.

let duplicable = class ()

meth copy = fh ig

end;;

value duplicable : class (unit) : 'a

meth copy : 'a

end

In this class type, 'a is bound to the type of self, that

is objects of any subclass of this class have types that

match rec �:hcopy : �; ..i. Class duplicable can

then be inherited, and method copy still have the ex-

pected type (that is, the type of self).

let duplicable point = class (x)

inherit duplicable () inherit point x

end;;

value duplicable point : class (int) : 'a

val x : int ref

meth copy : 'a

meth move : int ! int

end

Note that ancestors are ordered, which disambiguates

possible method rede�nitions: the �nal method body is

the one inherited from the ancestor appearing last.

Rule Class-Let and Class-Inst are similar to the

rules Let and Inst for core ML (described in ap-

pendix A). These rules are essential since polymor-

phism of class types enables method specialization dur-

ing inheritance, as explained above.

4 Coercion

Polymorphism on row variables enables to write a para-

metric function that sends a message m to any object

5



that has a method m. Thus subtyping polymorphism

is not required here. This is important since subtyping

cannot be inferred in Objective ML.

There is still a notion of explicit subtyping, that al-

lows explicit coercion of an expression of type �

1

to an

expression of type �

2

whenever �

1

is a subtype of �

2

.

As shown in the last example of section 1, this enables

to see all kinds of points just as simple points, and put

them in the same data-structure.

The language of expressions is extended with the

following construct:

a ::= : : : j (a : � :> �)

The corresponding typing rule is:

(Coerce)

� � �

0

A ` a : �(�)

A ` (a : � :> �

0

) : �(�

0

)

� substitution

The premise � � �

0

means that � is a subtype of �

0

.

This subtyping relation � is standard [AC93]. We

choose the simpler and more e�cient presentation of

Palsberg [KPS93]. The constraint � � �

0

is de�ned

on regular trees as the smallest transitive relation that

obey the following rules:

Closure rules

�

1

! �

2

� �

0

1

! �

0

2

=) �

0

1

� �

1

^ �

2

� �

0

2

hm : � ; �i � hm : �

0

; �

0

0

i =) � � �

0

Consistency rules

� � �

1

! �

2

=) � is of the shape �

0

1

! �

0

2

� � hm

i

: �

i

i2I

i =) � of the shape hm

i

: �

0

i

i2I

; �

0

i

� � hm

i

: �

i

i2I

p; �i =) � = hm

i

: �

i

i2I

p; �i

� � � =) � = �

Our subtyping relation does not enounce typing as-

sumptions on variables, and it is thus weaker than the

subtyping relation used in [EST95b], except on ground

types.

5 Semantics

We give a small step reduction semantics for our lan-

guage. Values are functions or object values. Object

values are composed of methods or instance variables

which are themselves values; instance variables must

precede methods and neither can be overridden in val-

ues. Values, evaluation contexts, and reduction rules

are given in �gure 4.

We have chosen to reduce inheritance in objects

rather than classes. It would also be possible to re-

duce inheritance inside classes, and rearranged meth-

ods �elds and value �elds as well. Our choice is simpler

and more general, since classes can also be inherited

in objects. The reduction of object expressions to val-

ues is done in two passes: inheritance and evaluation

of value �elds are reduced top down, then �elds are re-

ordered and redundant �elds are removed bottom-up.

The invocation of a message evaluates the correspond-

ing expression after replacing instance variables, self,

and overriding by their current values.

Coercion behaves as an identity function: the coer-

cion of a value reduces to the value itself. Subject re-

duction can then only be proved by extending the type

system with an implicit subtyping rule:

A ` a : � � � �

0

(Sub)

A ` a : �

0

The soundness of the language is stated by the two

following theorems.

Theorem 1 (Subject Reduction)

Reduction preserves typings (i.e. for any A such that

dom (A) � X [ Z , if A ` a : � and a �! a

0

then

A ` a

0

: � .)

The proof is done by mutual induction on the size of a

and the size of b in the corresponding property for class

bodies, i.e. if A ` b : ' and b �! b

0

then A ` b

0

: '.

Since hiding has been done by limiting the scope of

variables, there is no particular di�culties in the proof;

its structure is similar to the one for core ML. Provided

a few substitution lemmas, all cases for reducing class

bodies are immediate. The instantiation of a class is

also an easy case, since the rule for typing objects is

derived from the rule for typing classes.

Theorem 2 (Normal forms) Well-typed irreducible

normal forms are values (i.e. if ; ` a : � and a can-

not be reduced, then a is a value.)

6 Type inference

The syntax forbids class abstraction. Indeed, in an ex-

pression fun (x) a, variable x will never be bound to

a class. This ensures that class types never need to be

guessed. Polymorphism is only introduced at Let bind-

ing of classes or values. Thus, type inference reduces to

�rst-order uni�cation on types, as in ML. Types of Ob-

jective ML are a restriction of record types. First-order

uni�cation for record types is decidable, and solvable

uni�cation problems admits principal solutions, even in

the presence of recursion [R�em94a]. Consequently, Ob-

jective ML has the principal type property.

6



Values

v ::= : : : j fun (x) a j hwi j class (x) b

w ::= ; j w

d

; w val �elds preceed meth �elds, no overridings

w

d

::= methm = a j val u = v

Evaluation contexts

E ::= [] j let z = E in d j E a j v E j E#m j hF i j new E

F ::= [] j F

d

; b j w

d

; F

F

d

::= inherit c E as s j val u = E

From classes to objects

new (class (x) b) �! fun (x) hbi

Reduction of objects

inherit (class (x) b) v as s ; b

0

�! b[v=x] @ (b

0

[b(m)[v=x]=s#m]

m2dom (b)

)

val u = v ; w �! w if u 2 dom (w)

methm = a ; w �! w if m 2 dom (w)

meth m = a ; (val u = v ; w) �! val u = v ; (methm = a ; w)

Reduction of message invocation (U = dom (w))

hwi#m �! w(m)[hwi=self][w(u)=u]

u2U

[hw @ (val u = a

u

u2V

)i=fhu = a

u

u2V

ig]

V�U

Reduction of coercions

(v : � :> �

0

) �! v

Reduction of other expressions

let x = v in a �! a[v=x] let z = v in a �! a[v=z]

(fun (x) a) v �! a[v=x]

Context reduction

E[a] �! E[a

0

] if a �! a

0

F [b] �! F [b

0

] if b �! b

0

Figure 4: Semantics

7



Theorem 3 (Principal types) For any typing con-

text A and any program a that is typable in the context

A, there exists a type � such that A ` a : � and for

any other type �

0

such that A ` a : �

0

there exists a

substitution � whose domain does not intersect the free

variables of A and such that �

0

= �(�).

7 Abbreviations

Object types tend to be very large. Indeed, the type

of an object lists all its method types, which can them-

selves contain other object types. This quickly becomes

unmanageable [R�em94a, EST95a]. Introducing abbre-

viations is thus of crucial importance. However, usual

ML type abbreviations are not powerful enough: they

are expanded and lost during uni�cation and they can-

not be recursive. We have thus enhanced them.

We view abbreviations as name aliases for types.

In order to trace abbreviations, we consider types as

graphs where abbreviations are names for shared nodes.

In addition to the usual notation rec �:� , the con-

struct (� as �) is also used to bind � to � . Since �

is also bound outside of � , this is a notation for graphs,

and not only for regular trees. That is, the two types

(hm : �i as �

0

) ! �

0

and (hm : �i) ! (hm : �i) are

di�erent graphs, that represent the same regular tree.

Such a �ner representation of types is necessary in order

to keep types small and abbreviated.

Types aliases can also be used to simplify object

types. Rather than sorting types to ensure they are

well-formed, a stronger condition is to require two ob-

ject types that share the same row variable to be equal.

This rules out incorrect types such as h�i ! hm : � ; �i.

Types such as hm : �

1

; �i ! hm : �

2

; �i, at the basis of

record extension, are also rejected. However, there is no

primitive operation on objects that would have such a

type. These types can thus be ruled out without serious

restriction of the language. Moreover all programs still

keep the same principal types.

This restriction has been chosen in the implemen-

tation since it avoids explaining sorts to the user. It

also makes the syntax for types somewhat clearer, as

row variables can then always be replaced by ellip-

sis. Sharing can still be described with aliasing. For

instance, type hm : � ; �i ! hm : � ; �i is written

(hm : � ; ::i as �)! �.

In the following example, the nodes between the ar-

gument type and the result type are shared, otherwise

the ellipsis could not be used.

let bump x = x#move 1; x;;

value bump :

(h move : int ! 'b; .. i as 'a) ! 'a = hfuni

Then, during the typing of the expression bump p be-

low, type (hmove : int ! 'b; ..i as 'a) and type

point are identi�ed. The type of bump p is thus also

abbreviated to point.

let p = new point 7;;

value p : point = hobji

bump p;;

� : point = hobji

A class de�nition let c = class (x) b in : : : auto-

matically generates an abbreviation for the type of its

instances. For specifying it, one actually needs to add

type parameters to class de�nitions, corresponding to

the one of the abbreviation. That is, we should write

let (��) c = class (x) b in : : : (1)

where the parameters �� must appear in b.

In fact, abbreviations are generated from class types.

It follows from type inference that the class de�nition

class (x) b has a principal class type class (�

0

) :

�

y

h'i. Here �

y

is the type matched by objects in all

subclasses. It is always of the form hm

i

: �

i

i2I

; �i where

meth (') is a subsequence of m

i

: �

i

i2I

and � is either

; (this is a pathological case, where the class cannot

be extended with new methods) or a row variable �. If

meth (') is exactly m

i

: �

i

, then it is possible to create

objects of that class; they will have type �

y

[;=�]. Oth-

erwise, the class is virtual and can only be inherited

in other class de�nitions. If all free type variables of

�

y

except � are listed in ��, we automatically de�ne the

following two abbreviations:

type (��; �) #�

c

= �

y

type (��) �

c

= (��; ;) #�

c

The former matches all objects of subclasses of c. The

latter is a special case of the former, and abbreviates

any objects of class c.

Let us consider an example. Class point has type

class (�

0

) : �

y

h'i with �

y

= hmove : int! int; �i, for

some �

0

and '. The two following abbreviations have

thus been de�ned for this class:

type � #point = hmove : int! int; �i

type point = hmove : int! inti

One can check that type point is an abbreviation for

the type of objects of class point, and that the type of

an object of any subclass of class point is an instance

of type � #point.

In the concrete syntax, the row variable � is treated

anonymously (as an ellipsis) and omitted. The former

abbreviation #�

c

is given lower priority than regular

ones in case of a clash, and vanishes as soon as the row

8



variable is instantiated, so as to reveal the value taken

by the row variable.

In fact, we allow �

z

and #�

z

to occur in the de�ni-

tion of b. To insure that abbreviations always expand

to regular trees, we require that in an abbreviation def-

inition type (��) � = � the abbreviation � occurs in the

body � with the same parameters ��. This condition

extends to mutually recursive abbreviations. The pre-

vious de�nitions can be rewritten to handle the general

case correctly.

Type abbreviations are generalized to allow con-

straints on the type parameters of the abbreviations.

This is an extension of the abbreviations of LCS [Ber93],

that were also used in [R�em94a]. This is very natural as,

for instance, a sorted list of comparable objects should

be parameterized by the type of its elements, which is

not a type variable. Moreover this extension makes it

possible to avoid row variables as type parameters (as

the whole object type can appear as a parameter). Here

is an example:

type �

0

� = �

where all free variables of type � appears in type �

0

. A

parameter �

1

of type constructor � must be an instance

�(�

0

) of type �

0

(for some substitution �). Then, type

�

1

� expands to type �(�).

Constrained type abbreviations are also convenient

since, in a class de�nition class (��) (x) b, class type

parameters �� may have been instantiated to some types

��

�

while inferring the class type class (�

0

) : �

y

h'i.

The two abbreviations generated by the class de�nition

are thus actually:

type (�

�

; �) #�

z

= �

y

type (��) �

z

= (��; ;) #�

z

The latter is unchanged except that the constraints of

the �rst ones are implicit in the second one.

Class types are shown to the user stripped at their

type parameters; parameters that constraint the type

abbreviations are described by constraint clauses:

let 'a circle = class (p : 'a)

val point = p

meth center = point

meth move m =

if m = 0 then 0 else

point#move (1 + Random.int m)

end;;

value circle : class 'a ('a)

constraint 'a = h move : int ! int; .. i

val point : 'a

meth center : 'a

meth move : int ! int

end

This class de�nes the abbreviation

type (hmove : int! int; �i as �) circle =

hcenter : �; move : int! inti

The abbreviations inferred seem to depend on the

way aliases are managed. For instance, the two types

(�

1

as �)�� and (�

1

as �)��

1

are equal when viewed as

terms. The two alternatives lead to the two following

abbreviations:

type (�

1

as �) � = � � � type (�

1

as �) � = � � �

1

However, this does not matter as abbreviations of di�er-

ent views of the same type are equivalent, in the sense

that they expand to equal terms.

There is a canonical way to derive best aliasing: ef-

�cient uni�cation algorithm are usually formalized as

rewriting systems over multi-sets of multi-equations. In

this approach, canonical forms of a uni�cation problem

represent principal term-solutions, but also and more

straightforwardly principal graph solutions. Roughly

speaking, all aliasing from the input problem is kept

(correctness) and the minimal aliasing is introduced in

the output problem (completeness).

However, in practice only some sharing should be

kept. The user can deal with sharing inside a class or

a value de�nition, but sharing reveals too much infor-

mation to the outside. In particular, core-ML programs

should not use aliases. Thus, all aliasing is removed be-

fore generalization, except aliasing of open object types

(so that row variables can still be printed as ellipsis)

and aliasing de�ning recursive types.

8 Extensions

This section lists other useful features of Objective ML

that have been added to the implementation. Impera-

tive features have been ignored in the formal presenta-

tion since their addition is theoretically well-understood

and independent of the presence of objects and classes.

Other features are less important in theory, but still

very useful in practice: private instance variables, coer-

cion primitives.

8.1 Imperative features

We have intendedly used references in the very �rst ex-

ample. We did not formalize references in the presen-

tation of Objective ML, since we preferred to keep the

presentation simple and focussed on objects and classes.

The addition of imperative features to Objective ML is

theoretically as simple as its addition to ML, and it is

practically as useful.

9



In fact, the implementation Objective Caml also al-

lows value �elds to be mutable in a similar way mu-

table records were treated in Caml Special Light. For

instance, we could have written:

let point = class (x0)

val mutable x = x0

meth move d = (x  x + d; x)

end;;

value point : class (int)

val mutable x : int

meth move : int ! int

end

Objective Caml only allows generalization of values (ac-

tually, a slightly more general class of non expansive ex-

pressions); the creation of an object from a class c is not

considered as a value (as it is the application of function

new c to some arguments), so mutable �elds in classes

are typed as any other �elds, except that mutability

properties are also checked during typechecking.

8.2 Local bindings

As shown by the evaluation rules for objects, both value

and method �elds are bound to their rightmost de�ni-

tion. All value �elds must still be evaluated even though

they are to be discarded.

Object-oriented languages often o�er more security

through private instance variables. The scope of an

instance variable can be restricted so that this instance

variable is not visible in subclasses.

This section presents local bindings, that are only

visible in the body of the class they appear in. This

is weaker than what one usely expects from private in-

stance variable, as a class cannot, for instance, inherit

of an instance variable and hide it from its subclasses.

Private instance variables would actually not be di�cult

to add. However, hiding methods in subclasses conicts

with late binding and a at method name space.

The syntax is extended as follows:

d ::= : : : j local x = a in b

F

d

::= : : : j local x = E in b

with the corresponding typing rule:

A

?

` a : � A+ x : � ` b : '

(Local)

A ` local x = a in b : '

Local bindings are reduced top-down, like inheritance:

local x = v in b; b

0

�! b[v=x] + b

0

In practice, however, local bindings would rather be

compiled as anonymous instance variables. This would

make methods independent of local bindings.

Initialization parameters could also be seen as local

bindings in the whole class body, and could also be com-

piled as anonymous instance variables. For instance,

the de�nition

let point = class (y) meth x = y end;;

could be automatically transformed into the equivalent

program:

let point = class (y)

local y = y in meth x = y

end;;

That way, the method x becomes independent of the ini-

tialization parameter y. Then, classes can be reduced

to class values: inheritance is reduced to local bindings,

local bindings are atten, and method overriding is re-

solved.

8.3 Coercion primitives

Explicit coercions require both the domain and co-

domain to be speci�ed. This eliminate the need for

subtype inference. In practice, however, it is often suf-

�cient to indicate the domain of the coercion only, the

co-domain of the coercion being a function S of its do-

main.

For convenience, we introduce a collection of coer-

cion primitives:

( :> �) : 8�: S(�)! �

where � are free variables of S(�) and � , and S(�) is

de�ned as follows:

� We call positive the occurrences of a term that can

be reached without traversing an arrow on the left.

(This is more restrictive than the usual de�nition,

where the arrow is treated contravariantly).

� For non recursive terms, we de�ne S

0

(�) to be �

where every closed object type that occurs posi-

tively is opened by adding a fresh row variable.

� Terms with aliases are viewed as graphs, or equiv-

alently as of pair of a term �

0

and a list of con-

straints �

i

= �

i

.

Let � be a renaming of variables �

i

into fresh vari-

ables.

Let �

0

i

be �

i

in which every positive occurrence of

each �

i

is replaced by �(�

i

).

We return (S

0

(�

0

0

); f�(�

i

) = S

0

(�

0

i

); i 2 Ig [ f�

i

=

�

i

; i 2 Ig) for S(�).

10



For example,

S(hm

1

: hm

2

: inti ! hm

3

: boolii) =

hm

1

: hm

2

: inti ! hm

3

: bool; �

3

i; �

1

i

S(hm : �i as �) = hm : �

0

; �i as �

0

S(hm : �! �i as �) =

hm : (hm : �! �i as �)! �

0

; �i as �

0

The operator S has the two following properties:

(1) S(�) � � (2) 9� (�(S(�)) = � ^ �(�) = �)

The former gives the correctness of the reduction step

(a :> �) �! (a : S(�) :> �). The later shows that if a

has type � then (a :> �) also has type � .

There is no principal solution for an operator S satis-

fying (1). Consider � to be hm : inti ! int. There are

only two solutions, hm : inti ! int and hi ! int and

none is an instance of the other. This counter-example

shows the weakness of the simulation of subtyping with

row variables, especially on negative occurrences. There

are other examples of failure on positive occurrences,

but only using recursive types.

This justi�es to exclude semi-explicit coercions from

the core language and to treat them as a collection of

primitives.

9 Comparison to other works

The closest work to Objective ML is ML-

ART [R�em94a]. Here, object types are also based on

record types and have the same expressiveness. State

abstraction is based on explicit existential types in ML-

ART; In Objective ML, it is obtained by scope hiding,

but it could also be explained with a simple form of

type abstraction. No coercion at all were permitted in

ML-ART between objects with di�erent interfaces. Un-

fortunately, ML-ART has no type-abbreviation mecha-

nism. This was a major drawback, which motivated the

design of Objective ML. On the other hand, classes are

�rst class in ML-ART, but we do not think this is a

major advantage.

Another simpli�cation in Objective ML is that in

classes all methods view self with the same type. This

is not required by the semantics, and could technically

be relaxed by making method types more detailed in

classes (see [R�em94a]). We found that this extra exi-

bility is not worth the complication of class types.

Our object types are a simpli�cation of those used

in [R�em94b]. The simpli�cation is possible since ob-

ject types are similar to record types for polymorphic

access, and do not require the counterpart of record ex-

tension. Moreover, as discussed above, the implemen-

tation assumes the stronger condition that two object

types sharing the same row variable are always iden-

tical. With this restriction, object types seem to be

equivalent to the kinded record types of Ohori [Oho90].

Ohori also proposed an e�cient compilation of poly-

morphic records (which does not scale up to extensi-

ble records) in [Oho96]. However, his approach, based

on the correspondence between types and domains of

records does not scale up to implicit subtyping, and

cannot be applied to the compilation of objects with

code-free coercions.

Objects have been widely studied in languages with

higher-order types [CCH

+

89, MHF93, Bru95, AC95,

PT94, BM96]. Those proposals signi�cantly di�er from

Objective ML. Types are not inferred but explicitly

given by the user. Type abbreviations are also the user's

responsibility. On the contrary, all these proposals al-

low for implicit subtyping.

Open record types are connected to the notion of

matching introduced by Kim Bruce [Bru95, BSvG95].

Matching seems to be at least as important as subtyp-

ing in object-oriented languages. Row variables in ob-

ject types express width matching in a very natural way.

While explicit matching may require too much type in-

formation, type inference makes object matching very

practical.

Palsberg has proposed type inference [Pal94] for a

�rst-order version of Abadi and Cardelli's calculus of

primitive objects [AC94]. However, that language is

missing important features from the higher-order ver-

sion [AC95]. Type inference is based on subtyping con-

straints and the technique is similar to the one used

in [EST95a]. This later proposal [EST95a, EST95b] is

closer to a real programming language, and more suited

for comparison. Here, the authors use a subtyping re-

lation that is more expressive than ours, as they can

prove subtyping under some assumptions. They can

also infer coercions. However, the types they infer tend

to be huge. Indeed, they do not have an abbreviation

mechanism. Their inheritance is weaker than ours since

they must explicitly list all inherited methods in sub-

classes. We think the two proposals are complementary

and could bene�t from one another. In particular, it

would be interesting to adapt automatic type abbrevi-

ations to constraint types. The problem is still non-

trivial since inferred type-constraints are hard to read

even in the absence of objects.

In [Dug95], Duggan proposes another approach to

objects. Methods must be predeclared with a particu-

lar type scheme. Thus methods carry type information

alike data-type constructors in ML. For instance, move

would be assigned type scheme 8�

y

: �

y

! int. Type

11



schemes that are assigned to methods are polymorphic

in �

y

: they are arrow types whose domain is always

�

y

, standing for the type of self. Object types only list

the methods that objects of that type must accept. For

instance, point would be given type hmovei. This pro-

posal requires more type information from the user than

ours. It also forbids the use of the same method name

in di�erent objects with unrelated types. Objects of

parameterized classes are treated especially, using con-

structor kinds. Objects of a parameterized class re-

veal for ever that they are parameterized. For instance,

let consider a class of vectors parameterized over the

type �. All methods of that class must be given a type

scheme of the form: 8 �

�

Type!Type

:8�: � �

�

! � ,

where variable �

�

range over type constructors. That

is, instead of the type �

y

of self, only the type con-

structor �

y

of the type of �

y

is hidden. This reveals

the dependence of �

y

on its parameters, and the pa-

rameters themselves. Methods of parameterized classes

are incompatible with methods of non-parameterized

classes. Objects of a vector class of characters can-

not be related to objects of a string class even though

they might have the same interface. In Objective ML,

two such objects could be mixed. However, Objective

ML, does not allow polymorphic methods while Dug-

gan's proposal allow them. A polymorphic method map

could be declared with type scheme: 8 �

�

Type!Type

:8�:8�

1

: � �

�

! (� ! �

1

) ! �

1

�

�

. Intuitively, map

carries implicit universal intros and elims, like data con-

structors carry arguments of existentially or universally

quanti�ed types provided in [LO92, R�em94a, L�au96].

In [BM96], Bourdoncle and Metz propose a lan-

guage based on some restricted form of type con-

straints [EST95b]. However, although their types are

not higher-order, they do not provide type inference.

In Object SML [RR96b], Reppy and Riecke treat ob-

jects as a generalized form of ML concrete data types.

Objects are tagged with constructors that carry the

class they originated from. Therefore, objects can be

tested for membership to some arbitrary class in some

inheritance relationship. Only single inheritance is al-

lowed. The subtyping relation between objects is de-

clared and corresponds to the inheritance forest. Types

are inferred, but the authors do not claim a princi-

pal type property. Some object coercions are implicit.

However, all messages must give the class of the object

to which messages are sent. Typing of binary methods is

also a problem, which is solved via runtime class-type

tests. Object SML does not provide any inheritance

mechanism, except by means of encodings [RR96a].

Conclusion

Objective ML has been designed to be the core of a

real programming language. Indeed, the constructs pre-

sented here have been implemented in the language Ob-

jective Caml. We chose class-based objects since this

approach is now well understood in a type framework

and it does not necessitate higher-order types.

The original part of the design is automatic abbrevi-

ation of object types. Although this is not di�cult, it is

essential for making the language practical. It has been

demonstrated before that fully inferred object types are

unreadable [R�em94a, EST95a]. On the contrary, types

of Objective ML are clear and still require extremely

little type information from the user. To our knowl-

edge, all other existing approaches require more type

declarations.

Objective ML is also interesting theoretically for the

use of row variables. Row variables are very close to

matching and seem more helpful than subtyping for

the most common operations on objects. Message pass-

ing and inheritance are entirely based on row variables,

which relegates subtyping to a lower level.

Another interesting aspect of our proposal is its sim-

plicity. This is certainly due to the fact that Objective

ML is very close to ML, in particular most features rely

only on ML polymorphism. This leads to very sim-

ple typing rules for objects and inheritance. Coercions,

based on subtyping, can be explained later. Data ab-

straction is guaranteed by scope hiding rather than by

type abstraction; this is a less powerful but simpler con-

cept.

The main drawback of Objective ML is the need for

explicit coercions. Coercions are necessary. However,

we think they occur in few places. Thus, explicit coer-

cions should not be a burden. Furthermore, coercions

could in theory be made implicit using constraint-based

type inference.

In our implementation of Objective ML, classes and

modules are fully compatible, but orthogonal. This

should be particularly interesting for comparing these

two styles of programming in the large, and help us to

better integrate them. This is an important direction

for future work.

Acknowledgment

We thank Rowan Davies who collaborated in the im-

plementation and the design of a precursor prototype

of Objective ML.

12



References

[AC93] Roberto M. Amadio and Luca Cardelli. Sub-

typing recursive types. Transactions on Pro-

gramming Languages and Systems. ACM,

15(4):575{631, 1993.

[AC94] Mart��n Abadi and Luca Cardelli. A theory

of primitive objects: Untyped and �rst-order

systems. In Theoretical Aspects of Computer

Software, pages 296{320. Springer-Verlag,

April 1994.

[AC95] Mart��n Abadi and Luca Cardelli. A the-

ory of primitive objects: Second-order sys-

tems. Science of Computer Programming,

25(2-3):81{116, December 1995. Prelimi-

nary version appeared in D. Sanella, edi-

tor, Proceedings of European Symposium on

Programming, pages 1-24. Springer-Verlag,

April 1994.

[Ber93] Bernard Berthomieu. Programming with be-

haviors in an ML framework, the syntax and

semantics of LCS. Research Report 93-133,

LAAS-CNRS, 7, Avenue du Colonnel Roche,

31077 Toulouse, France, March 1993.

[BM96] Francois Bourdoncle and Stephan Merz.

Primitive subtyping ^ implicit polymor-

phism j= object-orientation. Presented at

the FOOL'3 workshop, July 1996.

[Bru95] Kim B. Bruce. Typing in object-oriented

languages: Achieving expressibility and

safety. Revised version to appear in Com-

puting Surveys, November 1995.

[BSvG95] Kim B. Bruce, Angela Schuett, and Robert

van Gent. Polytoil: A type-safe polymor-

phic object-oriented language. In ECOOP,

number 952 in LNCS, pages 27{51. Springer

Verlag, 1995.

[CCH

+

89] Peter Canning, William Cook, Walter Hill,

Walter Oltho�, and John Mitchell. F-

bounded quanti�cation for object-oriented

programming. In Fourth International Con-

ference on Functional Programming Lan-

guages and Computer Architecture, pages

273{280, September 1989.

[Dug95] Dominic Duggan. Polymorphic methods

with self types for ML-like languages. Tech-

nical report CS-95-03,, University of Water-

loo, 1995.

[EST95a] J. Eifrig, S. Smith, and V. Trifonov. Sound

polymorphic type inference for objects. In

OOPSLA, 1995.

[EST95b] J. Eifrig, S. Smith, and V. Trifonov. Type

inference for recursively constrained types

and its application to OOP. In Mathemati-

cal Foundations of Programming Semantics,

1995.

[KPS93] Dexter Kozen, Jens Palsberg, and Michael I.

Schwartzbach. E�cient recursive subtyping.

In Proc. 20th symp. Principles of Program-

ming Languages, pages 419{428. ACM press,

1993.

[L�au96] Konstantin L�aufer. Putting type annota-

tions to work. In Proceedings of the 23th

ACM Conference on Principles of Program-

ming Languages, January 1996.

[Ler96] Xavier Leroy. The Objective Caml system.

Software

and documentation available on the Web,

http://pauillac.inria.fr/ocaml/, 1996.

[LO92] Konstantin L�aufer and Martin Odersky. An

extension of ML with �rst-class abstract

types. In Proceedings of the ACM SIGPLAN

Workshop on ML and its Applications, 1992.

[MHF93] John C. Mitchell, Furio Honsell, and Kath-

leen Fisher. A lambda calculus of objects

and method specialization. In 1993 IEEE

Symposium on Logic in Computer Science,

June 1993.

[Oho90] Atsushi Ohori. Extending ML polymor-

phism to record structure. Technical Re-

port CSC 90/R24, University of Glasgow,

Department of Computer Science, Septem-

ber 1990.

[Oho96] Atsushi Ohori. A polymorphic record cal-

culus and its compilation. ACM Transac-

tions on Programming Languages and Sys-

tems, 17(6):844{895, 1996.

[Pal94] Jens Palsberg. E�cient type inference of ob-

ject types. In Ninth Annual IEEE Sympo-

sium on Logic in Computer Science, pages

186{195, Paris, France, July 1994. IEEE

Computer Society Press. To appear in In-

formation and Computation.

[PT94] Benjamin C. Pierce and David N. Turner.

Simple type-theoretic foundations

for object-oriented programming. Journal

13



of Functional Programming, 4(2):207{247,

April 1994. A preliminary version appeared

in Principles of Programming Languages,

1993, and as University of Edinburgh techni-

cal report ECS-LFCS-92-225, under the ti-

tle \Object-Oriented ProgrammingWithout

Recursive Types".

[R�em92] Didier R�emy. Extending ML type system

with a sorted equational theory. Technical

Report 1766, INRIA-Rocquencourt, BP 105,

F-78 153 Le Chesnay Cedex, 1992.

[R�em93] Didier R�emy. Syntactic theories and the

algebra of record terms. Research Report

1869, Institut National de Recherche en In-

formatique et Automatisme, BP 105, F-78

153 Le Chesnay Cedex, 1993.

[R�em94a] Didier R�emy. Programming objects with

ML-ART: An extension to ML with abstract

and record types. In Masami Hagiya and

John C. Mitchell, editors, Theoretical As-

pects of Computer Software, volume 789 of

Lecture Notes in Computer Science, pages

321{346. Springer-Verlag, April 1994.

[R�em94b] Didier R�emy. Type inference for records

in a natural extension of ML. In Carl A.

Gunter and John C. Mitchell, editors, Theo-

retical Aspects Of Object-Oriented Program-

ming. Types, Semantics and Language De-

sign. MIT Press, 1994.

[RR96a] John H. Reppy and Jon G. Riecke. Classes

in Object ML. Presented at the FOOL'3

workshop, July 1996.

[RR96b] John H. Reppy and Jon G. Riecke. Simple

objects for Standard ML. In Programming

Language Design and Implementation 1996.

ACM, may 1996.

A Typing rules for core ML

(Inst)

x : 8 ��: � 2 A

A ` x : � [��=��]

(Fun)

A+ x : � ` a : �

0

A ` fun (x) a : � ! �

0

(App)

A ` a : �

0

! � A ` a

0

: �

0

A ` a a

0

: �

(Let)

A ` a

0

: �

0

A+ x : Gen(�

0

; A) ` a : �

A ` let x = a

0

in a : �

Generalization Gen(�; A) is 8 ��: � where �� are all

variables of � that are not free in A.

14


