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As stated on http://mpri.master.univ-paris7.fr/stages.html, this report is written
in English because part of it will be incorporated into a research article written in English.
As asked on the same website, here follows a two page synthesis of our work.

Synthesis

Context

Expressive languages often allow non trivial conversions between types, leading to complex,
challenging, and sometimes ad hoc type systems. Such examples are the extension of System F

with type equalities [3] to model Haskell GADTs and type families, or the extension of System
F with explicit contracts. A useful technique to simplify the meta-theoretical studies of such
systems is to make type injections fully explicit in terms via �coercions�.

The essence of coercion functions is perhaps to be found in System F� [1] which is the
closure of System F by �-reduction. Indeed, this system can also be seen as the extension of
System F with retyping functions. These retyping functions allow deep type specialization of
terms, strengthening the domain of functions or weakening their codomains a posteriori. For
example we have a retyping function from (� [� � 0])! (8�:�) to (8�:�)! (�[� �0]).

We also �nd coercions in xML
F [5], which is the internal language of ML

F [4]. ML
F allows

to have �rst-class polymorphism with inference and limited type annotations. xML
F is its

Church-style variant.

Problem

Existing coercion systems propose di�erent sets of features on coercions. For instance, F�
combines instantiation and contra-variance, xML

F has instantiation and abstraction, and
F<: [6] has contra-variance and abstraction. Instantiation is the possibility to go from 8�:�
to � [�  �]. Contra-variance is the possibility to build a coercion like (� 0 ! �) ! (� ! �0),
using smaller coercions like � ! � 0 and � ! �0. Abstraction is the possibility to abstract
on a coercion like �(c : � ! � 0):M . We may wonder if there is a coercion system with all
these features (instantiation, contra-variance, and abstraction). In other words, we want to
generalize F� with coercion abstraction, to see whether these features are compatible. This
problematic was pointed out in previous work on xML

F as possible future work [2].
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The key element of a language with coercions is that it has to preserve the coercion-erasure
semantics. It means that coercions should have no run-time cost.

Solution

We describe a coercion system F��, which extends both F� and xML
F. The system is mainly a

colored version of Curry-style System F, where colors represent the coercions. We design the
type system in order to ensure that coercions are retyping functions.

In this solution, coercions are usual lambda terms, as it is the case in [2]. We also tried
another approach where coercions are proof terms of a type containment judgment, as it is
the case in one of the language description in [1]. Showing an equivalence between these two
descriptions, lambda term and proof term, is left for further work.

Most of the di�culty in the design of F�� is to preserve the coercion-erasure semantics,
i.e. to allow coercions to be dropped before evaluation without changing the meaning of
programs. Satisfying this property is particularly di�cult in presence of instantiation and
abstraction, and required to add some restrictions in the type system. But we believe some
of these constraints can be softened. In particular the restriction on coercion abstractions can
be easily modi�ed as we see in future work.

Conclusion

This work shows that instantiation, contra-variance and abstraction are compatible within
a coercion system. However, to preserve the coercion-erasure semantics, the restrictions we
added disallow some interactions between contra-variance and abstraction. As a corollary, this
work enforces the result of strong normalization of xML

F, which was not correctly demonstrated
in [2].

Extensions

There are numerous paths to extend this work. First we can study systems which would be
less restrictive on coercions abstractions, but still preserving the erasure semantics. An easy
extension is to ask for parametricity either on the right of the arrow, as this is currently the
case, or on the left. But, we would ideally want to completely remove this restriction, which
would imply additional reduction rules, to avoid stuck terms because of coercion variables on
arrow types.

Then, we might want to allow more colored function types. For example, the system could
contain functions between coercions, or coercions between coercions, or even any function
returning coercions.

Finally, we can look for a way to deduce a coercion from its type, and see if its normal
form is unique. We can study how we could have inference in this system. And we can look
for an equivalence proof between the current lambda description and a containment version
of F��, in the same manner as [1].
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1 Introduction

F� and xML
F are two languages with coercions, which have overlapping but distinct speci-

�cities, and are not included into each other. Actually, F� o�ers contra-variance which xML
F

does not, and reciprocally, xML
F o�ers coercion abstraction which F� does not. This naturally

raises the question of the existence of a coercion language that uni�es F� and xML
F.

In this report, we design F��, a coercion language extending F� with coercion abstraction.
This language handles terms and coercions at the same level, so coercions are terms. We de�ne
a type system to ensure that coercions are just retyping functions [1]. A retyping function
only changes the type of its argument. It cannot duplicate or erase it, and has to behave like
the identity function. This allows us to say that coercions can be erased before running the
program. Thus they have no run-time cost.

We recall the Lambda Calculus, System F, System F� and xML
F de�nitions for the reader

in Section 2. Our contributions are:

� to de�ne the syntax, the type system and dynamic semantics of F�� in Section 3.1,
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� to show that the type system is sound in Section 3.3,

� to show that F�� is strongly normalizing using the result of strong normalization in
System F in Section 3.2,

� to show that both F� and xML
F are included in F�� in Sections 4.1 and 4.2, and �nally

� to show that F�� preserves the coercion erasure semantics in Section 4.3.

We defer until Section 5 the numerous ways of extending this work.

2 Existing Languages

To lighten the notation, we subscript the grammar rules of a language with a symbol denoting
the language itself only in case of ambiguity. For example we have M�, MF, M�, Mx, and
M�� for the terms of the Lambda Calculus, System F, F�, xML

F, and F�� respectively. We use
the same term and type constructors for the languages. This way, we have obvious conversion
from a language to the other, when their constructors match.

When inference rules are written in the �ow of text, they do not contribute to the de�nition
of the language. The languages are only de�ned in Figures.

2.1 De�nition of the Lambda Calculus

We quickly recall the syntax and reduction relation of the Lambda Calculus with a Unit
constructor in Figure 11 on page 21 in the Appendix. The reduction relation is strong, and
we do not specify any reduction strategy. We use the Lambda Calculus as our target language
when erasing coercions in F��.

2.2 De�nition of F

We quickly recall the syntax, and the typing relation of Curry-style (no type annotations)
System F in Figure 12 on page 22 in the Appendix. The reduction relation of System F is the
same as the one of the Lambda Calculus. Note that the terms and contexts of the Lambda
Calculus and System F are the same. We can see from the Context reduction rule that we
use the strong reduction relation. Thus, the values are adapted to �t this description.

To simplify notations, we handle �F as a set, and we can rename a bound variable in a
term or a type at any time. We will do this kind of simpli�cations for the next languages too.

Like for the Lambda Calculus, this de�nition of System F has a Unit constructor. This
will serve to show strong normalization of F�� in Section 3.2.

2.3 De�nition of F�

F� allows to type more terms than System F. A term M is typeable and has type � in F�, if
and only if there is a term N that �-reduces on M and which is typeable and has type � in
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System F. Said otherwise:

� `F M : � M ;� N

� `� N : �

where �-reduction is:

Context

M ;� M

E[M ];� E[M ]

Eta

�x:M x;� M

John C. Mitchell presented two versions of F� and showed the equivalence between them [1].
The �rst version is exactly the intuition we have for F�. It is de�ned as F with an additional
typing rule that states:

� `� �x:M x : �

� `� M : �

The second version uses a type containment judgment denoted by � catching this notion of
a term having several types. This judgment is used in a subtyping-like typing rule.

We only recall here the second version, which is the one we use in Section 4.1 to show the
inclusion of F� in F��. The syntax and the typing relation are de�ned in Figure 1.

When we have � � � then we can write a term M that has type � ! � in System F and
that is an �-expansion of the identity function. This idea of a function being an �-expansion
of the identity function �x:x is what Mitchell calls a retyping function, because the only thing
that this function can do is change the type of its argument. We are going to extend this idea
when designing F��.

2.4 De�nition of xMLF

Curry-style system F is not used in practice, because it lacks inference. This comes from
the �rst-class polymorphism which leads to undecidable type systems. The widespread ML

solution is to have only second-class polymorphism. On the other hand, ML
F allows to have

�rst-class polymorphism and still have inference by providing partial type annotations. We
need to give the type of an argument if we use it in a polymorphic manner.

There are several variants of ML
F:

� iML
F, the Curry-style version, which does not need type annotations but does not have

inference,

� eML
F, the version with type-inference, provided some annotations are prosent, and

� xML
F, the Church-style version, which has explicit type information.

Because inference is not yet one of our concern for F��, we will focus on xML
F. We give its

de�nition in Figure 2, in almost the same manner as [2].
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Figure 1: De�nition of F�

x; y term variables

�; � type variables

M;N ::= x j �x:M jM N terms

�; �; � ::= � j � ! � j 8�:� types

A ::= ? j A; x : � environments

A `� M : � term judgments

� � � containment judgments

De�nition of � � �

(sub)
�!
� =2 ftv(

�!
8�:�)

�!
8�:� �

�!
8�:�

�����!
[� � ]

(dist)
�!
8�:(� ! �) � (

�!
8�:�)!

�!
8�:�

(arrow)

�0 � � � � � 0

� ! � � �0 ! � 0

(trans)

� � � � � �

� � �

(congruence)

� � �

8�:� � 8�:�

De�nition of A `� M : �

(var)

x : � `� x : �

(add hyp)

A `� M : � x =2 dom(A)

A; x : � `� M : �

(! I8)

A; x : � `� M : � �!� =2 ftv(A)

A `� �x:M :
�!
8�:(� ! �)

(! E8)

A `� M :
�!
8�:(� ! �) A `� N :

�!
8�:�

A `� M N :
�!
8�:�

(cont)

A `� M : � � � �

A `� M : �
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Figure 2: De�nition of xML
F

x; y term variables

�; � type variables

M;N ::= x j �(x : �)M jM N j �(� � �)M jM �

j letx =M inN terms

�; � ::= � j � ! � j ? j 8(� � �)� types

�;  ::= � j �; j 1 j & j

&

j !� j 8(� �) j 8(� � )� instantiations

� ::= ? j �; � � � j �; x : � environments

� `x M : � term judgments

� `x � : � � � instantiation judgments

De�nition of � `x M : �

IBot

� `x � : ? � �
IAbs

�; � � � `x!� : � � �

IIntro

� =2 ftv(�)

� `x

&

: � � 8(� � ?)�

IComp

� `x � : �1 � �2 � `x  : �2 � �3

� `x �; : �1 � �3

IUnder

�; � � � `x � : �1 � �2

� `x 8(� � )� : 8(� � �)�1 � 8(� � �)�2

IInside

� `x � : �1 � �2

� `x 8(� �) : 8(� � �1)� � 8(� � �2)�

IElim

� `x & : 8(� � �)� � � [� �]
IId

� `x 1 : � � �

De�nition of � `x � : � � �

Var

�; x : � `x x : �

Abs

�; x : � `x M : �

� `x �(x : �)M : � ! �

App

� `x M : � ! � � `x N : �

� `x M N : �

TAbs

�; � � � `x M : � � =2 ftv(�)

� `x 8(� � �)M : 8(� � �)�

TApp

� `x M : � � `x � : � � �

� `x M � : �
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Figure 3: Drop Function

bxc = x bUnitc = Unit b��x:Mc = bMc b��x:Mc = �x:bMc b�hx:Mc = bMc

bM@�Nc = bNc bM@�Nc = bMc bM@�Nc = bMc bNc bM@hNc = bMc

3 De�nition of F��

We make coercions explicit in the terms like in xML
F, but we also add them to the syntax

of terms, in order to abstract over them. And we use the type system to ensure that these
coercions only modify the type of their argument, and leave their semantics unchanged. This
way, we can say they are retyping functions and that they do not compute. This is why we
preserve the erasure semantics, and we can say that coercions have no run-time cost.

Our idea is to de�ne a coercion, as an �-expansion of the identity function wrapped with
erasable constructors inside and outside the �-expansions. This criterion is encoded into the
type system in a way similar to [2].

We will mainly adapt Curry-style System F syntax, reduction rules and typing rules, by
adding colors and �ashes. So it is possible to read System F rules in background of our
F�� rules. The new parts are colors, �ashes and the return-type parametricity condition for
coercion abstraction. Everything we add plays a role for the bisimulation result, which is what
allows us to erase coercions and keep the same semantics.

3.1 Syntax

We de�ne the syntax of F�� in Figure 4. Again, to simplify notations, we use � and � as sets,
but we still use � as a list, and Z contains at most one element. This plays a key role in the
type system, as this is how we render the �-expansion condition. We de�ne by induction the
drop fonction bMc, from F�� to the Lambda Calculus in Figure 3. This function mainly just
forgets about colors, �ashes and coercions, and returns the Lambda Calculus skeleton of the
term. It is only de�ned on normal terms, and not on coercions, because they are dropped.

Colors are part of the syntax, and can be seen as coloring the edges of the lambda term
written as a tree. For example the identity coercion, which can only do top-level instantiation
and generalization ��x:x would be:

��
x

We use colors to pattern-match in the reduction rules and typing rules. They represent
whether we are a normal term, or a coercion. Plain blue lines are used for normal terms, and
dashed red lines for coercions. So M is a normal term, and M is a coercion. The fact that
they are part of the syntax implies that there is a di�erence between ��x:M and ��x:M .
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Figure 4: Syntax of F��

x; y term variables

h �ash variables

�; � type variables

� ::= � j � colors

 ::= � j h �ashes

M;N;P ::= x j � 
1
x :

2
M j

1
M @ 

2
N j Unit terms

�; � ::= � j
1
� !

2
� j 8

1
� :

2
� j Unit types

p ::= x j
1
p @ 

2
v prevalues

v ::= p j � 
1
x :

2
v j Unit values

E [�] ::= � j
1

� 
2
x :E [�] j

1

E [�]@ 
2

M j
1

2
M @ E [�] contexts

� ::= ? j �; � types environments

� ::= ? j �; (
1
x :

2
� ) terms environments

Z ::= ? j
1
x :

2
� id environments

� ::= ? j �; (h :
1
x :

2
� ) eta environments

�;�; Z;� `
1

M :
2
� judgments
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The �rst is a normal term abstraction returning a normal term, while the second is a coercion
abstraction returning a normal term.

All the grammar rules but the one for contexts do not have a top-level color, we have
to add it manually when we talk about them. For exemple M does not have a top-level
color, whereas M does. Indeed, we see that E

�
M
�
does already have a top-level color in its

de�nition. So we adopt the syntactic convention that
1

2
M =

1
M =

2
M which means that if

we stack two colors for the same node (so the same edge), then these two colors are equal.
This is used to do pattern-matching on the color, for instance when we write

1

E
�

2
M

�
instead

of E
�
M
�
it means that the top-level color of E

�
M
�
has to be

1
� . This does not happen very

often, and it only happens in the presence of a context.

Flashes are used to keep track of �-expansions. They link a lambda node with a deeper
application node that corresponds to the application node in the �-expansion. This explains
the di�erence between ��x:M and �hx:M . The �rst is a normal abstraction, while the second

is the abstraction part of an �-expansion. For the second to be well typed, we must have a
@h appearing in M . The simplest example involving �ashes is the �-expansion of M which
is �hx:M@hx. Because �ashes always go by pairs (a lambda node and an application node

below), we say that these nodes are linked. Here is what looks like the tree of the last example
(note the �ash link between the lambda and application node):

�

@

M

x
h

Both term and �ash variables are bound at the lambda in its only subterm. We can see it
on the previous example. The �ash variable is written above the lambda in the syntax, and
the term variable is at its usual place before the point. The lambda does not always bind a
�ash variable, whereas it always binds a term variable. For instance, ��

1
x :

2
M does not bind a

�ash variable, while �h
1
x :

2
M does. Flash variables can only be used at application nodes, but

every application node does not necessarily have a �ash variable. We write ftv(�), fv(�), and
�v(�) for respectively the free type variables, the free term variables and the free �ash variables

functions. A typical example of a term using �ashes is �hx:E
h
M@hN

i
where x =2 fv(M), x

appears exactly once in N , and h =2 �v(M;N;E [�]) which are enforced by typing. A picture
of this term would be:
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Figure 5: Substitution of F��

1
x [

1
x  

1
M ] =

1
M

1
y [

2
x  

2
M ] =

1
y

(
1

� 
2
y :

3
M )[

4
x  

4
N ] =

1

� 
2
y :

3
M [

4
x  

4
N ] with y =2 fv(x;N) and  =2 �v(N)

(
1

2
M @ 

3
N )[

4
x  

4
P ] =

1
2

M [
4
x  

4
P ]@ 

3
N [

4
x  

4
P ]

1
Unit [

2
x  

2
P ] =

1
Unit

1
x [h  ] =

1
x (

1

� 
0

2
x :

3
M )[h  ] =

1

� 
0

2
x :

3
M [h  ] with  0 =2 �v(h;  )

(
1

2
M @ 0

3
N )[h  ] =

(
1

2
M @ 

3
N if  0 = h

1
2

M [h  ]@ 0

3
N [h  ] otherwise 1

Unit [h  ] =
1

Unit

1
� [

1
�  

1
� ] =

1
�

1
� [

2
�  

2
� ] =

1
�

1
2
� !

3
� 0 [

4
�  

4
� ] =

1
2
� [

4
�  

4
� ]!

3
� 0 [

4
�  

4
� ]

(
1

8
2
� :

3
� )[

4
�  

4
� ] =

1

8
2
� :

3
� [

4
�  

4
� ] with � =2 ftv(�; �)

1
Unit [

2
�  

2
� ] =

1
Unit

�

@

M N

E

x
h

The meaning of the red triangles is that they are an erasable wrapping of the term going
through them. More precisely E [�] is an erasable wrapping if bE [�]c = b�c.

We de�ne substitutions for terms, �ashes and types in Figure 5. The side conditions we
have for lambdas are obviously always satis�ed, because we can always rename the bound
variables to avoid the con�ict.

We de�ne the reduction relation in Figure 6. We subscript our reductions with � or �
depending on whether the reduction is a computation step or not, respectively. A reduction is
� if its redex contains colors or �ashes, and � otherwise. All the reduction rules but NIotaUp
are the usual �-reduction modulo colors and �ashes. NIotaUp is a �-reduction under a
context catching the binder of the �ash on the application node. The intuition about �ashes
during reduction comes from the fact that we do not want the reduction involving a �ash
to count as a computation step, because it was just an �-expansion in a retyping function.
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Figure 6: Reduction relation of F��

ContextBeta

M ;� N

E
�
M
�
;� E

�
N
� Beta

(��x:M)@�N ;� M [x N ]

ContextIota

M ;� N

E
�
M
�
;� E

�
N
�

CIota

(��x:M)@�N ;� M [x N ]
LIota

(��x:M)@�N ;� M [x N ]

NIotaDown

(�hx:M)@ N ;� M [h  ][x N ]

NIotaUp

�hy:E

�
(��x:M)@hN

�
;� �

�y:E
�
M [x N ]

�

However in the current redex it is the lambda node which is �ashed, then, there will be another
redex with the associated �ashed application node, and this time it should be a computation
step. So when a redex contains a �ash, we remove its associated �ash. And when both the
lambda and application nodes of a redex are �ashed, we link their associated �ashes together.
This way �-expansions count as �-reduction, but still leave one �-reduction, because n nested
�-expansions spread over n + 1 redexes. So we want the n �rst reduction to be �-reductions,
and the last one to be a �-reduction. Because we did not specify any reduction strategy,
this system of �ashes allows us to always have a well de�ned drop function according to the
bisimulation.

�

@

�

M

N

E

y

x

h
�

M

N N

E

y

NIotaUp

We see on the illustration of NIotaUp that the value of drop on both side is the same.
This is what we want because this is a �step. Also note that in a redex, the colors match
between the bound variable and the argument, and between the body and the whole term.

Here are how we understand the di�erent sort of environments, that are used later in the
typing judgment.

� � contains and �binds� the type variables, so the judgment is closed for type variables.
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� � contains and �binds� some term variables, and it also remembers the type of each
variable. This is the usual environment, because it's a set and we do not use it in any
particular way in the typing rules.

� Z is either empty or contains and �binds� exactly one term variable with its type. When
Z = ?, we don't have any particular constraint. But when Z = x : � , it means the term
we are typing erases to x, so it is E

�
x
�
with E [�] an erasable wrapping. This is what

ensures retyping functions to behave like the identity function (see the LApp typing
rule).

� � contains and �binds� the remaining term variables, so the judgment is closed for
term variables. Each element of the list is a triple containing a �ash variable, a term
variable and its type. The intuition of (h1 : x1 : �1); : : : ; (hn : xn : �n) is that we went
through n �ashed lambdas successively. Each of these �ashed lambda is the lambda of
an �-expansion. They are stacked, and waiting to be unstacked by their corresponding
application node.

We de�ne the typing relation by induction in Figure 7. We see these environments in
action in the XAbs and XApp rules, which are in four versions.

� Abs and App are for normal terms abstraction. Z and � are empty because ��x:M

and M@�N are involved in computation, i.e. �-reduction. These two constructors

constitute the skeleton of a term, which remains after coercion-erasure. The following
constructors are here to wrap the skeleton and change its type.

� CAbs and CApp are for coercions abstraction, and we can see the return-type para-
metricity condition that we need to show the bisimulation. This time Z and � may not
be empty, because we are just wrapping the term, i.e. the constructors we add are going
to be erased.

� LAbs and LApp ensure that coercions behave as the identity function. Z and � are
empty when typing a coercion, because coercions are dropped, and we do not want to
drop resources.

� NAbs and NApp allow to do �-expansions at no run-time cost. We see in NApp that N
should be an erasable wrapping of x, and that x does not appear in M . This is how we
ensure �ashed terms to be �-expansions wrapped with coercions and other �-expansions.

3.2 Strong Normalization

We de�ne cM from F�� to F by induction in Figure 8. This function forgets about the colors
and the �ashes, but coercions become normal terms of System F.

First we show that each step in F�� corresponds to a step in F. Then we show that the
translation of a well typed term in F�� is well typed in F. Finally, we get back that F�� is
strongly normalizing for well typed terms. We use this result in the bisimulation proof to
show that ;� is strongly normalizing.
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Figure 7: Typing relation of F��

TypeVariable

�; � ` �

TypeArrow

� `
2
� � `

3
�

� `
1

2
� !

3
�

TypeForall

�; � `
2
�

� `
1

8�:
2
�

TypeUnit

� ` Unit

EnvEmpty

� ` ?

EnvVariable

� ` � � ` � x =2 fv(�)

� ` �; (x : �)

Ax

� ` �; (x : �)

�; �; (x : �);?;? ` x : �

LAx

� ` �; (x : �)

�; �;x : � ;? ` x : �

Unit

� ` �

�; �;?;? ` Unit : Unit

Abs

�;�; (x : �);?;? ` M : �

�;�;?;? ` ��x:M : � ! �

App

�;�;?;? ` M : � ! � �;�;?;? ` N : �

�;�;?;? ` M@�N : �

CAbs

�; �; �; (x : � ! �); Z;� ` M : �

�;�; Z;� ` ��x:M : 8�:(� ! �)! �

CApp

�;�; Z;� ` M : � ! � �;�;?;? ` N : �

�;�; Z;� ` M@�N : �

LAbs

�;�;x : � ;? ` M : �

�;�;?;? ` ��x:M : � ! �

LApp

�;�;?;? ` M : � ! � �;�; Z;� ` N : �

�;�; Z;� ` M@�N : �

NAbs

�;�; Z;�; (h : x : �) ` M : �

�;�; Z;� ` �hx:M : � ! �

NApp

�;�; Z;� ` M : � 0 ! � �;�;x : � ;? ` N : � 0

�;�; Z;�; (h : x : �) ` M@hN : �

TAbs

�; �; �; Z;� ` M : �

�;�; Z;� ` M : 8�:�

TApp

�;�; Z;� ` M : 8�:� � ` �

�;�; Z;� ` M : � [� �]
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Figure 8: Translation from F�� to F
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Lemma 1 (Forward simulation with F). Proof page 21
We have the following commutative diagram:

M N

cM bN
��b� b�

Lemma 2 (Translation to F). Proof page 21

If �;�; Z;� ` M : � holds, then b�; b�; bZ; b� `F cM : b� holds.

Lemma 3 (Normalization). If �;�; Z;� ` M : � holds, then M strongly normalizes.

Proof. With Lemma 1, Lemma 2 and strong normalization in System F.

3.3 Soundness

We show that F�� is sound with the subject reduction and progress lemmas, respectively
Lemma 11 and Lemma 12. As usual, to show subject reduction, we need a few lemmas about
substitution. We have one lemma for each environment holding term variables. But �rst we
have a lemma, judgment substitution, about free type variables which is essential for coercion
substitution in the presence of the restriction we used. This lemma was false in [2], leading to
an unsound type system.

Short proofs are just below their lemmas, while more technical ones are defered until
Section B.

Lemma 4 (Judgment substitution). Proof page 21
If �; �; �; Z;� ` M : � holds, then (�; �; �; Z;� ` M : �)[� �] holds.

Lemma 5 (Substitution). Proof page 21
If �;�;?;? ` N : � and �;�; (x : �);?;? ` M : � hold, then �;�;?;? ` M [x  N ] : �
holds.
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Lemma 6 is expressed in a quite unusual way, because of the restriction we added in CAbs
to preserve the coercion-erasure semantics. This comes from the fact, that in the proof of
subject reduction, when inversing the typing relation in the CIota reduction rule case, a
TApp typing rule appears to get an arrow for the application.

Lemma 6 (Coercion substitution). If (�; �; �;?;? ` N : � ! �)[�  � 0] and �; �; �; (x :

� ! �); Z;� ` M : � hold, then (�; �; �; Z;� ` M [x N ] : �)[� � 0] holds.

Proof. Applying Lemma 5, then Lemma 4.

What is interesting in the following lemmas, is the play of the environments. We keep in
mind that Z = x : � is used to type an erasable wrapping of x, and that � is a resource that
we use as a stack.

Lemma 7. Proof page 23
If �;�; Z;� ` N : � and �;�;x : � ;? ` M : � hold, then �;�; Z;� ` M [x N ] : � holds.

Lemma 8. Proof page 23
If �;�;?;? ` N : � and �;�;?; (h : x : �) ` M : � hold, then �;�;?;? ` M [h  �][x  
N ] : � holds.

Lemma 9. Proof page 23

If �;�;?; (h : y : �) ` E

�
(��x:M)@hN

�
: � holds, then �;�; (y : �);?;? ` E

�
M [x N ]

�
:

� holds.

Lemma 10. Proof page 23
If �;�; Z;�; (h : y : �) ` M : � and �;�;x : � 0;? ` N : � hold, then �;�; Z;�; (h0 : x : � 0) `
M [y  N ][h h0] : � holds.

In subject reduction, we use the notation ;�� to talk about the union of ;� and ;�. So
it states that for any well typed term in any environments, if it reduces in any way, then it is
typed in the same environments with the same type. And progress tells that any well typed
term in any environments is either a value, or reduces in some way.

Lemma 11 (Subject Reduction). Proof page 23
If �;�; Z;� ` M : � and M ;�� N hold, then �;�; Z;� ` N : � holds.

Lemma 12 (Progress). Proof page 23
If �;�; Z;? ` M : � holds, then either M is a variable or M ;�� N holds.

4 Properties

There are three main results about F��. On the one hand, we show that both F� and xML
F

are included into F�� in Sections 4.1 and 4.2. On the other hand, we show that we preserve
the coercion-erasure semantics in Section 4.3.

To show an inclusion, we need to show that the translation of a well typed term of the
source language is well typed in the target language, and that both terms erases to the same
Lambda Calculus term.
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Figure 9: Translation of F�

�? = � (� ! �)? = �? ! �? (8�:�)? = 8�?:�?

De�nition of (�� � ��)
?

(sub)? = ��z:z (dist)? = ��z:�hx:z@hx (congruence)(c)? = ��z:c?@�x

(arrow)(c1; c2)
? = ��z:�hx:c2

?@�(z@h(c1
?@�x)) (trans)(c1; c2)

? = ��z:c2
?@�(c1

?@�x)

De�nition of (�� `� M� : ��)
?

(var)? = x (add hyp)(m)? = m? (! I8)(m)? = ��x:m?

(! E8)(m;n)
? = m?@�n? (cont)(m; c)? = c?@�m?

?? = ? (��; x : ��)
? = ��

?; (x : ��
?)

4.1 Inclusion of F�

We de�ne the translation from F� to F�� in Figure 9. This translation is done in several
steps. First, we have a function from F� types to F�� types. Then, we have a function from F�

containment judgments to F�� coercions. This function matches on the nodes of the derivation
tree. When the tree is not a leaf, its subtrees are written as arguments of the derivation rule
name (e.g. (arrow)(c1; c2)). We do the same for the function between judgments and F��

normal terms. And we �nally have a translation of F� environments. We can easily see that
the translation of a well typed F� term drops on the initial F� term.

Using these de�nitions, we show that F� is included in F�� in Lemma 13.

Lemma 13 (Inclusion of F�). Proof page 24
The following assertion holds:

� Containment: If �� � ��, � ` �, � ` ��
?, and � ` ��

? hold, then �;�;?;? `
(�� � ��)

? : ��
? ! ��

? holds.

� Typing: If �� `� M� : ��, � ` ��
?, and � ` ��

? hold, then �;��
?;?;? ` (�� `� M� : ��)

? :
��

? holds.
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4.2 Inclusion of xMLF

We de�ne the translation from xML
F to F�� in Figure 10. We see again that the translation

of a well typed xML
F term, drops on the same Lambda Calculus term than the initial xML

F

term. The drop function on xML
F terms is de�ned in a natural way.

Lemma 14 (Inclusion of xML
F). Proof page 24

The following assertions hold:

� Instantiation: If �x `x �x : �x � �x, � ` �x
�, � ` �x

�, and � ` �x
� hold, then

�;�x
�;?;? ` �x

� : (�x � �x)
� holds.

� Typing: If �x `x Mx : �x, � ` �x
�, and � ` �x

� hold, then �;��;?;? ` Mx
� : �x

�

holds.

4.3 Bisimulation

We need a few lemmas showing the invariants of the type system. Lemma 15 tells that when
M is typed with Z = x : � then M is just an erasable wrapping of x. This comes from the
idea that coercions behave like the identity function. Lemma 16 mainly tells the same sort of
result. If something is typable with a � ending with (h0 : x : �) then it's an erasable wrapping
of the only application node �ashed with a h0.

Lemma 15. Proof page 24
If �;�;x : � ; � ` M : � holds, then bMc = x holds.

Lemma 16. Proof page 24

If �;�; Z;�; (h0 : x : �) ` E
h
M@hN

i
: � holds, then bE [�]c = b�c holds.

To show the bisimulation, we need an additional hypothesis � `bi � on the environments
that asks coercion variables to be parametric on their return type. We did not use this
judgment in the type system because it breaks Lemma 4 and would make the proof of Lemma 6
not modular.

EnvEmpty

� `bi ?

EnvTerm

� `bi � � ` � x =2 fv(�)

� `bi �; (x : �)

EnvCoercion

� `bi � � `
1
� � `

2
� x =2 fv(�)

� `bi �; (x :
1
� !

2
� )

Lemma 17. Proof page 24
If � `bi �, �;�;?;? ` M : � , bMc = (�x:M�) N�, and M��;� hold, then M ;� N and

bNc =M�[x N�] hold.

Lemma 18 (Bisimulation). Proof page 25
The following assertions hold:

(1) If �;�; Z;� ` M : � and M ;� N hold, then bMc; bNc holds.
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Figure 10: Translation of xML
F

?� = ? (�x; x : �x)
� = �x

�; (x : �x
�) (�x; � � �x)

� = �x
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�

x� = x (�(x : �x)Mx)
� = ��x:Mx

� (MxNx)
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�@�Nx
�

(�(� � �x)Mx)
� = ��i�:Mx

� (Mx �x)
� = �x

�@�Mx
�

(letx =Mx inNx)
� = (��x:Nx

�)@�Mx
�

De�nition of �x
�

�x
� = ��z:z (�x; x)

� = ��z: x
�@�(�x

�@�z) 1
� = ��z:z &� = ��z:z@�(��y:y)

&

� = ��z:��i�:z (!�)� = i� (8(� �x))
� = ��z:��i�:z@

�(��y:i�@
�(�x

�@�y))

(8(� � )�x)
� = ��z:��i�:�x

�@�(z@�i�)

De�nition of �x
�

�� = � (�x ! �x)
� = �x

� ! �x
� ?� = 8�:� (8(� � �x)�x)

� = 8�:(� � �x)
� ! �x

�

(�x � �x)
� = �x

� ! �x
�
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(2) If �;�; Z;� ` M : � and M ;� N hold, then bMc = bNc holds.

(3) If � `bi �, �;�; Z;� ` M : � , and bMc; M� hold, then M ;?
�;� N and bNc = M�

hold.

5 Conclusion and Future Work

We designed F��, a language with coercions containing both F� and xML
F, and preserving

the coercion-erasure semantics. To do so, we added restrictions to disallow some interactions
between contra-variance and abstraction. We can only write abstractions which are parametric
on the return type of their coercion. However, we can weaken this restriction without much
e�ort and ask for parametricity either on the right side of the arrow (the return type), or
on the left side (the argument type). It should be also possible to completely remove this
restriction, but it would imply to add new non trivial reduction rules, which is still under
investigation.

We currently only o�er normal term abstraction, coercion abstraction returning a term,
coercion between terms, and �-expansion. But we could authorize any kind of abstraction or
coercion. For example, we could add coercion abstraction returning a coercion as in

��c1:�
�c2:�

�f:�hx:c2@
�(f@h(c1@

�x))

which is a function taking two coercions c1 and c2 and building a coercion on functions using c1
to coerce the argument and c2 for the result. We could also add coercions between coercions,
or even term abstraction returning a coercion.

We can also extend one of the idea in [1], which is describing the language using contain-
ment judgment instead of terms. We would write coercions using proof terms of a containment
judgment instead of lambda calculus. In this case it would be interesting to see if there is a
way to deduce a coercion from its type, and see if its normal form is unique. And we could
look for an equivalence proof between the current lambda description and this containment
version.

Finally, we can show that one step in xML
F corresponds to at least one step in F��. Thus,

we obtain strong normalization for xML
F.
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Figure 11: De�nition of the Lambda Calculus
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A Figures

B Technical Proofs

Proof of Lemma 1. By induction on M ;�� N . Then it's always �-reduction, but for the
context rules which are handled with the context rule of System F and the induction hypothesis,
and the NIotaUp rule which is handled with the context rule and the �-reduction rule.

Proof of Lemma 2. By induction on �;�; Z;� ` M : � . It su�ces to see that the erasure of
F�� typing rules are included in those of System F. We just need to use the weakening property
in System F for CApp, LApp, and NApp. And we need to use TAbs in addition to Abs to
translate CApp.

Proof of Lemma 4. By induction on �; �; �; Z;� ` M : � . In addition to the type substitution
along the whole tree, we update each leaf �; �;�0 ` � with a derivation tree of �; ftv(�);�0 ` �
which is possible, because the free type variables of � are in the new type environment. Note
that the � and � environments can only grow from the root to the leaves. This is why we can
write �; �;�0.

Proof of Lemma 5. By induction on �;�; (x : �);?;? ` M : �. In addition to the term sub-
stitution along the whole tree, we update each leaf �;�0; �;�0;?;? ` x : � with a derivation
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Figure 12: De�nition of F

x; y term variables

�; � type variables

M;N ::= x j �x:M jM N j Unit terms
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� `F M : � term judgments

� `F � type judgments

� `F ok environment judgments

EnvEmpty

? `F ok

EnvTerm

� `F � x =2 dom(�)

�; (x : �) `F ok

EnvType

� `F ok � =2 �
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� `F M : � ! � � `F N : �

� `F M N : �

TAbs

�; � `F M : �

� `F M : 8�:�

TApp

� `F M : 8�:� � `F �

� `F M : � [� �]
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tree of �;�0; �;�0;?;? ` N : � using the derivation of �;�;?;? ` N : � in hypothesis and
the derivation of �;�0; �; (x : �);�0;?;? ` x : � for the part about �0.

Proof of Lemma 7. By induction on �;�;x : � ;? ` M : �. We modify the LAx leaves with
�;�; Z;� ` N : � where we adapted the � and � environments. And along the whole tree we
add Z and �, because every rule with a Z allows a �.

Proof of Lemma 8. By induction on �;�;?; (h : x : �) ` M : �. The only intersting case is
NApp. Because of the �ash substitution, the new rule is App, so we have to check that we
can produce the premises using Lemma 7. Because Z and � are equal to ?, the left premise
is �ne as it is. For the right premise, we use Lemma 7, and we are �ne because x does not
appear in M .

Proof of Lemma 9. By induction on �;�;?; (h : y : �) ` E

�
(��x:M)@hN

�
: �, and then

inversion of E [�]. The intersting case is NApp when E [�] = �. We use Lemma 5 with �;�; (y :
�); (x : � 0);?;? ` M : � and �;�; (y : �);?;? ` N : � 0. We get the �rst judgment from the
inversion of the typing rule. The second judgment also results from �;�; y : � ;? ` N : � 0

which comes from the inversion of the typing rule.

Proof of Lemma 10. By induction on �;�; Z;�; (h : y : �) ` M : �. The only intersting case
is NApp. To rebuild the rule, we do an induction on the right premise, because this is where
the term substitution takes place.

Proof of Lemma 11. By induction on M ;�� N .

� ContextBeta and ContextIota: By induction on E [�], by inversion of the typing
relation and using both induction hypotheses.

� Beta: By inversion of the typing relation and Lemma 5.

� CIota: By inversion of the typing relation (there is a TApp involved), some rewriting
of the judgments and Lemma 6.

� LIota: By inversion of the typing relation and Lemma 7.

� NIotaDown: There are two cases depending on  . If it is �, then by inversion of the
typing relation and Lemma 8 we have the result. If it s h0, then by inversion of the
typing relation and Lemma 10 we have the result.

� NIotaUp: By inversion of the typing relation and Lemma 9.

Proof of Lemma 12. We show that if �;�; Z;? ` E
�
M
�
: � holds, then either E

�
M
�
;��

E
�
N
�
or M = v holds. By induction on M . Almost all the cases are solved with Context-

Beta or ContextIota. The remaining cases are
1

2
v @ 

3
v0 .

�
1

2
p @ 

3
v : This is a value.
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�
1

(
2

� 
0

3
x :

4
v )@ 

5

v0 : By cases and by typing, we have either

� (� x:v)@�v0 and Beta or NIotaDown apply, or

� (��x:v)@�v0 and CIota applies, or

� (��x:v)@�v0 and LIota applies, or

� (�h
0

x:v)@hv0 and NIotaDown applies.

� (��x:v)@hv0 and by typing we can go up the context E [�] until we �nd the lambda

node associated with h and NIotaUp applies.

�
1

2
Unit @ 

3
v : Not typeable.

Proof of Lemma 13. Containment: By induction on � � � .
Typing: By induction on � `� M : �.

� (var): Ax.

� (add hyp): By induction.

� (! I8): TAbs* and Abs.

� (! E8): TAbs*, App, and TApp*.

� (cont): LApp.

Proof of Lemma 14. Instantiation: By induction on � `x � : � � � .
Typing: By induction on � `x M : � .

Proof of Lemma 15. By induction on �;�;x : � ; � ` M : �. For each case with a Z which is
not LAx, we look which premise contains the Z and we verify that it is the part kept by the
drop function.

Proof of Lemma 16. By induction on E [�]. All the cases are obvious but �;�; Z;�; (h : x :

�) ` �h
0

x:E
h
M@hN

i
: �. By typing, we have E[�] = E0[E00[�]@h0

N 0]. We apply the induction

hypothesis for E0[�] and E00[�].

Proof of Lemma 17. Let's consider the following forms E[��x:M ]@�N with bE[�]c = b�c. We

have bE[��x:M ]@�Nc = (�x:bMc) bNc. By typing and the fact that we are in �-normal

form, we show by induction on E[�] that E[�] = �.
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� ��x:E[M ]: By typing of the application.

� �hx:E[M ] with h present in E[M ]: We can do a �-reduction.

� M@�E[N ]: Either M is a variable and it's not well typed, or it's a lambda and we can

do a �-reduction.

� E[M ]@�N : By typing we have � x:M on the left.

� E[M ]@hN : We can do a �-reduction.

Proof of Lemma 18. (1) By induction on M ;� N .

� ContextBeta: The context cannot go through red.

� Beta: Drops on a �-reduction.

(2) By induction on M ;� N .

� ContextIota: Induction hypothesis.

� CIota: Ok.

� LIota: With Lemma 15, we have bMc = x.

� NIotaDown: We use Lemma 16 and Lemma 15.

� NIotaUp: We use Lemma 16 and Lemma 15.

(3) With Lemma 17 and Lemma 3.
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